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We discuss various details of our derivation of the exact expression for the Adler D function in N ¼ 1

supersymmetric QCD. This exact formula relates the D function to anomalous dimensions of the matter
superfields. Our perturbative derivation refers to the D function defined in terms of the bare coupling
constant in the case of using the higher covariant derivative regularization. The exact expression for this
function is obtained by direct summation of supergraphs to all orders in the non-Abelian coupling constant.
As we argued previously, our formula should be valid beyond perturbation theory too. The perturbative
result we present here coincides with the general formula order by order. We discuss consequences for
N ¼ 1 supersymmetric QCD in the conformal window. It is noted that our exact relation can allow one to
determine the (infrared) critical anomalous dimension of the Seiberg M field present in the dual theory.
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I. INTRODUCTION

In our brief publication [1] we reported a new exact
relation between the Adler function D in supersymmetric
QCD (SQCD) with the gauge group SUðNÞ on the one
hand, and the anomalous dimensions of the matter super-
fields on the other,

DðQ2Þ ¼ 3

2
Nc

X
f

q2f½1 − γðαsðQ2ÞÞ�; ð1Þ

whereNc is the number of colors,f is the flavor index, and qf
is thecorrespondingelectriccharge(inunitsofe).Equation(1)
assumes that all matter fields are in the fundamental repre-
sentation of SUðNÞ, although their electric charges can be
different. In calculating γðαsðQ2ÞÞ one should remember
that αsðQ2Þ runs according to the Novikov-Vainshtein-
Shifman-Zakharov (NSVZ) β function [2–4].
The basic idea of our derivation was the same as that of

the NSVZ β functions. The key object of our consideration
was the effective Lagrangian for the external electromag-
netic field, with two terms in it: theUð1Þ gauge kinetic term
and the matter term. The latter is related to the former
through the exact Konishi anomaly [5], and, therefore,
brings in γ’s. Although our terminology was perturbative,
the result (1), being based on the exact anomaly relations,
should be exact too. Then we verified that it is valid to all
orders in the SUðNÞ coupling constant αs by a direct
supergraph calculation.
From previous works [6–8] one could find that a relation

between the two constants

D� ¼
3

2
Nc

X
f

q2f½1 − γðα�sÞ� ð2Þ

is valid in the (super)conformal points, i.e. at the points at
which βNSVZ ¼ 0. After our publication [1] it was argued
[9] that the above conformal relation can be generalized
for the renormalization group (RG) flow by considering R
charges as functions of the running αs.
Our task in this paper is twofold. First, we will present a

detailed account of our supergraph calculation, which
a priori seems quite nontrivial. Second, we will consider
implications of (1) in Seiberg’s conformal window [10,11].
Note, that the Adler function D is directly related to the

celebrated ratio R defined as

RðsÞ ¼ σðeþe− → ðsÞquarks; gluonsðinosÞ → hadronsÞ
σðeþe− → μþμ−Þ ;

ð3Þ
where s is the (center-of-mass) total energy squared. R
plays a very important role in the QCD-based phenom-
enology [12]. For example, it is used for a precise
determination of the strong coupling αs from precision
data on eþe− → hadrons in an appropriate range of
energy. The relation between D and R is as follows [12]
(see also [13–15]):

DðαsðP2ÞÞ≡ −12π2
dΠðP2Þ
d logP2

¼ P2

Z
∞

0

ds
RðsÞ

ðsþ P2Þ2 ;

ð4Þ
where Π denotes the photon polarization operator and P is
the Euclidian momentum. (Throughout this paper
Euclidian momenta are denoted by capital letters.) In our
notation Π is related to the inverse invariant charge d−1 by
the equation
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d−1 ¼ α−10 þ 4πΠ; ð5Þ

where α0 is the bare electromagnetic coupling constant.
To find the Adler function D in SQCD one must omit

all terms proportional to the electromagnetic coupling
constant in calculating the polarization operator Π. This
implies that the electromagnetic field is considered as the
external field. The D function encodes QCD corrections
to the photon propagator. In this sense, this function is
similar to ordinary β functions. In QCD the Adler D
function was calculated up to the orderOðα4sÞ [16,17]. For
N ¼ 1 SQCD the two-loop expression for the Adler
function was obtained in [18].
Similarly to the β function, the AdlerD function depends

on the subtraction scheme (beyond two loops). In this paper
we work with the D function defined in terms of the bare
coupling constant, namely,

Dðα0sÞ≡ −
3π

2

d
d logΛ

α−10 ðα; αs;Λ=μÞjα;αs¼const; ð6Þ

where the derivative is calculated at fixed values of the
renormalized coupling constants αðα0; α0s;Λ=μÞ and
αsðα0s;Λ=μÞ. Parameter Λ denotes the ultraviolet cutoff
which (within the higher derivative regularization, see
below) can be identified with the dimensionful parameter
in the higher derivative regularizing term.
The difference between the definitions of the RG

functions in terms of the bare coupling constant versus
renormalized coupling constant is discussed in detail in
[19]. In particular, it was demonstrated that the RG
functions defined in terms of the bare coupling constant
depend on the regularization, but are independent of the
subtraction scheme for a fixed regularization.
The Adler D function consists of two distinct contribu-

tions,

DðαsÞ ¼
X
f

q2fD1ðαsÞ þ
�X

f

qf

�
2

D2ðαsÞ; ð7Þ

where qf denotes the “electric charge” of the flavor f. The
first contribution D1 comes from diagrams in which the
external photon lines are attached to the same matter loop,
and the second oneD2 (the so-called “singlet contribution”)
comes from diagrams in which the external lines are
attached to different matter loops. The diagrams contrib-
uting to both parts of the function D are sketched in Fig. 1.
In this paper we consider N ¼ 1 SQCD with matter

superfields which, in principle, can be in any representation
of the SUðNÞ gauge group, although Eq. (1) is given for
(anti)fundamental (s)quarks. The matter superfields interact
with the external Abelian gauge superfield (which is a
supersymmetric generalization of the photon field).
Our supergraph derivation of the exact relation for the D

function (1) in terms of γ’s uses the higher covariant

derivative regularization. In terms of the bare coupling α0s
for each given value of the momentum Q we have

Dðα0sÞ ¼
3

2
Nc

XNf

f¼1

q2fð1 − γðα0sÞÞ; ð8Þ

where Nc is a number of colors, Nf is a number of flavors,
and γðα0sÞ is the anomalous dimension (of a single chiral
matter superfield) defined in terms of the bare coupling
constant

γðα0sÞ≡ −
d

d logΛ
logZðαs;Λ=μÞjαs¼const: ð9Þ

In the two-loop approximation this equation is in agree-
ment with the result of [18]

DðαsÞ ¼
3

2
Nc

X
f

q2f

�
1þ N2

c − 1

2Nc

αs
π
þOðα2sÞ

�
; ð10Þ

if we take into account the fact that the one-loop anomalous
dimension is given by the expression

γðαsÞ ¼ −
N2

c − 1

2Nc

αs
π
þOðα2sÞ: ð11Þ

(The two-loop contribution to the Adler function and the
one-loop contribution to the anomalous dimension are
scheme independent. Consequently, they are the same
for the RG functions defined in terms of the bare coupling
constant and the RG functions defined in terms of the
renormalized coupling constant.)
Certainly, the D function in the supersymmetric case

cannot be applied for the phenomenological purposes,
because supersymmetry is not observed at low energies.
Nevertheless, investigation of SQCD can be useful for a
better understanding of gauge theories dynamics.
Therefore, our result is promising for investigating the
quantum structure in supersymmetric gauge theories.

FIG. 1. Diagrams contributing to the singlet part of the function
D are schematically presented in the left-hand side, and those
contributing to the nonsinglet part are presented in the right-hand
side. In the former case the external photon lines are attached to
different loops of the matter superfields, and the number of
internal lines joining the circles should be more than 1. In the
latter case the external lines are attached to a single matter loop.
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As was mentioned in [1], the exact relation (1) is closely
related to the exact NSVZ β function [2–4,20]

βðαÞ ¼ −
α2ð3C2 − TðRÞ þ CðRÞijγjiðαÞ=rÞ

2πð1 − C2α=2πÞ
; ð12Þ

where

trðTATBÞ≡ TðRÞδAB; ðTAÞikðTAÞkj ≡ CðRÞij;
fACDfBCD ≡ C2δ

AB; r≡ δAA: ð13Þ

The exact NSVZ β function relates the renormalization of
the coupling constant in N ¼ 1 supersymmetric theories
to the renormalization of the matter superfields. In the
particular case of SUðNcÞ gauge theory with Nf flavors in
the fundamental representation (each flavor gives one Dirac
fermion in components) Eq. (12) gives

βðαsÞ ¼ −
α2sð3Nc − Nf þ NfγðαsÞÞ

2πð1 − Ncαs=2πÞ
; ð14Þ

where γðαsÞ is the anomalous dimension of the chiral
superfields.
The NSVZ β function was originally derived from the

analysis of the structure of instanton corrections, namely,
by requiring their invariance under the renormalization
group [2,3,21]. Another possibility is to use the structure
of the anomaly supermultiplet [4,20,22]. Yet another
(albeit related) derivation of the NSVZ β function was
based on the nonrenormalization theorem for the topologi-
cal term [23].
Explicit perturbative calculations carried out in dimen-

sional reduction [24] in the DR subtraction scheme up to
the three [25,26] and four loops [27,28] agree with the
NSVZ expression only in the one- and two-loop approxi-
mation. In higher loops the scheme dependence of the RG
functions becomes essential, and to obtain the NSVZ β
function one has to make a specially tuned finite renorm-
alization. It was verified in the three- and four-loop orders
that such a finite renormalization exists [26,29–31].
According to Ref. [26] its existence is a nontrivial fact.
The reason is that the NSVZ relation leads to some scheme-
independent consequences which should be valid in all
subtraction schemes [32,33]. (The general equations which
describe how the NSVZ β function is changed under finite
reparametrizations of the gauge coupling and finite rescal-
ings of the matter superfields are presented in [33,34].)
In the Abelian case the NSVZ scheme (in which the

NSVZ relation is valid in all orders) was constructed in [19]
by imposing some simple boundary conditions on the
renormalization constants for N ¼ 1 supersymmetric
theories regularized by higher derivatives. The higher
covariant derivative regularization [35,36] turns out to be
very convenient for investigating quantum corrections in

supersymmetric theories. It is mathematically consistent in
contrast with the dimensional reduction [37] and can be
formulated in a manifestly supersymmetric way [38,39]. It
can be used inN ¼ 2 supersymmetric theories too [40,41].
The NSVZ β function naturally occurs in N ¼ 1 super-

symmetric theories, regularized by higher covariant deriv-
atives, because momentum integrals for the β function
defined in terms of the bare coupling constant are integrals
of total derivatives [42] and even integrals of double total
derivatives [43]. This allows one calculating them analyti-
cally. Consequently, one obtains the NSVZ relation for
the RG functions defined in terms of the bare coupling
constant.
In the Abelian case this was proved in all loops [44,45]

and confirmed by an explicit three-loop calculation
[19,32,44,46]. For a generic non-Abelian gauge theory
the factorization of relevant integrals into integrals of
double total derivatives was verified only in the two-loop
approximation [47–51].
For proving Eq. (8) we note that the momentum integrals

for the D function [defined in terms of the bare coupling
constant by Eq. (6)] in N ¼ 1 SQCD are also integrals of
double total derivatives. In this paper we prove this in all
orders using a method similar to the one proposed in [44].
These integrals do not vanish because of singularities
which occur due to the identity

∂
∂Qμ

∂
∂Qμ

1

Q2
¼ −4π2δ4ðQÞ: ð15Þ

(The above equation is written in Euclidian space.)
Calculating contributions of all singularities we obtain

that the singlet contribution to D symbolically depicted in
the left-hand side of Fig. 1 automatically vanishes once all
relevant supergraphs are summed, while the remaining part
of the D function satisfies the relation (8). Thus, highly
nontrivial calculation of the Adler function and the anoma-
lous dimension and their comparison fully confirms
Eqs. (1) or (8).
The study of the consequences following from Eq. (1)

in the conformal window apparently paves the way to
subsequent intriguing explorations.
This paper is organized as follows: In Sec. II we explain

how one can calculate the Adler D function using the
higher covariant derivative regularization. In particular,
we find a relation between the D function and a part of
the effective action corresponding to the two-point Green
function of the Abelian gauge superfield. The exact formula
for this part of the effective action is constructed in Sec. III.
This formula consists of three parts: the singlet contribution
(which comes from diagrams in which external lines are
attached to different matter loops), the contribution of
diagrams in which external limes are attached to a single
matter loop, and a noninvariant contribution (due to
which the two-point Green function of the Abelian gauge
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superfield turns out to be transversal). Derivation of the
exact expression for the D function by direct summation of
supergraphs is presented in Sec. IV. First, in Sec. IVA we
find a sum of certain subdiagrams. Then we substitute this
sum to the expression for theD function using the results of
the Appendix. In particular, in Sec. IV B we prove that the
singlet contribution to the D function is given by integrals
of double total derivatives and vanishes in all orders. In
Sec. IV C we prove that the nonsinglet contribution is also
given by integrals of double total derivatives in the
momentum space. However, unlike the integrals for the
singlet contribution, these integrals do not vanish, because
the integrands have singularities. The sum of these singu-
larities is calculated in Sec. IV D, where we relate it to the
anomalous dimension of the matter superfields. Finally, in
Sec. V we discuss some consequences of the exact relation
(1) for SQCD in the conformal window.

II. D FUNCTION AND THE HIGHER COVARIANT
DERIVATIVE REGULARIZATION

Let us consider N ¼ 1 SQCD interacting with the
external Abelian gauge superfield V. This theory can be
described by the action

S¼ Sgauge þ Smatter ¼
1

2g20
trRe

Z
d4xd2θWaWa

þ 1

4e20
Re

Z
d4xd2θWaWa

þ
XNf

f¼1

�
1

4

Z
d4xd4θðΦþ

f e
2qfVþ2VΦf þ ~Φþ

f e
−2qfV−2Vt ~ΦfÞ

þ
�
1

2

Z
d4xd2θm0f

~Φt
fΦf þ c:c:

��
; ð16Þ

where e0 is the bare coupling constant for the group Uð1Þ
and qfe0 is a charge of the superfield with respect to Uð1Þ.
The sum runs over all flavors, a is the spinor index, g0 is the
bare coupling constant for the non-Abelian gauge group G,
which corresponds to the real gauge superfield V. (Also we
use the notation α0 ¼ e20=4π, α0s ¼ g20=4π.) The corre-
sponding field strength is

Wa ≡ 1

8
D̄2ðe−2VDae2VÞ: ð17Þ

The Abelian gauge field strength Wa is defined as

Wa ¼
1

4
D̄2DaV: ð18Þ

m0f denotes the bare mass of the matter superfields. Below
we consider only the limit m0 → 0. For simplicity, we will
omit the flavor index f. The Abelian gauge superfield V is
treated as an external field and is present only in the

external lines. Due to loop corrections both coupling
constants of the theory are running. In this paper we
investigate the renormalization of the coupling constant
corresponding to the group Uð1Þ and the exact expression
for the corresponding RG function, which is the Adler D
function.
Certainly, for calculating quantum corrections one

should regularize the theory. We are certain that in the
Abelian case the NSVZ β function is obtained exactly in all
loops for the RG functions defined in terms of the bare
coupling constant if the theory is regularized by higher
derivatives. For non-Abelian theories the corresponding
analysis is not yet fully completed, but there are multiple
indications that is the case too. That is why we use the
higher covariant derivative regularization [35,36] in this
paper, as well as the definition of the RG functions in terms
of the bare coupling constant.
The main idea of the higher derivative regularization is

adding to the classical action a term with the higher
derivatives, which increases a degree of momentum in
the propagator. In supersymmetric theories such terms can
be easily constructed by using N ¼ 1 superfields
[38,39,41]. The argumentation of this paper does not
depend on a particular form of the higher derivative
regularization.1

For definiteness, we will stick to one possible variant of
the higher derivative term. In order to construct it we use
the superfield Ω which is related to the gauge superfield V
as follows:

e2V ≡ eΩ
þ
eΩ: ð19Þ

Under the gauge transformations this superfield transforms
as

eΩ → eiKeΩeiλ; ð20Þ

where λ is a chiral superfield, a parameter of ordinary gauge
transformations, and K is a real superfield, which reflects
an arbitrariness of constructing Ω from V. Using the
superfield Ω one can construct the gauge covariant super-
symmetric derivatives

∇a ¼ e−Ω
þ
DaeΩ

þ
; ∇̄ _a ¼ eΩD̄ _ae−Ω: ð21Þ

(Acting on a superfield S which transforms as S → eiKS
these derivatives transform in the same way, ∇aS →
eiK∇aS.) Then the possible higher derivative term is

1Even in the Abelian case there are different versions of the
higher derivative regularization, see, e.g., [47–49], which lead to
the same structure of quantum corrections.
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SΛ ¼ 1

2g20
trRe

Z
d4xd2θðeΩWae−ΩÞ

×

�
R

�
−
∇̄2∇2

16Λ2

�
− 1

�
ðeΩWae−ΩÞ; ð22Þ

where the parameter Λ (with dimension of mass) plays a
role of the ultraviolet cutoff. The function R is the ultra-
violet regulator such that Rð0Þ − 1 ¼ 0 and RðxÞ → ∞ for
x → ∞. For example, it is convenient to choose

RðxÞ ¼ 1þ xn: ð23Þ

In order to fix a gauge it is necessary to add the term Sgf to
the action. Also one should introduce the corresponding
ghosts with the action Sghosts. Here we will not concretize
these expressions. We only assume that they do not include
matter superfields Φ and ~Φ.
It is well known that by introducing the higher derivative

term we regularize all divergences beyond the one-loop
approximation [52]. The remaining one-loop divergences
(and the one-loop subdivergencies) should be regularized
by inserting the Pauli-Villars determinants2 into the gen-
erating functional [53],

Γ½V� ¼ −i log
Z

DVDΦD ~Φ
Ym
I¼1

detðV;V;MIÞcI

× expðiðSþ SΛ þ Sgf þ SghostsÞÞ; ð24Þ

where MI ¼ aIΛ and aI do not depend on α0s and α0. We
are interested in the case m0f ¼ 0, in which, for simplicity,
it is possible to assume that the parameters MI do not
depend on the flavor f. Note that sources are not included
into this expression, because we consider only diagrams
with the external lines corresponding to the Abelian
superfield V. In order to cancel the remaining one-loop
divergences, the coefficients cI should satisfy the con-
straints

Xm
I¼1

cI ¼ 1;
Xm
I¼1

cIM2
I ¼ 0: ð25Þ

The Pauli-Villars determinants can be presented in the
form of functional integrals over the corresponding Pauli-
Villars superfields

detðV;V;MIÞ−1 ¼
Z

DΦID ~ΦIeiSI ; ð26Þ

where

SI ¼
X
f

�
1

4

Z
d4xd4θðΦþ

I e
2qVþ2VΦI þ ~Φþ

I e−2qV−2V
t ~ΦIÞ

þ
�
1

2

Z
d4xd2θMI

~Φt
IΦI þ c:c:

��
: ð27Þ

Let us note that the functional integral over the usual matter
fields Φ and ~Φ can be also written as a determinant with
M0 ¼ 0 and c0 ¼ −1. This allows one to treat the usual
fields and the Pauli-Villars fields in a similar manner and
rewrite Eq. (25) in a simpler form

Xm
I¼0

cI ¼ 0;
Xm
I¼0

cIM2
I ¼ 0: ð28Þ

The two-point Green function of the Abelian gauge super-
field V is transversal

ΔΓð2Þ ¼ −
1

16π

Z
d4p
ð2πÞ4 d

4θVðθ;−pÞ∂2Π1=2

× Vðθ; pÞðd−1ðα0; α0s;Λ=pÞ − α−10 Þ; ð29Þ

because of the Uð1Þ background gauge invariance. (In this
equation

∂2Π1=2 ¼ −DaD̄2Da=8

denotes the supersymmetric transversal projection opera-
tor.) We will calculate the function

Dðα0sÞ ¼ 6π2
d

d logΛ
Πðα0sðαs;Λ=μÞ;Λ=pÞjp¼0

¼ 3π

2

d
d logΛ

ðd−1ðα0; α0s;Λ=pÞ − α−10 Þjp¼0

¼ 3π

2α20

dα0
d logΛ

; ð30Þ

where the differentiation is performed at fixed values of the
renormalized coupling constants αs and α. Writing the last
identity we take into account that the function d−1

expressed in terms of the renormalized coupling constant
should be finite. Possible finite terms proportional to p=Λ
vanish in the limit p → 0. In order to extract the expression
(30) from the effective action, we differentiate ΔΓ ¼ Γ − S
with respect to logΛ and then make a substitution

Vðx; θÞ → θ4: ð31Þ

Then we easily obtain

1

3π2
V4 ·Dðα0sÞ ¼

dðΔΓð2ÞÞ
d logΛ

����
V¼θ4

; ð32Þ
2The Pauli-Villars determinants should be also introduced for

ghosts, but in this paper they are not essential and we do not write
them explicitly.
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where V4 → ∞ is the (properly regularized) space-time
volume [45].

III. EXACT EQUATION FOR THE TWO-POINT
FUNCTION OF THE ABELIAN GAUGE

SUPERFIELD

Let us derive the exact expression for the function D.
First, we prove that this function is given by integrals of
double total derivatives in the momentum space. This can
be done using the argumentation similar to the one
proposed in Ref. [44]. First, it is necessary to calculate
formally the integral over the matter superfields. This can
be done, because the action is quadratic in them. However,
this calculation should be carried out very carefully,
because the matter superfields satisfy the chirality con-
straint. The result can be written in the following form [44]:

expðiΓ½V�Þ ¼
Z

DV
Ym
I¼0

YNf

f¼1

detð⋆I;fÞcI=2

× expfiðSgauge þ SΛ þ Sgf þ SghostsÞg; ð33Þ

where we use the notation

⋆≡ 1

1 − I0
; I0 ¼ BP: ð34Þ

(For simplicity we omit the subscripts I and f for ⋆, I0,
and P, which mark the dependence on I via the mass MI
and on f via the electric charge qf.) The matrix

B≡

0
BBB@

0 ðe2qVþ2Vt − 1Þ 0 0

ðe2qVþ2V − 1Þ 0 0 0

0 0 0 ðe−2qV−2V − 1Þ
0 0 ðe−2qV−2Vt − 1Þ 0

1
CCCA ð35Þ

encodes vertices of the theory, and the matrix

P≡

0
BBBBBB@

0 D̄2D2

16ð∂2þM2Þ
MD̄2

4ð∂2þM2Þ 0

D2D̄2

16ð∂2þM2Þ 0 0 MD2

4ð∂2þM2Þ
MD̄2

4ð∂2þM2Þ 0 0 D̄2D2

16ð∂2þM2Þ

0 MD2

4ð∂2þM2Þ
D2D̄2

16ð∂2þM2Þ 0

1
CCCCCCA

ð36Þ

contains propagators of various matter superfields. In
our notation the strings and rows of these matrices corre-
spond to the following sequence of the matter superfields:

ðΦ;Φ�; ~Φ; ~Φ�Þ: ð37Þ

The expression⋆ encodes a sequence of vertices andmatter
propagators. In the case V ¼ 0 we use the notations

⋆≡⋆jV¼0; I0 ≡ I0jV¼0; B≡ BjV¼0: ð38Þ

These expressions correspond to the diagrams without the
external lines of the Abelian gauge superfield. In particular,
the operator

⋆ ¼ 1

1 − I0
¼ 1þ BPþ BPBPþ BPBPBPþ… ð39Þ

encodes chains of vertices B (in which the external gauge
superfieldV is set to zero, and onlyV is kept) and the matter

propagators P. Graphically this equation is presented in
Fig. 2.
Let us recall that the case I ¼ 0 corresponds to the

original theory in the massless limit, so that c0 ¼ −1
and M0 ¼ 0. Below we will also use the following
operators:

ðI1Þa ≡ ½I0; θa�; ðĪ1Þ _a ≡ ½I0; θ̄ _a�: ð40Þ

It is important that all these operators do not manifestly
depend on θ and θ̄. (By other words, θ and θ̄ are present
only inside the supersymmetric covariant derivatives.)
In order to calculate the two-point Green function of the

background Abelian gauge superfield V we should find
terms quadratic in V in Eq. (33). The result has the form

FIG. 2. Graphical interpretation of the operator ⋆.
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ΔΓð2Þ ¼ −
i
2

�XNf

f¼1

qf

�
2

·
��Xm

I¼0

cITrðVQJ0⋆ÞI
�

2
�

1PI

þ i
XNf

f¼1

q2f ·
Xm
I¼0

cIhTrðVQJ0⋆VQJ0⋆Þ þ TrðV2J0⋆ÞiI;1PI; ð41Þ

where the symbol 1PI implies that it is necessary to omit all diagrams except for the one-particle irreducible (1PI) ones,

Q≡

0
BBB@

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

1
CCCA; J0 ≡

0
BBB@

0 e2V
t

0 0

e2V 0 0 0

0 0 0 e−2V

0 0 e−2V
t

0

1
CCCAP; ð42Þ

and

hA½V�i≡
R
DVA½V�Qm

I¼0 detð⋆IÞNfcI=2 expfiðSgauge þ SΛ þ Sgf þ SghostsÞgR
DV

Q
m
I¼0 detð⋆IÞNfcI=2 expfiðSgauge þ SΛ þ Sgf þ SghostsÞg

: ð43Þ

The term in Eq. (41) proportional to ðPfqfÞ2 corre-
sponds to attaching the external lines to different loops
of the matter superfields. The terms in Eq. (41) propor-
tional to

P
fq

2
f encode diagrams in which two external

lines are attached to a single matter loop. The exact
Adler function D defined in terms of the bare coupling
constant can be found from Eq. (41) by the following
prescription:

Dðα0sÞ ¼
3π2

V4

·
dΔΓð2Þ

d logΛ

����
V¼θ4

: ð44Þ

IV. RELATION BETWEEN THE FUNCTION D AND
THE ANOMALOUS DIMENSION OF THE

MATTER SUPERFIELDS

A. Summation of subdiagrams

We calculate the expression (41) after the substitution
V → θ4. This expression encodes the sum of all supergraps
with two external V lines. Summing these supergraphs we
encounter certain sequences of subdiagrams presented in
Fig. 3, in which the wavy lines correspond to V ¼ θ4. The
left and right dots correspond to vertices to which an
arbitrary number of V lines can be attached. The middle dot
(if it is present) corresponds to the vertex without any V
lines (and with a single V line). Formally, the subdiagrams
presented in Fig. 3 can be constructed by transforming the
expression ⋆VJ0. The details of this calculation are
presented in the Appendix.
To find these sums of subdiagrams the external line is

commuted (with the operators corresponding to the
propagators) to the left. Then we obtain two vertices

jointed by the matter line. This matter line corresponds
to a certain operator which is obtained after the
commutation and summing the results. (This operator
replaces the ordinary propagator.) θ’s are attached to the
left vertex. This procedure is qualitatively illustrated in
Fig. 4 for the case corresponding to the first string
in Fig. 3.
The results for the sums of the subdiagrams presented in

Fig. 3 were found in Ref. [44]. (Note that the external line
corresponds to the Abelian field, so that it is possible to use
the result obtained earlier for the Abelian case.) It is
convenient to present the sum of subdiagrams in the matrix
form, namely,

FIG. 3. Summation of subdiagrams. The wavy lines correspond
to the Abelian background gauge superfield V ¼ θ4. To the left
and right vertices one can attach an arbitrary number ≥ 1 of the
internal lines of the non-Abelian gauge superfield. The middle
vertex (if it is present) does not contain such lines at all.
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iθ̄ _aðγμÞ _abθb½y�μ; ~QI0� − 2θaθaθ̄
_b½θ̄ _b; ~QI0� þ ~Qθ̄ _aB ×

0
BBB@

0 0 0 0
iðγμÞ _abDbD̄2∂μ

4ð∂2þM2Þ2 þ D̄ _a
∂2þM2 0 0 MD̄ _aD2

4ð∂2þM2Þ2

0 0 0 0

0 MD̄ _aD2

4ð∂2þM2Þ2
iðγμÞ _abDbD̄2∂μ
4ð∂2þM2Þ2 þ D̄ _a

∂2þM2 0

1
CCCA

þ terms without θ̄; ð45Þ

where y�μ ¼ xμ − iθ̄ _aðγμÞ _abθb and

~Q≡

0
BBB@

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

1
CCCA: ð46Þ

Equation (45) contains exponents corresponding to the left
vertices and the (modified) propagators which are attached
to these vertices from the right. Below we will use the
following properties of the matrix (46):

½ ~Q; I0� ¼ 0; ½ ~Q;⋆� ¼ 0; ~Q2 ¼ 1: ð47Þ

B. External lines are attached to different matter loops

Let us consider the term in Eq. (41) proportional to
ðPfqfÞ2. It corresponds to the case in which the external
lines are attached to different closed loops of the matter
superfields and, therefore, contributes to the singlet part of
the functionD. Such diagrams are sketched in the left-hand
side of Fig. 1. The term under consideration contains the
expression

TrðVQJ0⋆Þ ð48Þ

in the second power. In the Appendix we prove that this
expression can be presented as

TrðVQJ0⋆Þ ¼ Trf⋆ðBPðVQÞB0Pþ BðVQÞðΠþPÞ
þ BðPΠ−ÞðVQÞÞg; ð49Þ

where Π� are chiral projection operators [given by
Eq. (A4)] and B0 [given by Eq. (A2)] corresponds to the
vertex with a single external V line and no V lines. The

expression in the round brackets coincides with the sum of
subdiagrams presented in Fig. 3, which was calculated in
Sec. IVA and is given by Eq. (45).
It is well known that any supergraph does not vanish

only if it contains θ4. Therefore, if we multiply two
expressions (49), the nontrivial contributions come only
from terms which are linear in θ̄. [There are no terms
quadratic in θ̄ in Eq. (45).] Let us consider the sum of the
diagrams in which the matter loop under consideration
[corresponding to the expression (48)] has n vertices with
the internal gauge lines. (Vertices with a single external V
line are not summed.) We will denote the corresponding
contribution as

TrðVQJ0⋆Þn: ð50Þ

Using Eqs. (49) and (45) after the substitution V → θ4 this
expression can be presented as

Trðθ4QJ0⋆Þn ¼ Trðiθ̄ _cðγμÞ_cdθd½y�μ; ~QI0�⋆
− 2θcθcθ̄

_d½θ̄ _d; ~QI0�⋆þ θ̄1termsÞn
¼ Trðiθ̄ _cðγμÞ_cdθd½y�μ; ~QI0�ð⋆Þn−1
− 2θcθcθ̄

_d½θ̄ _d; ~QI0�ð⋆Þn−1 þ θ̄1termsÞ:
ð51Þ

(One vertex is written explicitly and corresponds to B
inside I0. Therefore, ⋆ should give n − 1 vertices.)
Comparing the Taylor expansions one can easily see that

ð⋆2Þn ¼ ðnþ 1Þð⋆Þn: ð52Þ

Therefore, after a cyclic permutation the expression under
consideration can be written as follows:

FIG. 4. An example illustrating summation of the effective diagrams, which gives the modified propagator. (This modified propagator
is denoted by the bold line.)
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1

n
Trf ~Qð−2θcθcθ̄ _d⋆½θ̄ _d; I0�⋆þ iθ̄ _cðγμÞ_cdθd⋆½y�μ; I0�⋆Þ
þ θ2; θ̄1; θ1; θ0termsgn

¼ 1

n
Trf ~Qð−2θcθcθ̄ _d½θ̄ _d;⋆� þ iθ̄ _cðγμÞ_cdθd½y�μ;⋆�Þ

þ θ2; θ̄1; θ1; θ0termsgn: ð53Þ

Again comparing the Taylor expansions we obtain

ðlog⋆Þn ¼
1

n
ð⋆Þn: ð54Þ

Therefore, Eq. (50) gives

Trf ~Qð−2θcθcθ̄ _d½θ̄ _d; log⋆� þ iθ̄ _cðγνÞ_cdθd½y�ν; log⋆�Þ
þ θ2; θ̄1; θ1; θ0termsgn

¼ Trfiθ̄ _cðγνÞ_cdθd ~Q½xν; log⋆� þ θ2; θ̄1; θ1; θ0termsgn;
ð55Þ

where we take into account the fact that the trace of θ
commutators always gives 0. Again using this fact and
calculating the square of the last expression we see that the
remaining terms proportional to θ2, θ̄1, θ1, or θ0 do not give
θ4 and can be omitted. Therefore (summing contributions
for all n) we arrive at

TrðVQJ0⋆ÞjV¼θ4 → iTrθ̄ _cðγνÞ_cdθd ~Q½xν; log⋆�; ð56Þ

where the symbol → means that in the right-hand side we
omit terms which give vanishing contribution to the whole
supergraph.
The total singlet contribution to the effective action can

be written as

ΔΓð2Þ ¼ i
2

�XNf

f¼1

qf

�
2

·

��Xm
I¼0

cITrθ̄ _aðγνÞ _abθb ~Q½xν; logð⋆IÞ�
�

2
�
: ð57Þ

The commutator with xμ in the momentum space gives
an integral of a total derivative. Taking into account that
these commutators enter Eq. (57) in the second power, we
see that the contributions of the diagrams under consid-
eration (in which external lines are attached to distinct
loops of the matter superfields) are given by integrals of
double total derivatives.
Each of these total derivatives is taken with respect to the

momentum of its closed matter loop. It is important that in
this case no singularities appear in the integrand, because
there are only factorsQ−2 in the numerator, and there are no

factors Qμ=Q4. Therefore, all integrals of total derivatives
vanish.
Thus, the class of diagrams considered in this section

gives vanishing contribution to the Adler D function.
Let us also note that if the matter loop corresponds to the

usual superfields Φ and ~Φ (for whichM ¼ 0), Eq. (56) can
be equivalently rewritten as

TrðVQJ0⋆ÞjV¼θ4 → 2iTrθ̄ _cðγνÞ_cdθd½xν; logð�Þ − logð ~�Þ�;
ð58Þ

where

�≡ 1

1 − ðe2V − 1ÞD̄2D2=16∂2
;

~� ¼ 1

1 − ðe−2Vt − 1ÞD̄2D2=16∂2
: ð59Þ

Therefore, taking into account that c0 ¼ −1 the result can
be also presented in the form

ΔΓð2Þ ¼ 2i

�XNf

f¼1

qf

�
2

· h½Trθ̄ _cðγνÞ_cdθd½xν; logð�Þ − logð ~�Þ�

þ ðPVÞ�2i ¼ 0; ð60Þ
which was used in [1]. [Here ðPVÞ denotes contributions of
diagrams with the loops of the Pauli-Villars superfields.] As
was discussed above, the sum of the diagrams with the
Pauli-Villars loop(s) is also given by a vanishing integral of
a double total derivative.

C. External lines are attached to a single matter loop

In this case we should consider the terms in Eq. (41)
proportional to

P
fq

2
f, which give the nonsinglet contri-

bution. The term containing V2 vanishes after the sub-
stitution V → θ4. The remaining term

i
XNf

f¼1

q2f ·
Xm
I¼0

cIhTrðVQJ0⋆VQJ0⋆ÞiI;1PI ð61Þ

gives six effective diagrams with two external lines
corresponding to the Abelian background superfield.
These diagrams are presented in Fig. 5. They can be
obtained from Eq. (61) using the results of the
Appendix. The first five diagrams (a)–(e) contain two
group of subdiagrams presented earlier in Fig. 3. Each
bold line corresponds to the modified propagator which
appears after summation of the corresponding group of
subdiagrams (see Fig. 4). Expressions for the external lines
are obtained by extracting the terms proportional to the
corresponding θ structure from Eq. (45). There are no other
relevant diagrams, because a nonvanishing supergraph
should contain the second power of θ and the second
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power of θ̄. [The diagram (d) contains θ2, because one θ
comes from the commutator with y�μ.]
The last effective diagram (f) contains contribution of

those graphs in which external lines are close to each other.
In the Appendix we explain why they should be added. The
vertex in the diagram (f) corresponds to the sum of many
subdiagrams. All of them are collected in Ref. [44]. Their
structure is described in the Appendix.
Calculation of the graphs (a)–(f) exactly repeats the

corresponding calculation that was carried out in Ref. [44]
in the Abelian case. The only difference is the presence of
the charges q2f and the sum over all flavors. All non-
Abelian effects are encoded in the angular brackets, which
are now defined in a different way (due to the different form
of the gauge part of the action). The result can be written in
the following form3:

i
d

d logΛ

X
f

q2f
Xm
I¼0

cIhTrðVQJ0⋆VQJ0⋆ÞiI
���
V¼θ4

¼ One-loop result −
i
2

d
d logΛ

×
X
f

q2f
Xm
I¼0

cITrhθ4½y�μ; ½ðyμÞ�; logð⋆Þ��iI

− singular terms containing δ-functions; ð62Þ

where it is necessary to subtract singularities of the
expression in the second string of this equation. Taking
into account that the trace of the θ commutators always
vanishes, we can replace y�μ with xμ in this expression.
The term with I ¼ 0 (c0 ¼ −1, M0 ¼ 0) corresponds to

the case in which the external lines are attached to the loop
of ordinary superfields Φ and ~Φ, while for I ≥ 1 they are
attached to the Pauli-Villars loop. Therefore, it is possible
to present Eq. (62) in the form [1]

one-loop resultþ i
d

d logΛ

X
f

q2fTrhθ4½xμ; ½xμ; logð�Þ

þ logð ~�Þ��i þ ðPVÞ
− singular terms containing δ functions; ð63Þ

where ðPVÞ denotes the contributions of the Pauli-
Villars loops.
According to Eq. (62) the Adler D function (defined in

terms of the bare coupling constant) is given by integrals of
double total derivatives exactly in the same way as the β
function (defined in terms of the bare coupling constant) in
the Abelian case [43,44,49]. This structure allows us to
calculate one of the loop integrals analytically and relate the
result to the anomalous dimensions of the matter super-
fields. To this end it is convenient to rewrite Eq. (62) in a
different form.
Let us consider the sum of the diagramswith n vertices on

thematter loop towhich external lines are attached. As in the
previous section this sum is denotedby the subscriptn. Then,
after simple transformations (see Ref. [44] for details), the
right-hand side of Eq. (62) (for simplicity, without the one-
loop contribution) can be equivalently presented in the form

−
d

d logΛ

X
f

q2f
Xm
I¼0

cITr

�
θ4
�
y�μ;

i
2
½ðyμÞ�; I0�⋆

−
X

aþbþ2¼n

ðbþ 1ÞðγμÞc _d
n

ðI1Þcð⋆ÞaðĪ1Þ _dð⋆Þb
��

I;n

− singular terms containing δ functions; ð64Þ

where ð⋆Þa and ð⋆Þb (with aþ bþ 2 ¼ n) denote the ath
andbth terms in the Taylor expansion of⋆, respectively. The
traces of the commutators in Eqs. (62) and (64) evidently
vanish. Therefore, the result for the Adler function is
completely determined by the singular contributions. In
thenext sectionwewill calculate themstarting fromEq. (64).

D. Summation of singularities

We have proved that the Adler function (defined in terms
of the bare coupling constant) is given by integrals of
double total derivatives in the momentum space. It is
important to note that these integrals do not vanish due
to singularities, which originate from the identity

∂
∂Qμ

∂
∂Qμ

1

Q2
¼ −2

∂
∂Qμ

Qμ

Q4
¼ −4π2δ4ðQÞ ð65Þ

(which is written in the Euclidean space after the Wick
rotation). Indeed, for a nonsingular function fðQ2Þ, with a
sufficiently rapid falloff at infinity,

Z
d4Q
ð2πÞ4

Qμ

Q4

∂f
∂Qμ ¼

1

8π2

Z
∞

0

dQ2
dfðQ2Þ
dQ2

¼ −
1

8π2
fð0Þ

¼ −
1

8π2

Z
d4Qδ4ðQÞf

¼ −
Z

d4Q
ð2πÞ4

∂
∂Qμ

Qμ

Q4
· f: ð66Þ

FIG. 5. Effective diagrams which appear if the external V lines
are attached to a single matter loop.

3Unlike Ref. [44] here we treat the usual matter superfields and
the Pauli-Villars superfields in the same way.
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Beyond the one-loop approximation all diagrams in which
the external lines are attached to the closed loops of the
Pauli-Villars fields give a vanishing contribution, because
there are no such singularities. One loop in this approach
should be considered separately.
Thus, we must consider only diagrams in which two

external lines are attached to a single loop of the (non-
regulator) superfields Φ and ~Φ. This case corresponds to
I ¼ 0. (Let us recall that c0 ¼ −1,M0 ¼ 0.) The I ¼ 0 part
of Eq. (64) can be reduced to a simpler expression

X
f

q2f
d

d logΛ
Tr

�
θ4
�
y�μ; iðe2V − 1Þ D̄

2D2∂μ

8∂4
�

−
X

aþbþ2¼n

2ðbþ 1ÞðγμÞc _d
n

ðe2V − 1Þ D̄
2Dc

8∂2
ð�Þa

× ðe2V − 1Þ D̄ _dD
2

8∂2
ð�Þb þ iðe−2Vt − 1Þ D̄

2D2∂μ

8∂4
~�

−
X

aþbþ2¼n

2ðbþ 1ÞðγμÞc _d
n

ðe−2Vt − 1Þ D̄
2Dc

8∂2

× ð ~�Þaðe−2Vt − 1Þ D̄ _dD
2

8∂2
ð ~�Þb

��
n

− singular terms containing δ functions: ð67Þ

It is easy to see that the contributions corresponding to
the superefield Φ (which contain e2V and �) are equal to the
ones corresponding to the superfield ~Φ (which contain
e−2V

t
and ~�). To prove this statement we make the

substitution V → −Vt in the functional integrals in
Eq. (43). Then

Ω → −Ωt; Wa → −ðWaÞt; VAdj → VAdj; ð68Þ

where (for arbitrary X which belongs to the Lie algebra of
the gauge group) VAdjX ≡ ½V; X�. This implies that Sgauge,
SΛ, Sgf , and Sghosts remain unchanged. As a consequence,
we obtain the required statement. Thus, the expression
under consideration can be written as

X
f

q2f
d

d logΛ
Tr

�
θ4
�
y�μ; iðe2V − 1Þ D̄

2D2∂μ

4∂4
�

−
X

aþbþ2¼n

4ðbþ 1ÞðγμÞc _d
n

ðe2V − 1Þ D̄
2Dc

8∂2
ð�Þa

× ðe2V − 1Þ D̄ _dD
2

8∂2
ð�Þb

��
n

− singular terms containing δ functions: ð69Þ

Singular contributions appear if the derivative ∂=∂Qμ

acts on Qμ=Q4. Such terms can come both from the first

term of Eq. (69) and from the second term. In the former
case the derivative with respect to the momentum Qμ

corresponds to the commutator with y�μ, and Qμ=Q4 is
obtained from ∂μ=∂4. The latter possibility requires the
existence of the coinciding momenta in the matter loop. Let
us denote as p the number of the coinciding momenta in the
matter loop. An example of a diagram with p ¼ 2 is
presented in Fig. 6.
Repeating the calculations of Ref. [44], the contribution

of the first term in Eq. (69) can be rewritten as

−
X
f

q2f
d

d logΛ
Tr

�
π2

2
θ4 � ðe2V − 1ÞD̄2D2δ4ð∂Þ

�

¼ 1

2π2
V4

X
f

q2f · tr
d

d logΛ
G−1jQ¼0; ð70Þ

where tr denotes the conventional matrix trace. By defi-
nition, the function Gð∂2Þ is related to the two-point Green
function of the matter superfields as

δ2Γ
δΦjðxÞδΦ�iðyÞ ¼

D̄2
xD2

x

16
Gj

iδ
4ðx − yÞδ4ðθx − θyÞ; ð71Þ

where Γ denotes the effective action of the non-Abelian
theory.
The expression (70) is written formally, because it gives

integrals which are not well defined. The well-defined
integrals are obtained after adding contributions of the
remaining singularities. They appear from the second term
in Eq. (69) if the matter loop has p coinciding momenta
(p ≥ 2). They are situated betweenp 1PI subdiagrams (see an
example in Fig. 6 corresponding to p ¼ 2). Let us denote the
numbersof vertices at thematter line in these 1PI subdiagrams
by k1; k2;…; kp. The expressionQμ=Q4 appears if there is the
only1PI subdiagrambetweenDc and D̄ _d in thesecond termof
Eq. (69); see Fig. 7 in which the disks denote (p ¼ 6) 1PI
subdiagrams. This follows from the identities

D̄2Dc

8∂2
·
D̄ _dD

2

8∂2
¼ iðγμÞc _d

∂μ

32∂4
D̄2D2;

D̄ _dD
2

8∂2
·
D̄2Dc

8∂2
¼ −iðγμÞc _d

∂μ

32∂4
DaD̄2Da: ð72Þ

FIG. 6. This diagram contains p ¼ 2 coinciding momenta in
the matter loop, which can lead to a singular contribution. This is
related to the fact that two cuts of the matter line can make this
diagram disconnected.
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Any other possibilities are excluded due to the equalities

D̄2D2

16∂2
·
D̄ _bD

2

8∂2
¼ 0;

D̄2Da

8∂2
·
D̄2D2

16∂2
¼ 0: ð73Þ

Therefore, forp ≥ 2weobtainp singular contributions inside
thesecond term inEq. (69),which correspond to the following
values of a and b:

aþ 1 ¼ k1; bþ 1 ¼ k2 þ k3 þ…þ kp;

aþ 1 ¼ k2; bþ 1 ¼ k1 þ k3 þ…þ kp;

…

aþ 1 ¼ kp; bþ 1 ¼ k1 þ k2 þ…þ kp−1; ð74Þ

where n ¼ k1 þ k2 þ…þ kp. Then one can obtain (see
Ref. [44] for more details) that the corresponding singular
contribution differs from the contribution of the first term in
Eq. (69) by the factor

−
1

p

�
k1 þ…þ kp−1
k1 þ k2 þ…kp

þ k1 þ…þ kp−2 þ kp
k1 þ k2 þ…kp

þ…þ k2 þ…þ kp
k1 þ k2 þ…kp

�
¼ −

p − 1

p
: ð75Þ

Therefore, the coefficients in the sum of all singularities differ
from the coefficients corresponding to Eq. (70) by

1 −
p − 1

p
¼ 1

p
: ð76Þ

The whole contribution of diagrams with p coinciding
momenta is proportional to ðΔGÞp, where ΔG≡G − 1.
(ΔG corresponds to the sum of 1PI diagrams starting from
one loop.) Then we compare the Taylor expansions

logG ¼ logð1þ ΔGÞ ¼ −
X∞
p¼1

ð−1Þp
p

ðΔGÞp and

G−1 ¼ 1

1þ ΔG
¼

X∞
p¼0

ð−1ÞpðΔGÞp: ð77Þ

We see that after adding the singular contributions coming
from the second term in Eq. (69) the result can be written as

dΔΓð2Þ

d logΛ

����
V¼θ4

¼ One loop −
1

2π2
V4

X
f

q2f · tr
d logG
d logΛ

����
Q¼0

¼ 1

2π2
V4

X
f

q2f · tr

�
1 −

d logG
d logΛ

����
Q¼0

�
: ð78Þ

Obtaining logG in this way is illustrated in Fig. 7. Unlike
Eq. (70), Eq. (78) leads to the well-defined integrals.
The derivative of logG with respect to logΛ (which

should be calculated at a fixed value of the renormalized
coupling constant αs) in the vanishing momentum limit
gives the anomalous dimension defined in terms of the bare
coupling constant,

d logG
d logΛ

����
Q¼0

¼ d
d logΛ

ðlogðZGÞ − logZÞjQ¼0

¼ −
logZ
d logΛ

¼ γðα0sÞ · 1; ð79Þ

where 1 is written in order to stress that in the non-Abelian
case the anomalous dimension is Nc × Nc matrix, where
Nc is a number of colors. The matrix trace gives the factor
Nc, so that according to Eq. (32) we finally arrive at

Dðα0sÞ ¼
3

2

X
f

q2f · Ncð1 − γðα0sÞÞ: ð80Þ

V. N ¼ 1 SQCD IN THE CONFORMAL WINDOW

In this section we will study some consequences ensuing
from the exact formulas (1) and (14) in the conformal
window [10,11]

3

2
Nc < Nf < 3Nc: ð81Þ

Inside this window SQCD flows to the conformal points:
γ ¼ 0 in the ultraviolet (asymptotic freedom) and

γ� ¼ −
3Nc − Nf

Nf
ð82Þ

in the infrared. Equation (1) then implies that the Adler
function reads

FIG. 7. Obtaining the exact expression for the Adler function
by summation of singular contributions. The example presented
in this figure corresponds to the case p ¼ 6.
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DðQ2Þ ⟶ 3

2
Nc

X
f

q2f ×

	
1; Q2 → ∞;

3Nc
Nf

; Q2 → 0:
ð83Þ

The Q2 evolution of the Adler function in the conformal
window is sketched in Fig 8.
The next interesting question is as follows: what new

information can be obtained by combining our exact
formula (1) with the Seiberg duality? We recall that the
Seiberg duality connects with each other two distinct
SQCD theories which flow to each other in the infrared
where their respective β functions have fixed points. If the
number of colors in the original theory is Nc the number of
colors in its dual is ~Nc ¼ Nf − Nc. The number of flavors
in the original theory and its dual is the same, and both have
one and the same (global) flavor symmetry, including the
SUðNfÞL × SUðNfÞR factor. To introduce our background
Uð1Þ one can gauge a vector subgroup of the above factor,
for instance a diagonal subgroup of SUð2Þ. Then the
electric charges qf can be chosen as follows:

qðΦ1Þ ¼ qð ~Φ2Þ ¼
1ffiffiffi
2

p ; qð ~Φ1Þ ¼ qðΦ2Þ ¼ −
1ffiffiffi
2

p ;

ð84Þ

with vanishing charges for all other matter superfields. In
this case

X
f

q2f ¼ 1;
X
f

qf ¼ 0: ð85Þ

The dual theory has two couplings rather than one. In
addition to the dual gauge coupling it has a superpotential
term

W ¼ λMff0Φf
~Φf0 ; ð86Þ

where Mff0 is the meson Seiberg field [10,11], and λ is a
super-Yukawa constant. Both theories are superconformal

in the limits Q2 → ∞ or 0. This means that the β function
for λmust have zero at nonvanishing values of the coupling
constants.
Now, our exact formula gives DðQ2 → 0Þ both in the

original and dual theories, and since they are equivalent in
the infrared, this should be one and the same value.
Equation (83) gives DðQ2 → 0Þ in the original theory.
What about its dual?
Equation (1) is incomplete in the case of the dual theory.

Indeed, it takes into account only the Φ and ~Φmatter fields.
The M field, being neutral with regards to the gauge group
SUð ~NcÞ, is not neutral with regards to the chosen flavor
SUð2Þ to which the background photon is coupled. Thus,
its loop must be included in an analog of Eq. (1). Moreover,
its superpotential interaction (86) will generate the anoma-
lous dimension γM of the M superfield. The anomalous
dimensions of the Φ and ~Φ superfields acquire a matrix (in
flavor) structure. Their critical values are still given by (82)
with the replacement Nc → ~Nc.
Now, requiring that the infrared limit of the Adler

functions in the original and dual theories is the same,
one should be able to determine the critical value of γM.
A fewwords are in order here to explainwhywe think that

our analysis goes beyond perturbation theory. We are
interested in the effective Lagrangian for SQCD with
photons expressed in terms of various possible operators.
The first operator is F2

μν. It appears perturbatively in one
loop; nonperturbatively it could appear as fðΦ2=Λ2ÞF2

μν.
However, any function f ≠ 1 would break an anomaly-free
generalizedR symmetrywhich is present inmassless SQCD.
Nonperturbative effects can show up in the Kähler

potential KðΦþΦÞ in the kinetic term for the matter fields.
In the effective Lagrangian it will be converted into a
nonperturbative term in γ. The relation between βγ and γ
will remain the same as in (1), given the fact that the
conversion of ΦþΦ into F2

μν is an exact one-loop Konishi
anomaly.
Let us mention another general consequence from

Eq. (1). The Adler function DðQ2Þ is a physical quantity
and, as such, satisfies an appropriate dispersion relation.
Equation (1) implies that the anomalous dimension γðQ2Þ
must satisfy the same dispersion relation.

VI. CONCLUSIONS

Building on our previous publication [1] we expand our
ideas on the exact Adler function in N ¼ 1 SQCD. We
present a very detailed proof of the master formula (1) in
perturbation theory. More exactly, we relate the Adler
function (defined in terms of the bare coupling constant)
with the anomalous dimension of the matter superfields
(which is also defined in terms of the bare coupling
constant) to all orders in the case of using the higher
covariant derivative regularization.

FIG. 8. DðQ2Þ · ð3
2
Nc

P
fq

2
fÞ−1 versus Q2. The horizontal lines

correspond to Nf ¼ 3Nc, i.e. the right edge of the conformal
window.
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In essence, our relation is very similar to the NSVZ β
function and has a similar origin: all integrals for the D
function in the momentum space are, in fact, integrals of
double total derivatives. As a consequence, the singlet
contribution, which is proportional to ðPfqfÞ2, vanishes.
The remaining contribution does not vanish due to the
existence of the integrand singularities. We proved that the
sum of these singularities gives the contribution propor-
tional to the anomalous dimension.
It should be noted that the result obtained in this paper is

scheme independent, because we consider the RG functions
defined in terms of the bare coupling constant. (These RG
functions depend on the regularization but do not depend
on the subtraction scheme for a fixed regularization.) For
the (scheme-dependent) RG functions defined in terms of
the renormalized coupling constant, the relation proposed
in this paper is valid only in a special subtraction scheme,
which may be possibly constructed similarly to the NSVZ
scheme in N ¼ 1 supersymmetric electrodynamics by
imposing certain boundary conditions on the renormaliza-
tion constants.
Our general arguments, both in [1] and in this paper (see

also [9]; the consideration in this paper is complementary to
ours), tell us that the relations between the Adler function
and the anomalous dimensions of the type (1) are valid
beyond perturbation theory too. We discussed some con-
sequences of these relations in the conformal window. We
demonstrated that they allow one to determine the critical
value of the anomalous dimension γM of the Seiberg M
field which is present in the dual theory.
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APPENDIX: HOW TO OBTAIN SUBDIAGRAMS
AND EFFECTIVE DIAGRAMS FROM THE

FORMAL EXPRESSIONS

Let us obtain the subdiagrams presented in Fig. 3 starting
from the formal expressions entering Eq. (41). First, we
consider the expression

⋆VQJ0 ¼
1

1 − I0
VQðI0 þ B0PÞ

¼ VQB0Pþ 1

1 − I0
I0VQB0Pþ 1

1 − I0
VQI0

¼ VQB0Pþ ⋆BðPVQB0Pþ VQPÞ; ðA1Þ

where we use the notation

B0 ≡

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1
CCCA ðA2Þ

for the vertices with a single external V-line and no V lines.
Making simple algebraic operations one can easily verify
the identity

PðVBQÞP ¼ PðVBQÞðΠþPÞ þ ðPΠ−ÞðVBQÞP; ðA3Þ

where the chiral projection operators Π� are defined by

Πþ ≡ −
D̄2D2

16∂2
; Π− ≡ −

D2D̄2

16∂2
: ðA4Þ

The equality (A3) has a simple interpretation: one matter
line coming from the vertex is chiral and the second one is
antichiral. In the first term the chiral end of the right matter
line is attached to the considered vertex, and the chiral end
of the left line is attached to the vertex in the second term.
Using Eq. (A3) we rewrite the expression (A1) in the form

⋆VQJ0 ¼ VQB0Pþ ⋆BPVQB0Pþ BVQP

þ ð⋆ − 1ÞððBVQÞΠþPþ Π−ðBVQÞPÞ; ðA5Þ

where we take into account that

⋆ − 1 ¼
�X∞

k¼0

ðI0Þk
�
BP ¼ ⋆BP: ðA6Þ

Because the propagators are chiral (or antichiral),

P ¼ ΠþPþ Π−P: ðA7Þ

Therefore, again using Eq. (A6) for transforming the last
term and taking into account that Q and B commute we
obtain

⋆VQJ0 ¼ VQB0Pþ ⋆ðBPVQB0Pþ ðBVQÞΠþPÞ
þ BVQΠ−Pþ ⋆BPΠ−ðVQÞBP: ðA8Þ

Presenting BP in the last term as ðI0 − 1Þ þ 1, the
considered vertex can be finally written in the follow-
ing form:
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⋆VQJ0 ¼ VQB0Pþ VQBΠ−Pþ ⋆BPΠ−VQðI0 − 1Þ
þ ⋆ðBPðVQÞB0Pþ BðVQÞðΠþPÞ þ BðPΠ−ÞðVQÞÞ: ðA9Þ

Two first terms in the first string contain a singlevertex. In the
third one the factor I0 − 1 cancels⋆ in expressions like (41).
These terms should be considered separately. The terms in
the second string give the subdiagrams presented in Fig. 3.
More exactly, the subdiagrams in Fig. 3 correspond to
terms in the brackets. Really, the first of these terms
contains the left vertex B attached to the sequence of the
propagator P, the vertex with a single external line VQB0

and the propagator P. Thus, this term encodes the subdia-
grams in the first two columns of Fig. 3. The second term

[in the brackets in the second string of Eq. (A9)] consists of
the left vertex BQ to which the external line V is attached
and the propagators with the left chiral end (due to the
projection operator Πþ). The last (third) term gives the left
vertex B and the propagators PΠ−, which have the right
chiral end to which the external line (VQ) is attached.
Let us apply Eq. (A9) to the calculation of various parts

of Eq. (41). Let us start with the diagrams in which the
external lines are attached to different matter loops. As we
discuss in Sec. IV B, they include the expression

Trð⋆VQJ0Þ ¼ TrfVQB0Pþ VQBΠ−P − BPΠ−VQ

þ ⋆ðBPðVQÞB0Pþ BðVQÞðΠþPÞ þ BðPΠ−ÞðVQÞÞg; ðA10Þ

where we use Eq. (A9), make a cyclic permutation in the
third term, and take into account that ðI0 − 1Þ⋆ ¼ −1. The
terms in the second string of this equation are discussed in
Sec. IV B. Here we consider only the terms in the first
string of Eq. (A10). Multiplying the matrixes and calculat-
ing the trace one can easily see that they give the vanishing
contribution. Therefore, in Sec. IV B the terms in the first
string of Eq. (A9) are not essential.
Let us proceed to the diagrams considered in Sec. IV C.

They are encoded in the expression4

Trh⋆VQJ0⋆VQJ0i; ðA11Þ

in which we substitute Eq. (A9). Taking into account that
ðI0 − 1Þ⋆ ¼ −1 we obtain the following result:

Trh⋆VQJ0⋆VQJ0i ¼ A2 þ A1 þ A0; ðA12Þ

where A2 contains two operators ⋆, A1 contains one
operator ⋆, and A0 does not contain ⋆ at all. It is easy
to see that

A2 ¼ Trh⋆ðBPðVQÞB0Pþ BðVQÞðΠþPÞ
þ BðPΠ−ÞðVQÞÞ⋆ðBPðVQÞB0Pþ BðVQÞðΠþPÞ
þ BðPΠ−ÞðVQÞÞi ðA13Þ

includes two copies of subdiagrams presented in Fig. 3.
This contribution corresponds to diagrams (a)–(e) in Fig. 5.
The contribution A1 after some simple transformations can
be written as

A1 ¼ 2 · Trh⋆BPðVQB0ÞPðVQB0ÞP
þ ⋆ðBVQÞðΠþPÞðVQB0ÞP
þ ⋆BPðVQB0ÞðPΠ−ÞðVQÞ
þ ⋆ðBVQÞðΠþPΠ−ÞðVQÞi: ðA14Þ

Subdiagrams (many) which correspond to this term are
presented in Ref. [44] in Figs. 7–10 [together with subdia-
grams proportional to V2 which comes from the last term in
Eq. (41).] These diagrams have structure presented in
Fig. 9. However, it is also necessary to point out chiral
and antichiral ends of the propagators. This should be made
taking into account positions of the projection operatorsΠ�
in Eq. (A14).

FIG. 9. Topology of subdiagrams which correspond to the contribution A1 in Eq. (A12) and form the effective vertex in the diagram ðfÞ
in Fig. 5. In order to obtain all subdiagrams it is necessary to take into account the projection operators Π� in Eq. (A14).

4For simplicity we omit the numerical factor and the sum
over I.

DERIVATION OF THE EXACT EXPRESSION FOR THE … PHYSICAL REVIEW D 91, 105008 (2015)

105008-15



The contribution A1 is graphically denoted by the
diagram ðfÞ in Fig. 5. The last contribution A0 (that does
not contains the operator ⋆) after some transformations can
be reduced to the one-loop expression

A0 ¼ TrððVQB0ÞPðVQB0ÞPÞ: ðA15Þ

Certainly, the diagrams containing the V2 vertex are not
present in this expression, because they come from the
last term in Eq. (41). Evidently, the angular brackets in
this case can be omitted due to the absence of internal
gauge lines.
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