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In a previous paper [S. Q.Wu,Phys.Rev.D83, 121502(R) (2011)], a new kind of metric ansatz was found
to fairly describe all already-known black hole solutions in the ungauged Kaluza-Klein (KK) supergravity
theories. That metric ansatz somewhat resembles the famous Kerr-Schild (KS) form, but it is different from
the KS one in two distinct aspects. That is, apart from a global conformal factor, the metric ansatz can be
written as a vacuum background spacetime plus a “perturbation” modification term, the latter of which is
associated with a timelike geodesic vector field rather than a null geodesic congruence in the usual KS
ansatz. Replacing the flat vacuum background metric by the (anti–)de Sitter [(A)dS] spacetime, the general
rotating charged KK-(A)dS black hole solutions in all higher dimensions have been successfully
constructed and put into a unified form. In this paper, we shall study this novel metric ansatz in detail,
aiming at achieving some inspiration as to the construction of rotating charged AdS black holes with
multiple charges in other gauged supergravity theories. We find that the traditional perturbation expansion
method often successfully used in the KS form is no longer useful in our new ansatz, since here no good
parameter can be chosen as a suitable perturbation indicator. In order to investigate the metric properties of
the general KK-AdS solutions, in this paper we devise a new effective method, dubbed the background
metric expansion method, which can be thought of as a generalization of the perturbation expansion
method, to deal with the Lagrangian and all equations of motion. In addition to two previously known
conditions, namely the timelike and geodesic properties of the vector, we get three additional constraints
via contracting the Maxwell and Einstein equations once or twice with this timelike geodesic vector. In
particular, we find that these are a simpler set of sufficient conditions to determine the vector and the dilaton
scalar around the background metric, which is helpful in obtaining new exact solutions. With these five
simpler equations in hand, we rederive the general rotating charged KK-(A)dS black hole solutions with
spherical horizon topology and obtain new solutions with planar topology in all dimensions. It turns out
that the overall calculations in finding the solution to the KK gauged supergravity can be reduced
considerably, compared to the previous process, by directly solving all the field equations. It is then shown
that the rotating charged KK-AdS black hole solutions can be further generalized by introducing one or two
arbitrary constants, while the black hole solutions with the planar AdS background metric in all higher
dimensions are newly obtained.
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I. INTRODUCTION

It has been known for a long time that Einstein’s
gravitational field equations are such a very complicated
system of nonlinearly coupled partial differential equations
that finding a rotating exact solution to them is rather difficult.
One of the frequently used approaches to this problem is to
assume an appropriate metric form for the unknown line
element which is inspired from a known solution in order to
simplify the subsequent calculations. Awell-known example
of this is provided by the Kerr solution [1], which can be cast
into the famous Kerr-Schild (KS) form [2–4]

gab ¼ ηab þ 2Hkakb; ð1:1Þ

where the vector ka is null and geodesic congruence with
respect to the flat background metric ηab, and H is a scalar
function. Due to the fact that many interesting properties are
shared by this family of the metric ansatz [5] and their
applications result in a substantial simplification of the field
equations, a variety of generalizations of the KS metric form
have been accomplished during the past decades. Below we
present a brief outline of the main developments that have
been achieved on the generalizations of the Kerr-Schild
metrical structure.
(a) The generalized Kerr-Schild ansatz, in which the

background metric is replaced by arbitrary spacetimes
(η→ ḡ), was proposed and analyzed in Refs. [6,7]. Many
previous studies have shown that the Einstein field
equations become linear within the generalized Kerr-
Schild ansatz for vacuum [8] and nonvacuum [9,10]
spacetimes.
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(b) The double Kerr-Schild metric, namely

gab ¼ ḡab þ 2Pkakb þ 2Qlalb þ 4RkðalbÞ; ð1:2Þ

with ḡabkakb ¼ ḡablalb ¼ ḡabkalb ¼ 0, where P, Q, and R
are three scalar functions, was introduced [11–15] in the
context of complex relativity in dimension D ¼ 4. It is
often misunderstood that in Lorentzian signature, two such
null vectors must be proportional. However, this is not
always the case if one considers the complex Riemannian
space with Lorentzian signature. To explain this point, an
explicit example for the four-dimensional Kerr–Newman-
Unti-Tamburino–AdS (Kerr-NUT-AdS) metric is provided
in the Appendix. Further observations indicate that such a
general class of metric ansatz could be further generalized
to the double Kerr-Schild metric [16] in D > 4 and the
multi-Kerr-Schild metric [17] in D ≥ 4, where the ortho-
gonality properties still hold.
(c) An earlier generalization of the Kerr-Schild ansatz by

introducing a nonzero cosmological constant in four-
dimensional spacetimes was considered in [18]. Further
studies [19] showed that all static spherically symmetric
vacuum spacetimes with or without the cosmological con-
stant canbedescribedby conformalKerr-Schildmetrics [20].
(d) Higher-dimensional generalization of the Kerr-Schild

metric was firstly utilized by Myers and Perry [21] to
construct exact, asymptotically flat vacuum solutions of
rotating black holes in all higher dimensions D > 4.
Recently, rotating vacuum black holes with a nonzero
cosmological constant in higher dimensions were success-
fully constructed in [22,23] by simply replacing the flat
background metric of the higher-dimensional KS form by
the pure (A)dS spacetime. Moreover, further investigations
have demonstrated that the background metric can be
replaced by other asymptotically, locally flat spacetimes
such as those with the NUT charges; an important
example of this includes the NUTextension [24] of rotating
black holes in (A)dS spacetimes. General properties of
higher-dimensional Ricci-flat and (A)dS Kerr-Schild
metric mentioned above were studied recently in [25–28].
(e) One recent extension of the original KS form is

named the extended Kerr-Schild ansatz in [29,30], where
the metric of rotating charged black hole, namely the
Chong-Cvetič-Lü-Pope [31] spacetime found in D ¼ 5
minimal gauged supergravity, can be redescribed in the
framework of Kerr-Schild formalism as

gab ¼ ḡab þHkakb þ Vðkalb þ lakbÞ; ð1:3Þ

in which H and V are two scalar functions to be specified;
ka is again a null vector; and the vector la is spacelike and
orthogonal to ka with respect to ḡab, a flat or (A)dS
background metric.
The general properties such as geodesic and optical

properties of the null congruence and Weyl types of this

kind of metric have been investigated in [32,33]. In
addition, it is worth pointing out that a limited case for
the related extension of the Kerr-Schild ansatz was studied
in [34], where the background is Ricci flat in D ¼ 4.
In our previous paper [35], a new kind of metric ansatz

was found to satisfactorily describe all already-known
black hole solutions in the ungauged Kaluza-Klein (KK)
supergravity theories, which can be written in a new unified
form in all higher D > 4 dimensions by

gab ¼ H
1

D−2

�
ḡab þ

2m
UH

kakb

�
;

gab ¼ H
−1
D−2

�
ḡab −

2m
U

kakb
�
; ð1:4Þ

where the background metric is a flat one. This metric
ansatz is different from the entire above-mentioned gener-
alization of the original KS ansatz. It somewhat resembles
the famous Kerr-Schild form, but there are significant
differences from the KS one in two distinct aspects; that
is, apart from a common conformal factor, the vector ka is
no longer null but now it is timelike with respect to the
background metric. The timelike vector field ka is geodesic
and its norm with respect to the background metric depends
on the charge parameter: ḡabkakb ¼ −s2. It should be
noticed that in the uncharged case, the conformal factor
becomes unity and the vector ka becomes null; then our
new metric ansatz exactly reduces to the original KS
metric (1.1).
It has further been observed in Ref. [35] that one can

adopt the pure (A)dS spacetimes as the background metric
and find the general rotating charged Kaluza-Klein (A)dS
black hole solutions with a single electric charge and
arbitrary angular momenta as the exact solutions to the
Einstein-Maxwell-dilaton theory described by the follow-
ing Lagrangian (F ¼ dA)

L ¼ ffiffiffiffiffiffi
−g

p �
R −

1

4
ðD − 1ÞðD − 2Þð∂ΦÞ2 − 1

4
e−ðD−1ÞΦF 2

þ g2ðD − 1Þ½ðD − 3ÞeΦ þ e−ðD−3ÞΦ�
�
: ð1:5Þ

For the sake of later simplicity, the spacetime of this general
form shall be briefly called the stringy Kerr-Schild or sKS
metric, since its metric structure has some relation to the
well-known Kerr-Schild form, and it is universal for almost
all of the charged black hole solutions already known in
gauged supergravity theories. As such, the underlying
metric structure of our sKS form can be thought of as
the most meaningful generalization of the Kerr-Schild
ansatz until now. In addition, it should also be mentioned
that the D ¼ 4 sKS metric can be expressed as a form
similar to those proposed by Yilmaz [36] and later by
Bekenstein [37]. In addition, many studies have brought
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out that the Gordon metric can be further applied to massive
and bimetric theory (see [38–40]), the metric structure of
which also resembles the generalized sKS metric form
specifically in D ¼ 4.
The main subject of this paper is to investigate the

general properties of the field equations for the sKS metric,
since such an important theoretical analysis had not been
delivered before in any previous work. Moreover, our
motivation of this study is to see whether the results of
such a theoretical analysis could be helpful in obtaining
new exact solutions with the help of the sKS form and in
achieving some insights on constructing exact solutions to
other gauged supergravity theories.
The organization of this paper is outlined as follows. To

begin with, in Sec. II we will show that it is infeasible to
analyze the sKS ansatz by the usual method of perturbation
expansion. Although this method proved to be inappro-
priate for our aim, one can still get a little inspiration from
it. As a replacement, we therefore put forward a new
method, named the background metric expansion, which
can be viewed as the generalization of the previous one. In
the actual derivation, it is much more cumbersome for the
sKS metric to express the Ricci tensor and field equations,
so it is convenient and in fact necessary to use the computer
algebra system Cadabra [41,42], which allows us to
perform analytically symbolic calculations in arbitrary
unspecified dimensions. In Sec. III, our new method is
used to obtain the geodesic property of the vector ka with
respect to the background metric, and a simpler set of
sufficient conditions of the field equations around the
background metric are deduced. With these results in hand,
in Sec. IV we assume a vector ~K to be timelike and
geodesic and then solve the simpler set of field equations
around the pure AdS background spacetime. Consequently,
we obtain an extended version of rotating charged KK-AdS
solutions with one or two arbitrary constants (one for ϵ ¼ 1,
two for ϵ ¼ 0). As another verification of the effect
of our method, we further obtain new exact solutions
with planar topology by replacing the background metric as
a planar AdS metric [43]. In Sec. V, we summarize our
results and discuss the prospect of the analysis, for which it
would be very helpful for finding new exact black hole
solutions.

II. INFEASIBILITY OF TRADITIONAL
PERTURBATION METHOD FOR THE

SKS ANSATZ

In this section, we present the usual formalism of
perturbation expansion that goes into these calculations
for analogy and explain why the ordinary procedure is
limited and inappropriate for our new sKS form.
For simplicity, we use the dilaton scalar Φ to reexpress

the metric tensors and the gauge potential as [35]

gab ¼ e−Φḡab þ λ½e−Φ − eðD−3ÞΦ�kakb;
gab ¼ eΦḡab þ λ½eΦ − e−ðD−3ÞΦ�kakb;

Aa ¼
ffiffiffi
λ

p
½1 − eðD−2ÞΦ�ka; Φ ¼ −1

D − 2
lnðHÞ; ð2:1Þ

where the vector ka is a timelike geodesic congruence with
respect to the AdS background metric ḡab and satisfies
ka ¼ ḡabkb, kaka ¼ ḡabkakb ¼ −1. The λ is inserted here
as a dimensionless parameter that would take the value
λ ¼ 1 finally. When λ ¼ 1, we have for the full metric
tensor the following properties:

gabkb ¼ eðD−3ÞΦka; gabkakb ¼ −eðD−3ÞΦ;

gabkb ¼ eð3−DÞΦka; gabkakb ¼ −eð3−DÞΦ: ð2:2Þ

We note that the timelike vector ka also satisfies the
geodesic property: ka∇̄akb ¼ 0with the specific spacetime,
where ∇̄a denotes the covariant derivative operator com-
patible with the background metric ḡab. Although this
geodesic property is very helpful to simplify our compu-
tations during the subsequent perturbation process, we will
only apply the essential relations (2.6) and the timelike
condition to do perturbational analysis in an attempt to
figure out the most universal properties of the sKS
ansatz.
The curvature of the sKS metric as well as other useful

quantities can be computed in terms of the curvature of the
background metric ḡab and the background covariant
derivative of the vectors ka. The action of the full
covariant derivative on a vector can be written as
∇avb ¼ ∇̄avb þ Cb

acvc, in which the connection Cc
ab is

given by

Cc
ab ¼

1

2
gcdð∇̄agbd þ ∇̄bgad − ∇̄cgabÞ; ð2:3Þ

then the Ricci tensor of gab is related to that of ḡab by

Rab ¼ R̄ab − 2∇̄½aCc
c�b þ 2Ce

a½bCc
c�e: ð2:4Þ

(See also [5].) The determinant of the full metric of sKS
form is related to the background one by

ffiffiffiffiffiffi−gp ¼ eΦ
ffiffiffiffiffiffi
−ḡ

p
;

hence we have an identity Cb
ab ¼ −∇̄aΦ.

After using Cadabra [41,42] software to undertake the
tedious calculations, we can write the connection coeffi-
cients and the Ricci tensor containing terms quadratic in
connection coefficients as a sum over contributions at
different powers in λ as follows:
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Cc
ab ¼

X2
k¼0

λkCcðkÞ
ab

¼ 1

2
ḡab∇̄cΦ − ḡca∇̄bΦþ

X2
k¼1

λkCcðkÞ
ab;

Rab ¼
X4
l¼0

λlRðlÞ
ab: ð2:5Þ

Based upon these expressions, the Einstein equation
Eab ¼ 0 for the KK-AdS spacetime (1.5) in terms of the
background metric ḡab can be represented as Eab ¼P

4
n¼0 λ

nEðnÞ
ab . Note that, in the uncharged case

(Φ ¼ 0 ¼ Aa), the metric structure (2.6) and all the above
equations reduce to the original Kerr-Schild form.
In Eq. (2.5), we have only considered the expansion of

the Ricci tensor Rab in terms of the parameter λ. One can
also work with the mixed tensor Ra

b. Unlike the case of the
standard Kerr-Schild form, the tensor Ra

b now still contains
nonlinear terms in λ, just like Rab. This is because the
vector ka is a timelike, rather than a null vector. Since both
Rab and Ra

b contain nonlinear terms in λ, it is of no priority
to consider the component with the mixed indices. For this
reason, we prefer considering the full covariant component
in this paper. If one would like to work with the mixed
components, then it is easy to find that they are just a
recombination of the covariant components.
To proceed further, it is facilitated by directly consid-

ering the contracted equation Eabkakb ¼ 0. Now onewould

naively expect the corresponding expressions for EðnÞ
ab k

akb

in front of λn at each order to vanish just as in the previous
case considered in [30]. Our computation shows that the

contribution from the fourth order Eð4Þ
ab k

akb vanishes
identically, while at order λ3 it reads

Eð3Þ
ab k

akb ¼ −
ð1 − γÞ4

2ðD − 2Þγ2 ðD̄kaÞD̄ka

þ 3γ − 5þD
2

ð1 − γ−1Þ2ð∇̄aϕÞD̄ka

þ α

4γ2
ð1 − γÞ½D̄Φþ ð∇̄ΦÞ2�; ð2:6Þ

where we denote γ ¼ e−ðD−2ÞΦ and α ¼ γ2 þ 2ðD − 5Þγþ
D2 − 8Dþ 13, while D̄ ¼ ka∇̄a is the background covar-
iant derivative taken along the null vector ka. Obviously,
once we consider the geodesic property D̄ka ¼ 0, the
expression (2.6) vanishes identically if and only if the
condition D̄Φþ ð∇̄ΦÞ2 ¼ 0 is satisfied, where we have
taken a nonzero scalar function Φ into account (and thus
γ ≠ 1, α ≠ 0, and 3γ ≠ D − 5). However, it is clear to check
that this condition is inconsistent with the explicit KK-AdS
solutions in [35], indicating that this is a meaningless
condition.

We have also attempted to place the perturbation factor λ
in different positions of the metric ansatz, but still failed to
move forward. Actually, it not only shows that the insertion
of the perturbation factor λ is not suitable, but also reveals
that this insertion is irrational and unreasonable for the sKS
ansatz. In fact, the underlying reason is that there exists no
perturbation parameter (neither the mass nor the charge) as
an appropriable indicator to do the corresponding pertur-
bation analysis here, unlike the cases that are successful for
the original KS form and the sKS ansatz, where the mass
parameter can be treated as a perturbation parameter. Due
to the feature of the conformal factor structure of the sKS
metric ansatz, obviously direct application of the ordinary
perturbation expansion fails for the present situation;
therefore, as an alternative program, a new analysis method
is needed.

III. NEW METHOD OF BACKGROUND
METRIC EXPANSION FOR THE SKS

METRIC ANSATZ

In this section, we will now propose a new background
metric expansion method towards analyzing the sKS ansatz
for the Einstein-Maxwell-dilaton system, which can be
seen as a generalization of the ordinary perturbation
expansion method. In this new method, we will syntheti-
cally consider the entire expansions of the Lagrangian and
all the field equations around the background spacetimes,
in terms of the background metric and the background
covariant derivatives, not just from the viewpoint of
perturbation expansion by which each term can be sorted
in terms of the different orders of λ. We then contract the
Maxwell and Einstein equations once or twice with the
timelike vector ka to extract more useful information. Here,
we are interested in seeing what simplifications will occur
and, in particular, what the implications of the resulting
Lagrangian and field equations will make. From the
alternative perspective, we would like to see whether the
vector ka and the scalar Φ satisfy some conditions that
could be helpful for us to obtain new exact solutions. In
doing so, we find that in addition to two previously known
timelike and geodesic properties obeyed by the vector, one
can get three additional constraint equations.

A. The Lagrangian expanded around the
background metric

As shown in the previous section, there is no use in
treating the λ as a perturbation parameter in the sKS metric
ansatz; therefore, in the following we shall take λ ¼ 1.
Fortunately, one can still expand all expected quantities in
terms of those of the background metric. Our staring point
is the sKs ansatz (2.1) with λ ¼ 1. With the help of
Cadabra, the explicit expression of the Ricci scalar is
given in terms of the background metric and the back-
ground covariant derivatives as
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R ¼ eΦ
�
R̄þ □̄Φþ ð1 − γÞ½R̄abkakb − ∇̄a∇̄bðkakbÞ� −

1

4
ðD − 2ÞðD − 3Þð∇̄ΦÞ2 þ ½1þ ð1 −DÞγ�kakb∇̄a∇̄bΦ

þ 1

2γ
ð1 − γÞ2½2ð∇̄akbÞ∇̄½akb� þ ðD̄kaÞD̄kb� þ ½3 −Dþ ð1 −DÞγ�ðD̄kaÞ∇̄aΦþ ½1þ ð3 − 2DÞγ�ðD̄ΦÞ∇̄aka

þ 1

4
ðD − 2Þ½3 −Dþ 3ðD − 1Þγ�ðD̄ΦÞ2

�
:

Continuing to calculate the Lagrangian expanded around the background metric, we could obtain the Lagrangian of the
Einstein-Maxwell-dilaton system with respect to the background metric,

L ¼ ffiffiffiffiffiffi
−ḡ

p �
R̄þ ð1 − γÞ½R̄abkakb − ðD − 1Þg2� þ g2ðD − 1ÞðD − 2Þ þ 1

2
ð1 − γÞ2ðD̄kaÞD̄ka

þ ∇̄að½1þ ð1 −DÞγ�kaD̄ΦÞ − ∇̄a½ð1 − γÞ∇̄bðkakbÞ�
�
; ð3:1Þ

in which the relation
ffiffiffiffiffiffi−gp ¼ eΦ

ffiffiffiffiffiffi
−ḡ

p
has been used.

Now we assume the background metric ḡab is the pure AdS metric and substitute R̄ab ¼ −g2ðD − 1Þḡab into the above
expression; then we get

L ¼ ffiffiffiffiffiffi
−ḡ

p �
R̄þ g2ðD − 1ÞðD − 2Þ þ 1

2
ð1 − γÞ2ðD̄kaÞD̄ka þ ∇̄að½1þ ð1 −DÞγ�kaD̄ΦÞ − ∇̄a½ð1 − γÞ∇̄bðkakbÞ�

�
: ð3:2Þ

This expression establishes the association between the
Lagrangian for the full metric and that of the background
metric. The variation of this Lagrangian with respect to the
timelike vector ka implies that D̄ka must be a null vector:
ðD̄kaÞD̄ka ¼ 0. Since D̄ka is also orthogonal to the time-
like vector ka, without loss of generality we can take

D̄ka ¼ 0: ð3:3Þ
This is equivalent to the statement that ka is tangent to an
affinely parametrized timelike geodesic congruence of the
background metric. Besides, one can also arrive at the same
conclusion by solving vector ka within the field equations
derived from the Lagrangian (3.2) with respect to ḡab and
Φ. In the following, we will proceed to consider the

expansions of all the equations of motion derived directly
from the Lagrangian (1.5) by assuming that the background
spacetime is the pure AdS metric and vector ka is tangent to
a congruence of affinely parametrized timelike geodesics
with respect to the background metric to find out more
properties or relations for further research.

B. Field equations expanded around the
background metric

We now turn to consider all the field equations deduced
directly from the Lagrangian (1.5) and expand them around
the background metric. Calculating the variational deriv-
atives of the Lagrangian (1.5) with respect to (gab; Aa;Φ),
one can obtain the contracted Einstein equation

Rab −
1

4
ðD − 1ÞðD − 2Þð∇aΦÞ∇bΦ −

γ

2
e−Φ

�
FacFbdgcd −

gab
2ðD − 2ÞF

2

�
þ g2

D − 1

D − 2
ðD − 3þ γÞeΦgab ¼ 0; ð3:4Þ

while the dilaton and gauge field equations are

□Φþ γe−Φ

2ðD − 2ÞF
2 þ 2g2

D − 3

D − 2
ð1 − γÞeΦ ¼ 0;

∇a½γe−ΦFab� ¼ 0: ð3:5Þ
To avoid the latter expressions, we first introduce the following two notations:

V̄a ≡ −2∇̄afð1 − γÞ∇̄½akb� þ ðD − 2Þγð∇̄½aΦÞkb� þ ð1 − γÞ2k½aD̄kb�g; ð3:6Þ

S̄≡eΦ
�
□̄Φþ2γð1− γÞ2

D−2
ð∇̄akbÞ∇̄½akb�− ðD−2Þð∇̄ΦÞ2þ γ−1

D−2
ð1− γÞ3ðD̄kaÞD̄kaþð1− γÞ½∇̄aðkaD̄ΦÞ− ðD−2ÞðD̄ΦÞ2

− ðD̄kaÞ∇̄aΦ�þ2g2
D−3

D−2
ð1− γÞ

�
: ð3:7Þ
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Then the field equations (3.5) expanded around the back-
ground AdS metric convert to V̄a ¼ 0 and S̄ ¼ 0, respec-
tively. After the expansion of the derivative operator, these
two expressions are, however, still quite cumbersome. In
order to proceed with some further simplifications, a
simpler and more efficient approach that we now adopt
is to consider the contraction of the field equations with
respect to the vector ka. Taking V̄aka and S̄, we find that
they can be written as

V̄aka ¼ γS1 þ
γ

D − 2
S2 þ ð1 − γÞ∇̄aðD̄kaÞ

þ 2ka∇̄b½ð1 − γÞ2k½aD̄kb��; ð3:8Þ

ðD − 2ÞS̄ ¼ eΦ½ð1 − γÞS1 þ ðD − 2ÞS2
− 2ðD − 2Þð1 − γÞ∇̄aΦðD̄kaÞ
þ ðD̄kÞ2γ−1ð1 − γÞ3�; ð3:9Þ

in terms of two simple notations

S1 ≡ 2½ð∇̄akbÞ∇̄½bka� þ g2ðD − 3Þ�ð1 − γ−1Þ
þ ðD − 2Þγ−1∇̄b½γkbðD̄ΦÞ�; ð3:10Þ

S2 ≡ □̄Φ − ðD − 2Þð∇̄ΦÞ2 − 2g2
D − 3

D − 2
ð1 − γ−1Þ: ð3:11Þ

Considering now the geodesic condition D̄ka ¼ 0 and
after substituting it into V̄aka and S̄, one can observe that
they are, in fact, only the combinations of two scalars, S1
and S2. This means that the sufficient conditions for the
vanishing of the contracted equations V̄aka and the scalar
field equation S̄ are that the expressions S1 and S2 must

vanish simultaneously as well. One cannot extract any new
useful information other than two simple scalar equations
S1 ¼ 0 and S2 ¼ 0. In particular, note that the condition
S2 ¼ 0 is independent of the vector ka, but depends only on
the dilaton scalar Φ.
Having extracted two simple conditions S1 ¼ 0 and

S2 ¼ 0 from the contracted field equations (3.8) and the
scalar field equation (3.9) around the background metric, it
is necessary to see whether these two conditions are also
sufficient for the field equation Va ¼ 0 with respect to the
background metric. To this end, we now rewrite the vector
expression V̄a in terms of S1 and S2 as

V̄a ≡ Va −
S2

D − 2
γka − 2∇̄b½ð1 − γÞ2k½bD̄ka��; ð3:12Þ

where

Va ≡ ∇̄bf2ðγ − 1Þ∇̄½bka� þ ðD − 2Þγkb∇̄aΦg
− ðD − 2Þγð∇̄bΦÞ∇̄bka þ 2ðD − 3Þð1 − γÞg2ka:

ð3:13Þ
From the gauge field equation V̄a ¼ 0, one can get a new
equation Va ¼ 0. This condition, together with the geo-
desic equation D̄ka ¼ 0 and S2 ¼ 0, is sufficient to ensure
that the field equation V̄a vanishes. It is also worth noting
that S1 is simply related to the vector Va by S1 ¼ γkaVa;
thus Va ¼ 0 implies S1 ¼ 0 immediately. This means that
S1 ¼ 0 is equivalent to V̄a ¼ 0.
The remaining step is to consider the Einstein equa-

tion (3.4) and its contraction with the vector ka once and
twice. For this purpose, we first expand it around the
background spacetime and convert it to the form denoted
simply as Ēab ¼ 0, where

Ēab ≡ 1 − γ−1

2ðD − 2Þ ½ðD − 2Þðγ þD − 3Þkakb − ḡabγ�S1 − ðD − 2Þγ∇̄ðaΦD̄kbÞ

þ 1

2ðD − 2Þγ2 ½ðD − 2ÞγS2 þ ð1 − γÞ3ðD̄kcÞD̄kc�½ḡabγ þ ðγ þD − 3Þkakb�

þ ðγ−1 − 1Þ½ðγ − 3þDÞkakbð∇̄cΦÞD̄kc þ ðD − 2ÞγðD̄ΦÞD̄ðkakbÞ� − Tab þ ðγ−1 − 1ÞVðakbÞ

þ ð1 − γÞ2
2γ

f∇̄c½kcD̄ðkakbÞ� þ ðγ − 2ÞðD̄kaÞD̄kb − ðD̄kdÞ∇̄dðkakbÞg ð3:14Þ

has been recast into its contraction with ka once and twice,
while the noncontractible symmetric part is

Tab ≡ 2ð1 − γÞfg2ðḡab þ kakbÞ − ∇̄½ckða�∇̄ckbÞg
þ ∇̄c½ð1 − γÞkc∇̄ðakbÞ�: ð3:15Þ

As is shown in the above, given the geodesic conditions
D̄ka ¼ 0, we have obtained three simpler equations:Va ¼ 0,
S1 ¼ 0, and S2 ¼ 0. Using these conditions, a sufficient
condition for Ēab ¼ 0 is that the tensor Tab should vanish as

well. Therefore, all the expanded field equations obtained by
the background metric expansion method, V̄a ¼ 0, S̄ ¼ 0,
and Ēab ¼ 0, will be satisfied if D̄ka ¼ 0, Va ¼ 0, S2 ¼ 0,
and Tab ¼ 0, which have been explicitly verified with the
KK-AdS black hole solutions [35].
To summarize, we establish that for the stringy Kerr-

Schild metrics with a geodesic timelike vector ka, solving
the field equations (3.4) and (3.5) could be reduced to
solving straightforwardly the following three relative sim-
ple equations around the background metric:
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□̄Φ − ðD − 2Þð∇̄ΦÞ2 − 2g2
D − 3

D − 2
ð1 − γ−1Þ ¼ 0; ð3:16Þ

∇̄bf2ðγ − 1Þ∇̄½bka� þ ðD − 2Þγkb∇̄aΦg
− ðD − 2Þγð∇̄bΦÞ∇̄bka þ 2ðD − 3Þð1 − γÞg2ka ¼ 0;

ð3:17Þ
2ð1 − γÞfg2ðḡab þ kakbÞ − ∇̄½ckða�∇̄ckbÞg

þ ∇̄c½ð1 − γÞkc∇̄ðakbÞ� ¼ 0: ð3:18Þ

Thus, the sufficient conditions for the sKS ansatz are the
geodesic condition (3.3) on ka, Eq. (3.16) on the dilaton
scalar Φ, and the conditions (3.17) and (3.18) on ka and Φ.
In particular, the condition (3.16) depends only on the
properties of the dilaton scalar Φ and this set of conditions
is also satisfied spontaneously in the uncharged case
(Φ ¼ 0). In a word, after assuming that the timelike vector
ka is geodesic, we find that all the field equations with
respect to the background metric then can be reduced to the
three conditions S2 ¼ 0, Va ¼ 0, and Tab ¼ 0 given above.
Nevertheless, an open question is to see whether these
wonderful results derived by the background metric expan-
sion method for the sKS ansatz would find some as-yet-
unknown exact solutions.

IV. APPLICATIONS: NEW KK-ADS SOLUTIONS
WITH SPHERICAL AND PLANAR TOPOLOGY

Inspired by the observation that Eqs. (3.16), (3.17), and
(3.18) around the background metric ḡab can be seen as the
counterparts of the field equations (3.5), then one wonders
naturally about whether there exists a new vector field that
may be different from the known one in the given black
hole solutions but still satisfies all the field equations. As a
test of our results derived above, in the following we shall
use the pure AdS background metrics with spherical and
planar topology as two concrete examples to derive new
exact solutions.
To present explicitly the general KK-AdS solutions

in the below, we shall adopt conventions as those in
[22,35]. The dimension of spacetime is denoted as
D ¼ 2N þ 1þ ϵ ≥ 4, with N ¼ ½ðD − 1Þ=2� being the
number of rotation parameters ai and 2ϵ ¼ 1þ ð−1ÞD.
Let Φi be the N azimuthal angles in the N orthogonal
spatial 2-planes, each with period 2π. The remaining spatial
dimensions are parametrized by a radial coordinate r and
by N þ ϵ ¼ n ¼ ½D=2� “direction cosines” μi obey the
constraint

PNþϵ
i¼1 μ2i ¼ 1, where 0 ≤ μi ≤ 1 for 1 ≤ i ≤ N,

and −1 ≤ μNþ1 ≤ 1, aNþ1 ¼ 0 for even D. Moreover,
shorthand notations c ¼ cosh δ and s ¼ sinh δ are used.
Now we would like to find where there exists a new

vector field K tangent to an affinely parametrized timelike
geodesic congruence of the AdS background metric, which
is assumed to have the general form

K ¼ Ktð~μiÞdtþ Krðr; ~μiÞdrþ
XN
i¼1

Kϕi
ð~μiÞdϕi; ð4:1Þ

where Kt, Kr, and Kϕi
are some unknown functions to be

specified, and the notation ~μi ≡ μ1; μ2;…; μiði ¼ 1;…;
N þ ϵÞ has been used.

A. The spherical AdS background metric

Consider first the case of a spherical AdS background
metric. Supposing that the vector K satisfies the equa-
tions (3.17) and (3.18) with respect to the pure AdS
background metric given in [22,35]

ds̄2 ¼ −ð1þ g2r2ÞWdt2 þ Fdr2

þ
XNþϵ

i¼1

r2 þ a2i
χi

dμ2i þ
XN
i¼1

r2 þ a2i
χi

μ2i dϕ
2
i

−
g2

ð1þ g2r2ÞW
�XNþϵ

i¼1

r2 þ a2i
χi

μidμi

�
2

; ð4:2Þ

where the scalar functions W and F are

W ¼
XNþϵ

i¼1

μ2i
χi

; F ¼ r2

1þ g2r2
XNþϵ

i¼1

μ2i
r2 þ a2i

; ð4:3Þ

then the functions Kt, Kr, and KΦi
can be easily calculated.

For a comparison with that presented in [35], we get the
following new vector,

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2C1 þ g2ðϵ − 1ÞC2

q
Wdtþ

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
Fdr

−
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2iΞi þ ðϵ − 1ÞC2

p
χi

μ2i dϕi; ð4:4Þ

where fðrÞ ¼ c2C1 − s2ð1þ g2r2Þ − ðϵ − 1ÞC2=r2, Ξi ¼
c2C1 − s2χi, and χi ¼ 1 − g2a2i , while C1 and C2 are
two arbitrary constants. If C1 ¼ 1 and C2 ¼ 0, then the
solution reduces to that given in [35]. It should be pointed
out that we have directly and explicitly checked that the
above vector K, together with the full metric and the gauge
potential 1-form,

ds2 ¼ H1=ðD−2Þ
�
ds̄2 þ 2m

UH
K2

�
;

A ¼ 2ms
UH

K; Φ ¼ −1
D − 2

lnðHÞ; ð4:5Þ

obeys the field equations derived from the Lagrangian (1.5)
of the Einstein-Maxwell-dilaton theory. In the above, the
scalar functions (U;H) are defined to be
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U¼ rϵ
XNþϵ

i¼1

μ2i
r2þa2i

YN
j¼1

ðr2þa2jÞ; H¼ 1þ2ms2

U
: ð4:6Þ

B. The planar AdS background metric

As an input, it has been assumed that the background
metric ḡab is the pure AdS metric; we now take the planar
AdS metric [43] as the background spacetime for further
verification. Similarly, one can solve the timelike and
geodesic vector ~K assumed in (4.1) with respect to the
planar AdS background metric satisfying Eqs. (3.17) and
(3.18). Through a series of tedious calculations, we obtain
the new planar AdS solutions as follows:

ds2 ¼ H1=ðD−2Þ
�
−g2r2dt2 þ dr2

g2r2
þ r2dΣ2

k þ
2ms2

rD−3H
~K2

�

A ¼ 2ms2

rD−3H
~K; Φ ¼ −1

D − 2
lnðHÞ; ð4:7Þ

where dΣ2
k denotes the flat k ¼ ðD − 2Þ-space unit metric

for zero curvature and the timelike 1-form ~K is given by

~K ¼ C0dtþ
XN
i¼1

Cidϕi þ
ffiffiffiffiffiffiffiffiffi
hðrÞ

p
g−2r−2dr; ð4:8Þ

in which C0 and Ci are some arbitrary N þ 1 constants and
the functions (H; hðrÞ) are defined to be

H¼1þ2ms2r3−D; hðrÞ¼C2
0−g2

�
r2þ

XN
i¼1

C2
i

�
: ð4:9Þ

To see whether the solution (4.7) describes a regular
black hole, one can perform the following coordinate
transformations:

dt → dtþ 2ms2C0

g2rD−1Δ
ffiffiffiffiffiffiffiffiffi
hðrÞ

p
dr;

dϕi → dϕi −
2ms2Ci

rD−1Δ
ffiffiffiffiffiffiffiffiffi
hðrÞ

p
dr: ð4:10Þ

Then the metric and the gauge potential become

ds2 ¼ H1=ðD−2Þ
�
−g2r2dt2 þ dr2

Δ
þ r2dΣ2

k þ
2ms2

rD−3H
K2

�
;

A ¼ 2ms2

rD−3H
K; K ¼ C0dtþ

XN
i¼1

Cidϕi; ð4:11Þ

where

Δ ¼ g2r2 − 2ms2r3−DhðrÞ: ð4:12Þ

The horizon is determined by Δ ¼ 0 and is endowed with a
planar topology.

V. CONCLUSIONS

In this paper, we have studied a new metric ansatz
dubbed as the stringy Kerr-Schild ansatz since it can been
seen as the most meaningful generalization of the Kerr-
Schild form for the (un)gauged supergravity theory, in
which the general black hole solutions in all dimensions
share a common and universal metric structure.
Initially, we have adopted the traditional method of

perturbation expansion for this new ansatz, because it
had already been successfully applied in the extended
KS ansatz [30]. We attempted to explore some properties
of the sKS form in the usual way. But unfortunately, as a
consequence, the introduction of the perturbation factor
appears clearly to be in contradiction with the basic
assumption of the sKS ansatz. Therefore, the traditional
perturbation expansion analysis of the full metric tensor
provides no help to reach our aim.
As such, we have proposed a new method of back-

ground metric expansion to extract simple information by
expanding the field equations of the full spacetimes
around the background metric. In Sec. III, we obtained
the geodesic condition (3.3) from the Lagrangian of the
Einstein-Maxwell-dilaton system with respect to the
background metric and the counterparts (3.16), (3.17),
and (3.18) of all the field equations around the back-
ground metric. The condition (3.16) depends only on the
properties of the dilaton scalar Φ, and what is more, the
set of the sufficient conditions (3.16), (3.17), and (3.18) is
satisfied spontaneously in the uncharged case; thus our
method coincides with the usual method of perturbation
expansion for the Kerr-Schild form. As anticipated, the
overall calculations can be substantially simplified in our
method; meanwhile, the results of our analysis could be
helpful in obtaining new exact solutions of the sKS form.
As two examples of applications of our method, we first
rederived the rotating single-charged KK-AdS solutions
by further introducing one or two arbitrary constants
(corresponding to even and odd dimensions, respec-
tively). Moreover, for further verification, we obtained
new solutions by using the planar anti–de Sitter metric as
the background one in sKS ansatz.
It is worthwhile to investigate whether the analysis

made in this paper can be generalized to multiple-
charged black hole solutions [44,45] in supergravity
theories, since the general nonextremal rotating charged
AdS black hole solutions with two independent charge
parameters still remain elusive in D ¼ 6; 7 gauged
supergravities.
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APPENDIX: DOUBLE KERR-SCHILD FORM
FOR D ¼ 4 KERR-NUT-ADS SOLUTION

The four-dimensional Kerr-NUT-AdS metric admits a
double Kerr-Schild representation as follows:

ds2 ¼ −
ð1þ g2r2Þð1 − g2y2Þ

χ
dt2 þ ðr2 þ y2Þdr2

ðr2 þ a2Þð1þ g2r2Þ

þ ðr2 þ y2Þdy2
ða2 − y2Þð1 − g2y2Þ þ

ðr2 þ a2Þða2 − y2Þ
a2χ

dϕ2

þ 2mr
r2 þ y2

K2 þ 2ny
r2 þ y2

N2;

where two null 1-forms are

K ¼ 1 − g2y2

χ
dt −

a2 − y2

aχ
dϕ −

ðr2 þ y2Þdr
ðr2 þ a2Þð1þ g2r2Þ ;

N ¼ 1þ g2r2

χ
dt −

r2 þ a2

aχ
dϕ −

iðr2 þ y2Þdy
ða2 − y2Þð1 − g2y2Þ :

The vectors Kμ and Nμ are two linearly independent,
mutually orthogonal, affinely parametrized, null geodesic
congruences, so they need not be proportional to each
other. Note that Nμ is a complex vector rather than a real
vector.
The most general Plebański-Demiański type-D solution

[12] with an extra acceleration parameter can be put into a
similar form. Higher-dimensional generalizations with
just one rotation parameter were presented in Ref. [16],
while the multi-Kerr-Schild form [17] has been studied
in detail for the most general AdS solution with NUT
charges.

[1] R. P. Kerr, Gravitational Field of a Spinning Mass as an
Example of Algebraically Special Metrics, Phys. Rev. Lett.
11, 237 (1963).

[2] R. P. Kerr and A. Schild, Some algebraically degenerate
solutions of Einstein’s gravitational field equations, Proc.
Symp. Appl. Math. 17, 199 (1965).

[3] R. P. Kerr and A. Schild, Republication of: A new class of
vacuum solutions of the Einstein field equations, Gen.
Relativ. Gravit. 41, 2485 (2009).

[4] D. Bini, A. Geralico, and R. P. Kerr, The Kerr-Schild ansatz
revised, Int. J. Geom. Methods Mod. Phys. 07, 693 (2010).

[5] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers,
and E. Herlt, Exact Solutions of Einstein’s Field Equations,
2nd ed. (Cambridge University Press, Cambridge, 2003).

[6] A. H. Taub, Generalised Kerr-Schild space-times, Ann.
Phys. (N.Y.) 134, 326 (1981).

[7] J. Martin and J. M. M. Senovilla, Petrov type D perfect-fluid
solutions in generalized Kerr-Schild form, J. Math. Phys.
(N.Y.) 27, 265 (1986); 27, 2209 (1986).

[8] B. C. Xanthopoulos, Exact vacuum solutions of Einstein’s
equation from linearized solutions, J. Math. Phys. (N.Y.) 19,
1607 (1978).

[9] B. C. Xanthopoulos, Linear superposition of solutions of the
Einstein-Maxwell equations, Classical Quantum Gravity 3,
157 (1986).

[10] L. Á. Gergely, Linear Einstein equations and Kerr-Schild
maps, Classical Quantum Gravity 19, 2515 (2002).

[11] J. F. Plebański, A class of solutions of Einstein-Maxwell
equations, Ann. Phys. (N.Y.) 90, 196 (1975).

[12] J. F. Plebański and M. Demiański, Rotating, charged, and
uniformly accelerating mass in general relativity, Ann. Phys.
(N.Y.) 98, 98 (1976).

[13] J. F. Plebański and A. Schild, Complex relativity and double
KS metrics, Nuovo Cimento Soc. Ital. Fis. 35B, 35 (1976).

[14] G. S. Hall, M. S. Hickman, and C. B. G. McIntosh, Complex
relativity and real Solutions II: Classification of complex
bivectors and metric classes, Gen. Relativ. Gravit. 17, 475
(1985).

[15] C. B. G. McIntosh and M. S. Hickman, Single Kerr-Schild
metrics: A double view, Gen. Relativ. Gravit. 20, 793
(1988).

[16] Z.W. Chong, G. W. Gibbons, H. Lü, and C. N. Pope,
Separability and Killing tensors in Kerr-Taub-NUT-de Sitter
metrics in higher dimensions, Phys. Lett. B 609, 124 (2005).

[17] W. Chen and H. Lü, Kerr-Schild structure and harmonic 2-
forms on (A)dS-Kerr-NUT metrics, Phys. Lett. B 658, 158
(2008).

[18] J. K. Kowalczyński and J. F. Plebański, Properties of a
solution of the Einstein equations with the cosmological
constant, Acta Phys. Pol. B 8, 169 (1977).

[19] M. Štefaník and J. Horský, The Kerr-Schild ansatz for the
Nariai spacetime and the generating conjecture, Acta Phys.
Slovaca 50, 213 (2000).

[20] N. V. Mitskievichy and J. Horský, Conformal Kerr-Schild
ansatz for all static spherically symmetric spacetimes,
Classical Quantum Gravity 13, 2603 (1996).

[21] R. C. Myers and M. J. Perry, Black holes in higher dimen-
sional space-times, Ann. Phys. (N.Y.) 172, 304 (1986).

[22] G.W. Gibbons, H. Lü, D. N. Page, and C. N. Pope, Rotating
Black Holes in Higher Dimensions with a Cosmological
Constant, Phys. Rev. Lett. 93, 171102 (2004).

[23] G.W. Gibbons, H. Lü, D. N. Page, and C. N. Pope, The
general Kerr-de Sitter metrics in all dimensions, J. Geom.
Phys. 53, 49 (2005).

APPROACH OF BACKGROUND METRIC EXPANSION TO A … PHYSICAL REVIEW D 91, 104031 (2015)

104031-9

http://dx.doi.org/10.1103/PhysRevLett.11.237
http://dx.doi.org/10.1103/PhysRevLett.11.237
http://dx.doi.org/10.1007/s10714-009-0857-z
http://dx.doi.org/10.1007/s10714-009-0857-z
http://dx.doi.org/10.1142/S0219887810004518
http://dx.doi.org/10.1016/0003-4916(81)90213-X
http://dx.doi.org/10.1016/0003-4916(81)90213-X
http://dx.doi.org/10.1063/1.527372
http://dx.doi.org/10.1063/1.527372
http://dx.doi.org/10.1063/1.526991
http://dx.doi.org/10.1063/1.523851
http://dx.doi.org/10.1063/1.523851
http://dx.doi.org/10.1088/0264-9381/3/2/009
http://dx.doi.org/10.1088/0264-9381/3/2/009
http://dx.doi.org/10.1088/0264-9381/19/9/313
http://dx.doi.org/10.1016/0003-4916(75)90145-1
http://dx.doi.org/10.1016/0003-4916(76)90240-2
http://dx.doi.org/10.1016/0003-4916(76)90240-2
http://dx.doi.org/10.1007/BF02726281
http://dx.doi.org/10.1007/BF00761905
http://dx.doi.org/10.1007/BF00761905
http://dx.doi.org/10.1007/BF00758901
http://dx.doi.org/10.1007/BF00758901
http://dx.doi.org/10.1016/j.physletb.2004.07.066
http://dx.doi.org/10.1016/j.physletb.2007.09.066
http://dx.doi.org/10.1016/j.physletb.2007.09.066
http://dx.doi.org/10.1088/0264-9381/13/9/023
http://dx.doi.org/10.1016/0003-4916(86)90186-7
http://dx.doi.org/10.1103/PhysRevLett.93.171102
http://dx.doi.org/10.1016/j.geomphys.2004.05.001
http://dx.doi.org/10.1016/j.geomphys.2004.05.001


[24] W. Chen, H. Lü, and C. N. Pope, General Kerr-NUT-AdS
metrics in all dimensions, Classical Quantum Gravity 23,
5323 (2006).

[25] M. Ortaggio, V. Pravda, and A. Pravdová, Higher dimen-
sional Kerr-Schild spacetimes, Classical Quantum Gravity
26, 025008 (2009).

[26] M. Ortaggio, V. Pravda, and A. Pravdová, On Kerr-Schild
spacetimes in higher dimensions, AIP Conf. Proc. 1122, 364
(2009).

[27] T. Málek and V. Pravda, Kerr-Schild spacetimes with an (A)
dS background, Classical Quantum Gravity 28, 125011
(2011).

[28] T. Málek and V. Pravda, Higher dimensional Kerr-Schild
spacetimes with (A)dS background, J. Phys. Conf. Ser. 314,
012111 (2011).

[29] A. N. Aliev and D. K. Ciftci, A note on rotating charged
black holes in Einstein-Maxwell-Chern-Simons theory,
Phys. Rev. D 79, 044004 (2009).

[30] B. Ett and D. Kastor, An extended Kerr-Schild ansatz,
Classical Quantum Gravity 27, 185024 (2010).

[31] Z.W. Chong, M. Cvetič, H. Lü, and C. N. Pope, General
Non-Extremal Rotating Black Holes in Minimal Five-
Dimensional Gauged Supergravity, Phys. Rev. Lett. 95,
161301 (2005).

[32] T. Málek, Extended Kerr-Schild spacetimes: General prop-
erties and some explicit examples, Classical Quantum
Gravity 31, 185013 (2014); Extended Kerr-Schild space-
times of any dimension, J. Phys. Conf. Ser. 600, 012040
(2015).

[33] T. Málek, Exact solutions of general relativity and quadratic
gravity in arbitrary dimension, arXiv:1204.0291.

[34] S. Bonanos, A generalization of the Kerr-Schild ansatz,
Classical Quantum Gravity 9, 697 (1992).

[35] S. Q. Wu, General rotating charged Kaluza-Klein AdS black
holes in higher dimensions, Phys. Rev. D 83, 121502(R)
(2011).

[36] W. C. dos Santos, Exponential metric fields, Astrophys.
Space Sci. 331, 295 (2011).

[37] J. D. Bekenstein, Relativistic gravitation theory for the
MOND paradigm, Phys. Rev. D 70, 083509 (2004).

[38] M. Novello and E. Bittencourt, Gordon metric revisited,
Phys. Rev. D 86, 124024 (2012).

[39] B. Chen and R. Kantowski, Including absorption in
Gordon’s optical metric, Phys. Rev. D 79, 104007 (2009).

[40] V. Baccetti, P. Martin-Moruno, and M. Visser, Gordon and
Kerr-Schild ansatze in massive and bimetric gravity, J. High
Energy Phys. 08 (2012) 108.

[41] K. Peeters, A field-theory motivated approach to symbolic
computer algebra, Comput. Phys. Commun. 176, 550
(2007).

[42] K. Peeters, Introducing Cadabra: A symbolic computer
algebra system for field theory problems, arXiv:hep-th/
0701238.

[43] A. Awad, Higher dimensional charged rotating solutions in
(A)dS space-times, Classical Quantum Gravity 20, 2827
(2003).

[44] S. Q. Wu, Two-charged non-extremal rotating black holes in
seven-dimensional gauged supergravity: The single-rotation
case, Phys. Lett. B 705, 383 (2011).

[45] S. Q. Wu, General nonextremal rotating charged AdS black
holes in five-dimensional Uð1Þ3 gauged supergravity: A
simple construction method, Phys. Lett. B 707, 286 (2012).

SHUANG-QING WU AND HE WANG PHYSICAL REVIEW D 91, 104031 (2015)

104031-10

http://dx.doi.org/10.1088/0264-9381/23/17/013
http://dx.doi.org/10.1088/0264-9381/23/17/013
http://dx.doi.org/10.1088/0264-9381/26/2/025008
http://dx.doi.org/10.1088/0264-9381/26/2/025008
http://dx.doi.org/10.1063/1.3141327
http://dx.doi.org/10.1063/1.3141327
http://dx.doi.org/10.1088/0264-9381/28/12/125011
http://dx.doi.org/10.1088/0264-9381/28/12/125011
http://dx.doi.org/10.1088/1742-6596/314/1/012111
http://dx.doi.org/10.1088/1742-6596/314/1/012111
http://dx.doi.org/10.1103/PhysRevD.79.044004
http://dx.doi.org/10.1088/0264-9381/27/18/185024
http://dx.doi.org/10.1103/PhysRevLett.95.161301
http://dx.doi.org/10.1103/PhysRevLett.95.161301
http://dx.doi.org/10.1088/0264-9381/31/18/185013
http://dx.doi.org/10.1088/0264-9381/31/18/185013
http://dx.doi.org/10.1088/1742-6596/600/1/012040
http://dx.doi.org/10.1088/1742-6596/600/1/012040
http://arXiv.org/abs/1204.0291
http://dx.doi.org/10.1088/0264-9381/9/3/011
http://dx.doi.org/10.1103/PhysRevD.83.121502
http://dx.doi.org/10.1103/PhysRevD.83.121502
http://dx.doi.org/10.1007/s10509-010-0429-4
http://dx.doi.org/10.1007/s10509-010-0429-4
http://dx.doi.org/10.1103/PhysRevD.70.083509
http://dx.doi.org/10.1103/PhysRevD.86.124024
http://dx.doi.org/10.1103/PhysRevD.79.104007
http://dx.doi.org/10.1007/JHEP08(2012)108
http://dx.doi.org/10.1007/JHEP08(2012)108
http://dx.doi.org/10.1016/j.cpc.2007.01.003
http://dx.doi.org/10.1016/j.cpc.2007.01.003
http://arXiv.org/abs/hep-th/0701238
http://arXiv.org/abs/hep-th/0701238
http://dx.doi.org/10.1088/0264-9381/20/13/327
http://dx.doi.org/10.1088/0264-9381/20/13/327
http://dx.doi.org/10.1016/j.physletb.2011.10.026
http://dx.doi.org/10.1016/j.physletb.2011.12.031

