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We report the existence of unstable s-wave modes for black strings in Gauss-Bonnet theory (which is
quadratic in the curvature) in seven dimensions. This theory admits analytic uniform black strings that
are, in the transverse section, black holes of the same Gauss-Bonnet theory in six dimensions. All the
components of the perturbation can be written in terms of a single component and its derivatives. For this,
we find a master equation that admits bounded solutions provided the characteristic time of the exponential
growth of the perturbation is related to the wave number along the extra direction, as in general relativity. It
is known that these configurations suffer from a thermal instability; therefore, the results presented here
provide evidence for the Gubser-Mitra conjecture in the context of Gauss-Bonnet theory. Because of the
nontriviality of the curvature of the background, all of the components of the metric perturbation appear in
the linearized equations. Similar to spherical black holes, the black strings should be obtained as the short-
distance limit r ≪ α1=2 of the black-string solution of Einstein-Gauss-Bonnet theory (which is not known
analytically), where α is the Gauss-Bonnet coupling.
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I. INTRODUCTION

Gravity in higher dimensions has been an important
scenario to test to what degree the ideas we have gained
from four-dimensional gravity are generic. Motivated also
by string theory and supergravity, many results have been
obtained in recent decades concerning gravity in dimen-
sions higher than four—for example, the existence of the
asymptotically flat black ring and all its extensions (for
reviews, see [1] and [2]). These objects were conjectured to
be unstable for large angular momentum, as they inherit the
Gregory-Laflamme instability [3] of nonextremal black
strings and black p-branes [4,5]. Indeed, the black-ring
instability has been confirmed in Refs. [6–8]. The Gregory-
Laflamme instability can be guessed from thermodynam-
ical arguments since, as a function of the mass, the
entropies of the black hole and the black string cross at
a given critical massMc. This can be seen from the fact that
the entropy of the black hole grows as SBH ∼M

D−2
D−3, while

the entropy of the black string grows as SBS ∼M
D−3
D−4. For

masses below Mc, the black hole is thermally favored;
above Mc, the black-string solution is the one with greater
entropy and, therefore, is the most favored. This relation
between thermal and perturbative instabilities led Gubser
and Mitra to conjecture that both kinds of instabilities
always appear together for black-hole configurations with
extended directions [9], which was recently proven in [10]
for general relativity (GR) in vacuum. To understand the
complete evolution of the unstable mode, a nonlinear

analysis is required. Recent outstanding numerical results
in five dimensions seem to indicate that the black string
evolves toward a nonhomogenous configuration with
sections in which the size of the string eventually shrinks
to zero, generating a null singularity and providing a
counterexample of the cosmic censorship conjecture [11]
(for a historical review on this problem, see chap. 2 of [2]).
An interesting problem is whether higher-curvature cor-

rections may modify this scenario. In the particular case of
higher-curvature Lovelock theories [12], it is difficult to
construct analytic homogenous black strings due to the fact
that the new dimensionful coupling constants introduce a
length scale that induces the existence of a cosmological
constant. Numerical and approximate results in this context
have been reported in [13–17]. Specifically, in [14], static
uniform and nonuniform black strings were constructed. The
latter were constructed along the lines of [18], i.e., pertur-
batively in a nonhomogeneity parameter, and therefore can
be considered as a static perturbation of the uniform black
string. Comparing the entropies of these configurations, the
authors provided evidence for the Gubser-Mitra conjecture
in the context of Einstein-Gauss-Bonnet theory.
The situation in theories that have a single Lovelock term

is much more like the one in general relativity, since, as
shown in Ref. [19], homogeneous black strings and black
p-branes can be constructed analytically. These solutions
are also important, since they should be obtained as the
short-distance configuration (r ≪ α1=2) of the black-string
solution of Einstein-Gauss-Bonnet theory, which is not
known analytically. Here, α is the Gauss-Bonnet coupling.
This is what occurs, for example, with the “healthy branch”
of the spherically symmetric black hole in Einstein-Gauss-
Bonnet gravity, which is defined by the following action:
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IEGB½g� ¼
1

16πG

Z
dDx

ffiffiffiffiffiffi
−g

p ½Rþ αðR2 − 4RμνRμν þ RαβγδRαβγδÞ�: ð1Þ

This theory admits the following black-hole solution [20]:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
D−2; ð2Þ

where

fðrÞ ¼ 1þ r2

ðD − 3ÞðD − 4Þα

2
41 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 64πGðD − 3ÞðD − 4Þα

ðD − 2ÞVðSD−2Þ
M
rD−1

s 3
5; ð3Þ

where the integration constantM is the mass. Here α has dimensions of length squared; we can analyze the behavior of this
metric function for r ≫

ffiffiffi
α

p
and r ≪

ffiffiffi
α

p
which, respectively, read

fðrÞ ≈
r≫

ffiffi
α

p 1 −
32πG

ðD − 2ÞVðSD−2Þ
M
rD−3 þ � � � ; ð4Þ

fðrÞ ≈
r≪

ffiffi
α

p 1 −
�

64πGM
ðD − 3ÞðD − 4ÞðD − 2ÞαVðSD−2Þ

�1
2 1

r
D−5
2

þ � � � : ð5Þ

In the former case the solution reduces to the
Schwarzschild-Tangherlini black hole, while in the latter
it reduces to the solution found in [21]. Therefore, we
have that for large distances, the effects of the quadratic
curvature term are subleading, whereas for short distance
(as compared with

ffiffiffi
α

p
) the quadratic terms dominate and

one recovers a solution of Gauss-Bonnet theory.
As shown in [19], the asymptotically flat black holes

constructed in [21] can be oxidated to construct homog-
enous black-string and black p-brane solutions. These
spacetimes are solutions of the theory that contains only
the kth-order term in the Lovelock theory, where the case
k ¼ 1 is the solution of general relativity. For simplicity, let
us consider only the quadratic Gauss-Bonnet term in seven
dimensions,

IEGB½g� ¼
α

16πG

Z
d7x

ffiffiffiffiffiffi
−g

p ½R2 − 4RμνRμν þ RαβγδRαβγδ�:
ð6Þ

This theory has the following two solutions:

ds2 ¼ −
�
1 −

μ

r

�
dt2 þ dr2

1 − μ
r

þ r2dΩ2
5 ð7Þ

and

ds2 ¼ −
�
1 −

m

r1=2

�
dt2 þ dr2

1 − m
r1=2

þ r2dΩ2
4 þ dz2; ð8Þ

which correspond to a spherically symmetric black hole
and a black string, respectively. The constants m and μ
determine the masses of the configurations, while dΩn
stands for the line element of the n-sphere, Sn. From the
experience gained from the spherically symmetric black
hole, one can expect that these black strings should be
obtained as the short-distance limit of the black string of
Einstein-Gauss-Bonnet theory in seven dimensions, which
is not known analytically.
The black strings and black p-branes constructed in this

way were proven to be thermally unstable [19] in exactly
the same manner as the black strings in general relativity,
since the entropies, as a function of the mass for Eqs. (7)
and (8), read SGBBH ∼M

3
2 and SGBBS ∼M2, respectively, cross-

ing at a critical mass MGB
c . The heat capacities of the black

hole [Eq. (7)] and the black hole in the transverse section of
Eq. (8) are negative (see [21]); therefore, both black objects
(7) and (8) are locally thermally unstable.1

A natural question is whether such thermal instability has
a perturbative counterpart. In this paper we show this is
indeed the case. In the next section we show that the black
strings of Gauss-Bonnet theory [Eq. (8)] are unstable under
the s-wave mode, and that such instability disappears for
compactified black strings that are sufficiently short.

1The temperature of the black string [Eq. (8)] is the same as
that of the black hole on its transverse section, and the mass of
such a black string corresponds to the mass of the black hole
multiplied by the extension of the extended direction. Therefore,
the sign of the heat capacity remains the same after the oxidation.
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II. THE PERTURBATIVE INSTABILITY

Here we will be concerned with gravitational perturba-
tions in the context of Gauss-Bonnet theory. The field
equations are, therefore, given by

Eμν ≔ 2RRμν − 4RμρνσRρσ þ 2RμρστRν
ρστ − 4RμρRν

ρ

−
1

2
gμνðR2 − 4RαβRαβ þ RαβγδRαβγδÞ ¼ 0: ð9Þ

For simplicity we will focus on the seven-dimensional case.
As mentioned above, this theory admits the homogenous
black-string solution (8). The radius of the horizon reads
rþ ¼ m2. In order to work with a finite range of parameters,
let us consider the change in the radial coordinate given by

r ¼
�

m
1 − x

�
2

ð10Þ

that maps the region outside the event horizon r ∈
½m2;þ∞½ to x ∈ ½0; 1½. In these new coordinates the metric
)8 ) reads

ds2BS7 ¼ −xdt2 þ 4m4dx2

xð1 − xÞ6 þ
�

m
1 − x

�
2

dΩ2
4 þ dz2:

ð11Þ

The s-wave perturbation on the background black-string
metric (11) reads

hμνðt; x; zÞ ¼ eΩteikz

0
BBBB@

HttðxÞ HtxðxÞ 0 0

HtxðxÞ HxxðxÞ 0 0

0 0 HðxÞσS4 0

0 0 0 0

1
CCCCA;

where σS4 is the metric of the four-sphere and k is the wave number along the z direction. An unstable mode is defined as a
bounded solution of the linearized Gauss-Bonnet equations (9) with positive Ω. It is easy to show that the linearized field
equations imply that the components of the perturbation can be written in terms of HtxðxÞ in the following manner:

HttðxÞ ¼
ð1 − xÞ6x2
4m4Ω4

H0
tx þ

xð1 − xÞ6
4m4Ω

Htx; ð12Þ

HxxðxÞ ¼ −
x
Ω
H00

tx −
2ð1 − 4xÞ
ð1 − xÞΩ H0

tx þ
�ð3k2xþ 4Ω2Þm4

xð1 − xÞ6Ω þ 6

Ωð1 − pÞ
�
Htx; ð13Þ

HðxÞ ¼ x2ð1 − xÞ2
6Ω

H00
tx þ

ð1 − 3xÞð1 − xÞx
2Ω

H0
tx þ

�ð1 − xÞð1 − 7xÞ
6Ω

−
m4ð3k2xþ 4Ω2Þ

6ð1 − xÞ4Ω
�
Htx; ð14Þ

where the prime ( 0) denotes differentiation with respect to x. The component HtxðxÞ fulfils the following linear second-
order master equation:

AðxÞH00
tx þ BðxÞH0

tx þ CðxÞHtx ¼ 0; ð15Þ
with

AðxÞ ¼ ð1 − xÞ6x2ðð1 − xÞ6 − ð12k2xþ 16Ω2Þm4Þ; ð16Þ

BðxÞ ¼ 3xð1 − xÞ5ðð32k2x2 þ 48xΩ2 − 8k2x − 16Ω2Þm4 þ ð1 − xÞ7Þ; ð17Þ

CðxÞ ¼ 4ð4Ω2 þ 3k2xÞ2m8 þ ð1 − xÞ5ð45k2x2 þ 164xΩ2 þ 3k2x − 20Ω2Þm4 þ ð1 − xÞ12: ð18Þ

Then, one can see that all the linearized field equations are
solved provided that Eqs. (12)–(14) and (15) hold. Note
that the master equation is invariant under

m → γm; Ω → γ−2Ω; k → γ−2k ð19Þ
for an arbitrary constant γ. Therefore, it is enough to study
the existence of unstable modes for a fixed value of the

horizon radius rþ ¼ m2, since the other values of rþ can be
obtained by applying the scaling symmetry (19).
We are then left with finding awell-behaved solution of the

master equation (15). This equation implies that the solution

HtxðxÞ admits the following asymptotic behaviors at the

horizon ðx → 0Þ and at infinity ðx → þ1Þ, respectively:
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Htx →
x→0

C�x−1�2m2Ωð1þOðxÞÞ; ð20Þ

Htx →
x→1

E�ð1 − xÞα�e∓
m2

ffiffiffiffiffiffiffiffiffiffiffi
3k2þ4Ω2

p
2ð1−xÞ2 ∓ð8Ω2þ3k2Þm2

ffiffiffiffiffiffiffiffiffiffiffi
3k2þ4Ω2

p
2ð3k2þ4Ω2Þð1−xÞ ð1þOð1 − xÞÞ; ð21Þ

with

α� ¼ 1

8

−12ð3k2 þ 4Ω2Þ2 �m2ð144k2Ω2 þ 128Ω4 þ 27k4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2 þ 4Ω2

p

ð3k2 þ 4Ω2Þ2 : ð22Þ

Since we are looking for unstable modes, we need to find a
numerical solution that interpolates between the plus sign
in Eq. (20) and the minus sign in Eq. (21). It is natural to
think that in order to have a well-posed behavior at the
horizon we need to impose Ω > Ωc;GB ≔ 1

2m2; this is as it
was originally considered in [22], where it was proven that
in the five-dimensional black string in general relativity
there is no nonsingular, single, unstable mode in this family
(in GR in five dimensions, Ωc;GR ¼ 1

rþ
). Nevertheless, in

general relativity, in the range 0 < Ω < Ωc;GR one can
construct a perturbation that is a composition of single
divergent modes at the horizon in such a manner that the
divergences cancel; it occurs in this manner for the
instabilities in some colored black holes [23], which was
originally observed by Vishveshwara in [24]. This can also
be seen considering the fact that a t ¼ const surface
intersects the bifurcation surface rather than the future
horizon. It is, therefore, necessary to consider Kruskal-like
coordinates, where the T ¼ const surfaces do indeed
intersect the future horizon. Then, by going to Kruskal
coordinates, it is easy to see that the unstable modes we find
below are regular at the future horizon provided that we
choose the branch with the plus sign in Eq. (20), even if
Ω < ð2m2Þ−1.
In order to find whether the master equation (15) admits

a bounded solution for some positive values of Ω, we will

follow the approach developed in [25] for quasinormal
modes. Briefly, the method consists of proposing a power
series solution around the horizon, then selecting the well-
behaved branch, and, finally, truncating the power series to
some order N. Then, using the fact that, due to the pole
structure of the equation, such a power series has a
convergence radius that includes at least x ¼ 1, we can
therefore request for the truncated series to vanish at
infinity (x ¼ 1). Such an equation provides for the spec-
trum of unstable modes. For details we refer to the original
work, Ref. [25].
The results of the previous analysis are depicted in Fig. 1.

From these results we see that there is a minimum wave-
length λmin and, by implication, the existence of a critical
length for the string, above which instability occurs.
Similar to the black string in general relativity [5],

provided that k ≠ 0, one can show that the perturbation
cannot be gauged away. Another straightforward method to
check that these perturbations are physical and cannot be
gauged away is to consider the following scalar invariant:

A ¼ 881RabcdRcd
efRefab þ 2428Rab

cdRce
bfRdf

ae; ð23Þ

which vanishes identically on the unperturbed metric, but is
nonvanishing for the perturbed black string.
We have, then, found a set of physical s-wave modes on

the black string in Gauss-Bonnet theory [Eq. (8)], which
drive the instability of the background; therefore, black
strings in Gauss-Bonnet theory are unstable.

III. CONCLUSIONS

In this paper we have shown that the black strings in
Gauss-Bonnet theory are unstable under gravitational
perturbations. Following the arguments in [5], one can
prove that the instability we have found cannot be gauged
away; therefore, it represents a truly physical instability.
Because the field equations are quadratic in the curvature,
the linearization around the maximally symmetric
Minkowski vacua does not provide any equation at all2;

0.1 0.2 0.3 0.4 0.5 0.6 0.7
k

0.01

0.02

0.03

0.04

0.05

FIG. 1. Ω vs k for the homogeneous black string in Gauss-
Bonnet in D ¼ 7. The parameter m in the solution has been fixed
to 1, and any value for the mass can be obtained by applying the
scaling transformation in Eq. (19). The numerical precision is such
that four digits in the values of Ω are stable (the continuous curve
has been included to facilitate the visualization).

2As an example of how to deal with the phase-space structure
of such degenerate systems see, e.g., [26].
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therefore, in order to study the perturbative properties of the
solutions of Gauss-Bonnet gravity, one needs to perturb
around solutions that have a nontrivial Riemann tensor, as
in the case of the black string. As mentioned above, the
linearized equations around such a background are non-
degenerate, since all the perturbed metric components
appear in the linearized equations. In order for the black
strings to be unstable, the wavelength of the perturbation
along the extended direction has to be above some mini-
mum critical value λc. This critical value tends to zero in the
large-D limit in general relativity [27,28], and, since the
large-D behavior of GR is qualitatively similar to that in
gravity theories with a single Lovelock term [29], one may
also expect λc → 0 as D grows for the black strings and
black p-branes constructed in [19]. Given the results
presented in this work, it is natural to expect that the
black-string solution of the full Einstein-Gauss-Bonnet
theory will suffer from the Gregory-Laflamme instability,
which will induce an instability for large angular momen-
tum in the rotating version of the static black string
constructed numerically in [30].
For Einstein-Gauss-Bonnet gravity, different stability

analysis of black holes have been performed in [31–37];
it would be interesting to extend such analysis to the whole

family of black holes in [21], which are the black holes
in the transverse section of the black strings we have
considered here.3

It is also worth exploring whether the results presented
here can be extended to all the black strings and black p-
branes obtained in [19], or even to the compactifications
with Einstein manifold in four dimensions that were
obtained in [43] for Lovelock theories. Work along these
lines is in progress.
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