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Computation of the renormalized stress-energy tensor is the most serious obstacle in studying
the dynamical, self-consistent, semiclassical evaporation of a black hole in 4D. The difficulty arises
from the delicate regularization procedure for the stress-energy tensor, combined with the fact that in
practice the modes of the field need to be computed numerically. We have developed a new method for
numerical implementation of the point-splitting regularization in 4D, applicable to the renormalized stress-
energy tensor as well as to hϕ2iren, namely the renormalized hϕ2i. So far we have formulated two variants
of this method: t-splitting (aimed for stationary backgrounds) and angular splitting (for spherically
symmetric backgrounds). In this paper we introduce our basic approach, and then focus on the t-splitting
variant, which is the simplest of the two (deferring the angular-splitting variant to a forthcoming paper). We
then use this variant, as a first stage, to calculate hϕ2iren in Schwarzschild spacetime, for a massless scalar
field in the Boulware state. We compare our results to previous ones, obtained by a different method, and
find full agreement. We discuss how this approach can be applied (using the angular-splitting variant) to
analyze the dynamical self-consistent evaporation of black holes.
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I. INTRODUCTION

After the discovery of Hawking radiation [1] in 1975, it
was widely anticipated that the semiclassical approach to
gravity based on quantum field theory (QFT) in curved
spacetime would open the opportunity to explore various
interesting physical problems, in which a quantum field
interacts with the curved spacetime where it resides.
Among these problems, of special interest is the self-
consistent dynamical evaporation of a black hole (BH).
Another outstanding problem in this class is the evolution
of quantum fluctuations in the very early Universe, and the
resulting cosmological structure formation.
Indeed, in the latter problem of cosmological quantum-

field perturbations remarkable progress has been achieved
over the last few decades [2,3]. However, the problem of
analyzing the semiclassical evolution of an evaporating BH
still remains a serious challenge.
To understand the difficulties in analyzing this interest-

ing problem of self-consistent BH evaporation, let us
briefly review the basic structure of semiclassical gravity.
The metric gαβðxÞ is treated as a classical field, and it is
assumed to satisfy the semiclassical Einstein equation

Gαβ ¼ 8πhTαβiren; ð1:1Þ

where Gαβ is the Einstein tensor associated with gαβðxÞ.1
The source term hTαβiren is the regularized expectation
value of the stress-energy tensor associated with a quantum

field ϕðxÞ. For the sake of simplicity we shall take ϕ here to
be a scalar field. It is supposed to satisfy the field equation

ð□ −m2 − ξRÞϕ ¼ 0; ð1:2Þ

where m and ξ respectively denote the mass and coupling
constant of the scalar field. Note that the theory is semi-
classical, as the field ϕ is quantized but the metric gαβ is
classical; nevertheless the two are coupled.
The major difficulty in solving (or even analyzing) the

field equation (1.1) has to do with the regularization
of the divergent quantity hTαβi.2 As opposed to QFT in
flat spacetime in which one can use the normal-ordering
procedure, in curved spacetime the outcome of this
procedure depends on the choice of time slicing which
is completely arbitrary. There exists a regularization
method named point splitting (PS), also known as covariant
point separation, which gives a general prescription for how
to regularize quantities which are quadratic in the field
and its derivatives such as hTαβi. Alas, implementing this
prescription in situations where the solution of the field
equation (1.2) is known only numerically turns out to be a
surprisingly difficult problem.
In this paper we shall focus on the regularization of hϕ2i

instead of hTαβi. The quantity hϕ2i is also divergent, but
not as strong as hTαβi. In addition, the scalar character of
hϕ2i (as opposed to the tensorial hTαβi) makes it easier to
regularize. These properties make hϕ2i a convenient tool to

1Throughout this paper we use relativistic units c ¼ G ¼ 1 and
the ð−þþþÞ signature.

2There are also other difficulties, e.g. the runaway problem, as
noted by Wald [4].
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examine and explain new ideas concerning regularization.
In order to calculate hϕ2ðxÞiren [i.e. the regularized hϕ2ðxÞi]
using the PS method we split the point x and write it as a
product of ϕ at two different points, namely hϕðxÞϕðx0Þi.
This is known as the two-point function (TPF). We then
subtract from the TPF a known counterterm and take the
limit x0 → x. This limit, however, is what makes the
numerical implementation so hard.
In 1984 Candelas and Howard [5] developed a method to

numerically implement PS if a high-order WKB approxi-
mation for the field modes is known. Using this method,
they calculated hϕ2iren in Schwarzschild spacetime, and
subsequently this method was used by Howard [6] to
calculate hTαβiren in Schwarzschild. Later, this method was
extended to a general static spherically symmetric back-
ground, first for hϕ2iren by Anderson [7], and subsequently
to hTαβiren by Anderson et al. [8].
The limitation of the method proposed by Candelas and

Howard is that it requires a high-order WKB approximation
for the field modes: at least second order for hϕ2iren and
fourth order for hTαβiren. In the ordinary (Lorentzian-
signature) Schwarzschild metric this task of high-order
WKB expansion is very difficult, especially because of the
presence of a turning point: For typical modes of large ω
and l, there is a turning point on the r axis, at a value
rturnðω; lÞ where the effective potential VlðrÞ equals ω2.3

The mode’s radial function is essentially oscillatory at
r > rturn and exponential at r < rturn. Both these basic
WKB approximations—the oscillatory approximation at
r > rturn and the exponential approximation at r < rturn—
break down and actually diverge at r → rturn. To correctly
match the two approximations, one has to use another,
intermediate approximation valid in the neighborhood of
r ¼ rturn. This turning-point approximation is based on the
Airy function. Whereas the leading-order matching is
manageable, it becomes exceedingly hard to go to
higher-order WKB, because each succeeding order will
now require its own turning-point matching. Furthermore,
to the best of our understanding, the series of powers
involved in the Airy-based turning-point expansion
proceeds in powers of ω−1=3 (rather than ω−1).
Correspondingly, we may expect that in the presence of
a turning point, to implement the WKB-based expansion to
order ω−4 (required for calculating hTαβiren), one would
have to carry matched asymptotic expansion up to 12th
order in ω−1=3 (or 6 such orders for hϕ2iren)—a formidably
difficult task.
To overcome these difficulties, Candelas and Howard [5]

and several others [6–8] used an elegant trick: They used
Wick rotation to analytically extend the background metric

to the Euclidean sector. Any static spacetime is guaranteed
to have such a real-metric Euclidean sector. In the latter, the
radial equation does not admit a turning point. This way, it
was possible to carry the WKB analysis to the desired order
and to implement the above regularization scheme—for
hϕ2iren as well as for hTαβiren.
Our ultimate goal, however, is to develop a regularization

scheme for hϕ2i and hTαβi, applicable to time-dependent
backgrounds as well. Such a time-dependent metric (even
if spherically symmetric) does not generically admit a
Euclidean sector. We are thus led to carry the analysis
directly in the Lorentzian sector, which in turn implies the
presence of a turning point in the radial equation, hamper-
ing any attempt to carry high-order WKB expansion. We
shall therefore refrain from establishing our regularization
scheme on the WKB analysis.
There is another obvious reason for avoiding WKB

analysis: Consider a time-dependent spherically symmetric
background. The field equation for a given mode may still
be expressed as a one-dimensional (namely 1þ 1) wave
equation with an effective potential, but now the potential
will be time dependent. In such a situation, even the
leading-order WKB (and even if we forget for the moment
about the turning point) becomes a nontrivial task, let alone
higher-order WKB analysis.
For these reasons, we shall not base our regularization

scheme on high-order WKB expansion. Instead, in our
method we extract the required information concerning the
high-frequency field’s modes directly from the well-known
counterterm (2.6) for hϕ2iren (and, for computing hTαβiren,
from the counterterm developed by Christensen [9]).
We point out that this approach, namely extraction of

the high-frequency asymptotic behavior of the modes from
a known local counterterm, was actually initiated by
Candelas [10]—already before he and Howard resorted
to the Euclidean sector [5]. However, Candelas’ analysis
was restricted to the Schwarzschild case (which in par-
ticular means restriction to staticity, spherical symmetry,
and to vacuum4). We should also comment that even in that
case the analysis in Ref. [10] was not completed, because
the required integral of the regularized mode contribution
over ω was not carried out. When we attempted to imple-
ment this integral over ω, we found that it actually fails to
converge in the usual sense, due to growing oscillations
(see below), which led us to introduce the notion of a
generalized integral. Our approach is in this sense a
completion of Candelas’s method, as well as its generali-
zation beyond the vacuum case (and with the scope of
further extending it to dynamical backgrounds).
Our method requires the field modes to admit a trivial

decomposition in at least one of the coordinates (e.g.
through e−iωt or spherical harmonics). This usually3In Schwarzschild spacetime (and any other eternal BH

spacetimes), for given ω and l there are usually two such roots.
Here we shall explicitly refer to the larger one, but the same
complications arise also at the smaller root.

4In particular, the logarithmic counterterm is not encountered
in the vacuum case.
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corresponds to having a Killing field in spacetime.5 The
splitting is then done in that trivial coordinate—which
enables us to treat the coincidence limit analytically. So far
we have developed two different variants of our method:
(i) the t-splitting variant, which requires a time-translation
symmetry; (ii) the angular-splitting variant, which requires
spherical symmetry. We are also exploring a third variant,
azimuthal splitting (which would only require axial sym-
metry), but this one is still in progress. In all these variants
we assume for simplicity that the background is asymp-
totically flat, although this requirement can probably be
relaxed.
Since our ultimate goal is to analyze hTαβiren on the time-

dependent background of an evaporating BH, the t-splitting
method is insufficient, and we shall actually need the
angular-splitting variant. It turns out, however, that the
t-splitting variant is in some sense conceptually simpler and
easier to present at first stage, because certain additional
complications arise in the angular-splitting method.
Although we know how to address these complications,
they make the method’s logical structure a bit more obscure
and harder to explain. For this reason, for the sake of
introducing our basic regularization strategy we choose to
present here the t-splitting variant, which is logically
simpler. And for exactly the same reason, in this paper
we shall display the regularization of hϕ2i rather than
hTαβi. Then in the next paper we plan to present the
angular-splitting variant, which is going to be our main tool
for analyzing dynamical BH evaporation.
The TPF diverges for any pair of points connected by a

null geodesic, even if they are far from each other [11]. As
it turns out, this long-distance divergence of the TPF leads
to undamped oscillations in the mode contributions at large
ω. To address this issue we use the concept of a generalized
integral, in which these oscillations are properly damped
upon integration over ω, which fully cures the oscillations
problem. The origin of this complication (the presence of
connecting null geodesics) is discussed in Sec. II B and also
in Appendix B; and the resolution of the oscillations
problem by means of a generalized integral (and particu-
larly the so-called “self-cancellation integral”) is described
in Sec. II B and further in Appendix A.
In the description of the t-splitting method in Sec. III we

assume a spherically symmetric static background for the
sake of simplicity. However, as was discussed above, the
t-splitting method does not require spherical symmetry, and
in principle it may be applied to a generic (asymptotically
flat) stationary spacetime. We outline this generalization of
the method to stationary backgrounds in Sec. III B. We
point out, however, that some completion is still required in
the case of a stationary eternal BH (see therein).

Next we apply our method explicitly to the
Schwarzschild case, computing hϕ2iren in the Boulware
state. We compare our results to those obtained previously
by Anderson (using the Euclidean sector), and find full
agreement.
This article is divided as follows: In Sec. II we present

the basic PS method, and then briefly outline the procedure
developed by Candelas and Howard [5]. Note that Sec. II B
discusses certain subtleties of the TPF in some detail, and
may be skipped in first reading. In Sec. III we present our
t-splitting method. We first describe it for a spherically
symmetric static background, and then outline its gener-
alization to a generic stationary background. In Sec. IV we
harness this method for the calculation of hϕ2iren in the
Schwarzschild metric. Finally, in Sec. V we discuss the
implications of our new method and try to pave the path
towards our ultimate goal of investigating self-consistent
BH evaporation.

II. BASIC POINT-SPLITTING METHOD AND
ITS NUMERICAL IMPLEMENTATION

We start by sketching the basic PS regularization
method. This method is aimed to regularize the expectation
value of various quantities which are quadratic in the field
operator (and its derivatives). Among these quantities, the
most important one is probably the energy-momentum
tensor hTαβi. However, in this first paper we shall consider
hϕ2i as a simpler example (although we shall occasionally
remark on the analogous calculation of hTαβi).
For simplicity we consider here a quantum scalar field

ϕðxÞ living in a static, spherically symmetric, asymptoti-
cally flat spacetime with metric

ds2 ¼ gttðrÞdt2 þ grrðrÞdr2 þ r2dΩ2; ð2:1Þ

where dΩ2 ≡ dθ2 þ sin2θdφ2. The field operator may then
conveniently be expressed as

ϕðxÞ ¼
Z

∞

0

dω
X∞
l¼0

Xl

m¼−l
ðfωlmðxÞaωlm þ f�ωlmðxÞa†ωlmÞ:

ð2:2Þ

Here, a†ωlm and aωlm are the creation and annihilation
operators of the field’s ωlm mode, fωlmðxÞ is a complete,
orthonormal family of modes6 taking the form

fωlmðxÞ ¼ e−iωtYlmðθ;φÞψ̄ωlðrÞ; ð2:3Þ

and Ylmðθ;φÞ are the usual spherical harmonics. The radial
functions ψ̄ωlðrÞ are obtained by solving the field equation

5Having at least one trivial coordinate is a necessary condition
for the applicability of our method, but we do not claim that it is
also a sufficient condition.

6By “orthonormal” we mean that the inner product of two
mode functions fωlm and fω0l0m0 is δll0δmm0δðω − ω0Þ.
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for ϕðxÞ with the decomposition (2.3) and with appropriate
boundary conditions.
The operation of summation over m; l and integration

over ω repeats many times in the analysis below. We shall
generally refer to this operation as the “mode sum” (despite
the slight abuse of terminology). We point out, however,
that the decomposition (2.2) applies as-is in the case of an
asymptotically flat background spacetime with simple
asymptotic structure (like e.g. Minkowski or a star). But
if the background spacetime is an eternal BH with a past
horizon, then for each ωlm combination there are actually
two orthonormal modes, namely the “in” and “up” modes.
The in modes are those described above (namely mono-
chromatic waves propagating from past null infinity), and
the up modes describe monochromatic waves that emerge
from the past horizon. In this case of eternal BH, the mode
sum should also include a summation over the contribu-
tions of these two independent modes for each ωlm (as
explicitly described in Sec. IV for the Schwarzschild case).
The quantity hϕ2i obviously depends on the quantum

state. Naturally, one would like to evaluate it in the vacuum
state. The latter is defined to be the quantum state
annihilated by each of the above aωlm operators.7

Trying to naively calculate hϕ2ðxÞi in the vacuum state
yields the divergent expression

hϕ2ðxÞinaive ¼ ℏ
Z

∞

0

dω
X∞
l¼0

Xl

m¼−l
jYlmðθ;φÞj2jψ̄ωlðrÞj2:

ð2:4Þ

Although the sum over m; l does converge for a given ω,
the integral over ω diverges. In fact, one can easily check
that already in Minkowski spacetime the integrand is ∝ ω
(and ∝ ω3 for hTαβi), and the same divergence occurs in the
Schwarzschild case as well. If one tries to integrate over ω
before the summation, one finds that the integral over ω
again diverges (for a given l; m).
One therefore needs to somehow regularize the expres-

sion for hϕ2i. In flat spacetime this regularization may be
easily achieved by normal ordering, but in curved space-
time this yields a slicing-dependent, nonunique result. This
is where point splitting comes into play. DeWitt [12]
proposed that hϕ2ðxÞi (and, more generally, quantities
quadratic in the field operator and its derivatives) can be
treated by taking the product of the field operators in two
separate points x; x0 and then considering the coincidence
limit x → x0. More specifically, he showed that the regu-
larized expectation value of ϕ2 can be defined as

hϕ2ðxÞiren ¼ lim
x0→x

½hϕðxÞϕðx0Þi −GDSðx; x0Þ�: ð2:5Þ

Here GDSðx; x0Þ is the DeWitt-Schwinger counterterm,
namely a local term which fully captures the singular piece
of the TPF. For a scalar field with mass m and coupling
constant ξ it takes the form [8]

1

ℏ
GDSðx; x0Þ ¼

1

8π2σ
þm2 þ ðξ − 1=6ÞR

8π2

�
γ þ 1

2
ln

�
μ2σ

2

��

−
m2

16π2
þ 1

96π2
Rαβ

σ;ασ;β

σ
: ð2:6Þ

Here R and Rαβ are respectively the Ricci scalar and tensor,
γ denotes the Euler constant, and σðx; x0Þ is the biscalar
associated with the short geodesic connecting x and x0. The
value of σ is half the geodesic distance squared (see
Ref. [9]). More specifically, for a timelike separation
σ ¼ −τ2=2, where τ denotes the proper time between x
and x0. The parameter μ is unknown and it corresponds
to the well-known ambiguity in the regularization
procedure [4].8

A. Previous numerical implementations
of point splitting

It is not easy to directly implement the point-splitting
method, especially because in the cases of interest (e.g.
black-hole backgrounds) the radial functions ψ̄ωl are only
known from numerics. Furthermore, in Eq. (2.5) the TPF
hϕðxÞϕðx0Þi, which is to be computed numerically, diverges
as τ−2 (and as τ−4 for hTαβi) as x0 approaches x, where τ
denotes the geodesic distance between x and x0.
This problem was addressed by Candelas, Howard and

later Anderson and collaborators (see Refs. [5–8]) a long
time ago. They developed a calculation scheme that allows
regularization of hϕ2i or hTαβi numerically, provided that
an analytic approximation for the field is known, up to a
sufficiently high order.9

In that scheme, one first analytically constructs the
approximate singular piece of the field, which we denote
ϕsingðxÞ. It is composed of the contribution of the modes of
large ω and l, up to second order in 1=ω and 1=l (fourth
order for hTαβi), which is usually computed using WKB
analysis. From this quantity one then constructs the
approximate TPF hϕsingðxÞϕsingðx0Þi, and recasts Eq. (2.5)
in the form

7If a past horizon exists, then one needs to further specify this
vacuum state, e.g. by prescribing the outcome of the action of the
up annihilation operators on that state. In the analysis of the
Schwarzschild case in Sec. IV we shall consider the Boulware
vacuum state.

8In the case of a massive scalar field some authors took μ to be
the field’s mass m [8,9].

9In general it would require a second-order WKB approxi-
mation in order to compute hϕ2iren, and a fourth-order approxi-
mation to compute hTαβiren.
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hϕ2ðxÞiren¼ lim
x0→x

½hϕðxÞϕðx0Þi−hϕsingðxÞϕsingðx0Þi�
þ lim

x0→x
½hϕsingðxÞϕsingðx0Þi−GDSðx;x0Þ�: ð2:7Þ

Since hϕsingðxÞϕsingðx0Þi contains the entire singular piece
of the TPF, both limits at the rhs are well defined. We
denote the second limit by hϕ2ðxÞiAnalytic. This quantity is
well-defined and regular, and it is computed analytically by
summing/integrating over the WKB expressions for the
large ω; l modes which comprise ϕsing. The first term in the
rhs is now expressed as a mode sum, and owing to its
regularity the limit may trivially be taken by replacing x0 by
x. Putting it all together one obtains

hϕ2ðxÞiren ¼ ℏ
Z

∞

0

dω
X∞
l¼0

Xl

m¼−l
jYlmðθ;φÞj2ðjψ̄ωlðrÞj2

− jψ̄ sing
ωl ðrÞj2Þ þ hϕ2ðxÞiAnalytic: ð2:8Þ

The mode sum should now converge (even though it is
taken in coincidence), owing to the subtraction of the
singular piece.
Using this method with splitting in the t direction, hϕ2iren

(as well as hTαβiren) was calculated for the Schwarzschild
case [5,6], and later also for a generic static spherically
symmetric spacetime [7,8].
Besides the need to numerically compute the various

mode functions ψ̄ωlðrÞ, this method also includes a
challenging analytical component: It requires a high-order
WKB analysis. As was mentioned in the Introduction, the
presence of a turning point makes this an extremely
difficult task. To overcome these difficulties, Candelas
and Howard [5] and others [7,8] actually carried the
analysis in the Euclidean sector.

B. Remarks about the TPF and its mode sum10

1. Caveats concerning the regularity of the TPF itself

The point-splitting method is based on the presumption
that the two-point function is well behaved as long as the
two points are separated. A few caveats are associated with
this issue: First, even in flat spacetime, the two-point
function diverges when the separation is in a null direction.
Let us therefore assume, for the sake of simplicity, that the
points are separated in a timelike (or possibly spacelike)
direction. The second caveat is that in curved spacetime,
assuming that the two points are indeed separated by a
timelike geodesic, if the (proper-time) distance between x
and x0 is sufficiently large, there may also be a null geodesic
connecting these two points. For example, consider the

Schwarzschild spacetime and an approximately static time-
like geodesic Γ located in the asymptotic region very far
from the BH. Let x be a point on Γ. There is a null geodesic
which emanates from x and moves towards the BH (but
with an appropriate miss), makes a turn around the BH,
then returns to Γ and hits it at a point x1. It turns out that
hϕðxÞϕðx0Þi develops a singularity at x0 ¼ x1 [11]. In fact,
along the timelike geodesic Γ there is an infinite discrete set
of points xn which are connected to x by null geodesics that
make n turns around the BH before returning to Γ, and
hϕðxÞϕðx0Þi diverges at all points x0 ¼ xn.
Note, however, that the problematic points xn are all

located far away from x, outside the normal neighborhood;
and for the point-splitting procedure only points x0 in the
immediate neighborhood of x are relevant. We shall thus
restrict our attention now to points x0 in the close neighbor-
hood of x, with a timelike (or alternatively spacelike)
separation between x and x0. Then the TPF should be well
behaved.

2. Caveats concerning the convergence of the mode sum

Naively one might expect that since the TPF is well
behaved for a short timelike or spacelike separation, the
mode sum associated to it should converge. It turns out,
however, that the situation is more subtle: The involved
sum/integral usually fails to converge (in the literal sense).
Typically this failure to converge is associated with
undamped oscillations.
This phenomenon, the failure of strict convergence,

occurs already in flat spacetime. The (non)convergence
situation may depend on the direction of splitting, on the
order of operations (summation over l; m and integration
over ω), and on the specific quantity being calculated
(whether it is the TPF, or a component of hTαβi). As an
example, consider the calculation of hϕðxÞϕðx0Þi in
Minkowski spacetime, using standard mode decomposition
in spherical harmonics and temporal modes e−iωt. The
mode functions are given by

ψ̄ωlðrÞ ¼
1ffiffiffiffiffi
2r

p Jlþ1=2ðωrÞ;

where J is the Bessel function of the first kind. Consider
now a point x located at some r > 0, and a point x0
displaced in the t direction by an amount t0 − t ¼ Δt. The
sum over l; m (for a given ω) then converges, and one finds
that

X∞
l¼0

Xl

m¼−l
jYlmðθ;φÞj2jψ̄ωlðrÞj2 ¼

1

4π2
ω:

The mode-sum expression for the TPF then becomes
10This subsection is somewhat remote from the main line of

this paper, and can be skipped at first reading.

PRAGMATIC MODE-SUM REGULARIZATION METHOD FOR … PHYSICAL REVIEW D 91, 104028 (2015)

104028-5



hϕðxÞϕðx0Þi ¼ ℏ
4π2

Z
∞

0

ωeiωΔtdω: ð2:9Þ

The problem is that this integral does not converge in the
usual sense (even conditionally), due to the growing
oscillations at large ω.
In this example of pure t-splitting, in which we first sum

over m; l, it was the integral over ω that failed to converge.
In another application of point splitting, in which the
splitting is in both t and θ, and in which one first integrates
over ω and sums over m; l afterward, one finds that this
time the sum over l fails to converge, again due to growing
oscillations.11

This situation, of nonconverging oscillatory integrals (or
sums over l), is fairly common in various QFT calculations.
The common practice (which may be justified by several
arguments) is to contend that the large-ω oscillations
should be damped in some appropriate manner.

3. Generalized integral

This situation motivates us to introduce the notion of
generalized integral, which properly incorporates oscilla-
tion damping. We should emphasize that all the ω integrals
in this paper are in fact generalized integrals.
We shall consider here two specific procedures of

oscillation damping, which yield two (mutually consistent)
definitions of generalized integral.
Abel-summation integral: This is a commonly used

method for giving a meaning for such oscillatory integrals.
The Abel-summed integral is defined asZ

∞ðAÞ

0

hðωÞdω≡ lim
ϵ→0þ

Z
∞

0

e−ϵωhðωÞdω; ð2:10Þ

provided of course that the integral in the rhs is well defined
for ϵ > 0, and the limit ϵ → 0þ exists. For example, with
Abel summation, the integral in Eq. (2.9) reads −1=Δt2,
yielding the standard expression −ℏ=ð4π2Δt2Þ for the flat-
space TPF [cf. Eq. (2.6)].
A crucial property of the Abel-summation integral is that

it is consistent with the standard integral. Namely, when-
ever the function hðωÞ is integrable in the strict sense, its
Abel-summation integral coincides with the standard inte-
gral of this function.
Self-cancellation integral: For the calculation of hϕ2iren

in a black-hole spacetime we shall have to carry a
(generalized) integral of oscillatory functions hðωÞ that
we determine numerically. In such a case, this procedure of
Abel summation—which must now be implemented
numerically—is fairly inconvenient. Furthermore, in prac-
tice we only determine hðωÞ in a restricted range

0 < ω < ωmax, which makes the Abel-summation integral
even harder to implement.12 We therefore find it much more
convenient to use another concept of generalized integral,
which we name self-cancellation (of the oscillations). This
type of generalized integral is applicable whenever the
oscillations have well-defined frequencies—which is
indeed the situation in our problem (see Appendix B).
To formulate this concept, we first define the integral
function

HðωÞ≡
Z

ω

0

hðxÞdx: ð2:11Þ

The standard integral may then be expressed as

Z
∞

0

hðωÞdω ¼ lim
ω→∞

HðωÞ

(whenever this limit exists). Instead, our self-cancellation
generalized integral is defined as

Z
∞ðscÞ

0

hðωÞdω≡ lim
ω→∞

�
HðωÞ þHðωþ λ=2Þ

2

�
: ð2:12Þ

Here, λ denotes the “wavelength” of the oscillation in hðωÞ
(which is also inherited byH). For example, in Eq. (2.9) the
oscillatory factor is eiωΔt; hence the period of oscillation is
λ ¼ 2π=Δt. The idea is simple: The nonoscillating piece of
HðωÞ is unaffected by this averaging, but the oscillatory
piece will be very effectively annihilated by such averaging
with half-wavelength shift.
As a simplest example, consider the case

hðωÞ ¼ sinðωLÞ. Then HðωÞ ¼ ½1 − cosðωLÞ�=L, and
obviously λ ¼ 2π=L. Clearly HðωÞ fails to have a limit
ω → ∞. Yet the self-cancellation integral is perfectly well
defined: The term in squared brackets in Eq. (2.12) is
simply 1=L, entirely independent of ω. This example
demonstrates the potential of the self-cancellation method
to yield extremely fast convergence in ω. This last property
is important, especially because in an actual calculation we
have to determine hðωÞ numerically, and we do so in a
restricted range of ω.
For later convenience we reformulate this notion of

self-cancellation integral as follows:

Z
∞ðscÞ

0

hðωÞdω≡ lim
ω→∞

Tλ½HðωÞ�; ð2:13Þ

where Tλ is the “self-cancellation operation” defined by

11In addition, the integral over ω converges for the TPF but
only conditionally, and fails to converge even conditionally for
Ttt, due to growing oscillations.

12To this end one would have to generalize the definition of the
Abel-summation integral, so as to combine the two (noncommut-
ing) limits ϵ → 0 and ωmax → ∞ in an appropriate manner. And it
turns out that the convergence of this generalized Abel integral
with increasing ωmax is rather slow.
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Tλ½fðωÞ�≡ fðωÞ þ fðωþ λ=2Þ
2

:

In the actual calculation of hϕ2i we shall have to repeat
the self-cancellation operation several times (for several
different oscillation frequencies). In Appendix A we shall
introduce the “multiple self-cancellation operation” T�,
formed by combining several Tλ operations.
It is easy to show that the notion of a self-cancellation

integral is fully consistent with the standard integral—
whenever the latter is well defined. Furthermore, the
self-cancellation integral is also fully consistent with the
Abel-summation integral, in the following sense: If the self-
cancellation integral converges, then the Abel integral
converges too, and the two generalized integrals yield
the same result. Note, however, that the Abel summation
method is more general than self-cancellation. Namely,
there are functions hðωÞ for which the Abel-summed
integral is well defined but the self-cancellation integral
is not [that is, the limit in Eq. (2.12) is nonexistent].
Nevertheless, for the functions hðωÞ involved in the
analysis below, the self-cancellation integral is well defined
and extremely powerful.

III. OUR NEW METHOD:
THE t-SPLITTING VARIANT

As was already noted in the Introduction, since our
ultimate goal is to address dynamical background metrics
as well, we shall carry the analysis directly in the
Lorentzian sector. Hence, due to the inevitable presence
of a turning point (and also due to the partial differential
equation (PDE) nature of the time-dependent mode equa-
tion), we shall avoid using WKB expansion in our method.
Instead we extract the required information about the high-
frequency modes of the field directly from the counter-
term (2.6).
We shall present here the t-splitting variant, which

requires a time-translation Killing field. Although this
variant should be applicable to a rather generic stationary
asymptotically flat background, we shall restrict our
attention first to the more specific case of static spherically
symmetric background, for the sake of simplicity. Then in
Sec. III B we outline the generalization of the t-splitting
formulation beyond spherical symmetry (and beyond
staticity), to a more generic stationary asymptotically flat
background.

A. Spherically symmetric static background

We split the points in the t direction, namely

x ¼ ðt; r; θ;φÞ; x0 ¼ ðtþ ε; r; θ;φÞ: ð3:1Þ

The TPF then takes the form

hϕðxÞϕðx0Þi ¼ ℏ
Z

∞

0

dωeiωε
X∞
l¼0

Xl

m¼−l
jYlmðθ;φÞj2jψ̄ωlðrÞj2:

ð3:2Þ

As was already mentioned above, the sum over l; m
converges, and we denote it by Fðω; rÞ. In fact, the sum
of jYlmj2 over m yields ð2lþ 1Þ=4π, and therefore

Fðω; rÞ ¼
X∞
l¼0

2lþ 1

4π
jψ̄ωlðrÞj2: ð3:3Þ

This function is to be computed numerically. The TPF now
reduces to

hϕðxÞϕðx0Þi ¼ ℏ
Z

∞

0

Fðω; rÞeiωεdω: ð3:4Þ

(Note that in the coincidence limit ε → 0 this integral
would diverge. However, the oscillatory factor eiωε regu-
larizes it.) Equation (2.5) now reads

hϕ2ðxÞiren ¼ lim
ε→0

�
ℏ
Z

∞

0

Fðω;rÞeiωεdω−GDSðεÞ
�
; ð3:5Þ

where by GDSðεÞ we refer to GDSðx; x0Þ with x0 given by
Eq. (3.1). Note that for a given x, σ is uniquely determined
by ε. By a fairly straightforward Taylor expansion of the
geodesic equation (and σ) in ε, one finds that GDS in
Eq. (2.6) takes the general form

1

ℏ
GDSðx; x0Þ ¼ aðrÞε−2 þ cðrÞ

�
ln ðεμÞ þ γ −

iπ
2

�
þ dðrÞ þOðεÞ; ð3:6Þ

where aðrÞ; cðrÞ; dðrÞ are certain (real) functions that
depend on the background metric and the parameters of
the field.13 The explicit form of these functions is not
important in the present discussion (although it is certainly
needed for the actual calculation of hϕ2iren).
To proceed, we now decompose the ε-dependent terms in

GDS using the Laplace transform. We have the following
identities:

ε−2 ¼ −
Z

∞

0

ωeiωεdω; ð3:7Þ

ln ðεμÞ ¼ −
Z

∞

0

1

ωþ μ
eiωεdωþ

�
iπ
2
− γ

�
þOðε ln εÞ:

ð3:8Þ

13The term −iπ=2 appears in the brackets because σ is
negative.
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Inserting these identities into Eqs. (3.5), (3.6) we
obtain

hϕ2ðxÞiren ¼ ℏlim
ε→0

Z
∞

0

Fregðω; rÞeiωεdω − ℏdðrÞ ð3:9Þ

where

Fregðω; rÞ≡ Fðω; rÞ − Fsingðω; rÞ; ð3:10Þ

and

Fsingðω; rÞ≡ −aðrÞω − cðrÞ 1

ωþ μ
: ð3:11Þ

Consider now the rhs of Eq. (3.9). If the integral of
Fregðω; rÞ converges (in either the strict sense or the
generalized sense), we can interchange the limit and
integration, and get rid of the ε → 0 limit altogether. We
should expect the convergence of the integral of Fregðω; rÞ,
because the singular piece Fsingðω; rÞ has already been
removed from Fðω; rÞ. In fact, we find that in the
Schwarzschild case the integral of Fregðω; rÞ indeed con-
verges, although only in the generalized sense due to
oscillations (see next section). We were unable to prove
the (even generalized) convergence of the integral of
Fregðω; rÞ, but nevertheless since this convergence is
naturally expected, and since the Schwarzschild example
confirms this expectation, we shall hereafter assume that
this integral indeed converges in the generalized sense.14

We therefore write our final result as

hϕ2ðxÞiren ¼ ℏ
Z

∞

0

Fregðω; rÞdω − ℏdðrÞ ð3:12Þ

where, recall, the integral over ω is a generalized one (as
defined in Sec. II B). The implementation of this general-
ized integral is demonstrated in Sec. IV for the
Schwarzschild case.

B. The general stationary case

As was already pointed out above, our t-splitting method
does not require the background metric to be spherically
symmetric or even static: It should be applicable to a
generic stationary asymptotically flat background. Here we
outline this extension.
On account of asymptotic flatness, we now choose our

coordinates (t; r; θ;φ) such that the large-r asymptotic
metric still takes its standard Minkowski form

−dt2 þ dr2 þ r2dΩ2.15 Due to a lack of spherical sym-
metry, the expression (2.3) for the field modes is now
replaced by

fωlmðxÞ ¼ e−iωt ~ψωlmðr; θ;φÞ;

where ~ψωlmðr; θ;φÞ is a set of solutions to the
(ω-dependent) spatial part of the field equation, which is
now a PDE (in r; θ;φ) rather than an ordinary differential
equation (ODE). These solutions are required to be regular
everywhere, and to satisfy the large-r boundary condition

~ψωlmðr; θ;φÞ ¼ ðr
ffiffiffiffiffiffiffiffiffi
4πω

p
Þ−1e−iωr�Ylmðθ;φÞ

þ ~ψout
ωlmðr; θ;φÞ; ðr → ∞Þ

where ~ψout
ωlm denotes the reflected field which is eiωr�=r

times some function of θ and φ.16 Once the modes fωlmðxÞ
were defined, the expression (2.2) for the field operator is
unchanged.
The TPF now takes the form

hϕðxÞϕðx0Þi ¼ ℏ
Z

∞

0

dωeiωε
X∞
l¼0

Xl

m¼−l
j ~ψωlmðr; θ;φÞj2:

ð3:13Þ

It is important to recall that even though the metric is not
spherically symmetric, the sums over m; l should still
converge (for a given ω): Due to asymptotic flatness, at
large r there will be a centrifugal barrier ≈lðlþ 1Þ=r2 in the
effective potential, just like in Minkowski, preventing the
penetration of modes with too large l. Thus we can again
define

Fðω; r; θ;φÞ ¼
X∞
l¼0

Xl

m¼−l
j ~ψωlmðr; θ;φÞj2; ð3:14Þ

and the TPF still takes the form (3.4) [although now with
Fðω; r; θ;φÞ]. The calculation now proceeds just as in the
spherically symmetric case—except that all the quantities
in Sec. (III A) that were dependent on r only now depend
on θ and φ as well. The final result is

hϕ2ðxÞiren ¼ ℏ
Z

∞

0

Fregðω; r; θ;φÞdω − ℏdðr; θ;φÞ
ð3:15Þ

with

14Note that there is not much risk in making such an
assumption, because if for a certain background metric this
assumption turns out to be false, then the attempt to integrate Freg
will demonstrate this nonconvergence right away.

15Furthermore we choose our coordinates such that gtt takes
the standard weak-field form −1þ 2M=rþOð1=rÞ2, where here
M denotes the system’s asymptotic mass.

16Here r� is to be regarded as the standard function of r given
in Eq. (4.4).
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Fregðω; r;θ;φÞ≡Fðω; r;θ;φÞ−Fsingðω; r;θ;φÞ; ð3:16Þ

and

Fsingðω; r; θ;φÞ≡ −aðr; θ;φÞω − cðr; θ;φÞ 1

ωþ μ
:

ð3:17Þ

It should be pointed out that although the choice of the
coordinates r; θ;φ is certainly nonunique (due to lack of
spherical symmetry), the resultant mode decomposition is
still unique. This is because of asymptotic flatness (and the
standard weak-field metric that we require our t; r; θ;φ
coordinates to satisfy at large r), and because the mode
functions ~ψωlmðr; θ;φÞ are defined through their asymp-
totic form at r → ∞. The unique mode decomposition in
turn leads to a unique Fock space associated to it, and to a
well-defined vacuum state.
Note, however, that in the above formulation we implic-

itly assumed a stationary background metric with no past
horizon (e.g. a spinning star); hence it was sufficient to
construct the in modes. In the case of eternal nonspherical
BH the situation becomes more subtle, because now we
also need to specify the up modes. Here asymptotic flatness
will not be of much help, because these modes are to be
defined by boundary conditions at the past horizon. With
the lack of spherical symmetry and staticity, one still needs
to figure out how to make a unique mode decomposition
and to obtain a “natural” vacuum state.17

The implementation of this method in the nonspherical
case is of course technically more challenging (even for a
non-BH background), because now the mode functions
~ψωlm which comprise Fðω; r; θ;φÞ are to be obtained by
numerically solving PDEs rather than just ODEs.

IV. CALCULATION OF hϕ2iren IN
SCHWARZSCHILD

Using the method presented in the last section, we
compute hϕ2iren in the exterior region of Schwarzschild
spacetime, in the Boulware vacuum state, for a minimally
coupled massless scalar field. The Schwarzschild
metric is

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2 þ r2dΩ2:

ð4:1Þ

In this metric the quantum field ϕðxÞ can be expanded in
the form presented in Eqs. (2.2)–(2.3), where ψ̄ωlðrÞ is
conveniently recast as

ψ̄ωlðrÞ ¼
1

r
ffiffiffiffiffiffiffiffiffi
4πω

p ψωlðrÞ; ð4:2Þ

and ψωlðrÞ satisfies the radial equation

d2ψωlðrÞ
dr2�

¼ −½ω2 − VlðrÞ�ψωlðrÞ: ð4:3Þ

Henceforth, r� will denote the tortoise coordinate given by

r� ¼ rþ 2M ln

�
r
2M

− 1

�
; ð4:4Þ

and

VlðrÞ ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
þ 2M

r3

�

is the effective potential.
The general solution of Eq. (4.3) (for given ω; l) is

spanned by two basic solutions, that we denote ψ in
ωlðrÞ and

ψup
ωlðrÞ. The boundary conditions for these two basic

solutions are taken to be

ψ in
ωlðrÞ ¼

(
τωle−iωr� ; r� → −∞
e−iωr� þ ρωleiωr� ; r� → ∞

ψup
ωlðrÞ ¼

(
eiωr� þ ~ρωle−iωr� ; r� → −∞
τωleiωr� ; r� → ∞

ð4:5Þ

where τωl, ρωl, and ~ρωl ¼ −ρ�ωlτωl=τ�ωl represent the trans-
mission and reflection amplitudes. These two basic sol-
utions are properly normalized and mutually orthogonal.
The presence of two independent modes for each ωlm

(as opposed to a single such mode in e.g. Minkowski)
requires a slight modification of the formalism above:
We now have two sets of annihilation operators, ainωlm
and aupωlm, as well as their conjugate operators a†inωlm, a

†up
ωlm.

Correspondingly, in Eq. (2.2), in addition to the integral
over ω and the sum over l and m, we also have to sum over
the separate contributions of the in and up modes. We shall
consider here the Boulware vacuum, namely the quantum
state annihilated by all the operators aupωlm as well as ainωlm.
Revisiting the analysis of the previous sections, one
finds that everything remains intact, except that all the
equations that involve summation over l; m should now
also include a summation over the in and up contributions.
Correspondingly, Eq. (3.3) is now replaced by

17Furthermore, with an arbitrary choice of r; θ;φ coordinates,
and with a corresponding arbitrary construction of the set of up
modes, we have no guarantee that the resultant “vacuum state”
would at all be a well-defined Hadamard state. In this regard, we
should mention the observation that there is no Hadamard state
that respects the symmetries of Kerr spacetime and is regular
everywhere [13,14].
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Fðω; rÞ ¼
X∞
l¼0

2lþ 1

4π
ðjψ̄ in

ωlðrÞj2 þ jψ̄up
ωlðrÞj2Þ; ð4:6Þ

but otherwise the results of the previous section, and in
particular Eqs. (3.10), (3.11), (3.12), are unaffected.
Since the Schwarzschild metric is a vacuum solution,

and since we are dealing with a massless field, the
counterterm (2.6) now reduces to

GDSðx; x0Þ ¼
ℏ

8π2σ
: ð4:7Þ

σ is related to ε≡ t0 − t through the proper-time τ of the
short geodesic connecting x to x0, via σ ¼ −τ2=2. By
conducting a second-order expansion of the geodesic
equation we obtain

σðεÞ ¼ −
1 − 2M=r

2
ε2 −

M2ð1 − 2M=rÞ
24r4

ε4 þOðε5Þ;
ð4:8Þ

and correspondingly

1

ℏ
GDSðx; x0Þ ¼ −

1

4π2ð1 − 2M=rÞ ε
−2

þ M2

48π2r4ð1 − 2M=rÞ þOðεÞ: ð4:9Þ

Comparing this to Eq. (3.6) we find that

aðrÞ ¼ −
1

4π2ð1 − 2M=rÞ ;

dðrÞ ¼ M2

48π2r4ð1 − 2M=rÞ ; cðrÞ ¼ 0: ð4:10Þ

Therefore in the Schwarzschild case Eqs. (3.10), (3.11),
(3.12) reduce to

hϕ2ðxÞiren ¼ ℏ
Z

∞

0

Fregðω; rÞdω − ℏdðrÞ; ð4:11Þ

with

Fregðω; rÞ ¼ Fðω; rÞ þ aðrÞω: ð4:12Þ

Summarizing the analytical part of the calculation,
hϕ2ðxÞiren is given by Eq. (4.11) along with Eqs. (4.12),
(4.10), and (4.6). Note that basically this expression for
Schwarzschild was already obtained by Candelas [10], but
here we also complete the calculation by implementing the
numerical part as well (and by doing so, we encounter the
oscillations problem and address it).

A. Numerical implementation

We have numerically solved the radial equation for
ψ in
ωlðrÞ and ψup

ωlðrÞ, using the standard MATHEMATICA

numerical ODE solver, in the domain 0 < ω < 3, at a
set of ω values with a uniform separation dω ¼ 1=300.
Hereafter, we use units in which the BH mass is M ¼ 1
(in addition to C ¼ G ¼ 1); hence ω and r are
dimensionless.
For a given ω, the contribution of the different lmodes to

Fðω; rÞ starts to decay exponentially fast beyond a certain l
value, typically of order ∼ωrð1 − 2M=rÞ−1=2. (This decay

FIG. 1 (color online). (a) The numerically calculated Fðω; r ¼ 6Þ in the Schwarzschild case. (b) Fregðω; r ¼ 6Þ, which is the result of
subtracting the linearly diverging piece aðrÞω from Fðω; rÞ.
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may be interpreted as tunneling into the potential
barrier.) Correspondingly, for each ω value, we truncate
the sum (4.6) at an l value where the contribution
becomes negligible (< 10−10Þ. Then from Fðω; rÞ we
construct the regularized function Fregðω; rÞ according
to Eq. (4.12).
Figure 1(a) displays Fðω; rÞ for r ¼ 6, which we choose

here as our representative r value. Then Fig. 1(b) displays
the regularized function Fregðω; rÞ, obtained from Fðω; rÞ
by removing the linear piece aðrÞω. Clearly, the linear
divergence has been removed, but there remain oscillations
that grow as ω1=2, which we address below. The origin of
these oscillations (the aforementioned connecting null
geodesics), and the determination of their frequencies,
are discussed in Appendix B.

To calculate hϕ2ðxÞiren we need the generalized integral
of Fregðω; rÞ from ω ¼ 0 to infinity; see Eq. (4.11). To this
end we define the integral function

HðωÞ≡
Z

ω

0

Fregðω0; rÞdω0: ð4:13Þ

The strict integral of Freg would of course correspond to the
limit ω → ∞ of HðωÞ. Figure 2 displays HðωÞ, and makes
it clear that this limit does not exist, due to the growing
oscillations (which were inherited directly from Freg). We
therefore have to resort to the generalized integral instead,
as discussed in Sec. II B. The Abel-summation integral
(2.10) is well defined in this case. However, since we know

FIG. 3 (color online). The function H�ðω; r ¼ 6Þ (obtained
from H after self-cancellation of the oscillations). Notice the
quick convergence.

FIG. 2 (color online). The integral function Hðω; r ¼ 6Þ (that
is, the integral of Freg from zero to ω).

FIG. 4 (color online). (a) Comparing hϕ2iren calculated using our new method (the red pluses) to the previous calculation by Anderson
using the Euclidean sector and the WKB expansion. (b) Zoom-in on the box in Fig. 4(a) for the values close to zero.
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the precise frequency of oscillations, it is much more con-
venient and more efficient to employ the self-cancellation
integral (which is fully consistent with the Abel integral).
As it turns out, there are multiple oscillation frequencies in
FregðωÞ (see Appendix B), and we cancel each of the four
dominant ones by a fourth-order self-cancellation opera-
tion. Adapting the notation of Appendix A to the present
specific context (integration of Freg), the desired general-
ized integral isZ

∞ðsc�Þ

0

FregðωÞdω ¼ lim
ω→∞

H�ðωÞ; ð4:14Þ

where H�ðωÞ≡ T�½HðωÞ�, HðωÞ is given in Eq. (4.13),
and T� denotes the multiple self-cancellation operation as
generally defined in Eq. (A6) and detailed in Eq. (B1).
Figure 3 displays the function H�ðωÞ. It is remarkable

that after the oscillations have been removed the function
converges very quickly. This allows a fairly precise
determination of the limit ω → ∞ of this function, which
constitutes the generalized integral in Eq. (4.14). We then
substitute this integral, as well as dðrÞ of Eq. (4.10), in
Eq. (4.11). In Figs. 4(a) and 4(b) we present our results for
hϕ2iren as a function of r, and compare them to results
obtained previously by Anderson [15] using a very differ-
ent method (analytic extension to the Euclidean sector).
The differences are typically of order a few parts in 103,
consistent with the estimated numerical errors.

V. DISCUSSION

We presented here a new approach for implementing
point-splitting regularization numerically, for the compu-
tation of hϕ2iren in various asymptotically flat spacetimes.
Our main motivation in developing this approach is to
allow systematic investigation of self-consistent semiclass-
ical evaporation of BHs. This would require the calculation
of hTαβiren in a time-dependent BH background.
So far we developed two variants of our basic approach

(both for a quantum scalar field in asymptotically flat
background): (i) t-splitting, applicable to stationary space-
times, and (ii) angular splitting, applicable to spherically
symmetric spacetimes. In this first paper we focused on the
simplest of the two, the t-splitting variant. In presenting this
method, we restricted our attention to static spherically
symmetric backgrounds, and to hϕ2iren rather than hTαβiren,
for the sake of simplicity. But we also described the
extension of the method to more generic, nonspherical,
stationary, asymptotically flat backgrounds. This extension
suffices for the non-BH case, e.g. for a rotating star. In the
case of a stationary BHwhich is not a spherically symmetric
static one, our method still needs a completion: We still have
to formulate the construction of an appropriate up state at
the past horizon, which would constitute a physically
meaningful (and properly Hadamard) “vacuum” state.

We then implemented the t-splitting variant to the
specific case of the Boulware state in Schwarzschild
spacetime (for a minimally coupled massless scalar field).
The analytical part of the regularization procedure coin-
cides in this case with the one developed by Candelas [10].
However, here we also implemented the numerical part,
which involves the numerical solution of the radial equa-
tion for the various modes, and the summation/integration
over the mode contributions. Doing so, we found that
the regularized function Fregðω; rÞ, which was naively
expected to be well behaved at large ω, actually suffers
from growing oscillations, which make the ω-integral
nonconvergent. As it turns out, this phenomenon has little
to do with the short-distance behavior of the TPF in the
coincidence limit x0 → x. Instead, the oscillations originate
from divergences of the TPF at remote points x0 which are
connected to x by null geodesics. We used the notion of a
generalized integral—and particularly the pragmatic
method of the self-cancellation integral—in order to handle
these oscillations and to carry the desired integration over
ω. Doing so, we found excellent agreement with previous
results obtained by a different method, the Euclidean
extension [15].
Putting aside for a moment the ultimate goal of analyzing

the time-dependent evaporation process, wewish to empha-
size that even the simplest version of the method, the
t-splitting variant presented here, makes it possible to do PS
regularization in nonspherical stationary spacetimes, e.g.
that of a strong-field spinning star (although in the generic
stationary BH case our construction still needs a comple-
tion). This was not possible so far, due to the difficulties in
conducting high-order WKB expansion in such spacetimes.
However, to achieve our primary goal of self-consistent

semiclassical evaporation, we must deal with time-
dependent backgrounds. To this end we shall need the
angular-splitting variant, which is slightly more compli-
cated than t-splitting. We shall describe this variant in a
separate paper. We already applied the angular-splitting
method to hϕ2iren and also to hTαβiren in the Boulware state
in Schwarzschild, and again we found very good agreement
with previous calculations [15]. These results will be
presented elsewhere [16].
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APPENDIX A: MULTIPLE
SELF-CANCELLATION

For a given integrand function hðωÞ, the self-cancellation
integral was defined in Sec. II B as

Z
∞ðscÞ

0

hðωÞdω≡ lim
ω→∞

Tλ½HðωÞ�; ðA1Þ

where

HðωÞ≡
Z

ω

0

hðxÞdx;

Tλ is defined by

Tλ½fðωÞ�≡ fðωÞ þ fðωþ λ=2Þ
2

;

and λ is the oscillation’s wavelength.
Consider next the situation in which hðωÞ contains

oscillations in two different frequencies (say, with
ω-independent amplitudes). Then HðωÞ will take the
asymptotic form

HðωÞ ≈ A1eiωL1 þ A2eiωL2 þ const ðA2Þ

with two different wavelengths λ1;2 ¼ 2π=L1;2. If we apply
a self-cancellation with respect to (say) λ1, then we will be
left with a function Tλ1 ½HðωÞ� in which the const is of
course unaffected, and the term ∝ eiωL1 has entirely been
annihilated. The other oscillatory term ∝ eiωL2 is still
present in Tλ1 ½HðωÞ�, although its amplitude will decrease
by the factor cos ½ðL2=L1Þπ=2�, as one can easily verify.
The self-cancellation integral (associated to Tλ1) is thus still
nonconvergent. A second self-cancellation, this time with
respect to λ2, will yield a convergent self-cancellation
integral, which may be formulated as

lim
ω→∞

Tλ2Tλ1 ½HðωÞ�:

The order of the two operations Tλ1 and Tλ2 is unimportant,
as one can easily verify. With both orderings, the double
self-cancellation integral yields the “const” in Eq. (A2).18

This process is straightforwardly generalized to func-
tions HðωÞ with any number k of oscillation frequencies

that need to be annihilated. To handle this situation, we
define the multiple self-cancellation operator

T� ≡ Tλ1Tλ2…Tλk : ðA3Þ

Then the multiple self-cancellation integral may be
expressed as

Z
∞ðsc�Þ

0

hðωÞdω≡ lim
ω→∞

H�ðωÞ; ðA4Þ

where

H�ðωÞ≡ T�½HðωÞ�: ðA5Þ

As was demonstrated in Sec. II B, if HðωÞ contains an
oscillation with fixed amplitude, then the Tλ operation fully
nullifies this oscillation. [This was demonstrated there for
the case hðωÞ ¼ sinðωLÞ, but it equally applies to the more
general cases hðωÞ ¼ e�iωL.] However, if the oscillation’s
amplitude varies with ω, the cancellation is not complete.
Consider the case HðωÞ ¼ gðωÞeiωL where gðωÞ is some
slowly varying function—namely, a function whose typical
length of variation l becomes ≫ λ at large ω. To be more
specific, let us further assume that l diverges as ω → ∞.19

Then one can easily show that

Tλ½HðωÞ�≃ −
λ

2

dg
dω

eiωL

at large ω. In particular, if HðωÞ ¼ ωpeiωL then

Tλ½HðωÞ� ∝ pωp−1eiωL:

Consider now the case HðωÞ ≈ ωpeiωL for some
1 ≤ p < 2. Then Tλ½HðωÞ� still does not converge as
ω → ∞. Nevertheless, TλðTλ½HðωÞ�Þ is ∝ ωp−2eiωL and
hence it converges. This illustrates that in certain circum-
stances one may want to apply the same self-cancellation
operation several times, say n times, an operation which we
shall denote as ðTλÞn.
Quite generally, in the case HðωÞ ≈ ωpeiωL one finds

that20

ðTλÞn½HðωÞ� ∝ ωp−neiωL:

Therefore, for this class of HðωÞ functions, the conver-
gence criterion for the (single-frequency) multiple self-
cancellation integral is simple: It converges if and only
if n > p.

18To avoid confusion, we point out that an application of self-
cancellation operation Tλ0 , but with a “mistaken” wavelength
parameter λ0 that differs from the true oscillation wavelength λ,
does not “spoil” the generalized integral in any way: The
mismatch in λ does not lead to any new oscillatory terms, nor
does it modify the value of the generalized integral. The effect of
the mismatch in λ is merely to limit the efficiency of the self-
cancellation operation: It decreases the oscillation’s amplitude by
the factor cos ½ðλ0=λÞπ=2� instead of fully annihilating it.

19This includes for example all powers ωp, because in this
class l ∝ ω. [But it also includes much more general classes of
functions, e.g. ωpðlnωÞq for any p; q.]

20The exception is the case of natural p with n > p, in which
ðTλÞn½HðωÞ� strictly vanishes.
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In the case 0 < p < 1 a single self-cancellation oper-
ation would be sufficient for achieving convergence.
However, one would then be left with a slowly decaying
amplitude ∝ ωp−1. To speed the large-ω convergence, one
may repeat Tλ several times. This is in fact the situation in
our specific problem, where hðωÞ ∝ ω1=2eiωL and hence
HðωÞ ∝ ω1=2eiωL þ const: The single self-cancellation
integral converges, but rather slowly, with amplitude
∝ ω−1=2, and we therefore repeat Tλ several times to
achieve faster convergence (which is crucial for numerical
implementation).
If there are several different oscillation frequencies that

need to be annihilated, one can freely choose how many
times to repeat the Tλ operation for each frequency. We
therefore generalize the above expression (A3) for the
multiple self-cancellation operator:

T� ≡ ðTλ1Þn1ðTλ2Þn2…ðTλkÞnk : ðA6Þ

The multiple self-cancellation integral (sc�) is thus
obtained by using this T� operator in Eqs. (A4), (A5).
Finally we point out that this multiple self-cancellation

integral is fully consistent with the Abel-summation inte-
gral—in the same sense discussed in Sec. II B (concerning
the single self-cancellation integral).

APPENDIX B: THE OSCILLATIONS IN Fregðω;rÞ
As can be clearly seen in Fig. 1(b), the function

Fregðω; rÞ admits growing oscillations in ω. These oscil-
lations are of course inherited directly from Fðω; rÞ, as can
be seen in Fig. 1(a) (although in the latter the oscillations
are overshadowed by the linearly growing term). In this
appendix we shall discuss the origin of these oscillations,
their frequencies, and their amplitudes. Then at the end we
shall specify the self-cancellation operator that we apply in
order to practically remove these oscillations.

1. Origin and nature of oscillations

Owing to spherical symmetry and staticity, in t-splitting
the TPF may depend only on r and on ε ¼ t0 − t. Let us
then introduce the abbreviated notation for the TPF

Pðε; rÞ≡ hϕðt; r; θ;φÞϕðtþ ε; r; θ;φÞi:

Equation (3.4) actually tells us that Fðω; rÞ is the Fourier
transform of Pðε; rÞ.21 If Pðε; rÞ were regular and smooth
for all ε, then its Fourier transform Fðω; rÞ would decay
quickly at large ω, faster than any power of the latter. The

undamped oscillations in Fðω; rÞ must therefore indicate
some irregularity in Pðε; rÞ. We still need to understand the
nature of this singularity, and its location on the ε axis.
The singularity of the TPF at ε → 0 indeed leads to a

divergence of Fðω; rÞ at large ω [this is the linearly
growing term shown in Fig. 1(a)], but not to oscillations;
and this linear singularity is no longer present in Fregðω; rÞ.
The oscillations in Fig. 1(b) must then indicate another
singularity, located at some point ε ¼ εs ≠ 0. To illustrate
this, consider for example the delta-function case: The
Fourier transform of δðε − εsÞ is e−iωεs . It is oscillatory if
and only if εs ≠ 0. The frequency of the ω-oscillations is
just εs; namely, it directly tells us the distance of the
singularity from the point ε ¼ 0.
One more example is the singularity jε − εsj−β, whose

transform is ∝ ωβ−1e−iωεs . But this phenomenon is of
course more general: If a certain function PðεÞ admits a
Fourier transform FðωÞ, then the transform of Pðε − εsÞ
is FðωÞe−iωεs .
The oscillations seen in e.g. Fig. 1(b) have a certain “ω-

wavelength” λ1 ≈ 0.17 (in units in which the BH mass is
M ¼ 1). They must therefore correspond to a singularity in
the TPF, located at a distance εs ≡ t0 − t ¼ 2π=λ1 ≈ 37
from point x. What is the nature of this nonlocal singularity
of the TPF? As already pointed out in Sec. II B, the function
hϕðxÞϕðx0Þi admits a singularity whenever a null geodesic
exists which connects x and x0. In the present context of
Schwarzschild background and t-splitting, we are dealing
here with a null geodesic which emanates from a certain
spatial point ðr; θ;φÞ, makes a round trip around the BH,
and then returns to that same spatial point, but obviously
with a certain delay in t, which should correspond to the
shift parameter εs.

2. Spectrum of oscillations

In fact there is not only one but an infinite, discrete set
of such connecting null geodesics (for each r). This is
because a null geodesic emanating from a spatial point
ðr; θ;φÞ can make any integer number of revolutions
around the BH before returning to that spatial point.
Therefore, the TPF will actually admit an infinite number
of singular points at a discrete set of values t0 − t ¼ εn, one
for each integer n.
Correspondingly, there will be a discrete spectrum of

oscillation modes in Fregðω; rÞ, with (r-dependent) ω-
frequencies εn and corresponding wavelengths λn¼2π=εn.
We point out, however, that the dominant mode is always
n ¼ 1, and the oscillation’s amplitude quickly decays with n
(see next subsection).
To perform the self-cancellation of oscillations, we shall

need to know the spectrum of frequencies εn, at any desired
r value. This requires integration of the null geodesic
equation, to find the connecting null geodesics. For r ¼ 3M
the situation is especially simple, because in that case the
connecting null geodesic is circular. One then finds that

21In this context we should regard Fðω; rÞ as a function that
vanishes for all ω < 0. Note also that in the present context one
should not think of ε as a small parameter. Instead, it is allowed to
take all real values.
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εn ¼ ð2π ffiffiffiffiffi
27

p Þn. At other r values the spectrum becomes
more complicated, and needs to be calculated numerically.
The null orbits in Schwarzschild are characterized by a
single constant of motion, namely the angular momentum
per unit energy (or the “impact parameter”). The calcu-
lation of εn involves (i) numerical integration of the null
geodesic equation (for prescribed values of that constant of
motion), and (ii) using the Newton-Raphson method for
adjusting this constant, in order to find the connecting
geodesics, which return to the original spatial point after n
rounds. The required parameters εn are the t-duration of
these connecting null geodesics. Overall, this is an easy
numerical procedure.
In our representative case r ¼ 6M, the first few

oscillation frequencies are found to be

ε1 ≃ 37.50; ε2 ≃ 70.17; ε3 ≃ 102.8; ε4 ≃ 135.5:

In Fig. 1(b) we predominantly see the basic oscillation
n ¼ 1, and the frequency agrees very well with this value of
ε1. We can also notice the residual effect of the n ¼ 2
oscillation, which causes the small distortion (i.e. small
deviation from the smooth ∝ ω1=2 envelope) in the pattern
of peaks of Fregðω; rÞ, seen in Fig. 1(b). After the basic
oscillation n ¼ 1 is removed by self-cancellation, the next
one (n ¼ 2) dominates and becomes very clear, and again,
its frequency is found to agree very well with the above
value of ε2. By this procedure it is possible to expose a few
more modes, and to confirm their agreement with the above
εn values, that were obtained from the connecting null
geodesics.
As was already mentioned above, for r ¼ 3M the

frequencies εn form an arithmetic sequence with a common
differenceΔε0 ≡ 2π

ffiffiffiffiffi
27

p ≃ 32.65. For other r values this is
no longer the case. Still, the difference εnþ1 − εn
quickly approaches the standard spacing Δε0. For example,
from the four εn values specified above for the
r ¼ 6M case, one sees that ε2 − ε1 ≃ 32.67, and then
ε3 − ε2 ≃ ε4 − ε3 ≃ 32.65. This is simply because for
any r, a connecting null geodesic with large n makes most
of the revolutions around the BH along an orbit very close
to the circle r ¼ 3M.

3. Amplitude of oscillations

The numerical data indicate that the oscillation’s ampli-
tude grows as ω1=2. This in turn implies that the divergence
of the TPF at ε → εs should be ∝ jε − εsj−3=2. We shall not
address this issue here in detail, but we point out that this
−3=2 power is just what one would expect from simple
arguments. To this end one has to recall that since the
background is spherically symmetric, and since the split-
ting is only in the t direction (implying that θ0 ¼ θ and
φ0 ¼ φ), whenever x0 is located on a null geodesic
emanating from x, it is placed exactly at a caustic point

of that null geodesic. Qualitative arguments suggest that on
crossing such a caustic point, the TPF should indeed
diverge as jε − εsj−3=2. But the discussion of this issue is
far beyond our present scope.
The n > 1 oscillations, too, grow as ω1=2 at large ω (the

numerics confirms this, at least for the first few n values).
This is for the same reason as that described above for
n ¼ 1. We thus express the large-ω amplitudes of the
various εn modes as ≈Anω

1=2, where An is a set of
(r-dependent) amplitude parameters.
It is important to explore how An behaves with increas-

ing n, in order to control the possible effect of the infinite
number of oscillating modes. The simplest case to analyze
is again r ¼ 3M, because the connecting null geodesic
is then the circular geodesic at r ¼ 3M. Simple analytical
considerations suggest that in this case An should form
an almost-exact geometric sequence with An=Anþ1 ≅
eπ ≃ 23.14.22 Our numerical results for Fregðω; r ¼ 3MÞ
allow reliable evaluation of the first three amplitudes,
and the calculated ratios A1=A2 and A2=A3 agree very
well with eπ , to about one part in 103. (For the n > 3

modes the oscillations are too weak to reliably measure
their An.)
For other r values the situation is more complicated, and

we do not expect to find such a well-approximated geo-
metric sequence; yet, we still expect that as n increases,
An=Anþ1 should quickly approach the above “canonical”
value eπ . The reason is that, for large n, the connecting null
geodesic makes most of the n revolutions around the BH
along an orbit very close to the circle r ¼ 3M. Hence, the
decrease in the Van Vleck determinant at each revolution is
approximately the same as in the analogous r ¼ 3M case
(an approximation that ever improves with increasing n).
At very small n, however, the ratio between two successive
amplitudes may slightly differ from eπ. We numerically
find that the ratio A1=A2 ranges from eπ ≃ 23.1 at r ¼ 3M
to ≈23.7 at r ¼ 9M.
Overall, at least in the range 3M ≤ r ≤ 9M that we have

numerically explored, the numerical data as well as the
theoretical considerations are all consistent with an almost-
geometric sequence (even for small n), with An=Anþ1

ranging between 23 and 24. In turn this implies that for
practical computation of the generalized integral of
Fregðω; rÞ, we shall have to cancel the first few n modes,
but the contribution of large-n modes may be neglected.

22A simple (though still unproved) analytical argument, based
on evaluating the Van Vleck determinant along the r ¼ 3M
geodesic, suggests that in this case An should be exactly
proportional to ½2 sinhð2πnÞ�−1=2. This expression deviates from
the geometric sequence e−πn by a tiny relative amount ≅ e−4πn=2.
This deviation is smaller than one part in 105 even for n ¼ 1, too
small to be detected by our numerics, but nevertheless our
numerical results are fully consistent with that expression.
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4. Self-cancellation operator

We self-cancel the first four frequencies n ¼ 1…4. The
higher modes n > 4 are too weak to notice.23 The values of

the frequencies εn are numerically obtained from the
connecting null geodesics, for any desired r, as explained
above. The corresponding wavelengths are then given by
λn ¼ 2π=εn. For each frequency, we apply a fourth-order
self-cancellation. Thus, in the terminology of Eq. (A6), our
actual multiple self-cancellation operator is

T� ≡ ðTλ1Þ4ðTλ2Þ4ðTλ3Þ4ðTλ4Þ4: ðB1Þ
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