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We present the extension of our COCAL—Compact Object CALculator—code to compute general-
relativistic initial data for binary compact-star systems. In particular, we construct quasiequilibrium initial
data for equal-mass binaries with spins that are either aligned or antialigned with the orbital angular
momentum. The Isenberg-Wilson-Mathews formalism is adopted and the constraint equations are solved
using the representation formula with a suitable choice of a Green’s function. We validate the new code
with solutions for equal-mass binaries and explore its capabilities for a wide range of compactnesses,
from a white dwarf binary with compactness ∼10−4, up to a highly relativistic neutron-star binary with
compactness ∼0.22. We also present a comparison with corotating and irrotational quasiequilibrium
sequences from the spectral code LORENE [Taniguchi and Gourgoulhon, Phys. Rev. D 66, 104019 (2002)]
and with different compactness, showing that the results from the two codes agree to a precision of the
order of 0.05%. Finally, we present equilibria for spinning configurations with a nuclear-physics equation
of state in a piecewise polytropic representation.
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I. INTRODUCTION

With a compactness slightly smaller than that of a black
hole, neutron stars are most probably nature’s ultimate
compact matter configuration before gravitational collapse
and black-hole formation. As such, they present an invalu-
able tool to astrophysicists in order to study a plethora of
problems and test the limits of existing knowledge, from
general relativity, via the emission of gravitational waves,
to nuclear physics, via the input on the equation of state
of nuclear matter [1–5]. For example, the leading (but not
unique) candidate to explain one of the most luminous
explosions in the universe, the so-called short gamma-ray
bursts [6,7] (see [8] for a recent review) is the merger of two
neutron stars (or of one neutron star and one black hole)
with the subsequent formation of a black hole, an accretion
torus, and a jet structure of ultrastrong magnetic field
[9,10]. Yet another example has to do with the production
site of the heaviest elements in the universe through the
so-called, rapid neutron capture (r-process) [11–16].
Central to the processes described above [17,18] is a

binary neutron star system which in addition constitutes a
prime source of gravitational waves for ground-based laser
interferometric gravitational-wave detectors such as LIGO,

Virgo, KAGRA, and ET [19–23]. The advanced generation
of these detectors will become operational in a few years,
and they will be able to observe a volume of the universe a
thousand times more than their predecessors. According to
present estimates [24] it may be possible to detect ∼1–100
events per year, making the study of such systems an
important step toward a practical verification of general
relativity in the strong field regime, as well as an explora-
tion of its limits. At the same time, gravitational-wave
observations are expected to constrain the neutron-star
equation of state [25–33].
The broad-brush picture for the two-body problem in

general relativity can be divided into three phases: the
inspiral, the merger, and the ring-down, with each one
having its own methods and tools of investigation. The
purpose of this work lies in the interface between the first
and the second phases, the so-called quasiequilibrium
stage, and the solutions presented are meant as “snapshots”
at particular instants of the binary system. The purpose is
twofold: on the one hand, to provide initial data for the
simulation of the merging phase and, on the other hand, to
provide evolutionary information about the system studied
by constructing quasiequilibrium sequences. In this way,
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we can learn how much the star shape is deformed as the
orbit shrinks, where an instability sets in, where the mass-
shedding limit is, and what the angular velocity of the
system is there. All of this information can be computed
with a modest computational infrastructure, thus allowing
for the exploration of a wide parameter space.
Because the orbital decay time scale due to gravitational

wave emission is much shorter than the synchronization
time scale due to the neutron star viscosity, it is unlikely
that the two stars will be tidally locked before merger
[34,35]. For such slowly rotating configurations, the
assumption of an irrotational flow is physically reasonable
and mathematically simple to impose. An irrotational flow
is also called a potential flow, since the fluid velocity is
the gradient of a potential [36]. A formalism to compute
initial data within a conformally flat geometry, the so-called
Isenberg-Wilson-Mathews (IWM) formalism [37,38], was
presented in Refs. [39–42], and numerical implementations
for a variety of physical assumptions have been discussed
by several groups [43–53]. Nonconformally flat formula-
tions, have also been implemented [54–59], where the
full system of Einstein equations is being solved. These
more computationally expensive solutions are expected to
respect the circularity of an orbit better than the ones
coming from conformally flat initial data, which in addition
seem to suppress tidal effects as the compactness of the
stars increases. A conformally flat geometry can still be
used to produce low eccentricity initial data if one uses
ideas similar to those applied to the binary black hole
problem [60], as they were implemented in [61,62].
As it was pointed in Ref. [63], the double pulsar PSR

J0737-3039 has one of its stars reaching the merging epoch
with a spin of ∼27 ms, hence in a state that cannot be
considered irrotational. Since we only know less than a
dozen binary systems [64] and hundreds of millisecond
pulsars, it is reasonable to simulate arbitrary spinning
binary neutron stars and assess the impact that the stellar
spin has on the gravitational-wave signal. Initial data for
binary neutron stars with intermediate (and arbitrary)
rotation states are more difficult to calculate, since there
is no self-consistent scheme to incorporate the fluid
equations with the rest of the elliptic gravitational equa-
tions. Various schemes have been proposed recently in
Refs. [63,65–68], which introduce some additional approx-
imations, while evolution of spinning binaries have been
performed in [68–70].
In this work we continue the COCAL program for

computing equilibrium configurations of single [71,72]
and binary systems building on the infrastructure intro-
duced in Refs. [73–75] for binary black holes. Here, we
describe how to calculate initial data for binary stars,
concentrating on neutron stars. The ability to compute
configurations with a wide range of compactness was one
of the goals of this work. At present, COCAL makes use of a
piecewise polytropic description to represent the equation

of state (EOS), but fully tabulated EOSs can also be
implemented. As in the vacuum case, we employ the
Komatsu-Eriguchi-Hachisu (KEH) method [76–81] on
multiple patches [82] in order to be able to treat binaries
consisting of different compact objects. The multiple
coordinates systems used in this work are not necessary
for the computation of initial data coming from equal-mass
binaries with spins either aligned or antialigned. In this
case, in fact, it is possible to use a coordinate system
positioned at the center of one compact object and employ a
π symmetry to acquire the complete solution. Nevertheless,
we here use three different coordinate systems (i.e., we
solve all equations separately in three patches) as a first step
toward solving for asymmetric binary systems, which will
be presented in a future work. The gravitational equations
are solved using the COCAL Poisson solvers (with appro-
priate Green’s functions), while for the conservation of rest
mass, we follow [83] and employ the least-squared algo-
rithm demonstrating the versatility of the methods used
by our code. In this way we can calculate sequences of
corotating, irrotational, as well as spinning binaries, where
for the last case we use the formulation of [63] after small
modifications to adapt it to our numerical methods.
The paper is organized as follows: In Sec. II we discuss

the equations to be solved and the assumptions made, both
for the gravitational field in Sec. II A, as well as for the fluid
part in Sec. II B. For the latter we present the forms used in
COCAL code for corotating, irrotational, and spinning cases.
Section III represents the core of this work. In Sec. III A
we briefly review the gravitational multipatch coordinate
systems used in [73,74] and discuss additional changes that
are related to the neutron-star surface. In Sec. III B we
describe the removal of dimensions from the equations, in
conjunction with the scaling introduced in Sec. III A.
Section III C describes the Green’s function used for the
star patch, while in Sec. III D the least-squared method for
solving a spinning configuration is introduced. Tests for our
new code are presented in Sec. IVA for corotating binaries
and in Sec. IV B for irrotational ones, while spinning
solutions with piecewise polytropes are presented in
Sec. IV C. A number of appendixes provides more tech-
nical details on several topics. More specifically,
Appendix A reports the expressions used for the calculation
of the mass and angular momentum of the binary,
Appendix B illustrates a different approach to obtain a
solution of the Tolmann-Oppenheimer-Volkoff (TOV)
equations, while Appendix C describes in detail the full
iteration scheme and Appendix D shows tests of COCAL

in a very different regime of compactness by considering
binaries of white dwarfs. Finally, Appendix E reports the
post-Newtonian expressions for the binding energy and
orbital angular momentum of a binary system in quasicir-
cular orbit, which are used as a reference.
Hereafter, spacetime indices will be indicated with Greek

letters, and spatial indices with Latin lowercase letters. The
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metric has signature−þþþ, and we use a set of geometric
units in which G ¼ c ¼ M⊙ ¼ 1, unless stated otherwise.

II. QUASIEQUILIBRIUM EQUATIONS

In this section we review the basic equations that need
to be solved to obtain binary equilibrium configurations.
Details of the initial-data formalism can be found in
[84–87]. Here, we only mention the points that are relevant
to the COCAL’s new developments.

A. The gravitational equations

One of the most fruitful ideas in simulating the circular
motion of two bodies in general relativity was the intro-
duction of helical-symmetry approximation [88,89].
Solutions with such symmetry are stationary in the corotat-
ing frame and have a long history, starting from the
electromagnetic two-body problem [90]. Analogous sol-
utions in the post-Minkowski approximation have been
derived in [91,92]. Helical symmetry was also used to
obtain the first law of binary star thermodynamics [93], as
well as to produce equilibrium configurations of binary
black holes [94,95].
Neglecting the loss of energy due to gravitational

radiation and assuming closed orbits for the binary system,
results in the existence of a helical Killing vector

kμ ≔ tμ þΩϕμ; ð1Þ

such that

Lkgαβ ¼ 0; ð2Þ

where Lk is the Lie derivative along k and ϕi is the
generator of rotational symmetry. In a Cartesian coordinate
system, but without loss of generality, we can assume the
generator of rotational symmetry to have components

ϕi ¼ ð−y; x; 0Þ: ð3Þ

Writing the spacetime metric in 3þ 1 form as
[36,87,96,97]

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð4Þ

where α; βi; γij are, respectively, the lapse, the shift vector,
and the three-metric on Σt, the generator of time trans-
lations in the rotating frame can be expressed as

kμ ≔ αnμ þ ωμ: ð5Þ

Here,ωμ ≔ βμ þ Ωϕμ is the corotating shift, and nμ the unit
normal to Σt, nμ ≔ −α∇μt. Since Lkγij ¼ 0 ¼ LkKij, the
evolution equation of γij specifies the extrinsic curvature in
terms of the shift and the lapse

Kij ¼
1

2α
ðDiωj þDjωiÞ; ð6Þ

where D is the derivative operator associated with γij. The
traceless extrinsic curvature

Aij ≔ Kij −
1

3
Km

mγij ¼ Kij −
1

3
Kγij ð7Þ

can be written in terms of the longitudinal operator L,

Aij ¼
1

2α

�
Diωj þDjωi −

2

3
γijDkω

k

�

≔
1

2α
ðLωÞij: ð8Þ

Assuming a maximal and conformally flat slice [37,38]

γij ¼ ψ4δij; ð9Þ

the traceless extrinsic curvature Eq. (8) is written in terms
of the shift

Aij ¼ ψ−4

2α

�
∂iβj þ ∂jβi −

2

3
δij∂kβ

k

�

¼ ψ−4

2α
ð ~LβÞij: ð10Þ

The tilde symbol on the longitudinal operator L denotes the
fact that it is related to the conformally flat geometry. In
deriving Eq. (10) use has been made of the fact that ∂iϕ

i ¼
0 ¼ ∂ðiϕjÞ [cf. Eq. (3)]. In the conformally flat geometry,
the contravariant components of the shift remain the same
as in the original spatial geometry (i.e., ~βi ¼ βi), while this
is not true for the covariant components.
With the help of Eq. (10), the constraint equations and

the spatial trace of the time derivative of the extrinsic
curvature result in five elliptic equations for the conformal
factor ψ, the shift βi, and the lapse function α,

∇2ψ ¼ −
ψ5

32α2
ð ~LβÞabð ~LβÞijδiaδjb − 2πEψ5

≔ Sgψ þ Sfψ ; ð11Þ

∇2ðαψÞ ¼ 7ψ5

32α
ð ~LβÞabð ~LβÞijδiaδjb þ 2παψ5ðEþ 2SÞ

≔ Sgα þ Sfα; ð12Þ

∇2βi ¼ −
1

3
∂i∂jβ

j þ ∂j ln

�
α

ψ6

�
ð ~LβÞij þ 16παψ4ji

≔ Sgβ þ Sfβ : ð13Þ
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We have denoted with Sfα the sources of the Poisson-type
equations that come from the energy-momentum tensor,
while with Sgα are the sources that come from the nonlinear
part of the Einstein tensor Gαβ. The matter sources in

Eqs. (11)–(13), Sfψ ; Sfα; Sfβ , are related to the corresponding
projections of the energy-momentum tensor

E ≔ nαnβTαβ; ð14Þ

S ≔ γαβTαβ; ð15Þ

ji ≔ −γiαnβTαβ; ð16Þ

where E is the energy density as measured by a “normal”
observer, that is, an observer with four-velocity n. Note
also that since we use G ¼ c ¼ M⊙ ¼ 1, all quantities in
equations (11)–(13) are dimensionless. This is contrary to
some previous works (e.g., [46]), where only G ¼ c ¼ 1
was assumed, and a procedure to remove units was applied
through the use of the adiabatic constant K. Here the
normalization scheme used is explained in detail in
Sec. III B.
The above set of equations must be supplied with

conditions on the boundary of our computational region.
Since we will consider only binary stars, our boundary for
the gravitational equations will be only at spatial infinity,
where we impose asymptotic flatness, i.e.,

lim
r→∞

ψ ¼ 1; lim
r→∞

α ¼ 1; lim
r→∞

βi ¼ 0: ð17Þ

We recall that a helically symmetric spacetime cannot be
asymptotically flat, because a helically symmetric binary
produces an infinite amount of radiation. Therefore con-
ditions (17) seem to contradict assumption (1). In reality,
the helical symmetry is only an approximation that is valid
either for long times when the binary is widely separated or
for only a short time when the binary is tight. In practice,
the emission of gravitational radiation reaction will lead to
an inspiral, thus breaking the symmetry.

B. The fluid equations

Let uα be the four-velocity of the fluid. We consider a
perfect fluid with energy-momentum tensor [36,98]

Tαβ ¼ ðϵþ pÞuαuβ þ pgαβ ¼ ρhuαuβ þ pgαβ; ð18Þ

where ρ; ϵ; h, and p are, respectively, the rest-mass density,
the total energy density, the specific enthalpy, and the
pressure as measured in the rest frame of the fluid. The
specific internal energy e is related to the enthalpy through1

h ≔
ϵþ p
ρ

¼ 1þ eþ p
ρ
: ð19Þ

The first law of thermodynamics, dϵ ¼ ρTdsþ hdρ,
where s is the specific entropy, written in terms of the
specific enthalpy h, reads dh ¼ Tdsþ dp=ρ. For isen-
tropic configurations, like the quasiequilibrium solutions
we are seeking, given an EOS which relates, for example,
the pressure p with the rest-mass energy density ρ, we
can see that the extra variables that enter our problem are ρ
(or p) and the four-velocity uα. For these new variables,
extra equations need to be used exploiting conservation
laws. In particular, from the conservation of the energy-
momentum tensor

0¼∇αTαβ¼ρ½uα∇αðhuβÞþ∇βh�þhuβ∇αðρuαÞ−ρT∇βs;

ð20Þ

assuming isentropic configurations and local conservation
of rest mass2

∇αðρuαÞ ¼ 0; ð21Þ

we arrive at the relativistic Euler equation

uα∇αðhuβÞ þ∇βh ¼ 0: ð22Þ

Although we use four-dimensional indices, this is a fully
spatial equation, since the projection along the fluid flow is
trivially satisfied. Equations (21) and (22) provide us with
four more equations for the fluid variables. If one of them is
used for the determination of ρ, we are left with three
equations that must determine the four-velocity uα, which
has only three independent components.
Expressing the four-velocity as uα ¼ utð1; viÞ and in

analogy with a Newtonian decomposition, we can split
the spatial component vi into two parts: one that follows the
orbital path ϕi, and one that represents the velocity in the
corotating frame Vi. Using the helical Killing vector,
Eq. (1), we can write

uα ¼ utðkα þ VαÞ; ð23Þ

where the spatial part, Vα ¼ ð0; ViÞ, can be considered to
be the “nonrotating” part of the fluid flow (i.e., the velocity
in the corotating frame). The conservation of rest mass (21)
and the spatial projection of the Euler equation (22), written
in 3þ 1 form, translate to

1Note that many authors use e and ϵ to indicate the energy
density and the specific internal energy, respectively.

2More precisely, the Euler equation is the projection orthogo-
nal to the fluid flow of the conservation of the energy-momentum
tensor and leads to three distinct spatial equations. On the other
hand, the projection along the flow of ∇αTαβ ¼ 0 yields a single
equation expressing energy conservation [36].
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LkðρutÞ þ
1

α
DiðαρutViÞ ¼ 0; ð24Þ

γαiLkðhuαÞ þDi

�
h
ut

þ hujVj

�

þVjðDjðhuiÞ −DiðhujÞÞ ¼ 0: ð25Þ

The last term of Eq. (25) involves the relativistic vorticity
tensor [36]

ωαβ ≔ ∇αðhuβÞ −∇βðhuαÞ ð26Þ

and is zero for an irrotational flow. It is not difficult to
show that in the presence of a generic Killing vector field
(e.g., the helical Killing field) k, the following identity
holds [36]:

Luðhu · kÞ ¼ 0: ð27Þ

In the case of a rigid corotation of the binary system, u ¼ k,
so that the Lie derivative along the fluid four-velocity u in
Eq. (27) can be replaced by the Lie derivative along the
helical Killing vector k. This yields Lkh ¼ 0 and expresses
that in the corotating frame the fluid properties do not
change. When the fluid four-velocity does not coincide
with the helical Killing field, but the two vector fields are
not too different; i.e., when u≃ k, expression (27) can still
be true and indeed for the flows we will consider hereafter
we will assume the following assumption:

γαiLkðhuαÞ ¼ 0 ¼ LkðρutÞ: ð28Þ

While Eq. (28) is an assumption, its correctness can only be
assessed a posteriori and could indeed not represent a valid
approximation if the stars are spinning very rapidly, a case
we will not investigate here.
In the following we will specialize Eqs. (24) and (25)

under the assumption (28) for corotating, irrotational, and
slowly rotating flows. Before closing we introduce a
quantity that will be used often in subsequent sections,
namely, the spatial projection of the specific enthalpy
current

ûi ≔ γαi huα: ð29Þ

1. Corotating binaries

The corotating case, also called of rigid rotation
[99,100], is the simplest case, since the spatial fluid
velocity Vi vanishes, uα ¼ utkα, and thus the fluid is at
rest in a corotating frame. This means that apart from the
gravitational variables ψ ; α; βi, we have only two extra fluid
variables, for example, ρ and ut once an EOS is fixed. The
conservation of rest mass (24) is trivially satisfied, while

the Euler equation (25) becomes a single integral equation
that, together with the normalization condition uαuα ¼ −1,
will determine all our fluid variables.
In particular, the specific enthalpy current becomes

ûi ¼ hutωi; ð30Þ

and from the four-velocity normalization condition we have

ut ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − ωiω

i
p : ð31Þ

Equation (25), on the other hand, has the first integral

h
ut

¼ C; ð32Þ

where C is a constant to be determined. Equations (31) and
(32), together with the gravitational potentials, completely
determine the solution for this case. We note that in all
equations to be solved (the gravitational ones included) two
constants are involved. One is C, the constant that comes
from the Euler integral, and one is Ω, the orbital angular
velocity. Thus, in order to be able to achieve a solution
for our system, a self-consistent scheme that involves the
determination of both Cand Ω must be employed. As we
will elaborate later on, this will be achieved in conjunction
with the determination of the length scale R0 of our
problem.
For the corotating case thematter sources in Eqs. (11)–(13)

are

E ¼ ρ½hðαutÞ2 − q�; ð33Þ

Eþ 2S ¼ ρ½h½3ðαutÞ2 − 2� þ 5q�; ð34Þ

ji ¼ ραutûi; ð35Þ

whereq ≔ p=ρ. Aswe have alreadymentioned, all quantities
appearing above are dimensionless, while in previous studies,
where geometric units were used, Eqs. (33)–(35) had units
of length−2.

2. Irrotational and spinning binaries

Irrotational configurations have ωαβ ¼ 0, so that the
specific enthalpy current huα can be derived from a
potential [36], i.e.,

huα ¼ ∇αΦ ¼ DαΦþ nαLnΦ; ð36Þ

so that ûi ¼ DiΦ since γ · n ¼ 0. To allow for spinning
configurations we need to extend expression (36), and we
do this following Ref. [67] and introducing a four-vector s
(not to be confused with the specific entropy s)
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huα ¼ ∇αΦþ sα; ð37Þ

so that ûi is decomposed as

ûi ¼ DiΦþ si; ð38Þ

where theDiΦ part corresponds to the “irrotational part” of
the flow and the si part to the “spinning part” of the flow.
In what follows we will present expressions for spinning
binaries (si ≠ 0), and one can recover the irrotational ones
by setting the spinning component si equal to zero.
Using the decomposition (38) and the assumption (28),

the Euler equation (25) can be rewritten as

LVsi þDi

�
h
ut

þ VjDjΦ

�
¼ 0; ð39Þ

and hereafter we will assume

LVsi ¼ 0; ð40Þ

which is likely to be a very good approximation in the
case of slowly and uniformly rotating stars, for which si is
intrinsically small.3 Hence, the Euler equation for generic
binaries (25)

γαi ½LkðhuαÞ þ LVðsαÞ� þDi

�
h
ut

þ VjDjΦ

�
¼ 0; ð41Þ

under the assumptions (28) and (40), yields the reduced
Euler integral

h
ut

þ VjDjΦ ¼ C; ð42Þ

where again C is a constant to be determined. A few
remarks should be made at this point. First, it is not difficult
to obtain the following identity:

γαi ½LkðhuαÞ þ LVðsαÞ�
¼ γαi ½Lkð∇αΦÞ þ L∇Φ=ðhutÞðsαÞ þ Ls=ðhutÞðsαÞ�; ð43Þ

so that our assumptions (28) and (40),

γαiLkðhuαÞ ¼ 0 ¼ γαiLVðsαÞ; ð44Þ

are equivalent to setting the left-hand side of Eq. (43) to
zero. In turn, this implies that also the right-hand side of
(43) is zero, which is true if, for instance, each of the three
terms is zero, i.e., if

γαiLkð∇αΦÞ ¼ 0 ¼ γαiL∇Φ=ðhutÞðsαÞ ¼ γαiLs=ðhutÞðsαÞ:
ð45Þ

The three conditions in (45) coincide with the assumptions
made in [63]. Stated differently, because the conditions (44)
are compatible with the conditions (45), it does not come
as a surprise that we obtain the same Euler integral (42) as
in [63] despite making apparently different assumptions
[cf. (44) versus (45)]. Second, using the decomposition
(37), it follows that

γαiLkðhuαÞ ¼ γαi ½Lkð∇αΦÞ þ LkðsαÞ�; ð46Þ

and hence the question aboutLkðhuαÞ ¼ 0 depends on both
Lkð∇αΦÞ and LkðsαÞ being zero.4 The second term is
essentially an input to our problem, while the first one
comes from the conservation of rest mass (57), which
depends on the spin input sα. Finally, although the Euler
integral has the same form for both irrotational and
spinning binaries, it produces a different equation since
the three-velocity Vi is different in these two cases. More
specifically, it is

ûi ¼ hutðωi þ ViÞ; ð47Þ

so that

Vi ¼ DiΦþ si

hut
− ωi: ð48Þ

In this case, the fluid variables are ρ (or equivalently p
or h), ut, and the fluid potential Φ. The equations that
will determine them are the normalization condition
uαuα ¼ −1, the Euler integral (42) [with the use of
Eq. (48)], and the conservation of rest mass (24).
In particular, from the norm of ûi we get

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ðhutÞ2 − ðDiΦþ siÞðDiΦþ siÞ

q
; ð49Þ

therefore, the Euler integral (42) takes the following form
quadratic in hut:

α2ðhutÞ2 − λðhutÞ − siðDiΦþ siÞ ¼ 0; ð50Þ

where λ ¼ Cþ ωiDiΦ. Thus

hut ¼ λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 4α2siðDiΦþ siÞ

p
2α2

; ð51Þ

where we take the positive root since the negative one is
incorrect at least in the limit of si ¼ 0, when it
yields hut ¼ 0.

3In practice we will consider stars with spin period down to
0.6 ms, but this is still “slowly” spinning when compared to the
minimum period.

4Note that even when the spins are aligned with the orbital
angular momentum LkðsαÞ ≠ 0.
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Having computed λ, we first calculate hut from Eq. (51),
and then h from Eq. (49). For purely irrotational binaries
hut ¼ λ=α2 and h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2=α2 −DiΦDiΦ

p
.

Although we will not make immediate use of ut and h
separately, we report below their form for completeness

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − ðDiΦþ siÞðDiΦþ siÞ

q
; ð52Þ

ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ ðDiΦþ siÞðDiΦþ siÞ

p
hα

; ð53Þ

where

L2 ≔
λ2 þ 2α2W þ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 4α2W

p

2α2
; ð54Þ

W ≔ siðDiΦþ siÞ: ð55Þ

The potential Φ will be computed from the conservation
of rest mass (24), which under Eq. (48), and after
expressing the spin velocity as a power law [63]

si ¼ ψA ~si; A ∈ R; ð56Þ
will produce an extra elliptic equation

∇2Φ ¼ −
2

ψ
∂iψ∂iΦþ ψ4ωi∂iðhutÞ

þ ½ψ4hutωi − ∂iΦ�∂i ln

�
αρ

h

�

− ψ4þA

�
∂i ~si þ ~si∂i ln

�
αρψ6þA

h

��
¼ SΦ: ð57Þ

The boundary for the fluid is represented by the surface of
the star; hence the boundary condition for Eq. (57) will be
of von Neumann type, that is, in terms of derivatives of the
rest-mass density and of Φ

½ðψ4hutωi − ∂iΦ − ψ4þA ~siÞ∂iρ�surf ¼ 0: ð58Þ
A possible and convenient choice for the parameter A

that will be used in Sec. IV C is A ¼ −6, as it removes
the last term in Eq. (57).5 Any other value will not change
the character of the equation or the boundary condition,
although it will change the detailed properties of the flow
velocity and therefore of the binary. We will comment on
this point in Sec. IV C, where we will also illustrate the
results for A ¼ 0.
For the spinning case, the matter sources in Eqs. (11)–(13)

are

E ¼ ρ

�
α2

h
ðhutÞ2 − q

�
; ð59Þ

Eþ 2S ¼ ρ

�
3
α2

h
ðhutÞ2 − 2hþ 5q

�
; ð60Þ

ji ¼ ραutûi ¼ ρ
α

h
ðhutÞ½ψ−4∂iΦþ ψA ~si�; ð61Þ

where we have used Eq. (51) to simplify the calculations.

C. Equation of state

The EOS used in this work is represented by a sequence
of polytropes called a piecewise polytrope. This is proven
to be a good approximation for a great variety of models
[101–104]. If N is the number of such polytropes, in each
piece the pressure and the rest-mass density are

p ¼ Kiρ
Γi ; i ¼ 1; 2;…; N: ð62Þ

The order of the polytropes is i ¼ 1 for the crust and i ¼ N
for the core, and Eq. (62) holds for

ρi−1 ≤ ρ < ρi: ð63Þ

As we have discussed in Sec. II B, the first law of
thermodynamics for isentropic configurations gives
dh ¼ dp=ρ, which can be expressed in terms of q to yield

dh ¼ Γi

Γi − 1
dq; ð64Þ

or equivalently

h − hi ¼
Γi

Γi − 1
ðq − qiÞ; ð65Þ

where hi; qi correspond to values at the right end point (the
one closest to the core) of the ith interval. In terms of q, we
can express the rest of thermodynamic variables as

ρ ¼ K1=ð1−ΓiÞ
i q1=ðΓi−1Þ; ð66Þ

p ¼ K1=ð1−ΓiÞ
i qΓi=ðΓi−1Þ; ð67Þ

ϵ ¼ ρh − p: ð68Þ

Enforcing the continuity of the pressure at the N − 1
interfaces of each interval constraints all adiabatic constants
Ki but one

Kiρ
Γi
i ¼ Kiþ1ρ

Γiþ1

i : ð69Þ

5More precisely, A ¼ −6 makes the spin have zero divergence
in the three-geometry (Disi ¼ 0) if we choose it to have zero
divergence in the conformal three-geometry ( ~Di ~si ¼ 0).
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As a result, the free parameters are one adiabatic constant,
N − 1 rest-mass densities, and N adiabatic indices, a total
of 2N parameters.

III. NUMERICAL METHOD

The COCAL code for binary black holes has been
described in detail in Refs. [73–75]. Here, we will review
the most salient features of the grids used for the solution of
the field equations and discuss the differences that arise
from the treatment of binary stars.
When treating binary systems, COCAL employs two

kinds of coordinate systems. The first kind is compact
object coordinate patch (COCP) and has exactly two
members, one centered on each star. The second kind is
asymptotic region coordinate patch (ARCP) and can have
in principle any number of members in an onion type of
structure. In our computations, the ARCP patch has only
one member, which is centered on the center of mass of the
system. All coordinate systems use spherical coordinates
ðr; θ;ϕÞ ∈ ½ra; rb� × ½0; π� × ½0; 2π�, but the components of
field variables (like the shift) are written with their
Cartesian components ðβx; βy; βzÞ. The values of ra; rb
depend on the compact object (black hole or neutron star)
and the coordinate patch (COCP or ARCP). For the binary
systems treated here, ra of the COCP patch will always be
zero, while for the ARCP patch ra ≈Oð10MÞ,M being the
mass of the star. As for rb, the values are kept the same as in
the binary black hole computation, i.e., Oð102MÞ for the
COCP patch, and Oð106MÞ for the ARCP patch.
The orientation of the coordinate patches is as follows:

the ARCP patch has the familiar ðx; y; zÞ orientation, the
first COCP patch, which is centered on the negative x axis
of the ARCP patch, has the same orientation as the ARCP
patch, while the second COCP patch, which is centered on
the positive x axis of the ARCP patch, has negative ðx; yÞ
orientation, and positive z orientation with respect to the
ARCP patch and to the first COCP patch. In other words,
the coordinate system of the second COCP patch is
obtained from the first COCP patch by a rotation through
an angle of π.
The geometry of the ARCP patch (or any number of

them) is that of a solid spherical shell with inner radius ra
and outer radius rb. On the other hand, the COCP patch
geometry is that of a sphere of radius rb, with another
sphere of radius re at distance ds from the center, being
removed from its interior. This second sphere whose
boundary we call the excised sphere Se, is centered on
the x axis around the other compact object. For the first
COCP patch, its excised sphere Se is centered on the
position of the second star, while for the second COCP
patch, its excised sphere Se is centered on the position of
the first star. The size of every sphere Se is slightly larger
than the star resolved with an opening half-angle of ∼π=3
as seen from the origin of the COCP patch. This is done to
resolve accurately the region around the other star and

reduce the number of multipoles used in the Legendre
expansion. In this work we typically use 12 multipoles in
our computations. Table I summarizes the properties of the
various coordinate patches used and which are illustrated
schematically in Fig. 1.
On the coordinate grids described above we solve the

Poisson-type nonlinear equations (11), (12), and (13).
These equations are solved using the representation for-
mula with a suitable choice of a Green’s function (this is
also known as the KEHmethod [81]). The Green’s function
is expanded in terms of spherical harmonics, and the
integrals (both volume and surface) are performed on the
spherical coordinate grids described above and in more
detail in Sec. III A for the case of binary stars.
The numerical approximations introduced in COCAL

are of different types: First, from the truncation of the
series of the Legendre expansion; second, from the
solution of the equations on discretized grids via finite-
difference methods [36]. Typically, we use second-order
centered stencils for the numerical differentiations and
integrations [73]. An exception is the use of a third-order
finite-difference stencil for the radial derivatives and the
use of a fourth-order integration in the polar coordinate
[74]. We also typically use second-order interpolations
of scalar functions from grid points to midpoints. Further-
more, when a function needs to be interpolated from
one coordinate system to another, we use a fourth-order
Lagrange interpolation. This usually happens when we
compute the surface integral at the excised sphere Se for
in that case we need the potential and its derivative on Se
as seen from the center of Se.

TABLE I. Summary of grid the parameters used for the binary
systems computed here.

ra: Radial coordinate where the radial grids start. For the
COCP patch it is ra ¼ 0.

rb: Radial coordinate where the radial grids end.
rc: Center of mass point. Excised sphere is located at 2rc in

the COCP patch.
re: Radius of the excised sphere. Only in the COCP patch.
rs: Radius of the sphere bounding the star’s surface. It is

rs ≤ 1. Only in COCP.
Nr: Number of intervals Δri in r ∈ ½ra; rb�.
N1

r : Number of intervals Δri in r ∈ ½0; 1�. Only in the COCP
patch.

Nf
r: Number of intervals Δri in r ∈ ½0; rs� in the COCP patch

or r ∈ ½ra; ra þ 1� in the ARCP patch.
Nm

r : Number of intervals Δri in r ∈ ½ra; rc�.
Nθ: Number of intervals Δθj in θ ∈ ½0; π�.
Nϕ: Number of intervals Δϕk in ϕ ∈ ½0; 2π�.
d: Coordinate distance between the center of Sa (r ¼ 0) and

the center of mass.
ds: Coordinate distance between the center of Sa (r ¼ 0) and

the center of Se.
L: Order of included multipoles.
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A. The numerical grids

In Refs. [73,74] we described in detail optimal numerical
grids that we constructed in order to lower the error of the
potentials for both close and large separations, for any kind
of mass ratio. In particular, when we computed sequences,
instead of keeping the radii of the black holes the same and
increasing their separation, we kept the separation fixed and
decreased their radii. By choosing the interval separation
near the black holes according to their excised radius,
we were able to obtain sequences comparable to the ones
produced by spectral methods.
We adopt here the same philosophy for the computation

of binary stars. Contrary to previous studies [46], in order to
compute sequences of binary stars we let the maximum
radius of the star be variable and we denote by rs the
infimum of the radii of all spheres bounding the star that are
centered on the origin of the COCP patch. By continuously
diminishing rs while keeping the distance between the
stars constant, we can compute sequences of stars with a
continuously increasing separation. In this way we can
control the region around the excised sphere as described in
[73,74], while maintaining the accuracy in the area covered
by the neutron star.
The COCAL radial grid for binary stars can be seen in

Fig. 1, where all the radial distances are the normalized
quantities discussed in Sec. III B. In that sense, they should
be denoted with a hat, for example r̂, which is omitted here

for simplicity. When comparing with Fig. 2 of [73], we can
observe that there is also an important difference in the
notation. This regards the quantity Nf

r, which previously
was used to denote the number of intervals in ½ra; 1�, while
here it is used to denote the number of intervals in
½ra; rs� ¼ ½0; rs�, with rs ≤ 1. The number of intervals in
[0, 1] is denoted by a new variable called N1

r (this plays
the role of the old Nf

r for grid comparisons). This change
was necessary since in all previous studies [46], the surface
of the star was bounded by the fixed r ¼ 1 sphere, and
therefore the fluid extended until that point. To compute
stars at a larger separation while satisfying this constraint,
we would have to increase the position of the excised
sphere Se and therefore expand all grid quantities analo-
gously. To avoid such a complication, we introduce a
variable rs that effectively mimics the change in separation.
By varying the end point of the fluid (point rs) we achieve
the same result as varying the distance between the stars,
but we maintain the good convergence properties that were
established in [74] while maintaining our fluid code
essentially unchanged.
As we can see from Fig. 1, there are five regions in the

COCP patch of a star that are denoted by S; I; II; III,
and IV. The star is resolved by a constant grid spacing
Δr ¼ rs=Nf

r, as region II, which has spacing Δr2 ¼ 1=N1
r .

Setting Δri ≔ ri − ri−1, the grid intervals in each of them
are

FIG. 1 (color online). Structure of the radial grid for the COCP coordinate system for binary stars. rs can take any value in (0, 1], but
typical values used are in the range [0.5, 1]. Decreasing rs amounts to a larger effective distance between the two stars.
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Δri ¼ Δr; for i ¼ 1;…; Nf
r − 1; ð70Þ

Δriþ1 ¼ h1Δri; for i ¼ Nf
r;…; N1

r − 1; ð71Þ

Δri ¼ Δr2; for i ¼ N1
r ;…; Nm

r ; ð72Þ

Δriþ1 ¼ h3Δri; for i ¼ Nm
r ;…; Nm

r þ N1
r − 1; ð73Þ

Δriþ1 ¼ h4Δri; for i ¼ Nm
r þ N1

r ;…; Nr − 1; ð74Þ

which correspond to regions S; I; II; III, and IV, respec-
tively, The ratios hið> 1Þ ði ¼ 1; 3; 4Þ are, respectively,
determined from the relations

1 − rs ¼ Δr
h1ðhN

1
r−Nf

r
1 − 1Þ
h1 − 1

; ð75Þ

2rc ¼ Δr
h3ðhN

f
r

3 − 1Þ
h3 − 1

; ð76Þ

rb − 3rc ¼ Δr
h4ðhNr−Nm

r −Nf
r

4 − 1Þ
h4 − 1

: ð77Þ

For the ARCP coordinate system, there are in general
two regions, one with constant grid spacing and one with
increasing spacing. The grid intervals in these regions are
defined by

Δri ¼ Δr1; for i ¼ 1;…; Nm
r ; ð78Þ

Δriþ1 ¼ kΔri; for i ¼ Nm
r ;…; Nr − 1; ð79Þ

where Δr1 ¼ 1=Nf
r, and the ratio k is determined from

rb − rc ≕ Δr
kðkNr−Nm

r − 1Þ
k − 1

: ð80Þ

As regards the angular resolution, we keep the same grid
interval in the θ and ϕ directions and therefore

Δθj ¼ θj − θj−1 ¼ Δθ ¼ π

Nθ
; ð81Þ

Δϕk ¼ ϕk − ϕk−1 ¼ Δϕ ¼ 2π

Nϕ
: ð82Þ

One of the additional complications of having to deal
with the fluid of a star, instead of a vacuum spacetime, is
the need to accurately find its surface. This surface may
contract or expand during the calculation, creating signifi-
cant problems in close binary configurations. One very
effective solution to these issues [105] is the use of surface-
fitted coordinates (SFC) that exist only inside each fluid
and are normalized by the radius of the star. We denote this
extra spherical coordinate system as ðrf; θf;ϕfÞ, where

rf ≔
r

Rðθ;ϕÞ ; θf ≔ θ; ϕf ≔ ϕ; ð83Þ

and where the surface of the star is denoted by Rðθ;ϕÞ.
By construction, the domain of these fluid coordinates is

½0; 1� × ½0; π� × ½0; 2π�, and Rðθf;ϕfÞ is a function that will
be determined at the end of the self-consistent iterative
method (see Appendix C). The advantage of SFC in the
computation of derivatives on the star’s surface, as well as
the implementation of the boundary condition Eq. (58), will
be discussed in Sec. III D.

B. Dimensionless and normalized variables

Having removed the dimensions from our equations by
using units in which G ¼ c ¼ M⊙ ¼ 1, we perform a
normalization of all variables in order to introduce a scale in
our problem that is intimately related to the variable rs,
introduced in Sec. III A.
We normalize variables by demanding that the inter-

section of the star’s surface with the positive x axis be at
r ¼ rs. If R0 is the scaling parameter, we impose6

Rðπ=2; 0Þ
R0

¼ rs ¼
Rðπ=2; πÞ

R0

; ð84Þ

so that rsR0 is the real semimajor radius of the star.
Hereafter, we will denote normalized variables with a
hat and thus define

x̂i ≔
xi

R0

; ð85Þ

from which it follows that the normalized version of
Eq. (11) is7

∇̂2ψ ¼ Ŝgψ þ R2
0S

f
ψ ; ð86Þ

where ∇̂ is the Laplacian operator associated with the
variables x̂i, and similarly Ŝgψ has all derivatives with
respect to the normalized variables. Note also that

ωi ¼ βi þ Ωϕi ¼ βi þ Ω̂ϕ̂i; ð87Þ

where Ω̂ ≔ ΩR0. If we now define

Φ̂ ≔
Φ
R0

; ð88Þ

we observe that all scaling factors in Eq. (57) drop out.
Because this is also true for the boundary condition, i.e.,

6Note that rs, but also rf in Eq. (83), are ratios of two radial
coordinates and thus dimensionless for any choice of units; in
this respect, they do not need to be indicated with a hat.

7Similar normalized equations hold for Eqs. (12) and (13).
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Eq. (58), these equations are each coded in the same form
but with normalized quantities replacing the original ones.
Before proceeding further with our normalization

scheme, let us comment that the surface-fitted coordinates
of Eq. (83) are already normalized coordinates and their
radial range is [0, 1] irrespective of the fluid scaling
profile rs. Since Rðθ;ϕÞ ≤ Rðπ=2; 0Þ ¼ R0rs, we have
0 ≤ r ≤ Rðθ;ϕÞ ≤ R0rs, so that the range for r̂ is

r̂ ≤ R̂ðθ;ϕÞ ≤ rs; or rf ¼
r̂

R̂ðθ;ϕÞ ≤ 1: ð89Þ

Changing the scale by modifying R0 will affect the
conformal factor and the lapse function since they scale
as [46,106]

ψ ¼ ψ̂R2
0 ; α ¼ α̂R

2
0 : ð90Þ

As mentioned earlier, the system of partial differential
equations that we have to solve, i.e., the normalized
versions of Eqs. (11)–(13) and Eq. (57), involve three
constants: R0; Ω̂, and C. To find them we will use the Euler
integral evaluated at three arbitrary points to construct a
nonlinear 3 × 3 system that will be solved with a typical
Newton-Raphson method. This procedure will be repeated
every time we solve for any of the unknown variables
ψ ; βi; α;Φ, and q, since any change of them will affect the
Euler integral and thus the three constants.
The arbitrary points we choose to evaluate the Euler

integral are along the x axis and in spherical coordinates are
defined as

r1 ¼ rs; θ1 ¼ π=2; ϕ1 ¼ 0; ð91Þ

r2 ¼ 0; θ2 ¼ 0; ϕ2 ¼ 0; ð92Þ

r3 ¼ rs; θ3 ¼ π=2; ϕ3 ¼ π: ð93Þ

In the corotating case, Eqs. (32) and (31) will become

FcðΩ̂; R0; CÞ ¼ − lnCþ R2
0 ln α̂þ ln h

þ 1

2
ln

�
1 −

�
ψ̂2

α̂

�
2R2

0ðβy þ Ω̂ϕ̂yÞ2
�
¼ 0;

ð94Þ

while for the spinning case, Eqs. (42), (49), and (51) yield

FisðΩ̂; R0; CÞ ¼ − ln λþ R2
0 ln α̂þ ln h

− ln

�
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ AðR0Þ

λ2

r �

þ 1

2
ln

�
1þ BðR0Þ

h2

�
¼ 0; ð95Þ

with

AðR0Þ ≔ ðα̂2ψ̂AÞR2
0 ~si∂̂iΦ̂þ ðα̂2ψ̂4þ2AÞR2

0δij ~si ~sj;

BðR0Þ ≔ ðψ̂−4ÞR2
0 ∂̂iΦ̂∂̂iΦ̂þ 2ðψ̂AÞR2

0 ~si∂̂iΦ̂;

þ ðψ̂4þ2AÞR2
0δij ~si ~sj;

λ ≔ Cþ ðβy þ Ω̂ϕ̂yÞ∂̂ ŷΦ̂:

Evaluating either Eq. (94) or Eq. (95) at the three points
given by (91)–(93) will produce a system of three equations
in the three unknowns Ω̂; R0, and C; the solution of the
system will determine these constants. These unknowns are
computed separately for the two stars, although they yield
the same solution for the case of equal-mass binaries
considered here. We also note that the star’s surface remains
fixed and the values of the specific enthalpy h at the three
points (91)–(93) is unchanged, with h ¼ 1 at (91) and (93).

C. Elliptic solver for the gravitational part

As discussed in detail in Refs. [73–75], Eqs. (11)–(13)
are solved using the representation theorem of partial
differential equations in a self-consistent way. Starting from

∇2f ¼ S; ð96Þ

where S is a nonlinear function of f, and using the Green’s
function without boundary Gðx; x0Þ ¼ 1=jx − x0j that
satisfies

∇2Gðx; x0Þ ¼ −4πδðx − x0Þ; ð97Þ

a solution for f is obtained as

fðxÞ ¼ −
1

4π

Z
V
Gðx; x0ÞSðx0Þd3x0

þ 1

4π

Z
∂V

½Gðx; x0Þ∇0afðx0Þ− fðx0Þ∇0aGðx; x0Þ�dS0a:
ð98Þ

where V is the domain of integration, x; x0 ∈ V ⊆ Σ0, the
initial spacelike hypersurface. The volume V and its
boundary ∂V depend on the coordinate system we are
solving for, i.e., COCP or ARCP as described in Sec. III A.
This is the principle of the KEH method [81] and will be
suitably modified in order to account for the specific
boundary conditions that exist in the new COCAL coordinate
systems. For example, the conformal factor will be
expressed as

ψðxÞ ¼ χðxÞ þ ψ INTðxÞ; ð99Þ

where
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ψ INTðxÞ ¼ −
1

4π

Z
V

Sgψ ðx0Þ þ Sfψ ðx0Þ
jx − x0j d3x0

þ 1

4π

Z
∂V

�∇0aψðx0Þ
jx − x0j − ψðx0Þ∇0a 1

jx − x0j
�
dS0a;

ð100Þ

and

χðxÞ ¼ 1

4π

Z
Sa∪Sb

½GBCðx; x0Þ∇0aðψBC − ψ INTðx0Þ

−ðψBC − ψ INTÞðx0Þ∇0aGBCðx; x0Þ�dS0a: ð101Þ

Note that GBC is the Green’s function associated with the
boundary conditions applied on the corresponding field
ψBC at the boundaries Sa and Sb. Formulas (99)–(101) will
be applied separately on every coordinate patch. If, for
example, we have one ARCP patch (as it happens in our
computations) it means that the equations above will be
applied three times: two for the COCP patches and one for
the ARCP patch. Of course, the domains of integration vary
according to the different patches considered. More spe-
cifically, if we denote by BðRÞ a sphere of radius R in each
of the COCP patch, then the integration domain of
Eq. (100) will be V ¼ BðrbÞ − BðreÞ and ∂V ¼ Se∪Sb ¼∂BðreÞ∪∂BðrbÞ, while that of Eq. (101) will be
Sa∪Sb ¼ Sb, since ra ¼ 0 for star configurations in the
COCP patch. Similarly, in the ARCP patch the integration
domain of Eq. (100) will be V ¼ BðrbÞ − BðraÞ, and that of
Eq. (101) ∂V ¼ Sa∪Sb.
We recall that in Ref. [73] we have introduced a number

of Green’s functions GBCðx; x0Þ suitable for various boun-
dary conditions. Here we add one more Green’s function
used in the COCP patch

GSDðx; x0Þ ≔
X∞
l¼0

gSDl ðr; r0Þ
Xl
m¼0

ϵm
ðl −mÞ!
ðlþmÞ!

× Pm
l ðcos θÞPm

l ðcos θ0Þ cos½mðϕ − ϕ0Þ�;
ð102Þ

where

gSDl ðr; r0Þ ≔ rl<
rlþ1
b

��
rb
r>

�
lþ1

−
�
r>
rb

�
l
�
; ð103Þ

and ϵ0 ¼ 1, ϵm ¼ 2 for m ≥ 1, while Pm
l are the asso-

ciated Legendre polynomials, and r> ≔ supfr; r0g,
r< ≔ inffr; r0g.
In the ARCP patch we use a Green’s functionGDDðx; x0Þ,

whose radial part satisfies the Dirichlet-Dirichlet boundary
conditions on Sa and Sb

gDDl ðr; r0Þ ¼
�
1−

�
ra
rb

�
2lþ1

�
−1 rla
rlþ1
b

×

��
r<
ra

�
l
−
�
ra
r<

�
lþ1

���
rb
r>

�
lþ1

−
�
r>
rb

�
l
�
:

ð104Þ

D. Elliptic solver for the fluid part

Next, we describe the method used to solve Eq. (57) and
which is therefore valid only for the spinning binaries. The
boundary condition for Φ, Eq. (58), is of von Neumann
type, and therefore we could apply the Poisson solver of
Sec. III C to obtain a solution. Instead, and as a demon-
stration of the versatility of the methods employed by
COCAL, we will adapt the procedure discussed in Ref. [46]
and solve this boundary-value problem as an application of
the least-squares algorithm.
First, we assume that the solution of Eq. (57) can be

written in the form

ΦðxÞ ¼ −
1

4π

Z
V

SΦðx0Þ
jx − x0j dV þ ζðxÞ ¼ ΦVðxÞ þ ζðxÞ;

ð105Þ

with ζðxÞ obeying the Laplace equation

∇2ζðxÞ ¼ 0: ð106Þ

Using the decomposition of Eq. (105), the boundary
condition (58) is written as

ψ4hutωimi −mi∂iΦV − ψ4þA ~simi ¼ mi∂iζ; ð107Þ

where we used the normal to the surface unit vector mi ¼
ðn̂sÞi instead of the gradient of the rest-mass density. The
equation above is evaluated on the surface of the star,
Rðθ;ϕÞ, and the velocity potential satisfies the following
symmetries:

Φðr; π − θ;ϕÞ ¼ Φðr; θ;ϕÞ; ð108Þ

Φðr; θ; 2π − ϕÞ ¼ − Φðr; θ;ϕÞ; ð109Þ

which in turn imply that the homogeneous solution, which
is regular at the stellar center, can be expanded as

ζðr; θ;ϕÞ ¼
XL
l¼1

Xl
m¼1

almrl

× ½1þ ð−1Þlþm�Ym
l ðcos θÞ sinðmϕÞ; ð110Þ

where Ym
l are the spherical harmonics and alm coefficients

to be determined. When the spins of the stars are in
arbitrary directions, the symmetries (108) and (109) no
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longer apply and expression (110) will contain also
cosine terms.
On the other hand, if Rðθ;ϕÞ is the surface of the star, the

spatial vector connecting any point on it with the center of
coordinates is given by

~xðθ;ϕÞ ¼ Rðθ;ϕÞðsin θ cosϕ; sin θ sinϕ; cos θÞ; ð111Þ

thus the unit normal vector will be

n̂sðθ;ϕÞ ≔
�∂~x
∂θ ×

∂~x
∂ϕ

����� ∂~x∂θ ×
∂~x
∂ϕ

����
−1
; ð112Þ

or equivalently

n̂s ¼
1ffiffiffi
h

p
�
r̂ −

1

R
∂R
∂θ θ̂ −

1

R sin θ
∂R
∂ϕ ϕ̂

�
; ð113Þ

where r̂; θ̂; ϕ̂ are the spherical unit vectors and

hðθ;ϕÞ ≔ 1þ
�
1

R
∂R
∂θ

�
2

þ
�

1

R sin θ
∂R
∂ϕ

�
2

: ð114Þ

Using Eqs. (110) and (113), the boundary condition (107)
is written as

XL
l¼1

Xl
m¼1

almFlmðθ;ϕÞ ¼ Hðθ;ϕÞ; ð115Þ

where

Hðθ;ϕÞ ≔ ψ4hutωimi −mi∂iΦV − ψ4þA ~simi; ð116Þ

and

Flmðθ;ϕÞ ≔ ½1þ ð−1Þlþm�

×

�
lRl−1Ym

l sinðmϕÞ− ∂R
∂θ R

l−2 ∂Ym
l

∂θ sinðmϕÞ

− ∂R
∂ϕ

Rl−2
sin2θ

Ym
lm cosðmϕÞ

�
: ð117Þ

To solve for the coefficients alm, we consider the functional

E ≔
X
θi;ϕj

�XL
l¼1

Xl
m¼1

almFm
l ðθi;ϕjÞ −Hðθi;ϕjÞ

�2
¼ 0;

ð118Þ

of the discretized version of the boundary condition (115)
and demand that for fixed indices p and q

∂E
∂apq ¼ 0: ð119Þ

The minimizing condition Eq. (119) then yields

X
l;m

alm

�X
i;j

Flmðθi;ϕjÞFpqðθi;ϕjÞ
�

ð120Þ

¼
X
i;j

Hðθi;ϕjÞFpqðθi;ϕjÞ; ð121Þ

which is a linear system in terms of the alm coefficients.
For L even, the dimensions of the system is M ×M with
M ¼ LðLþ 1Þ=2. After determining the coefficients alm,
the solution for the velocity potential Φ is obtained from
Eqs. (105) and (110).

IV. NUMERICAL RESULTS

In what follows we report tests of our new code against
previous results obtained by other groups and then present
some new ones. In particular, we focus on the construction
of quasiequilibrium sequences for corotating, irrotational,
and spinning binaries and produce a binary white dwarf
solution (see Appendix D) in order to explore the weak-
field limit of our code. We compute two main global-error
indicators to measure the accuracy of our converged sol-
utions; the first one is given by the relation MK¼MADM,
where MK and MADM are the Komar and Arnowitt-Deser-
Misner (ADM) mass, respectively [107–111]. The second
one is instead related to the first law of binary thermody-
namics dMADM ¼ ΩdJ, where Ω is the orbital frequency
and J the orbital angular momentum [93]. Explicit defi-
nitions and computational algorithms for these quantities
within COCAL are presented in Appendix A.
Sequences of constant rest mass can be thought of

as snapshots of an evolutionary process that drives the
two stars close to each other as a result of gravitational
radiation reaction. At every instant in time, the rest mass
of each star is conserved; furthermore, if the flow is
irrotational, the circulation of the fluid velocity on any
loop is also conserved (Kelvin-Helmholtz theorem [36]).
It is possible to characterize these sequences via the
properties of the stars, such as the compactness or the
ADM mass, when the binary has infinite separation and
each star is spherical.
By varying the separation between the two stars and

solving each time all the relevant equations, we obtain
solutions of a given central rest-mass density, and then
another loop of solutions has to be invoked in order to find
the particular central rest-mass density that yields a star
with the desired rest mass. Typically, this is done by a
Newton-Raphson method, and it takes a maximum of ten
iterations depending on the starting solution.
In this way we can monitor important quantities like the

binding energy of the system, which is defined as

Eb ≔ MADM −M∞; ð122Þ
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and represents the total energy lost in gravitational waves
by the system, sinceM∞ is twice the ADMmass of a single
isolated spherical star.

A. Corotating solutions

As mentioned in the Introduction, corotating states
[106,112–114], i.e., states with zero angular velocity of

the star with respect to a corotating observer, probably are
not physically realistic due to the low viscosity of the
neutron-star matter. Such solutions represent an important
step in the numerical solution of the binary problem, since
they provide key insights for the numerical implementation
of a stable algorithm. In particular, the surface-fitted
coordinates, as well as the solution of the Euler integral,
Eq. (32), can be thoroughly checked. This allows us to

0.2420

0.2422

0.2424

0.2426

0.2428

0.2430

0.2432

0.2434

0.2436

0.03 0.06 0.09 0.12

M
A

D
M

 K
-1

/(
2(

Γ 
- 

1)
)

Ω K1/(2(Γ - 1))

C=0.12

COCAL
LORENE

0.064

0.066

0.068

0.070

0.072

0.074

0.076

0.078

0.080

0.03 0.06 0.09 0.12

J 
K

-1
/(

Γ 
- 

1)

Ω K1/(2(Γ - 1))

C=0.12

COCAL
LORENE

0.064

0.068

0.072

0.076

0.080

0.2424 0.2427 0.2430 0.2433

J 
K

-1
/(

Γ 
- 

1)

MADM K-1/(2(Γ - 1))

C=0.12

COCAL
LORENE

0.3094

0.3098

0.3102

0.3106

0.3110

0.04 0.08 0.12 0.16 0.20

M
A

D
M

 K
-1

/(
2(

Γ 
- 

1)
)

Ω K1/(2(Γ - 1))

C=0.18

COCAL
LORENE

0.092

0.096

0.100

0.104

0.108

0.04 0.08 0.12 0.16 0.20

J 
K

-1
/(

Γ 
- 

1)

Ω K1/(2(Γ - 1))

C=0.18

COCAL
LORENE

0.092

0.096

0.100

0.104

0.108

0.3094 0.3098 0.3102 0.3106 0.3110

J 
K

-1
/(

Γ 
- 

1)

MADM K-1/(2(Γ - 1))

C=0.18

COCAL
LORENE

FIG. 2 (color online). Quasiequilibrium sequences for corotating binary neutron stars with EOS consisting of a single polytrope with
Γ ¼ 2. The left column corresponds to models with compactness C ¼ 0.12, while the right column corresponds to C ¼ 0.18.M and J are
the total ADM mass and angular momentum of the system. The resolutions used are those given in Table II. A comparison is made with
the results of Ref. [43], where similar solutions were obtained from the spectral code LORENE [115].
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perform a calibration without having to worry about the
fluid flow (i.e., to solve the equation of conservation of
rest mass). Corotating evolutionary configurations are
known to exhibit a minimum in the mass and angular
momentum versus the normalized angular velocity
ΩK1=ð2ðΓ−1ÞÞ, which was taken to denote the putative
innermost stable circular orbit, beyond which the binary
was thought to proceed rapidly toward a merger. In
practice, fully general-relativistic simulations of inspiraling
binary neutron stars do not show the existence of such an
instability, revealing instead that the inspiral and merger is a
smooth process [1,2]. Nevertheless, the presence of such a
minimum represents a useful test of numerical codes, as
does the appearance of a familiar spike, similar to the one
encountered in binary black-hole solutions, when plotting
the binding energy versus the angular momentum of the
binary.
In Fig. 2 we present sequences of binary neutron stars

that correspond to the compactness of C ≔ MADM=R ¼
0.12 and 0.18, whereMADM and R are the (ADM) mass and
radius of each star when taken at infinite separation. The
ADM and Komar mass, as well as other quantities used
in COCAL, are described in detail in Appendix A. The
adiabatic index is Γ ¼ 2, and the polytropic constant is set
to be K ¼ 1. In the various plots a comparison is made
between the results obtained with COCAL and those
presented in Ref. [43], where the same initial data were
computed using LORENE, a pseudospectral code developed
by the Meudon group [43]. As we can see, the relative
difference in the results between the two codes is of the
order of 0.05%, even when a medium resolution is used for
COCAL. The grid structure used in these calculations is the
one described in Table II.
Similarly, in Fig. 3 we report the change in the central

rest-mass density with respect to the one at infinity, which
is ρ∞ ¼ 0.0922 for compactness C ¼ 0.12, while it is
ρ∞ ¼ 0.1956 for C ¼ 0.18. Clearly, the central rest-mass
density decreases as the binary comes closer, making
the onset of an instability to gravitational collapse very
unlikely [116]. In addition, as a measure of accuracy of

these corotating sequences, we plot in Fig. 4 the relative
difference

ΔM ≔
����MADM −MK

MADM

����; ð123Þ

as a function of the binary separation ds=rs. Note that
all radii are here normalized to the scaling factor R0 and
are therefore dimensionless, so that, e.g., the physical
distance between the two neutron stars is dsR0. As we
can see, even for the medium resolution used in these
calculations the error is below 10−4. All of the quantities
in the expression above have been extracted from the
ARCP patch, as integrals at infinity. We note that at
present COCAL does not implement a unifying mesh,
and this prevents us from calculating the virial error as
obtained by Friedman, Uryu, and Shibata [93], since we
are using overlapping coordinate systems. We plan to
revisit this issue in the future.
Finally, in Fig. 5 we report sequences of corotating

binaries for increasing central rest-mass density at different
separations, from ds=R0 ¼ 4, down to separation in which

TABLE II. Grid parameters used for the corotating sequences of compactness 0.12, 0.18, presented in Fig. 2. Hs2d refers to solutions
at large separations, while Hs2b refers to binaries with small separations. For the Hs2d case the separation between the two neutron stars
is kept fixed at ds ¼ 2rc ¼ 2.5 while the surface of the neutron star (maximum value rs) varies from rs ¼ 0.5 to rs ¼ 0.86 creating
effectively binaries with separations from 5.0 ¼ 2.5=0.5 to 2.91 ¼ 2.5=0.86. Similarly in the Hs2b case ds ¼ 2rc ¼ 2.125, and the
effective separations are from 2.125=0.74 ¼ 2.87 to 2.125=0.98 ¼ 2.17.

Type Patch ra rs rb rc re Nf
r N1

r Nm
r Nr Nθ Nϕ L

Hs2d COCP-1 0.0 var 102 1.25 1.125 50 64 80 192 48 48 12
COCP-2 0.0 var 102 1.25 1.125 50 64 80 192 48 48 12
ARCP 5.0 � � � 106 6.25 � � � 16 � � � 20 192 48 48 12

Hs2b COCP-1 0.0 var 102 1.0625 1.03125 60 64 68 192 48 48 12
COCP-2 0.0 var 102 1.0625 1.03125 60 64 68 192 48 48 12
ARCP 5.0 � � � 106 6.25 � � � 16 � � � 20 192 48 48 12
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FIG. 3 (color online). Relative change in the central rest-mass
density for the corotating sequences in Fig. 2, shown as a function
of separation.
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the two stars are almost touching ds=R0 ¼ 2.125. Here we
use rs ¼ 1, and therefore the radius of the neutron star is
R0. Clearly, for any given central energy density a larger
mass is supported by the binary (supramassive solutions)
when we move to closer configurations, once again
excluding the onset of an instability to gravitational
collapse to black hole [117–119].

B. Irrotational sequences

As anticipated in the Introduction, irrotational neutron
stars have been considered as a reasonable first approxi-
mation to describe the flow in binary configurations. In
such a case, the total angular momentum is less than the
corresponding of a corotating binary, since in each star
there is a flow in the counterdirection with respect to the
orbital motion.8 This has two consequences. First the

inspiral of irrotational binaries is faster than that of
corotating ones or, equivalently, the gravitational-wave
frequency is expected to increase with a faster rate for
irrotational systems. To first order in the spins, the rate of
inspiral is [120,121]

dr
dt

¼ −
64

5
ν

�
M
r

�
3
�
1 −

7

12

1

M2

�
M
r

�
3=2

× L̂ ·

��
19þ 15

M2

M1

�
~S1 þ

�
19þ 15

M1

M2

�
~S2

�	
;

ð124Þ

where ν is the symmetric mass ratio and L̂ the unit angular
momentum vector. From (124) we can see that

j_rirrj > j_rcorj; ð125Þ

which is expected, since spinning binaries have to radiate
also the additional angular momentum before they
merge [122].
Second, in the light of the results obtained for binary

black holes, where binaries with larger spins lead to
increasingly spinning final black holes [123,124], the
irrotational binary system will eventually lead to a Kerr
black hole that is more slowly rotating than the corre-
sponding one produced by the corotating binary.
As done in Sec. IVA for corotating binaries, we compare

in Fig. 6 our irrotational solutions for compactness C ¼
0.12 and 0.18 against the corresponding results presented
in Ref. [43]. Although we use here a relatively small
resolution, i.e., Hs2d from Table II, the relative difference
with Ref. [43] is again of the order of 0.05%. Note that
for binaries with compactness C ¼ 0.12, the variable rs
ranges from rs ¼ 0.5 to rs ¼ 0.87, which corresponds to
coordinate separations ds=rs ¼ 2.5=0.5 ¼ 5 and ds=rs
¼ 2.5=0.87 ¼ 2.87, respectively. On the other hand, for
C ¼ 0.18, rs varies from rs ¼ 0.5 to rs ¼ 0.79, which
corresponds to separations from ds=rs¼5 to ds=rs ¼ 3.16,
respectively. Note also that the minimum in these plots
marks the mass-shedding limit and the creation on the
equatorial plane of a cusp in the rest-mass density.
In Fig. 7 we present the results relative to the irrotational

binary solutions with rs ¼ 0.76 and compactness C ¼ 0.18.
More specifically, in the left column we report the contour
plots of the conformal factor ψ from 1.0 to 1.33 with step
0.01, of the rest-mass density from 0.0 to 0.3 with step 0.01,
and of the velocity potential Φ from −0.2 to 0.2 with step
0.01, all on the ðx; yÞ plane. On the other hand, in the right
column we show the shift and the fluid velocity vector
fields on the ðx; yÞ plane, and a contour plot of the rest-mass
density on the ðy; zÞ plane.
Similarly, in Fig. 8 we report two global error indicators

computed for irrotational binaries with compactness
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FIG. 4 (color online). Measure of the virial error MK ¼ MADM
for the corotating sequences in Fig. 2, as a function of separation.
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8For this reason these binaries are also called counter-rotating
configurations.
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C ¼ 0.18. More specifically, the top panel shows the
fractional difference in the Komar and ADM masses, while
the bottom panel shows the fractional error of the
dMADM ¼ ΩdJ relation; note that the latter is a rather
stringent test and that a fractional error below 0.7% gives us
confidence on the accuracy of our solutions already at an
intermediate resolution. Finally, in Fig. 9 we plot the

relative change in the central rest-mass density as the
coordinate separation between the two stars is reduced.
This figure should be compared with the corresponding
Fig. 3 for corotating binaries and shows that again the
central rest-mass density decreases as the two stars
approach, but also that this decrease is smaller, of 1 order
of magnitude or more, than in the corotating case.
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FIG. 6 (color online). Sequences of irrotational binary neutron stars, with an EOS consisting of a single polytrope with Γ ¼ 2. The left
column corresponds to models with compactness C ¼ 0.12, while the right column corresponds to C ¼ 0.18. The resolution is Hs2d
from Table II. A comparison is made with the results presented in [43], where similar solutions were obtained from the spectral code
LORENE [115].
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FIG. 7 (color online). Irrotational binary solution with rs ¼ 0.76 and compactness C ¼ 0.18. The separation between the two neutron
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C. Spinning sequences

We conclude our discussion of the results with the new
COCAL by presenting our first calculations of quasiequili-
brium binary systems of spinning neutron stars. The
neutron-star matter is modeled using a piecewise polytrope
representation of the APR1 EOS [104]. As mentioned in
Sec. II C, an EOS with N polytropic segments requires 2N
parameters to be specified, which can be thought of as
one adiabatic constant, N − 1 dividing rest-mass densities,
and N adiabatic indices. In Ref. [101] it was found that a
number of tabulated nuclear matter EOS can be modeled
with three segments above nuclear density and one in the
crust, thus with a total of four polytropic zones. The error in
the approximation is ∼0.1%, or at worst ∼4%. A fit with a
minimum error was described in [101] that had a fixed crust
with Γ0 ¼ 1.35692, K0 ¼ 3.59389 × 1013, and three core
zones with adiabatic exponents fΓ1;Γ2;Γ3g, joining the
different pieces at rest-mass densities ρ1 ¼ 1014.7 gr=cm3

and ρ2 ¼ 1015 gr=cm3. Additional information on the
properties of the initial data are collected in Table IV.
The spin contribution to the fluid velocity is expressed

through the spatial three-vector ~si [cf. Eq. (56)], which we
express as

~si ¼ ~S0ð−y; x; 0Þ; ð126Þ

where the Cartesian coordinates x; y are centered in the
COCP patch, and the positive (negative) constant ~S0
denotes the magnitude of corotation (counterrotation).
In Table IV we report the properties of a sequence of

binary neutron stars with constant rest mass M0 ¼
1.5388M⊙, corresponding to an ADM mass MADM ¼
1.35M⊙ when the stars are at infinite separation. The
freedom in the choice of the spin velocity vector defined in
Eqs. (56) and (126) has been fixed by taking A ¼ 0, while
for ~S0 we examine two cases: ~S0 ¼ 0.01, which corre-
sponds to a spinning period of ∼3 ms, and ~S0 ¼ 0.05,
which corresponds to the extreme case of a period∼0.6 ms.
These choices correspond to spinning periods that are more
than twice smaller than those considered in [70], where the
maximum value considered was 6.7 ms. Although it is
rather unlikely that such small rotation periods are encoun-
tered in reality in binaries about to merge, it is a good
consistency check for our new code and an exploration of
its limits.
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MK ¼ MADM for irrotational sequences with C ¼ 0.18 using the
Hs2d grid of Table II and the Hs3d grid of Table III. Bottom
panel: relative error in the relation dMADM ¼ ΩdJ for the
irrotational sequences of compactness C ¼ 0.18 as a function
of the coordinate separation ds=rs.
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FIG. 9 (color online). Relative change in the central rest-mass
density for the irrotational sequences with C ¼ 0.18 of Fig. 6 as a
function of separation. Note that the decrease as the stars
approach each other is 1 order of magnitude (or more) smaller
than for corotating binaries (cf. Fig. 3).

TABLE III. Grid parameters used for the irrotational solution of
compactness C ¼ 0.18, presented in Fig. 7. The separation
between the two neutron stars is ds=rs ¼ 2.5=0.76 ¼ 3.29.

Type Patch ra rs rb rc re Nf
r N1

r Nm
r Nr Nθ Nϕ L

Hs3d COCP-1 0.0 0.76 102 1.25 1.125 100 128 160 384 96 96 12
COCP-2 0.0 0.76 102 1.25 1.125 100 128 160 384 96 96 12
ARCP 5.0 � � � 106 6.25 � � � 32 � � � 40 384 96 96 12
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The top left panel of Fig. 10 reports the dimensionless
binding energy Eb=M∞ of the binary as a function of the
dimensionless orbital frequency ΩM∞. Considered and
compared are an irrotational binary (violet solid line)
and two spinning binaries, one with ~S0 ¼ 0.01 (red solid
line) and another one with ~S0 ¼ 0.05 (blue solid line).
All binaries are modeled with the APR1 EOS using the
grid parameters of Table V, and both of the spinning
binaries have a velocity field with A ¼ 0. Also shown for
comparison is the irrotational fourth post-Newtonian (4PN)
(black dashed line) as well as the third post-Newtonian
(3PN) corotating (green dotted line) approximation
[125–128]. Explicit forms for these curves are given in

Appendix E. In the top right panel of Fig. 10 we report
instead the analogue curves for the dimensionless angular
momentum J=M2

∞.
We also note that a closer comparison with a PN

expression for spinning neutron stars would be interesting.
At the same time, it involves a number of subtleties. In fact,
in order to correctly plot such PN spinning curves it is
necessary to take into account two different effects. First, at
each separation (orbital frequency) the PN expressions
should use the correct values of the spins, which we recall
increase (in our case approximately linearly) along the
constant rest-mass sequence. This is made difficult by the
fact that these spins cannot be measured separately in our
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FIG. 10 (color online). Top: dimensionless binding energy (left panel) and angular momentum (right panel) as a function of the
dimensionless orbital frequency for sequences of constant rest mass neutron-star binaries with M0 ¼ 1.5388M⊙. Shown with different
lines are an irrotational sequence (violet solid line) and two spinning ones with A ¼ 0 and either ~S0 ¼ 0.01 (red solid line) or ~S0 ¼ 0.05
(blue solid line). All binaries are modeled with the APR1 EOS and are also shown for comparison is the 4PN irrotational (black dashed
line), and the 3PN corotating (green dotted line) approximation. Bottom: Fractional differences of the ~S0 ¼ 0.01 and ~S0 ¼ 0.05 spinning
sequences with respect to the irrotational sequence, ΔE=Eir ≔ Esp=Eir − 1;ΔJ=Jir ≔ Jsp=Jir − 1.

TABLE IV. Top part: summary of the parameters in the piecewise polytropic EOS used to represent the APR1 EOS. Bottom part: the
first lines report the main properties of the maximum-mass nonrotating configuration of the APR1 EOS; the second line reports the
properties of the nonrotating configuration used to construct the constant rest-mass and spinning binary sequences computed in
Sec. IV C. The last four lines report the stellar properties for the binary in the sequence having the smallest separation, with the last
column providing a possible estimate of the maximum absolute contribution of the spin angular momentum, ðJsp − JirÞ=2.
logp1 Γ0 Γ1 Γ2 Γ3 log ρ0 log ρ1 log ρ2 ~S0 A ðJsp − JirÞ=2
33.943 1.357 2.442 3.256 2.908 14.294 14.700 15.000 � � � � � � � � �

MADM½M⊙� M0½M⊙� Mp½M⊙� R½km� MADM=R log ρc logpc log ec ~S0 A ðJsp − JirÞ=2
1.666 1.989 2.294 7.995 0.307 15.489 36.340 15.642 � � � � � � � � �
1.350 1.539 1.636 9.138 0.218 15.221 35.562 15.276 � � � � � � � � �
2.661 1.539 1.636 10.246 � � � 15.220 35.559 15.275 0.01 0 0.0225
2.661 1.539 1.636 10.249 � � � 15.220 35.560 15.275 0.01 −6 0.0062
2.661 1.539 1.636 10.260 � � � 15.218 35.556 15.274 0.05 0 0.1176
2.661 1.539 1.636 10.248 � � � 15.219 35.559 15.275 0.05 −6 0.0313
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approach as they are part of the global solution. These
additional terms for aligned spins will typically move the
binding energy to more negative values relative to the
irrotational curve. Second, the masses appearing in the PN
expression need to be modified to account for the spin
kinetic energy. In contrast to binary black holes, where it is
possible to distinguish the irreducible mass from the spin-
induced mass [125–128], accounting for this contribution is
not easy for neutron stars. However, what is important here
is that these terms are positive and will move the quasie-
quilibrium curve upwards relative to the irrotational curve
and toward the corotating solution.
This is indeed the behavior that is shown by our

solutions, which fall between the irrotational sequence
and the corotating sequence; furthermore, the use of larger
initial spins yields binding energies that are systematically
larger as part of the orbital kinetic energy is channeled into
“spinning-up” the stars. Clearly, the differences in the
binding energy with respect to the irrotational binaries
are very small even for these high spinning rates, with a
maximum of 0.03% as it can be seen in the bottom left
panel of Fig. 10. More pronounced are the differences for
the angular momentum which are depicted on the bottom
right panel of Fig. 10 with a maximum of 4%. Note also
that the sign of ~S0 determines the relative position of the
spinning sequence relative to the irrotational one. In
particular, with a negative value for ~S0, the angular-
momentum curve for the spinning sequence would have
appeared below the irrotational one.
Finally, in Fig. 11 we report an estimate of the spin

contribution to the total angular momentum for a different
value of A. For the same binaries presented in Fig. 10 the
relative difference between the angular momentum of the

spinning binaries, Jsp, and that of an irrotational binary, Jir
with A ¼ −6 is at most 1% of the total, smaller than the
4% value obtained with A ¼ 0 of Fig. 10. Note that this
quantity is not expected to be constant along this sequence,
where only the rest mass and the spinning coefficient ~S0 are
kept constant.
If we estimate the dimensionless spin angular momen-

tum to be

χ ≔
S

M2
ADM

≔
1

2

�
Jsp − Jir
M2

ADM

�
; ð127Þ

then because the ADM mass of the spinning binaries is
very close to the irrotational one and lies in the range
MADM ∈ ½1.33; 1.34�, the dimensionless spin takes values
in the range χ ∈ ½0.027; 0.066� for the case with A ¼ 0 and
~S0 ¼ 0.05, and values in the range χ ∈ ½0.0017; 0.0035� for
the A ¼ −6, ~S0 ¼ 0.01 case. In all the cases considered
we have found that the error estimates discussed in the
previous sections lead quite generically to relative errors
that are≲0.7%, and that smaller errors can be obtained with
grids having a higher resolution.

V. CONCLUSION

We have presented the extension of the COCAL code to
treat binary configurations of compact stars within the
IWM formalism of general relativity. As with the work
done for binary black holes, we have used multiple
coordinate patches so as to be able to treat asymmetric
binaries. Also in the spirit of previous work, we have
introduced a particular normalization scheme that allows us
to accurately compute binary systems that have small or
large separations, recovering the spherical limit at large
distances. This is done by keeping the stars at fixed
coordinate positions, but artificially reducing their radius.
Furthermore, we have made use of surface-fitted coordi-
nates to describe accurately the stellar shape as it varies
along sequences of constant rest mass.
Also for the nonvacuum spacetimes considered here, we

have employed the KEH method [76–81], in which the
gravitational equations are solved using Poisson solvers
with appropriate Green’s functions, while for the conser-
vation of rest mass we employ a least-squared algorithm.
The code makes use of a piecewise polytropic description
to represent the EOS of stellar matter and, for the specific
cases considered here, we have adopted the representation
of the APR1 EOS [104].
Making use of a suitably adapted formulation described

in Ref. [63], the code is able to describe fluid flows within
the stars that corresponds to corotating, irrotational, but
also spinning binaries. As a validation of the numerical
solutions, we have constructed a number of sequences of
corotating and irrotational binary neutron stars having the
same mass. The results for corotating and irrotational
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FIG. 11 (color online). Spin contribution to the total angular
momentum. Shown for the same binaries presented in Fig. 10 but
with A ¼ −6 is the relative difference between the angular
momentum of the spinning binaries and that of an irrotational
binary. Note that despite the short spin periods considered, the
contribution of the spin angular momentum is at most 1% of
the total, smaller than the A ¼ 0 case Fig. 10, where the same
contribution was close to 4%.
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binaries have been compared with those published from the
pseudospectral code LORENE [43], and they revealed that
the relative difference in the results between the two codes
is of the order of 0.05%, even when a medium resolution is
used for COCAL.
When considering spinning binaries, and although the

code can handle arbitrary rotation prescriptions for the
individual stars, we have concentrated here on the case of
fluid flows in which the spins are parallel to the orbital
angular momentum. For this class of solutions, and to
explore the possible range of behaviors, we have consid-
ered sequences with stars that either are slowly spinning or
are spinning at rates that are 10 times larger than those
observed in binary pulsars systems. In all the cases
considered, we have found that error estimates of different
types lead to relative errors that are ≲0.7%.
A number of applications of these results and of addi-

tional developments of the code are expected to take place
in the coming months. First, we will explore the impacts of
stellar spins in numerical simulations of binary neutron
stars; more specifically, by exploiting the high convergence
order of our new numerical general-relativistic code [129],
we plan to extend the work carried out in [130] for the
inspiral part and the one recently published in [29,33]
for the postmerger signal. Second, by combining the
approaches followed in the solution of binary black holes
and binary neutron stars, we will extend the code to handle
also binaries comprising a black hole and a neutron star
of different masses and spin orientation. Third, we will
explore the space of solutions in which the spins of the
neutron stars are oriented arbitrarily as these are likely to
correspond to the most realistic configurations. Finally,
working on a parallelization of the code will allow us to
obtain results with much smaller computational costs,
enabling us to provide public initial data for spinning
binary neutron stars under a variety of conditions.
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APPENDIX A: MASS AND
ANGULAR MOMENTUM

In this appendix we review the mathematical definitions
of several of the quantities that have been used to character-
ize the properties of the binaries. We start with the rest mass

of each star, M0, defined as an integral over the spacelike
hypersurface Σt of the rest-mass density as measured by the
comoving observers

M0 ≔
Z
Σt

ρuαdSα ¼
Z
Σt

ρuα∇αt
ffiffiffiffiffiffi
−g

p
d3x

¼
Z
Σt

ρutαψ6r2 sin θdrdθdϕ: ðA1Þ

In COCAL, integrals like this are computed in dimensionless
form using normalized coordinates. With the help of
Eq. (66), Eq. (A1) is rewritten as

M̂0 ≔ R3
0

Z
Σt

K1=ð1−ΓiÞ
i q1=ðΓi−1Þutαψ6r̂2 sin θdr̂dθdϕ;

ðA2Þ

where Ki depends on r̂. The integrand in Eq. (A2) is
evaluated on the gravitational coordinates; therefore an
interpolation to the surface-fitted coordinates is needed
before the integral evaluation.
Next, a measure of the total energy of the system is given

by the ADM mass, MADM, which is defined as a surface
integral at spatial infinity as

MADM ≔
1

16π

Z
∞
ðfimfjn − fijfmnÞ∂jγmndSi

¼ −
1

2π

Z
∞
∂iψdSi ¼ −

1

2π

Z
∞

∂ψ
∂r r

2 sin θdθdϕ;

ðA3Þ

and which in normalized coordinates becomes

M̂ADM ≔ −R0

1

2π

Z
r¼rb

∂ψ
∂r̂ r̂

2 sin θdθdϕ: ðA4Þ

Note that spatial infinity in COCAL is represented by a
spherical surface with radius r ≈ 0.8rb of the ARCP
coordinate patch. Closely related to the ADM is the
Komar mass of the binary, which is related to the timelike
Killing field tα and is defined as

MK ≔ −
1

4π

Z
∞
∇αtβdSαβ ¼

1

4π

Z
∞
∂αdSα; ðA5Þ

or in normalized form as

M̂K ≔ R0

1

4π

Z
r¼rb

∂α
∂r̂ r̂

2 sin θdθdϕ: ðA6Þ

The angular momentum of the system is also calculated
from a surface integral at spatial infinity
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J ≔
1

8π

Z
∞
Ki

jϕ
jdSi ¼

1

8π

Z
∞
Aijϕ

jxir∞ sin θdθdϕ;

ðA7Þ

where ϕi is the generator of the orbital trajectories and we
have used the maximal slicing gauge. The corresponding
normalized quantity is

Ĵ ≔ R2
0

1

8π

Z
r¼rb

Âijϕ̂
jx̂ir̂b sin θdθdϕ: ðA8Þ

Finally, we also compute the “proper mass” of each star as
the integral of the total energy density measured by the
comoving observer

Mp ≔
Z
star

ϵuαdSα: ðA9Þ

APPENDIX B: ISOTROPIC COORDINATES
TOV SOLVER

In this appendix we describe our implementation for
obtaining spherical solutions and the related rescaling that
is used in COCAL. We can obtain the same solutions using a
one-dimensional KEH solver that mimics the full three-
dimensional code in a 3þ 1 setting. However, because
most of the time the TOV equations are presented in terms
of Schwarzschild coordinates while the actual calculations
are performed in isotropic coordinates, in what follows we
show how to transform the system of equations from
Schwarzschild to isotropic coordinates without having to
go through a new derivation of equations and automatically
obtaining a smooth solution at the stellar surface. The
results are of course identical to machine precision, at least
for simple polytropes we have checked. To the best of our
knowledge this approach has not been presented before in
the literature.
We recall that the line element in Schwarzschild and in

isotropic coordinates is given, respectively, by

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2dΩ2; ðB1Þ

¼ −α2ðr̄Þdt2 þ ψ4ðr̄Þðdr̄2 þ r̄2dΩ2Þ; ðB2Þ

with well known expressions for the functions
AðrÞ; BðrÞ; αðr̄Þ;ψðr̄Þ for the exterior of the star. For the
interior, instead, we need to solve the TOV equations

dA
dr

¼ −
2A

ϵþ p
dp
dr

; ðB3Þ

dp
dr

¼ −
ðϵþ pÞðmþ 4πr3pÞ

r2 − 2mr
; ðB4Þ

where

dm
dr

¼ 4πr2ϵ; and BðrÞ ¼ 1

1 − 2mðrÞ=r : ðB5Þ

Of course, it not difficult to derive the TOV equations in
the isotropic coordinates (B2) and then perform a direct
numerical integration in these coordinates. However, this
is not necessary, and it is possible to always work in
Schwarzschild coordinates rescaling the radial profile of
the solution so as to make the surface of the star appear at
the correct position and automatically obtain a smooth
solution in ½0;∞Þ without resorting to a postprocessing
rescaling.
Comparing Eqs. (B1) and (B2) it is easy to deduce that

ψ2ðr̄Þdr̄ ¼
ffiffiffiffi
B

p
dr and ψ2ðr̄Þr̄ ¼ r; ðB6Þ

which yield

dr
dr̄

¼ r
r̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2mðrÞ
r

r
: ðB7Þ

Using Eq. (B7), we can rewrite the TOV system in terms of
the isotropic radial coordinate r̄ as

dm
dr̄

¼ ð4πr2ϵÞ r
r̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r
; ðB8Þ

dp
dr̄

¼ −
ðϵþ pÞðmþ 4πr3pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2m=r
p 1

rr̄
; ðB9Þ

dψ
dr̄

¼ ψ

2r̄

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r
− 1

�
; ðB10Þ

dα
dr̄

¼ α
mþ 4πr3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m=r

p 1

rr̄
; ðB11Þ

where we used Eq. (B6) to derive Eqs. (B10) and (B11). It
is possible to simply integrate the system above to obtain
the star profile in isotropic coordinates. Initial values at
r̄ ¼ 0 are needed, and although this is not a problem for r,
m, and p (the latter being in general a free parameter),
but the values of α;ψ are not available to have a smooth
matching at the surface of the star r̄ ¼ R̄, whose position is
still unknown. On the other hand, one way to obtain a
smooth solution across the star’s surface is to exploit the
coordinate transformations

r ¼ r̄

�
1þM

2r̄

�
2

; ðB12Þ

r̄ ¼ r
2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
−
M
r

�
; ðB13Þ

to derive the expressions of ψ ; α in the Schwarzschild
coordinates
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ψðrÞ ¼ r
M

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r �
; ðB14Þ

αðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
: ðB15Þ

Again making use of Eq. (B7) and of the analytic
integration of its left-hand side, Eq. (B10) can be written as

d lnψ ¼ Fðr;mðrÞÞdr; ðB16Þ

where

Fðr;mðrÞÞ ≔ 1

2r

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðrÞ=rp

�
: ðB17Þ

As a result, an integration between r ¼ 0 and r ¼ R of
Fðr;mÞ leads to the following condition for the conformal
factor ψ :

ψð0Þ ¼ ψðRÞ exp
�
−
Z

R

0

Fðr;mðrÞÞdr
�
; ðB18Þ

so that ψ (and similarly α) at the star’s surface are
guaranteed to match smoothly the exterior solution, as it
can be seen in Fig. 12.

APPENDIX C: ITERATION SCHEME

The iteration procedure for binary stars is similar to the
one for binary black holes described in Ref. [73], but it also
contains the fluid coordinates and a solution for the extra
fluid variables in a multipatch setting. An overall picture of
this procedure is shown in Fig. 13, where the steps of the
gravitational Poisson solver (essentially everything from
“Compute Sψ” up to “Invert ∇2, compute ψ”) have been
described in detail in [73].

The code first initializes the lapse function and the
conformal factor from some initial spherical solution. For
that purpose we have developed two methods. One is an
isotropic TOV solver (see Appendix B), and another is a
one-dimensional KEH method. This last choice reproduces
the KEH approach used in three-dimensional computa-
tions, but in a one-dimensional mesh. Included in this
method are all the important ingredients of the three-
dimensional code, such as the renormalization of variables.
Comparing the results from these two independent schemes
gives us confidence about the robustness of the COCAL

iterative solutions.
After a choice of the velocity fluid potential, of the orbital

angular velocity, and in the case of spinning binaries, also
of the rotational states of each compact object, the code
proceeds to the main part of the iteration, which always starts
by interpolating q ¼ p=ρ; ∂iΦ, and ~si from the surface-fitted
coordinates to the gravitational coordinates. The interpolated
quantities are then used in the gravitational Poisson solver,
which is executed in addition to the root-finding routine
explained in Sec. III B. As discussed there, the constants
related to the Euler integral, the orbital angular velocity, and
the scaling of our grids C; Ω̂; R0, are calculated at this point,
and the lapse function, as well as the conformal factor, are
updated according to

ψnew¼ðψoldÞðRnew
0

=Rold
0
Þ2 ; αnew¼ðαoldÞðRnew

0
=Rold

0
Þ2 : ðC1Þ

When the gravitational solver ends, ψ ; βi; α are interpo-
lated to the surface-fitted coordinates in preparation for the
fluid Poisson solver. The main steps now are the compu-
tation of the new value of q, by the use of Eq. (49) or
Eq. (32), and then the solution of the conservation of rest
mass, Eq. (57). At this point, also the surface of the star is
computed.
At each iteration step, the fluid computation is performed

a few times (4 times for the results presented here) since
this results in a more stable final computation. A relaxation
parameter ξ is used when updating a newly computed
variable. If ΦðnÞðxÞ is the nth step value, and Φ̂ðxÞ the result
of the Poisson solver, then the ðnþ 1Þth step value will be

Φðnþ1ÞðxÞ ≔ ξΦ̂ðxÞ þ ð1 − ξÞΦðnÞðxÞ; ðC2Þ

where 0.1 ≤ ξ ≤ 0.4. Usually ξ ¼ 0.4 for α;ψ ; βi; q, while
ξ ¼ 0.1 for ϕ.
The criterion used by COCAL to stop the iteration is

given by

2
jΦðnÞ − Φðn−1Þj
jΦðnÞj þ jΦðn−1Þj < ϵc; ðC3Þ

for all points of the grids, and all variables α;ψ ; βi; q;Φ,
where we used ϵc ¼ 10−6 in this paper. In almost all of our
calculations, ψ and α converge to machine precision,
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FIG. 12 (color online). Solution of isotropic TOV using
correct boundary conditions. A rescaling was done at the
surface to be at r̄ ¼ 0.625.
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FIG. 13. The COCAL iteration for spinning binary stars.
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while the error in the fluid variables q and Φ decreases to
≈10−12 before the error in the shift reaches 10−7. This is
due to the existence of points in the gravitational mesh
where the shift has almost zero values, and convergence is
much slower there. Neglecting such points can speed up a
solution by a factor of at least 2. Currently, COCAL is
running on a serial processor, and it needs around 3–4 GB
of RAM to produce the solutions presented in this work.
With an Intel Xeon 3.60 GHz processor, about two days
are needed for these computations, with the irrotational
configurations taking longer than the spinning ones; this
is not a surprise since convergence is faster for corotating
binaries.

APPENDIX D: COROTATING BINARY
WHITE DWARFS

To test the sensitivity of our code and to prepare for
future work concerning neutron star-white dwarf or black
hole-white dwarf binaries, we also compute a corotating
binary white dwarf solution. Here the fields are orders of

magnitude less than the ones encountered in typical binary
neutron star binaries, and greater resolution is required in
order to acquire smooth solutions. The resolution used is
reported in Table VI where we can see that an increase in
Nθ; Nϕ by a factor of 3 relative to the solutions obtained in
Fig. 2, Table II, was used. In Fig. 14 we show a
representative binary white dwarfs solution with compact-
ness C ¼ 2 × 10−4, with centers placed at x ¼ �1.25 and
unit radii. From left to right, the different panels report the
contour plot of the lapse function from 0.9994 to 1.0 with a
step of 2 × 10−5, the shift vector field, and the contour plot
of the rest mass density. Note that the plots are centered at
the origin of the COCP-1 patch and the green circle refers
to the excised sphere Se. Values inside Se are taken from
the COCP-2 patch. The shift vector in binary white
dwarfs is approximately 4 orders of magnitude smaller
than the one typically encountered in neutron stars, while
the quantity jα − 1j is about 3 orders of magnitude
smaller. Overall we see a good convergence between
the different coordinate systems even for these small
values of the metric quantities.
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FIG. 14 (color online). Binary white dwarfs solution with compactness C ¼ 2 × 10−4, stellar centers placed at x ¼ �1.25 and unit
radii. Shown from left to right are a contour plot of the lapse function from 0.9994 to 1.0 with step of 2 × 10−5, the shift vector field with
maximum value 8.4 × 10−6, and a contour plot of the rest-mass density from 2 × 10−8 to 10−4 with step 8 × 10−8. Note that the green
sphere corresponds to the excised sphere Se of COCP-1.

TABLE V. Grid parameters used for the irrotational and spinning sequences with the APR1 EOS, presented in Fig. 10.

Type Patch ra rs rb rc re Nf
r N1

r Nm
r Nr Nθ Nϕ L

Hs2.5d COCP-1 0.0 var 102 1.25 1.125 76 96 120 288 72 72 12
COCP-2 0.0 var 102 1.25 1.125 76 96 120 288 72 72 12
ARCP 5.0 � � � 106 6.25 � � � 24 � � � 30 192 72 72 12

TABLE VI. Grid parameters used for the white-dwarf solutions with Γ ¼ 5=3.

Type Patch ra rs rb rc re Nf
r N1

r Nm
r Nr Nθ Nϕ L

WD COCP-1 0.0 1.0 102 1.50 1.25 64 64 96 192 144 144 12
COCP-2 0.0 1.0 102 1.50 1.25 64 64 96 192 144 144 12
ARCP 5.0 � � � 106 6.25 � � � 16 � � � 20 192 144 144 12
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APPENDIX E: POST-NEWTONIAN APPROXIMATION

The 4PN approximation for the binding energy of a system of two nonspinning bodies with masses M1;M2 and in
quasicircular orbit has been used in Fig. 10 to compare with the numerical results of irrotational and spinning binaries. The
explicit expression is given by [125–127]

Eirr

Mc2
¼ −

νx
2

�
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�
−
3

4
−

1

12
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�
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�
−
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8
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�
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; ðE1Þ

where γE is the Euler constant, M ≔ M1 þM2 is the total
mass of the system, ν ≔ M1M2=M2 is the symmetric mass
ratio, and x is the dimensionless orbital frequency

x ≔
�
ΩGM
c3

�
2=3

: ðE2Þ

For a corotating binary the binding energy also includes
terms from the kinetic energy of the spins as well as from
the spin orbit interaction. To 3PN this extra contribution is

ΔEcor

Mc2
¼ ð2 − 6νÞx3 þ ð−10νþ 25ν2Þx4; ðE3Þ

and therefore the total binding energy is given by the sum
of (E1) and (E3).

For a system that satisfies the first law of binary
mechanics and has binding energy of the form

EbðxÞ ¼
XN
i¼1

ðAi þ Bi ln xÞxi=2 ðE4Þ

the angular momentum will be

JðxÞ ¼
XN
i¼1

�
i

i − 3
ðAi þ Bi ln xÞ −

6Bi

ði − 3Þ2
�
x
i−3
2 : ðE5Þ

Using (E5) the irrotational part of the angular momentum is
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while the corotating additional part is

ΔJcor
GM2=c

¼ ð4 − 12νÞx3=2 þ ð−16νþ 40ν2Þx5=2: ðE7Þ
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