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We compute critical exponents of OðNÞ models in fractional dimensions between d ¼ 2 and 4, and
for continuous values of the number of field components N, in this way completing the RG classification of
universality classes for these models. These curves represent nonperturbative approximation to the exact
results, they respect all the qualitative features expected from such quantities conciliating previously known
perturbative results in three dimensions with exact results in two dimensions and giving a strong indication
of what could be the exact behavior of such curves. We also report critical exponents for some multicritical
universality classes in the cases N ≥ 2 and N ¼ 0. Finally, in the large-N limit our critical exponents
correctly approach those of the spherical model, allowing us to set N ∼ 100 as the threshold for the
quantitative validity of leading order large-N estimates.
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I. INTRODUCTION

The understanding of universality—namely, the inde-
pendence of the critical properties of a system from its
microscopic details—by means of the renormalization
group (RG) has been one emblematic example of the twist
of paradigm that such a technique has brought to modern
physics. In Wilson’s general framework [1], the way
physics changes with respect to the energy scale is
represented by a flow along a trajectory in a generalized
theory space, which is the space of all theories describing
fluctuations of a given set of degrees of freedom. Critical
phenomena arising in a physical system are understood as
described by theories that are fixed points of its RG flow
[1]. In this way different trajectories, corresponding to
different microscopic theories, which lie in the same basin
of attraction of a given fixed point, will describe the same
critical properties. Universality then tells us that these are
determined by a few parameters, such as the dimension-
ality, the symmetry group of the system and the order of
criticality. Each value of these parameters defines a differ-
ent universality class; classifying them is tantamount to
classifying all possible continuous phase transitions that
can occur in nature.
Among the universal quantities characterizing a phase

transition, a set of parameters which acts as a bridge between
theory and experiment is that of critical exponents, which
parametrize how certain measurable quantities (such as
specific heat, density, susceptibility and so on) depend on
temperature near a critical point. Being universal observ-
ables, critical exponents are both a test ground for theoretical
methods and possible predictions for, yet unobserved, phase
transitions. Having a simple mathematical tool to compute

and predict these exponents is thus an important theoretical
and phenomenological task.
In this paper we compute the critical exponents of OðNÞ

models in fractional dimensions between d ¼ 2 and 4
and for continuous values of the number of field compo-
nents N, starting from the basic principles of Wilsonian
RG in its modern functional realization [2,3].OðNÞmodels
have many applications to low dimensional systems: they
can describe long polymer chains (N ¼ 0), liquid–vapor
(N ¼ 1), superfluid helium (N ¼ 2), ferromagnetic
(N ¼ 3) and QCD chiral (N ¼ 4) phase transitions [3,4].
The present work complements and completes the

analysis and classification of universality classes of
OðNÞ models made in [5] with the dependence of critical
exponents ν; α; β; γ; δ on d and N and shows how, even
at this approximate level, the numerical results strictly
follow the prescription of the Mermin–Wagner–Hohenberg
(MWH) theorem [6,7]. We also compute the critical
exponents for many new N ≥ 2 universality classes
describing multicritical models in fractional dimension
2 ≤ d ≤ 3. We also complement the analysis of the possible
multicritical phases of polymeric systems, as found in our
previous work, by giving the critical exponents associated
to these phase transitions. Thus, if these phases can be
realized in some system, these can be seen as predictions
for parameters yet to be measured.

II. SCALING SOLUTIONS AND η

Our tool will be the running effective potential UkðρÞ,
which is a function of the OðNÞ invariant ρ ¼ 1

2
φ2, for a

constant field φ. It represents an effective Hamiltonian for
the model where all the excitation with momentum greater
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than k have been integrated out [5]. In terms of dimension-
less variables ~Ukð~ρÞ ¼ k−dUkðρÞ, with ~ρ ¼ k−ðd−2þηÞρ, a
scaling solution ∂t

~U�ð~ρÞ ¼ 0, where t ¼ logðk=ΛÞ and Λ is
some ultraviolet cutoff, satisfies the following ordinary
differential equation [2],

− ðd − 2þ ηÞ~ρ ~U0
� þ d ~U�

¼ cdðN − 1Þ 1 −
η

dþ2

1þ ~U0
�
þ cd

1 − η
dþ2

1þ ~U0
� þ 2~ρ ~U00

�
; ð1Þ

where c−1d ¼ ð4πÞd=2Γðd=2þ 1Þ. The anomalous dimen-
sion η fixes the scaling properties of the field at a particular
fixed point; to lowest order its value is given by [3]

η ¼ 4cd
~ρ0 ~U

00
�ð~ρ0Þ2

½1þ 2~ρ0 ~U
00
�ð~ρ0Þ�2

; ð2Þ

with ~ρ0 the absolute minimum of the fixed point potential
~U0
�ð~ρ0Þ ¼ 0. The approximation scheme described by

Eqs. (1) and (2) is often called LPA0 (since it is the simplest
improvement of the linear potential approximation [3]).
Every solution of (1), together with its domain of

attraction, represents a different OðNÞ universality class
[5]. For every d and N one finds a discrete set of solutions
corresponding to multicritical potentials of increasing order,
i.e. with i minima, which describe multicritical phase
transitions (in which one needs to tune multiple parameters
to reach the critical point). For each of these it is possible to
obtain the anomalous dimension ηiðd;NÞ (we define η≡ η2)
as a function of d and N, by means of which we can follow
the evolution through theory space of the fixed point
representing the ith multicritical potential [8].
The analysis presented in [5] revealed that for d > 4 and

for any N, in accordance with the Ginzburg criterion, one
finds only the Gaussian fixed point (i ¼ 1). (See [9] for a
discussion on the possible existence of nontrivial univer-
sality classes in d ≥ 4 raised by [10]). Starting at d ¼ 4, the
upper critical dimension for OðNÞ models, the Wilson-
Fisher (WF) fixed points (i ¼ 2) branch away from the
Gaussian fixed point. When d ¼ 3 these fixed points
describe the known universality classes of the Ising, XY,
Heisenberg and other models.
Approaching d ¼ 2 one clearly observes that only the

N ¼ 1 anomalous dimension continues to grow: for all
other values of N ≥ 2 the anomalous dimension bends
downward to become zero exactly when d ¼ 2. As
explained in [5], this nontrivial fact, not evident from
the structure of Eq. (1) alone, is a manifestation of the
MWH theorem. We now complement this analysis with the
results for the correlation length critical exponents νiðd;NÞ
as a function of d and N. We obtained results for the first
several multicritical universality classes i ¼ 2; 3; 4; 5;….
Here we will only report in detail the analysis for the WF
and tricritical cases (i ¼ 2; 3) and briefly comment on the

other multicritical cases. See Fig. 1 for results on ν ¼ ν2
as a function of d for various values of N.

III. EIGENPERTURBATIONS AND ν

The correlation length exponent νi is related to the
greatest negative (infrared repulsive) eigenvalue y1;i of the
linearized RG transformation by νi ¼ 1=y1;i (we define
ν≡ ν2). In order to calculate it, we will use the eigenper-
turbation method described in [11]. As a starting point, we
expand the dimensionless effective potential as follows:

~Uk ¼ ~U�ð~ρÞ þ ϵ ~ukð~ρÞeyt; ð3Þ

where ~U�ð~ρÞ is a solution of the fixed point equation (1)
and ~ukð~ρÞ is a perturbation around the solution whose
eigenvalue is y. Substituting this expression into the flow
equation, and considering only terms of first order in ϵ, we
obtain an equation for the perturbation:

ðdþ yÞ ~ukð~ρÞ − ðd − 2þ ηÞ~ρ ~u0kð~ρÞ

¼ −cdðN − 1Þ
�
1 −

η

dþ 2

�
~u0kð~ρÞ

ð1þ ~U0
�ð~ρÞÞ2

− cd

�
1 −

η

dþ 2

�
~u0�ð~ρÞ þ 2~ρ ~u00�ð~ρÞ

ð1þ ~U0
�ð~ρÞ þ 2~ρ ~U00

�ð~ρÞÞ2
: ð4Þ

In order to solve this equation we need two initial
conditions. The first is obtained by noting that the pertur-
bation equation (4) is linear, so we can require the
normalization condition ~ukð0Þ ¼ 1, while the second one
is imposed on ~u0kð0Þ from continuity at zero field:

ðyþ dÞ ~ukð0Þ ¼ −cd
ð1 − η

dþ2
ÞN

ð1þ ~U0
�ð0ÞÞ2

~u0kð0Þ: ð5Þ

It should be noted that in the special case N ¼ 0 the
continuity at zero field is given by ~ukð0Þ ¼ 0 and then the
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FIG. 1 (color online). Correlation length critical exponent ν, for
the WF universality class, as a function of d between two and
three for N ¼ 1; 2; 3; 4; 5; 10; 100, from bottom to top. In the
inset we show the critical exponent in the range 3 ≤ d ≤ 4.
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normalization condition should be imposed on the first
derivative of the perturbation ~u0kð0Þ ¼ 1.
Now we can identify a single solution for any value of y,

but we know that just a discrete set of y values will be
the ensemble of the physical eigenvalues of Eq. (1). The
supplementary condition to identify this discrete set is
given on the shape of the solutions.
A generic solution of Eq. (4) in the ρ → ∞ limit behaves

at leading order as

~ukð~ρÞ ¼ aðyÞρ ðd−yÞ
ðd−2þηÞ þ bðyÞeCρ

2d
d−2þη

−1
; ð6Þ

where aðyÞ; bðyÞ are two functions of the eigenvalue y and
C is a constant depending on d and η. This shows that in the
infinite field limit, the solution is a linear combination of
power-law and exponential diverging parts [11]. In order to
find the discrete set of eigenvalues that we need, we have to
require the solution to grow no faster than a power-law, so
the condition is just bðyÞ ¼ 0.
Using this condition we found just one infrared (IR)

repulsive eigenvalue for the WF fixed point, two for the
tricritical fixed point, three for the tetracritical fixed point
and so on. In this way we were able to construct the curves
shown in Figs. 1, 2, 4 and 5.
The proliferation of eigenvalues is due to the fact that

the ith universality class has i − 1 IR repulsive directions
in theory space, and thus we have i − 1 solutions with
negative eigenvalue in the perturbation equation (4). In the
following we will denote as yj;i the jth eigenvalue of the ith
universality class.
As was already observed in [5], the vanishing of the

anomalous dimension, when combined with the behavior
of the νi exponents, implies that there are no continuous
phase transitions for N > 2 in d ¼ 2. The case N ¼ 2 is
peculiar due to the presence of the Kosterlitz-Thouless
phase transition [12]; our method is not able to recover this

result because of its topological nature. Note that this will
apply also to the following, and the case N ¼ 2 is to be
understood in light of the previous remark. Consistent with
this argument, we find that only the N ¼ 1 model has a
finite correlation length exponent in two dimensions; in all
other cases, N ≥ 2, ν diverges as d → 2. This allows us to
distinguish the spherical model, related to the N → ∞ limit
[13], from the Gaussian model, both having η ¼ 0. In the
N → ∞ limit, we instead recover the known exact relation
νðd;∞Þ ¼ 1

d−2 [14].
Figure 2 shows η and y1;2 ¼ 1=ν as function of N in the

interval between −2 ≤ N ≤ 2.5, for the two cases d ¼ 2
and d ¼ 3. The critical exponents are continuous in the
whole range and in particular around N ¼ 0; this is an
indication that the N → 0 limit, relevant to the problem of
self avoiding random walks (SAW) [15], is well defined.
These curves strictly follow the prescription of the MWH

theorem: for N ≥ 2 both ηð2; NÞ and y1;2ð2; NÞ vanish,
while in d ¼ 3 they have finite values; thus OðNÞ models
with continuous symmetries cannot have a spontaneous
symmetry breaking in two dimensions. We remark that
both exponents are necessary to distinguish between the
case of no phase transition, where we have seen both
exponents vanish, and the N ¼ ∞ case where, for example
ηð3;∞Þ vanishes but y1;2ð3;∞Þ attains a finite non-mean-
field value. Our computation of νðd;NÞ thus completes the
RG derivation of the MWH theorem started in [5] with the
analysis of ηðd;NÞ. In the limit N → −2, both exponents
attain their mean-field values (namely η ¼ 0 and ν ¼ 1=2),
where indeed the model is know to have Gaussian critical
exponents in both dimensions [16].
Our functions ηðd; 1Þ and νðd; 1Þ can be compared with

results from the bootstrap (BS) approach [17]. The anoma-
lous dimension compares fairly well considering that our
computation is based on the solution of a single ODE,
while the correlation length critical exponent is slightly
overestimated for d in the proximity of two. It will be
interesting to have BS results for the N > 1 cases in
dimension other than three [18] and in particular to see
the emergence of the MWH theorem in this approach.
Finally, to our knowledge, our results are the only ones

available in the literature regarding the full form of the
functions ηðd; NÞ and νðd;NÞ, functions that are both
universal and, in principle, experimentally accessible.

IV. SCALING RELATIONS AND α;β;γ;δ

Having obtained ν and η as a function of d andN, we can
now use the standard scaling relations to obtain the other
critical exponents:

α ¼ 2 − νd β ¼ ν
d − 2þ η

2

γ ¼ νð2 − ηÞ δ ¼ dþ 2 − η

d − 2þ η
: ð7Þ
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FIG. 2 (color online). Critical exponents η and y1;2 ¼ 1=ν as a
function ofN in two and three dimensions for the WF universality
class. The fact that the two dimensional curves are zero for N ≥ 2
is a manifestation of the MWH theorem.
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Our results are shown in Fig. 3 for 2 ≤ d ≤ 4 and
for N ¼ 1; 2; 3; 4; 5; 10; 100.
The first thing we notice is that in the large-N limit we

smoothly recover the critical exponents of the spherical
model [13] α ¼ 0, β ¼ 1

2
, γ ¼ 2

d−2 and δ ¼ dþ2
d−2. Our results

indicate that the N ¼ 100 case is perfectly approximated by
the spherical model, while already at N ¼ 10 deviations
from this limit are appreciable. This shows that, regarding
critical exponents (or related) quantities, the leading large-
N estimates are quantitatively good only for N of order 102

or larger [19].
For N ¼ 1 and d ¼ 2 our results can be compared with

the known exact Ising critical exponents found by Onsager
and others [20,21], the comparison can be found in Table I.
Quantitative agreement is not excellent, as expected by the
simplicity of our approach, based entirely on the solution of
a single ODE (1) and the relative eigenvalue problem (4).
Also it should be noted that the errors of our method are

found to be most relevant in this case, as it will be clear in
the following. This is due to the fact that the error we
commit is of the same order of the anomalous dimension of
the model considered [24,25].
No other method, to our knowledge, has a similar

versatility. In any case, once qualitative understanding

has been achieved, one can obtain arbitrarily good quanti-
tative estimates by resorting to higher orders of derivative
expansion [26], of which Eq. (1) represents just the
first order.
It is possible to find a better ν value in the N ¼ 1 case

using a different definition for the anomalous dimension [8]
rather than the one we used [5]. This definition, which is
strictly valid only in theN ¼ 1 case, gives a worse value for
ηð≃0.4Þ, but a much better result for νð¼ 1.01Þ.
In Table I we show also the results obtained for the three

dimensional Ising model, as expected, in this case the
agreement is much better. This is again due to the fact that
the derivative expansion can be considered as an expansion
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FIG. 3 (color online). Critical exponents α; β; γ; δ of the WF universality class for N ¼ 1; 2; 3; 4; 5; 10; 100. The N ¼ 1 curves reach a
distinguished value at d ¼ 2, while the N ¼ 100 curve is practically equivalent to the exact large–N spherical model limit (represented
by dashed lines). The curves for all the other values of N interpolate between the two.

TABLE I. Ising Results.

Exp. 3d(BS[22]) 3d(this work) 2d(exact[23]) 2d(this work)

η 0.036 0.044 1=4 0.23
ν 0.63 0.65 1 1.33
α 0.11 0.050 0 −0.65
β 0.33 0.34 0.125 0.15
γ 1.24 1.27 1.75 2.34
δ 4.79 4.75 15 16.12
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in terms of the anomalous dimension: the error we commit
will then be of the order of the anomalous dimension,
which is smaller in d ¼ 3 than in d ¼ 2.
In fact the ansatz used in this work (the LPA0 ansatz) for

the effective action neglects the dependence of the wave
function renormalization on momentum and field; this
dependence is essentially governed by the anomalous
dimension of the model and it is small when the anomalous
dimension itself is small. Thus the LPA0 approximation turns
out to be quite effective in these cases [24,25]. As a
confirmation of this fact one should consider the good
results obtained in the three-dimensional case (again Table I)
and the fact that the results become exact in the N → ∞
limit, where in fact the anomalous dimension vanishes. AsN
grows our quantitative estimates become better; we made
comparisons in the cases N ¼ 2; 3; 4 and higher and we
found good agreement with best known values [27]. Also
our predictions are found to be better in the case of
multicritical universality classes, where the results for the
anomalous dimension are smaller than the standardWF case.

V. TRICRITICAL UNIVERSALITY CASE

In this case we have two IR repulsive eigenvalues of the
linearized flow, both shown in Fig. 4 for 2 ≤ d ≤ 3, and
N ¼ 1; 2; 3; 4. The exponent y1;3 ¼ 1=ν3 is the inverse
correlation length exponent; indeed at the upper tricritical
dimension, dc;3 ¼ 3, it reaches its mean-field value
y1;3 ¼ 2. When N ¼ 1 the exponent does not depart so
much from the mean-field result as in the standardWF case.
The d ¼ 2 value we obtain is y1;3 ¼ 1.90 to be compared
with the exact result [28] yex1;3 ¼ 1.80, both rather close to
the mean-field value. In the case of continuous symmetries
(N ≥ 2) the tricritical universality class disappears in
d ¼ 2, and the y1;3 exponents correctly return to their
mean-field values for every N.

The y2;3 exponent, instead, describes the divergence of
the correlation length as a function of an additional critical
parameter. At the upper tricritical dimension, the mean-
field result is y2;3 ¼ 1. When N ¼ 1 we find in two
dimensions y2;3 ≃ 0.4, which should be compared with
the exact value [28] yex2;3 ¼ 0.8. In this case the agreement is
rather low, but this is not surprising since we know that the
LPA0 approximation is rather inefficient in d ¼ 2. However
it should be noted that even if not quantitatively correct,
these results can be used to evaluate the crossover exponent
ϕ ¼ y2;3

y1;3
. In d ¼ 2 this gives ϕ≃ 0.2 which, despite the

quantitative error, gives a much better estimation than the
ϵ–expansion, which provides a negative value for this
exponent at order ϵ2 [29]. For continuous symmetries,
N ≥ 2, y2;3 vanishes in d ¼ 2, in the same way as the
exponent y1;2 does in the WF case.

VI. MULTICRITICAL UNIVERSALITY CLASSES

The behavior of the tricritical case can be generalized to
the other multicritical universality classes. For these classes
with i > 3, we have that at the upper critical dimension,
dc;i ¼ 2þ 2

i−1 [8], all the i − 1 IR repulsive eigenvalues
attain their mean-field values. The largest one will always
be y1;i ¼ 2, as in the standard WF case, with all the others
having a mean-field value smaller than 2. For N ≥ 2 all the
exponents, but the lowest one, will have different values as
a function of d < dc;i, all remaining pretty close to the
mean-field value, which is eventually recovered in d ¼ 2.
Conversely the lowest eigenvalue will decrease monoton-
ically until it vanishes in d ¼ 2. For N ¼ 1 instead, all the
multicritical universality classes will still exist in d ¼ 2 and
thus all the exponents will reach a finite non-mean-field
value, which will be given by the relative conformal field
theory (CFT) result [23].
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FIG. 4 (color online). Critical exponents y1;3; y2;3 of the
tricritical fixed points as a function of d for N ¼ 1; 2; 3; 4. These
exponents describe the divergence of the correlation length as a
function of the two critical parameters of the tricritical univer-
sality class.
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FIG. 5 (color online). Critical exponents in the N ¼ 0 case. In
the main plot are shown the values of νi in the range 2 ≤ d ≤ 3 for
the (from the bottom) WF, tricritical, tetracritical and pentacritical
universality classes, corresponding, respectively, to i ¼ 2; 3; 4; 5.
In the inset the corresponding values of ηi are reported (in
inverted order, from top to bottom).
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A. The N ¼ 0 case

Multicritical scaling solutions are also found for N ¼ 0,
which survive in infinite number when d → 2 [5]. A plot of
ηi and νi for the first four universality classes i ¼ 2; 3; 4; 5
is shown in Fig. 5; these are numerically very similar to
those of the N ¼ 1 cases (see [5] and Fig. 1 for the WF
class). This was indeed expected, judging from Fig. 2.
In Table II we compare the d ¼ 2 exact and the d ¼ 3

Monte Carlo (MC) results for (WF) self-avoiding walks
(SAW) [30], which correspond to the N ¼ 0 limit of OðNÞ
models [15], with the results obtained from our analysis
and using scaling relations: From these comparisons we
see that the N ¼ 0 estimates are better than the N ¼ 1
estimates, since also the N ≥ 2 estimates are so, this
indicates that the (WF) Wilson-Fisher universality class
is the one for which our estimates are poorer.
We are not aware of any known result regarding multi-

critical phase transitions of polymeric systems, or any other
model that belongs to one of the N ¼ 0 multicritical
universality class. Our estimates for the critical exponents
are given in Fig. 5, and to our knowledge these results are
novel predictions: it will be interesting to find physical
systems or theoretical models described by these univer-
sality classes to test them.

VII. CONCLUSIONS

In this paper we reported the computation of critical
exponents of OðNÞ universality classes as a function of
the dimension and of the number of field components. The
correlation length critical exponent ν was computed by
studying the eigenvalue problem obtained linearizing the RG
flow of the running effective potential around the scaling
solutions found in [5], representing the OðNÞ multicritical
fixed point theories. From this and the previous knowledge
of the anomalous dimensions, all the remaining exponents α,
β, γ, δ were found using scaling relations.
In particular we displayed the critical exponents for the

Wilson-Fisher and tricritical phase transitions for general d
andN. Another result which is new to our knowledge are the
critical exponents for the multicritical classes in the N → 0
limit. These, via the De Gennes correspondence [15], are
universal, observable quantities which can be associated to
possible new phases of polymeric systems. To the best of our
knowledge, this physics is yet to be observed.

One interesting feature which is worth mentioning is that
there is a correspondence between critical exponents of
models with short–range interactions in fractional dimen-
sion and models with long–range interactions in integer
dimension [32]. This means that our curves ηðd;NÞ and
νðd;NÞ have direct physical interpretation, not only for
systems in fractional dimensions, but as describing the
critical behavior of models with long–range interactions
in two or three dimensions. In this case our universal results
could be indirectly tested in the near future, both by
numerical simulations and laboratory experiments.
Further details on this correspondence can be found in [32].
By computing the function νðd;NÞ we provided the

information necessary to complete the nonperturbative
RG scenario of OðNÞ models universality classes as put
forward in our previous work [5]. This constitutes a first
important example of how one can use RG equations to
give precise statements on how universality classes depend
on dimension and symmetry group parameters, a general
and fundamental problem whose solution has important
applications in physical model building in both condensed
matter and high energy physics.
It is worth noting that the approach here presented makes

a bridge between all the known features of the critical
behavior of OðNÞ models. In fact, epsilon expansion
techniques while providing good numerical results close
to four dimensions are unable to reproduce even the
qualitative features of the models in d≃ 2 [27]. In
d ¼ 2 it is necessary to use ad hoc methods as CFT to
obtain exact quantities. These exact results are however
difficult to connect with the d > 2 approximate results.
Also other expansions based on the exact solution of the
spherical model are difficult to calculate at high orders [19]
and they fail both in quantitative and qualitative agreement
for small N values.
In particular multicritical results are not available in

1=N expansions and are also qualitatively incorrect in
ϵ–expansions [28], while the approach described here gives
all the qualitatively correct results even for these models.
The correctness of these findings is granted by the func-
tional description of the theory space of OðNÞ models
which is developed here to full extent.
We conclude by stressing that here we explored just the

simplest realization of our method and this alone allowed a
complete qualitative understanding of OðNÞ universality
classes. We believe that its numerical results, where not
fully satisfactory, can be fairly improved in future exten-
sions along the lines explained in the text, and will
ultimately lead to a definitive quantitative understanding
of critical properties of OðNÞ models.
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TABLE II. SAW results.

Exp. 3d(MC[4]) 3d(this work) 2d(exact[31]) 2d(this work)

η 0.028 0.04 5=24≃ 0.208 0.232
ν 0.587 0.597 3=4 ¼ 0.75 0.801
α 0.239 0.210 1=2 ¼ 0.5 0.398
β 0.302 0.310 5=64≃ 0.078 0.093
γ 1.157 1.169 43=32≃ 1.344 1.416
δ 4.837 4.769 91=5 ¼ 18.2 16.24
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