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Perturbative calculations with the first order form of gauge theories
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The first- and second-order forms of gauge theories are classically equivalent; we consider the
consequence of quantizing the first-order form using the Faddeev-Popov approach. Both the Yang-Mills
and the Finstein-Hilbert actions are considered. An advantage of this approach is that the interaction
vertices are quite simple, being independent of momenta. However, it is necessary to consider the
propagator for two fields (including a mixed propagator). We derive the Feynman rules for both models and
consider the one-loop correction for the thermal energy momentum tensor.
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I. INTRODUCTION

The covariant quantization of the classical Yang-Mills
(YM) field only became possible when it was realized that
nonphysical modes of the vector field had to be canceled by
contributions from so-called “ghost” fields that had non-
trivial interactions [1-5]. Even then, computations are quite
involved in large part because vertices arising from the
classical second-order Yang-Mills Lagrangian

1
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are quite complicated; there is a momentum-dependent
three-point vertex as well as a four-point vertex.

The second-order Lagrangian of Eq. (1) is classically
equivalent to the first-order Yang-Mills Lagrangian,

1
ngllz/[ — _EFZD(auAaD — VA + gfahcAhyAcy)
1
+ 1 F, F™, (2)

as once the equation of motion for the independent field Fy,
is used to eliminate it from the Lagrangian of Eq. (2), the
Lagrangian of Eq. (1) is recovered. The advantage of
working directly with the Lagrangian of Eq. (2) is that
there is now only a relatively simple three-point vertex
F — A — A. However, it is necessary to work with not only
propagators A — A and F — F for the fields Ay, and Fy, , but
also a mixed propagator A — F. This has been considered in
Ref. [6] using background field quantization.

The second-order Einstein-Hilbert (EH) Lagrangian
written in terms of the metric is

ﬁl(izl-)l = _K\/__ggﬂprw(F)’ (3)
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where
R,Ml/ = Fzﬂql/ - FZMP - FZVFZP + FZUF;/T/) (4)

with
1
FZI./ = Egpl(gﬂﬂ,v + Guap — g;w.i)' (5)

If we now set

V=99 = h, (6)

1

G;/iy = Fﬁv - ) (5[/,14FZO' + 51%1—‘;6)? (7)
then Eq. (3) becomes
Ly = xh (Gﬂ +- 1660, -G G") (8)
EH Hv,A d—1 pA - vo [ 7

where d is the space-time dimension.

The “Faddeev-Popov” (FP) quantization procedure of
Refs. [2-5] has been applied to the action of Eq. (3) with
either g,, [7-9] or \/=gg" [10,11] being treated as the
independent field. (The FP procedure has to be extended
to accommodate the “transverse-traceless” gauge [12]).
Background field quantization is employed [13—15], with
g, being expanded about a classical background field such
as the flat metric 7,,,. This leads to exceedingly complicated
vertices as g and ¢*¥ now both become infinite series in the

quantum field. The part of EI(EZI_)I that is just bilinear in the
quantum field is a free second-order spin-two Lagrangian.

If in Egs. (3) and (4) g,, and I, are taken to be
independent fields, then for d > 2 the equation of motion
for I, results in Eq. (5) [16]. (This was noted by Einstein
[17]; it is often a result credited to Palatini [18].) We will
consider the first-order Einstein-Hilbert (1EH) Lagrangian

L4 as being identical to £ in Eq. (8) with h* and G,
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being taken as independent fields. We then have only
one relatively simple momentum-independent vertex
G — G — h, with the propagatorsh — h, G — G, and h — G.

In d = 2 dimensions, ﬁgﬁ and Eg} are inequivalent; an
extra vector field arises when solving the equation of motion
for I}, [19,20]. The Lagrangian /31(52})1 in d = 2 dimensions is
not a total divergence although its equations of motion are
trivial and the constraint structure reveals that the gauge
invariance is simply Jg,, = €,,(x) for and arbitrary tensor
€,,(x) [21]. This shows that no physical degrees of freedom

reside in 51(52})1 when d =2. When d =2, a canonical

analysis of £](Eﬁ also possesses no physical degrees of
freedom, but it does possess an unusual local gauge
invariance that is distinct from the manifest diffeomorphism
invariance [22,23]. Furthermore, upon quantizing ESP)I when
d =2 using the FP procedure, it can be shown that all
perturbative radiative effects vanish [24].
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We will now consider the quantization of E%I and £](5113
when d > 2.

II. FIRST-ORDER YANG-MILLS ACTION
The Lagrangian of Eq. (2) is invariant under an infini-
tesimal local gauge transformation,

SAY = D> = (9,6 + gf***ALO,  (9a)

8F4, = af P’ Fl,e", (9b)
which necessitates the introduction of a gauge-fixing
Lagrangian L, and its associated ghost Lagrangian L,
[1-5]. Working with the covariant gauge-fixing Lagrangian

1
ﬁgf = _%(a'Aa)z» (10)

one has
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Feynman rules for first-order Yang-Mills.
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Ly =40 Db, (11)
where ¢“ and c* are the usual Fermionic scalar ghost fields.
The terms in Egg,[ + Lyf + Lgy that are bilinear in the fields Ay and F§, are
1 Louor Lgpprn — grcprr A,
E(A#’Fjﬁ) 1 aov G AV 12(/1 nmc ikrla) a ’ (12)
=3 = ™) (P =) )\ e
The inverse of the matrix appearing in Eq. (12) is
1 ( w _ (1=a) aﬂav) — L (5P — Gppm
n (0°n ")
poy=|"0 ; (13)
# (aﬁn(w _ aarlﬂv) 2 (Ilﬁ,pk _ QLZLM—’/)K)
where
1
Iﬁa,pk — E (I,I/Iprlmc _ nlkl,lap>’ (148.)
1
Lok (9) = 3 (DFOPnoE + O°O N — DO NP — D7 PN, (14b)
[
The propagators are given by iA(ip) and the F — A — A , NP , .
vertex follows from the interacting part of [,g{ll\),l, 8Gl, = —0u0" + 2 (8,0, +8,0,)0,6 = 0°0,G,
+ G9,0" - (G},0, + G1,0,)6°, (17b)

1 > a C
—3 f”’”FWA””A Y. (15)
The Feynman rules appear in Fig. 1.

We now turn to examining the 1EH Lagrangian.

ITI. FIRST-ORDER EINSTEIN-HILBERT ACTION

It is tempting to consider directly applying the FP
quantization procedure to the 1EH action of Eq. (8) when
h* and Gﬁy are treated as independent fields. However, it is
soon discovered that no choice of gauge leads to bilinears
in the effective Lagrangian that can be inverted so as to
result in a suitable propagator. However, if we write
WY =" + ¢p*, where p* = diag(+ ——— -+ — ) is a flat
background and ¢** is a quantum fluctuation, then Eq. (8)
becomes (with k = 1/2)

1 1 v v 1 o o
ﬁl(‘zl‘)I = 5 |:¢” Gljl"/ql + ]’Iﬂ (ﬂ Gﬁ”GGD - GﬁﬂGﬁl/)]
1 177 1 G/l G° G/l G°
+ 5 ¢ m uTov T You )y
1)2 1)3
=L+ 400 (16)

The infinitesimal form of diffeomorphism invariance
associated with the action of Eq. (8) is

Sh = W0,0" + W 0,00 — 9, (W67, (17a)

which means that for ﬁgg in Eq. (15) we have the gauge
transformation of Eq. (17b), while Eq. (17a) now implies
that

S = 0¥ + OYO" + PH10,0" + ¢VO,00 — v - 6
— 0,(¢0"). (18)
(Indices are now raised using 7/*.)
If we now choose the gauge-fixing condition
Lo = ! 0,4")? 19
ef — _E( u¢ ) ’ ( )

then the Faddeev-Popov ghost contribution to the effective
Lagrangian would be [10,11]
‘CFP = a}l [32’7’"’ + (8p¢pa)aanﬂu - (8p¢pﬂ)ab

+ ¢paapagn/w - (apaydﬂw)]dv‘ (20)

The terms bilinear in ¢* and G7, that follow from
Egs. (16) and (19) are

J
A UUPK B HVO

1 P
£(2> = = |: v ) G/‘{ :| o ’ 21
eff 2 (rb aff CZfA Dj/i 25 Gy(S ( )

where
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1 and A, B, C, and D have tensor representations given by
Ao = 4a (OuOpttur + 0,0yt + 0u0ettup + 0u0lyp)- Egs. (22), we can obtain the propagators in a straightfor-
(22a)  ward way. (Some of the following steps were carried out

using computer algebra.) First, we compute the inverse of

1 ap yo . :
B,C‘Zg — i (8,50 + o 52) a,, (22b) D;" 5. Using Eq. (22d), we obtain
e = Lot 1 5500 M) Do =i + -2
o, = —Z(ép e + 8,62)0;, (22¢) apys = 31\ Nayllps + Nasllpy = =5 Napllys
1
Dy = 5 (8303 + 810705 + 53021, + 5,021p5)-
1 1
= Kd — 88 — s+ a ﬁ> ty o 6] . (25)

(224) Then, substituting Egs. (22a), (22b), (22¢), and (25) into the
tensor form of Eq. (24), we obtain (i0 = p)
Using the blockwise matrix inversion

2
P° (20
A B]-! - X! -X"'BD! XMU[)K:§< dﬂ_é _ﬂypnux_”yxﬂu/))
C D ~ | -DIcxX-Ip7! 4D ICX-'BD! | 1 1
(23) + <§_5> (pﬂpp’/lw( + PuvPoMuxPuPitup +pvp1<n/4p>'
where (26)
X=A-BD'C (24) Computing the inverse of this expression, we obtain

1 -2
X = L e =20 )| + = o PP PP = p i = PP = ptp = ]

2
= vap,(, (27)
2 2
where we have identified the result with the graviton propagator D,‘f,,pk (notice that for a = 2, DZ’W,K has the same structure as

the DeDonder gauge propagator in the second-order formulation).
Substituting Egs. (22b), (22c¢), (25), and (27) into the tensor form of the off-diagonal blocks of Eq. (23), we obtain

i
Dy = 5 Paller = )3 + 200 + 255) = 29033 + o < ]

i(a—2)
- (PP (PpS% + Pab)y) = Papp(P 1™ + PWY) + Pappp™n™], (28)

DqﬁG;w ;75 — _fDGqﬁay&/w (29)

The propagator for the Gﬁy field can similarly be obtained by computing the second diagonal block of Eq. (23) with the help
of Egs. (22b), (22c¢), (25), and (27), which yields

a—2
G a o= 2 (PappP* (P57 + PyS3) + PypsP” (Pal + PpSl) = 2PalpPy P

1 21 4pMy5 a -
s [217*19" (% — Nayps = NpyMas | + 20" (P, (87mps + S3has) + Ps(6p, + 5311ay))

+20°(Pa(Gyps + S511yp) + Py + Sitlay)) = 2Pa(py (1" Hps + 8585) + ps(*ng, + 8,53))

= 2pp(Py (W Nas + 856%) + P51 Nay + 8,5%)) + (4 = @) (p,65 + Ps67) (Paby + Ppoa)

Ac o o
0 (2Maptlys 5 5
- 7 ( d f ; — NoyMlps — nﬁyna(5> - ? (’Yﬁy5fs + nﬁ&é}ﬂ/) - Eﬁ (nayég + 77(155”' (30)
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There is only one interaction vertex which can be read from Eq. (16). The symmetrized result can be written as

. 1 NupMu 6?555” -
Vuuﬁﬂy5:§{{(M_”ﬂﬁ’?m@ﬁﬁJrﬂ<—>V tae ity (31)

d—1

The ghost propagator and vertex, which can be read from Eq. (20), are given by

gh __
D =

and

VI (py p, p3) = !

Using Eqgs. (27)—-(33), we put together in Fig. 2 all of the
Feynman rules for first-order gravity.

As an example of the effectiveness of the perturbative
first-order formalism, let us now consider an explicit
perturbative calculation which makes use of the
Feynman rules in Fig. 2. We will consider a simple one-
loop calculation which takes into account the coupling of
the graviton field to the energy-momentum tensor of a

v pK 2
~~AA~AA ¢ . ¢
4 5 . DY
A
Gaﬂ ;p o P DGd)c);ﬂpn
v G?
NS> G
10) > ~& Do ez
A
Cap ——>—— G D365
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Ppuv d Vwiﬁ%
o
~8
dy - - ? ----4d, DI
¢

Qy ->-C-->4, VI L% (prs P2, P3)

p3 P2

FIG. 2. Feynman rules for first-order gravity.

5(p1+ P2+ p3)

Muw
- (32)
p

as(PhPS + P5P5) — Pap(P) s + PY6a)]. (33)

[

thermal gravitational plasma. Since this is a well-known
result which has been obtained in the usual formulation of
thermal gravity [25] as well as in the transverse-traceless
gauge-fixing formulation [12], it provides a simple test of
the consistency of the first-order formalism.

The energy-momentum tensor 7, and the one-graviton
function I, are related by

ol 1
r, = 5 =5 V=9T : (34)

where I' is the one-loop thermal effective action. In the
Fig. 3 we shown the one-loop diagrams that contribute to
I'*. Using the imaginary-time formalism [26], the thermal
part of each of these diagrams can be written as

d-1 ioot
/%/ 5%Ns(ko)[ 1K) + fL(=k)],  (35)

—ico+6 2701

where Npg(ko) is the Bose-Einstein thermal distribution
function. For convenience, we are considering the more
general case of a d-dimensional space-time. The integrand
of each contribution from Fig. 3 is denoted by
L, (k)(I=a.,b,c).
Let us first consider the diagram with a mixed propa-
gator, as shown in Fig. 3(a). Using the Feynman rules in

(a) (b) ()

FIG. 3. Diagrams that contribute to the thermal energy-mo-
mentum tensor. The loops in diagrams (a), (b) and (c) represent
the mixed, ghost and G field contributions, respectively.
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_ Iikoky  (3a+2d — 4) kM, — d(kySh + ksSl) .
nk) = ~i|(@=2)= 57 ~ R (DB™'X)7),. (36)
|
where the factor (DB™'X )Zﬁy produces the corresponding  For d = 4 we obtain
amputated Green function. Since f5, (k) is an odd function
of k the net result in Eq. (35) will vanish trivially. | *T* T guu) (42)
We are then left with the ghost loop and the G-loop d=4 — 90 M [

contributions. From Figs. 3(b) and 3(c) we obtain

k,k,
/l;u(k) = I;Cz (37)
and
1 k,k,
f;,,(k) =7 d(d - 1)’7/w +d(d+1) 2| (38)

Since we are using dimensional regularization, the first
term in Eq. (38) produces a vanishing contribution when
inserted into Eq. (35). Adding the nonvanishing contribu-
tion from f%, (k) and f%,(k), and using Eq. (35), we obtain

L dd-3)
rgem = 44 /

k,k,
K
(39)

d91k /zoo+(5 dko

(2m)4" | iors 2mi Nylko) =~

where the factor d(d — 3)/2 counts the degrees of freedom
of a graviton in d dimensions. Closing the contour of
integration on the right-hand side of the plane, the pole at

ko = \H gives the following contribution [there is a minus
sign from the clockwise contour integration and the pole

from 1/k at ko = |k| yields a factor 1/(2[k|)]:

dld-3 k|4 dQ
F}t}}/em = - ( ) | | | | 1 ktky
4 \k\ 1 (2]1’)d 1 ™H

d(d -3 dQy; + -
- _¥§(d)l“(d)Td / (2713{1 -k, k.

(40)

where lAcﬂ = (1, k / |£|) This result can be expressed in terms
of the heat bath four-velocity u, = (1,0) as follows:

em _ 4(d=3) 49,
_ d(d - 3) 271'% T4
= a1 DT Ty Gyt ( — it

(41)

which is in agreement with the known result obtained using
the second-order formalism [25].

IV. DISCUSSION

We have examined how the first-order form of both
the Yang-Mills and Einstein-Hilbert actions can be used to
compute quantum effects. In both cases, using the first-
order form of the action simplifies the vertices encountered
when using the Faddeev-Popov quantization; unfortu-
nately, the propagators become more involved.

The first- and second-order form of the actions can be
shown to be classically equivalent by examining the
classical equations of motlon To show that the path
integrals associated with EYM and EYI\),I are equivalent,
we only need to take

['gf) = 5%34 + Ly + Lyp (43)
[using Egs. (1), (10), and (11)], and to insert into the path
integral

z) = / DASDDe exp i / dxc  (44)
the constant
/DF/Z,, expl/dx (411 F;’VF“””) (45)
Upon performing the shift
F4, — F&, —(9,A, — 0,A, + gf**ALA?), (46)

we convert ijt) into Zgg, where
z\l) = / DASDF4, Dc“De exp i / dxCl)),  (47)

where Eé;f) is identical to Egg of Eq. (43), except that now

E%z,[ of Eq. (2) replaces 5%34
Unfortunately, it is not so straightforward to show that
when the Faddeev-Popov quantization procedure is used in

conjunction with 51(511-)1 the same result is obtained as when

105006-6
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51(521; is treated this way. In any case, it is not clear that

the Faddeev-Popov procedure is appropriate for 51(51})1 as the
constraint structure of this Lagrangian implies that the
functional measure receives a nontrivial contribution from
second-class constraints [27]. Such contributions also have
a significant effect when quantizing a model with an
antisymmetric tensor field that interacts with a non-
Abelian vector field and that possesses a pseudoscalar
mass [28].

PHYSICAL REVIEW D 91, 105006 (2015)

The problem of renormalizing the divergences that arise
when using the Faddeev-Popov approach to quantizing

Egg,[ and Eg& is quite delicate on account of the presence of
mixed propagators. We are currently considering this issue.
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