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A static self-gravitating electrically charged spherical thin shell embedded in a (3þ 1)-dimensional
spacetime is used to study the thermodynamic and entropic properties of the corresponding spacetime.
Inside the shell, the spacetime is flat, whereas outside it is a Reissner-Nordström spacetime, and this is
enough to establish the energy density, the pressure, and the electric charge in the shell. Imposing that the
shell is at a given local temperature and that the first law of thermodynamics holds on the shell one can
find the integrability conditions for the temperature and for the thermodynamic electric potential, the
thermodynamic equilibrium states, and the thermodynamic stability conditions. Through the integrability
conditions and the first law of thermodynamics an expression for the shell’s entropy can be calculated. It is
found that the shell’s entropy is generically a function of the shell’s gravitational and Cauchy radii alone. A
plethora of sets of temperature and electric potential equations of state can be given. One set of equations of
state is related to the Hawking temperature and a precisely given electric potential. Then, as one pushes the
shell to its own gravitational radius and the temperature is set precisely equal to the Hawking temperature,
so that there is a finite quantum backreaction that does not destroy the shell, one finds that the entropy of the
shell equals the Bekenstein-Hawking entropy for a black hole. The other set of equations of state is such
that the temperature is essentially a power law in the inverse Arnowitt-Deser-Misner (ADM) mass and the
electric potential is a power law in the electric charge and in the inverse ADM mass. In this case, the
equations of thermodynamic stability are analyzed, resulting in certain allowed regions for the parameters
entering the problem. Other sets of equations of state can be proposed. Whatever the initial equation of state
for the temperature, as the shell radius approaches its own gravitational radius, the quantum backreaction
imposes the Hawking temperature for the shell in this limit. Thus, when the shell’s radius is sent to the
shell’s own gravitational radius the formalism developed allows one to find the precise form of the
Bekenstein-Hawking entropy of the correlated black hole.

DOI: 10.1103/PhysRevD.91.104027 PACS numbers: 04.70.Bw, 04.20.Gz

I. INTRODUCTION

In general relativity, in 3þ 1 dimensions, a black hole
spacetime is characterized by its conserved charges and
the fundamental constants. The conserved charges are for
example the Arnowitt-Deser-Misner (ADM) mass m and
the electric charge Q. The fundamental constants are the
two constants of the theory, namely, the gravitational
constant G, and the velocity of light (which is set to
one). In an analysis of quantum aspects of a black hole,

such as the black hole entropy and its inherent degrees
of freedom, the other fundamental constant in physics,
Planck’s constant ℏ, also appears naturally. With these three
constants one makes the Planck length lp ¼ ffiffiffiffiffiffiffi

Gℏ
p

and the
Planck area Ap ¼ l2p. Also, m, Q, G, and the velocity of
light give the horizon radius rþ and so the horizon area
Aþ ¼ 4πr2þ. Then, the Bekenstein-Hawking entropy of a
black hole, given by Sbh ¼ 1

4

Aþ
Ap

[1–3], where the Boltzmann
constant is set to one, is a measure of how many Planck
areas there are in the horizon area. It also shows that black
hole quantum mechanics, and consequently black hole
entropy, is in its essence and generality a process of
pure quantum gravity, as no other constants besides the
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gravitational constant G, the velocity of light, and Planck’s
constant ℏ enter, through the Planck area Ap, in the final
process. In addition, it suggests that the ultimate degrees of
freedom that inhabit the realm of quantum gravity are in the
area of the enclosing region, rather than within the volume
as it is the case for ordinary matter [4,5] (for a review see,
e.g., Ref. [6]). However, since there is no quantum gravity
theory at hand, black hole entropy is still an enigma
although there has been progress in its understanding,
especially through the resort to gravitational low-energy
quantum theories.
Since black holes are vacuum solutions, and our primi-

tive concepts of entropy are based on the quantum proper-
ties of matter, it would be useful to have a spacetime with
matter and study its thermodynamic and entropic proper-
ties. One then can look for a limit where a black hole might
emerge. In this way, one can have hints to how a black
hole’s entropy develops. We are thus interested in a system
which contains both gravitational and material degrees of
freedom but which does not introduce too many complex-
ities due to the matter constitution.
The next simplest solution to a black hole solution, is a

vacuum solution except for an infinitesimally thin region of
spacetime where there is matter, i.e., a self-gravitating thin
shell. As a thin shell is the nearest to a vacuum solution one
can have, it is a very useful system that allows one to probe
almost pure spacetime properties. A thin shell is defined as
an infinitesimally thin surface which partitions spacetime
into an interior region and an exterior region. Since it
corresponds to some sort of matter and the spacetime
properties must reflect it, the thin shell should satisfy some
conditions in order for the entire spacetime to be a valid
solution of the Einstein equations. Such conditions relate
the stress-energy tensor of the shell to the extrinsic
curvature of the spacetime. The stress-energy tensor yields
the density and pressure, and in general the matter proper-
ties are also the equations of state, such as the temperature
and possibly others, and the entropy. A particularly simple
thin shell is one that is static and is spherically symmetric.
Suppose then a self-gravitating static spherical thin shell.

We assume the simplest case: the inner spacetime is
Minkowski and the outer spacetime is Schwarzschild.
One can then work out its dynamics and thermodynamic
properties, such as the temperature and entropy. In an
elegant work, by finding the surface energy density and
pressure, and imposing that the shell is at a given local
temperature T, and so using a canonical ensemble,
Martinez [7] found those thermodynamic properties for
the simplest shell, characterized by its rest mass M and
radius R. In Ref. [7] only shells whose matter obeyed the
dominant energy condition, and so the radius R greater than
a given value, were considered. Martinez’s approach [7]
draws in many respects from York’s work [8] where the
thermodynamic properties of a pure Schwarzschild black
hole were treated using a canonical ensemble, i.e.,

imposing a fixed temperature on some fictitious massless
shell at a definite radius outside the event horizon. Another
reason that motivates the use of thin shells is the fact that
they can be taken with some ease to their own gravitational
radius, i.e., to the black hole limit. If one does that, as was
done in Ref. [9], one recovers the black hole entropy, i.e.,
the entropy S of the shell at its own gravitational radius is
S ¼ Sbh ¼ 1

4

Aþ
Ap

for such a matter configuration at the black

hole limit. Such a configuration is called a quasiblack hole.
Thus, the black hole thermodynamic properties can be
studied by a direct computation if thin shells are used.
It is important to generalize Martinez’s work [7] for

electrically charged shells, which we will do here. We
consider that the shell has an electric chargeQ. In this case,
the inner spacetime is Minkowski and the outer spacetime
is Reissner-Nordström. One can then work out the shell’s
dynamics and thermodynamic properties, such as the
energy density, the pressure, the electric potential temper-
ature, and the entropy. Due to the introduction of a new
state variable in the thermodynamic system, namely, the
additional thermodynamic electric potential, the calcula-
tions become considerably more complex. At the same time
the richness of the physical results increases as well. We
take the shell to its own gravitational radius, the black hole
end point, which is meaningful in the calculation of the
shell’s entropy S, and find that the entropy is equal to the
Bekenstein-Hawking entropy. The extremal

ffiffiffiffi
G

p
m ¼ Q

limit can then be taken which gives the same expression
for the entropy, i.e., S ¼ Sbh ¼ 1

4

Aþ
Ap
; see, however,

Refs. [10,11] for a discussion of the entropy of extremal
black holes taken from extremal shells. Electrically charged
black holes were studied in Refs. [12,13], where the
thermodynamic properties of a pure Reissner-Nordström
black hole were treated using a grand canonical ensemble,
i.e., imposing a fixed temperature and electric potential at
some definite radius outside the event horizon.
There are other works that used thin shells to understand

the thermodynamics and the evolution of the entropy in
certain spacetimes. In Refs. [14,15] the formalism of
Martinez [7] was used to study three-dimensional thin
shells including the thermodynamics of a thin shell with a
static Bañados-Teitelboim-Zanelli outer spacetime. In
Refs. [16,17] thin shells with a black hole inside were
used to understand how the entropy of the spacetime
evolves as the shell approaches its own event horizon.
We analyze static thin shells using the junction condition

formalism established in Ref. [18] with the complement
to electrically charged shells developed in Ref. [19]. Our
thermodynamic approach, follows the general approach for
thermodynamic systems given in Ref. [20], as does the
approach of Ref. [7].
We will adopt the following line of work. In Sec. II we

study a static spherical symmetric thin shell whose interior
is Minkowski and exterior is Reissner-Nordström. We find

LEMOS, QUINTA, AND ZASLAVSKII PHYSICAL REVIEW D 91, 104027 (2015)

104027-2



the main properties of the global spacetime as well as the
rest energy density, and thus the rest mass, the pressure in
the shell, and the shell’s electric charge. In Sec. III we
exhibit the first law of thermodynamics, find the generic
integrability conditions and the stability conditions. In
Sec. IV we use the spherical shell whose dynamics is
displayed in Sec. II. We present the three independent
thermodynamic variables ðM;R;QÞ and then through the
integrability conditions find the functional dependence for
the temperature T and the thermodynamic electric potential
Φ on those variables. Then in Sec. V the differential for the
entropy S of the shell is obtained as a differential on the
gravitational radius rþ and the Cauchy horizon radius r−
and up to two functions which depend on rþ and r−. Those
functions are essentially the inverse of the temperature and
the electric potential of the shell if it were located at infinity.
Moreover, it is shown that the two functions are related by a
specific differential equation, and that the entropy of the
shell is a function of rþ and r− alone, which themselves are
functions of ðM;R;QÞ. In Sec. VI, to advance further, one
needs to specify the form of the equations of state. We give
a particular set of equations of state that will lead us with
some ease to the black hole entropy when the shell is taken
to its own gravitational radius. Indeed, by choosing the
Hawking temperature due to quantum-mechanical argu-
ments and a precise electric potential, the entropy of a
charged black hole will naturally emerge. We then compare
our approach with the usual thermodynamic approach for
black holes. In Sec. VII we give another simple set of
phenomenological equations of state for the temperature
and the electric potential, where free parameters encoding
the details of the matter fields will naturally appear. This set
of equations of state allows us to also find the entropy and
study analytically the stability conditions. In Sec. VIII we
briefly discuss other interesting equations of state. Finally,
in Sec. IX we conclude. We leave for Appendix A a study
of the dominant energy condition of the matter fields in the
shell which is not important in the thermodynamic study,
but which is interesting to have. In Appendix B we derive
the equations of thermodynamic stability for a system with
three independent variables.

II. THE THIN-SHELL SPACETIME

A. The Einstein-Maxwell equations

We start with the Einstein-Maxwell equations in 3þ 1
dimensions

Gαβ ¼ 8πGTαβ; ð1Þ

∇βFαβ ¼ 4πJα: ð2Þ

Gαβ is the Einstein tensor, built from the spacetime metric
gαβ and its first and second derivatives, 8πG is the coupling,
withG being the gravitational constant in 3þ 1 dimensions
and we are using units in which the velocity of light is one,

and Tαβ is the energy-momentum tensor. Fαβ is the
Faraday-Maxwell tensor, Jα is the electromagnetic four-
current and ∇β denotes covariant derivative. The other
Maxwell equation ∇½γFαβ� ¼ 0, where ½…� means anti-
symmetrization, is automatically satisfied for a properly
defined Fαβ. Greek indices will be used for spacetime
indices and run as α; β ¼ 0; 1; 2; 3, with 0 being the time
index.

B. The thin-shell gravitational junction conditions

We consider now a two-dimensional timelike massive
electrically charged shell with radius R, which we will call
Σ. The shell partitions spacetime into two parts, an inner
region Vi and an outer region Vo. In order to find a global
spacetime solution for the Einstein equation, Eq. (1), we
will use the thin-shell formalism developed in Ref. [18].
First, we specify the metrics on each side of the shell.

In the inner region Vi (r < R) we assume the spacetime is
flat, i.e.

ds2i ¼ giαβdx
αdxβ ¼ −dt2i þ dr2 þ r2dΩ2; r < R; ð3Þ

where ti is the inner time coordinate, polar coordinates
ðr; θ;ϕÞ are used, and dΩ2 ¼ dθ2 þ sin2θdϕ2. In the outer
region Vo (r > R), the spacetime is described by the
Reissner-Nordström line element

ds2o ¼ goαβdx
αdxβ ¼ −

�
1 −

2Gm
r

þ GQ2

r2

�
dt2o

þ dr2

1 − 2Gm
r þ GQ2

r2

þ r2dΩ2; r > R; ð4Þ

where to is the outer time coordinate, and again ðr; θ;ϕÞ are
polar coordinates, and dΩ2 ¼ dθ2 þ sin2θdϕ2. The con-
stant m is to be interpreted as the ADM mass, or energy,
and Q as the electric charge. Finally, on the hypersurface
itself, r ¼ R, the metric hab is that of a 2-sphere with an
additional time dimension, such that,

ds2Σ ¼ habdyadyb ¼ −dτ2 þ R2ðτÞdΩ2; r ¼ R; ð5Þ

where we have chosen ya ¼ ðτ; θ;ϕÞ as the time and spatial
coordinates on the shell. We have adopted the convention to
use latin indices for the components on the hypersurface.
The time coordinate τ is the proper time for an observer
located at the shell. The shell radius is given by the
parametric equation R ¼ RðτÞ for an observer on the shell.
On each side of the hypersurface, the parametric equations
for the time and radial coordinates are denoted by
ti ¼ TiðτÞ, ri ¼ RiðτÞ, and to ¼ ToðτÞ, ro ¼ RoðτÞ. The
metric hab is also called the induced metric and can be
written in terms of the 3þ 1-dimensional spacetime metric
gαβ. In particular, viewed from each side of the shell, the
induced metric is given by
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hiab ¼ giαβe
α
i ae

β
i b; hoab ¼ goαβe

α
oae

β
ob; ð6Þ

where eαi a and eαoa are tangent vectors to the hypersurface
viewed from the inner and outer regions, respectively. With
these last expressions, we have all the necessary informa-
tion to employ the formalism developed in Ref. [18]. We
will also apply this formalism to electrically charged
systems which was displayed first in Ref. [19].
The thin-shell formalism states that two junction con-

ditions are needed in order to have a smooth change across
the hypersurface. The first junction condition is expressed
by the relation

½hab� ¼ 0; ð7Þ
where the parentheses symbolize the jump in the
quantity across the hypersurface, which in this case is
the induced metric. This condition immediately implies that
hiab ¼ hoab ¼ hab, or explicitly

−
�
1 −

2Gm
r

þGQ2

r2

�
_T2
o þ

_R2
o

ð1 − 2Gm
r þ GQ2

r2 Þ
¼ − _T2

i þ _R2
i ¼ −1; ð8Þ

where a dot denotes differentiation with respect to τ. The
second junction condition is related to the inner and outer
extrinsic curvature Ka

i b and Ka
ob, respectively, defined as

Ka
i b ¼

�
∇βniα

�
eαi ce

β
i bh

ca
i ; Ka

ob ¼
�
∇βnoα

�
eαoce

β
obhcao ;

ð9Þ

where niα and noα, are the inner and outer normals to the
shell, respectively. The second junction condition then
says ½Ka

b� ¼ 0 if the metric is to be smooth across the
hypersurface. However, this condition can be violated, in
which case it can be physically interpreted as the
existence of a thin matter shell where the hypersurface
is located. In addition, the shell’s stress-energy tensor Sab
is related to the jump in the extrinsic curvature through
the Lanczos equation, namely,

Sab ¼ −
1

8πG
ð½Ka

b� − ½K�habÞ; ð10Þ
where K ¼ hbaKa

b. Proceeding then to the calculation of
the extrinsic curvature components, one can show that
they are given by the general expressions

Kτ
i τ ¼

R̈ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p ; ð11Þ

Kτ
oτ ¼

− G _m
R _R

− GQ2

R3 þ Gm
R2 þ R̈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2Gm
R þ GQ2

R2 þ _R2
q ; ð12Þ

Kϕ
i ϕ ¼ Kθ

i θ ¼
1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p
; ð13Þ

Kϕ
oϕ ¼ Kθ

oθ ¼
1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Gm
R

þ GQ2

R2
þ _R2

r
: ð14Þ

Using Eqs. (11)–(14) in Eq. (10), one can calculate the
non-null components of the stress-energy tensor Sab of
the shell. In particular, we will assume a static shell, such
that _R ¼ 0, R̈ ¼ 0, and _m ¼ 0. In that case, we are led to

Sττ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Gm

R þ GQ2

R2

q
− 1

4πGR
; ð15Þ

Sϕϕ ¼ Sθθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Gm

R þ GQ2

R2

q
− 1

8πGR

þ
mG
R − GQ2

R2

8πGR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Gm

R þ GQ2

R2

q : ð16Þ

To further advance, one needs to specify what kind of
matter the shell is made of, which we will consider to be
a perfect fluid with surface energy density σ and pressure
p. This implies that the stress-energy tensor will be of
the form

Sab ¼ ðσ þ pÞuaub þ phab; ð17Þ

where ua is the three-velocity of a shell element. We thus
find that

Sττ ¼ −σ; ð18Þ

Sθθ ¼ Sϕϕ ¼ p: ð19Þ

Combining Eqs. (18)–(19) with Eqs. (15)–(16) results in
the equations

σ ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Gm

R þ GQ2

R2

q
4πGR

; ð20Þ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Gm

R þ GQ2

R2

q
− 1

8πGR
þ

mG
R − GQ2

R2

8πGR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Gm

R þ GQ2

R2

q : ð21Þ

Note that Eq. (21) is purely a consequence of the Einstein
equation which is encoded in the junction conditions.
Thus, although no information about the matter fields of
the shell has been given, we know that they must have a
pressure equation of the form (21), otherwise no
mechanical equilibrium can be achieved.
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It is useful to define the shell’s redshift function k as

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Gm
R

þ GQ2

R2

r
: ð22Þ

Equation (22) allows Eqs. (20)–(21) to be written as

σ ¼ 1 − k
4πGR

; ð23Þ

p ¼ R2ð1 − kÞ2 −GQ2

16πGR3k
: ð24Þ

From the energy density σ of the shell we can define the rest
mass M through the equation

σ ¼ M
4πR2

: ð25Þ

Note that from Eqs. (23) and (25) one has

M ¼ R
G
ð1 − kÞ: ð26Þ

Using Eqs. (22) and (26), we are led to an equation for the
ADM mass m,

m ¼ M −
GM2

2R
þQ2

2R
: ð27Þ

This equation is intuitive on physical grounds as it states
that the total energy m of the shell is given by its mass M
minus the energy required to built it against the action of

gravitational and electrostatic forces, i.e., − GM2

2R þ Q2

2R. For
Q ¼ 0, we recover the result derived in Ref. [7]. Note that
Eq. (27) is also purely a consequence of the Einstein
equation encoded in the junction conditions, i.e., although
no information about the matter fields of the shell has been
given, we know that they must have an ADM mass given
by Eq. (27).
The gravitational radius rþ and the Cauchy horizon r− of

the shell spacetime are given by the zeros of the go00 in
Eq. (4). They are then

rþ ¼ Gmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2m2 − GQ2

p
; ð28Þ

r− ¼ Gm −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2m2 −GQ2

p
; ð29Þ

respectively. The gravitational radius rþ is also the horizon
radius when the shell radius R is inside rþ, i.e., the
spacetime contains a black hole. Although they have the
same expression, conceptually, the gravitational and hori-
zon radii are distinct. Indeed, the gravitational radius is a
property of the spacetime and matter, independently of
whether there is a black hole or not. On the other hand, the
horizon radius exists only when there is a black hole. The

gravitational radius rþ and the Cauchy horizon r− in
Eqs. (28)–(29) can be inverted to give

m ¼ 1

2G
ðrþ þ r−Þ; ð30Þ

Q ¼
ffiffiffiffiffiffiffiffiffiffi
rþr−
G

r
: ð31Þ

From Eq. (28) one can define the gravitational area Aþ as

Aþ ¼ 4πr2þ: ð32Þ

This is also the event horizon area when there is a black
hole. Using Eqs. (28)–(29) implies that k in Eq. (22) can be
written as

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

rþ
R

��
1 −

r−
R

�s
: ð33Þ

The area A of the shell, an important quantity, is from
Eq. (5) given by

A ¼ 4πR2: ð34Þ

C. The thin-shell electromagnetic junction conditions

Now we have to deal with Eq. (2). The Faraday-Maxwell
tensor Fαβ is usually defined in terms of an electromagnetic
four-potential Aα by

Fαβ ¼ ∂αAβ − ∂βAα; ð35Þ

where ∂β denotes partial derivative.
To use the thin-shell formalism related to the electric part

we need to specify the vector potential Aα on each side of
the shell. We assume an electric ansatz for the electromag-
netic four-potential Aα, i.e.,

Aα ¼ ð−ϕ; 0; 0; 0Þ; ð36Þ

where ϕ is thus the electric potential. In the inner region Vi
(r < R) the spacetime is flat. So the Maxwell equation
∇βFαβ ¼ 1ffiffiffiffi−gp ∂βð ffiffiffiffiffiffi−gp

FαβÞ ¼ 0 has as a constant solution

for the inner electric potential ϕi which, for convenience,
can be written as

ϕi ¼
Q
R
þ constant; r < R; ð37Þ

where Q is a constant, to be interpreted as the conserved
electric charge. In the outer region Vo (r > R), the
spacetime is Reissner-Nordström and the Maxwell equa-
tion ∇βFαβ ¼ 1ffiffiffiffi−gp ∂βð ffiffiffiffiffiffi−gp

FαβÞ ¼ 0 now yields
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ϕo ¼
Q
r
þ constant; r > R: ð38Þ

Due to the existence of electricity in the shell, another
important set of restrictions must also be considered. These
restrictions are related to the discontinuity present in the
electric field across the charged shell. We are interested in
the projection

Aa ¼ Aαeαa ð39Þ

of the four-potential in the shell’s hypersurface, since it will
contain quantities which are intrinsic to the shell. Indeed,
following Ref. [19],

½Aa� ¼ 0; ð40Þ

with Aia ¼ ð−ϕi; 0; 0Þ, and Aoa ¼ ð−ϕo; 0; 0Þ being the
vector potential at R, on the shell, seen from each side of it.
Thus, the constants in Eqs. (37) and (38) are indeed the
same and so at R

ϕo ¼ ϕi; r ¼ R: ð41Þ

Following Ref. [19] further, the tangential components Fab
of the electromagnetic tensor Fαβ must change smoothly
across Σ, i.e.

½Fab� ¼ 0; ð42Þ
with

Fi
ab ¼ Fi

αβe
α
i ae

β
i b; Fo

ab ¼ Fo
αβe

α
oae

β
ob; ð43Þ

while the normal components Fa⊥ must change by a
jump as,

½Fa⊥� ¼ 4πσeua; ð44Þ
where

Fi
a⊥ ¼ Fi

αβe
α
i an

β
i ; Fo

a⊥ ¼ Fo
αβe

α
oan

β
o; ð45Þ

and σeua is the surface electric current, with σe being the
density of charge and ua its 3-velocity, defined on the shell.
One can then show that Eq. (42) is trivially satisfied, while
Eq. (44) leads to the single nontrivial equation at R, on
the shell,

∂ϕo

∂r −
∂ϕi

∂r ¼ −4πσe; r ¼ R: ð46Þ

Then, from Eqs. (37), (38), and (46) one obtains

Q
R2

¼ 4πσe; ð47Þ

relating the total charge Q, the charge density σe, and the
shell’s radius R in the expected manner. This section with

its equations forms the dynamical side of the electric
thin-shell solution.

D. Restrictions on the thin-shell radius

A natural inequality that the shell should obey is to
consider the shell to be outside its gravitational radius in all
instances, so

R ≥ rþ: ð48Þ

It is then clear that the physical allowed values for k in
Eq. (33) are in the interval [0, 1]. It is also interesting to
consider the restrictions imposed by the dominant energy
condition. However, since it will not take part in our
analysis we leave this discussion for Appendix A.

III. THERMODYNAMICS AND STABILITY
CONDITIONS FOR THE THIN

SHELL: GENERICS

A. Thermodynamics and integrability conditions
for the thin shell

We now turn to the thermodynamic side and to the
calculation of the entropy of the shell. We use units in
which the Boltzmann constant is one. We start with the
assumption that the shell in static equilibrium possesses a
well-defined temperature T and an entropy S which is a
function of three variables, call them M, A, Q, i.e.,

S ¼ SðM;A;QÞ: ð49Þ

ðM;A;QÞ can be considered as three generic parameters.
In our connection they are the shell’s rest mass M, area A,
and charge Q. The first law of thermodynamics can thus be
written as

TdS ¼ dM þ pdA − ΦdQ ð50Þ

where dS is the differential of the entropy of the shell, dM
is the differential of the rest mass, dA is the differential of
the area of the shell, dQ is the differential of the charge,
and T, p and Φ are the temperature, the pressure, and the
thermodynamic electric potential of the shell, respectively.
In order to find the entropy S, one thus needs three
equations of state, namely,

p ¼ pðM;A;QÞ; ð51Þ

β ¼ βðM;A;QÞ; ð52Þ

Φ ¼ ΦðM;A;QÞ; ð53Þ

where
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β≡ 1

T
ð54Þ

is the inverse temperature.
It is important to note that the temperature and the

thermodynamic electric potential play the role of integra-
tion factors, which implies that there will be integrability
conditions that must be specified in order to guarantee the
existence of an expression for the entropy, i.e. that the
differential dS is exact. These integrability conditions are

�∂β
∂A
�

M;Q
¼
�∂βp
∂M

�
A;Q

; ð55Þ

�∂β
∂Q
�

M;A
¼ −

�∂βΦ
∂M

�
A;Q

; ð56Þ

�∂βp
∂Q
�

M;A
¼ −

�∂βΦ
∂A
�

M;Q
: ð57Þ

These equations enable one to determine the relations
between the three equations of state of the system.

B. Stability conditions for the thin shell

With the first law of thermodynamics given in Eq. (50),
one is able to perform a thermodynamic study of the local
intrinsic stability of the shell. To have thermodynamic
stability the following inequalities should hold:

� ∂2S
∂M2

�
A;Q

≤ 0; ð58Þ

�∂2S
∂A2

�
M;Q

≤ 0; ð59Þ

�∂2S
∂Q2

�
M;A

≤ 0; ð60Þ

� ∂2S
∂M2

��∂2S
∂A2

�
−
� ∂2S
∂M∂A

�
2

≥ 0; ð61Þ

�∂2S
∂A2

��∂2S
∂Q2

�
−
� ∂2S
∂A∂Q

�
2

≥ 0; ð62Þ

� ∂2S
∂M2

��∂2S
∂Q2

�
−
� ∂2S
∂M∂Q

�
2

≥ 0; ð63Þ

� ∂2S
∂M2

�� ∂2S
∂Q∂A

�
−
� ∂2S
∂M∂A

�� ∂2S
∂M∂Q

�
≥ 0: ð64Þ

The derivation of these expressions follows the rationale
presented in Ref. [20]; see Appendix B.

IV. THE THERMODYNAMIC INDEPENDENT
VARIABLES AND THE THREE EQUATIONS OF

STATE: EQUATIONS FOR THE PRESSURE,
TEMPERATURE AND ELECTRIC POTENTIAL

A. The three independent thermodynamic
variables ðM;R;QÞ

We will work from now onwards with the three inde-
pendent variables ðM;R;QÞ instead of ðM;A;QÞ. The rest
mass M of the shell is from Eq. (25) given by

M ¼ 4πR2σ; ð65Þ

where σ is given by Eq. (23) and R is the radius of the shell.
The first law of thermodynamics written in generic terms is
simpler when expressed using the area A of the shell, but
here it is handier to use the radius R in this specific study.
The radius R is related to the area A through Eq. (5), i.e.,

R ¼
ffiffiffiffiffiffi
A
4π

r
: ð66Þ

As for the charge Q, using Eq. (47), it is given by

Q ¼ 4πR2σe: ð67Þ

The three independent thermodynamic variables are thus
ðM;R;QÞ.
We should now envisage Eq. (27) and Eqs. (28)–(29) as

functions of ðM;R;QÞ, i.e.

mðM;R;QÞ ¼ M −
GM2

2R
þQ2

2R
; ð68Þ

and

rþðM;R;QÞ ¼ GmðM;R;QÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2mðM;R;QÞ2 −GQ2

q
; ð69Þ

r−ðM;R;QÞ ¼ GmðM;R;QÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2mðM;R;QÞ2 − GQ2

q
; ð70Þ

respectively. The function k in Eq. (33) is also a function of
ðM;R;QÞ,

kðrþðM;R;QÞ; r−ðM;R;QÞ; RÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

rþðM;R;QÞ
R

��
1 −

r−ðM;R;QÞ
R

�s
: ð71Þ

B. The pressure equation of state

Expressing the pressure equation of state in the form of
Eq. (51), we obtain from Eqs. (21) and (27) [or Eq. (68)],
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pðM;R;QÞ ¼ GM2 −Q2

16πR2ðR −GMÞ ; ð72Þ

or changing from the variables ðM;R;QÞ to ðrþ; r−; RÞ
which is more useful, we find [see Eqs. (24) and (31)],

pðrþ; r−; RÞ ¼
R2ð1 − kÞ2 − rþr−

16πGR3k
; ð73Þ

where k can be envisaged as k ¼ kðrþ; r−; RÞ as given in
Eq. (71) and rþ and r− are functions of ðM;R;QÞ; see
Eqs. (69)–(70). This reduces to the expression obtained
in Ref. [7] in the limit Q ¼ 0 or r− ¼ 0. This equation,
Eq. (73), is a pure consequence of the Einstein equation,
encoded in the junction conditions.

C. The temperature equation of state

Turning now to the temperature equation of state (52),
we will need to focus on the integrability condition (55).
Changing from the variables ðM;R;QÞ to ðrþ; r−; RÞ,
Eq. (55) becomes�∂β

∂R
�

rþ;r−
¼ β

Rðrþ þ r−Þ − 2rþr−
2R3k2

ð74Þ

which has the analytic solution

βðrþ; r−; RÞ ¼ bðrþ; r−Þk ð75Þ
where k is a function of rþ, r−, and R, as given in Eq. (71),
and bðrþ; r−Þ≡ βðrþ; r−;∞Þ is an arbitrary function,
representing the inverse of the temperature of the shell if
its radius were infinite. Hence, in a sense, from Eq. (75), we
recover Tolman’s formula for the temperature of a body
in curved spacetime. The arbitrariness of this function is
due to the fact that the matter fields of the shell are not
specified. Note that b and k are still functions of ðM;R;QÞ
through the variables rþ and r−; see Eqs. (69)–(70)
and Eq. (71).

D. The electric potential equation of state

The remaining equation of state to be studied is the
electric potential. Using Eqs. (26) and (71), one can deduce
ð∂M∂AÞrþ;r− ¼ −p, i.e.,�∂M

∂R
�

rþ;r−
¼ −8π Rp: ð76Þ

Then, it follows from Eqs. (55)–(57) and Eq. (76) that the
differential equation�∂p

∂Q
�

M;R
þ 1

8πR

�∂Φ
∂R
�

rþ;r−
þ Φ

�∂p
∂M
�

R;Q
¼ 0; ð77Þ

holds, where the second term has been expressed in the
variables ðrþ; r−; RÞ and the other terms in the variables

ðM;R;QÞ for the sake of computational simplicity. Then,
after using Eq. (72) in Eq. (77), we obtain that Eq. (77)
takes the form

R2

�∂Φk
∂R
�

rþr−
−

ffiffiffiffiffiffiffiffiffiffi
rþr−

p ffiffiffiffi
G

p ¼ 0; ð78Þ

where k can be envisaged as k ¼ kðrþ; r−; RÞ as given in
Eq. (71). The solution of Eq. (78) is then

Φðrþ; r−; RÞ ¼
ϕðrþ; r−Þ −

ffiffiffiffiffiffiffi
rþr−

p ffiffiffi
G

p
R

k
ð79Þ

where ϕðrþ; r−Þ≡ Φðrþ; r−;∞Þ is an arbitrary function
that corresponds physically to the electric potential of the
shell if it were located at infinity. This thermodynamic
electric potential Φ is the difference in the electric potential
ϕ between infinity and R, blueshifted from infinity to R
(see a similar result in Refs. [12,13] for an electrically
charged black hole in a grand canonical ensemble). We
also see that, once again, by changing to the variables
ðrþ; r−; RÞ we are able somehow to reduce the number of
arguments of the arbitrary function from three to two.
It is convenient to define a function cðrþ; r−Þ through

cðrþ; r−Þ≡ ϕðrþ;r−Þ
Q , i.e.,

cðrþ; r−Þ≡
ffiffiffiffi
G

p ϕðrþ; r−Þffiffiffiffiffiffiffiffiffiffi
rþr−

p ; ð80Þ

where we have used Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr−=G

p
as given in Eq. (31).

Then, Eq. (79) is written as

Φðrþ; r−; RÞ ¼
cðrþ; r−Þ − 1

R

k

ffiffiffiffiffiffiffiffiffiffi
rþr−
G

r
; ð81Þ

where k can be envisaged as k ¼ kðrþ; r−; RÞ as given
in Eq. (71).

V. ENTROPY OF THE THIN SHELL

At this point we have all the necessary information to
calculate the entropy S. By inserting the equations of state
for the pressure, Eq. (73), for the temperature, Eq. (75), and
for the electric potential, Eq. (81), as well as the differential
of M given in Eq. (26) and the differential of the area A or
of the radius R [see Eq. (66)] into the first law, Eq. (50), we
arrive at the entropy differential

dS ¼ bðrþ; r−Þ
1 − cðrþ; r−Þr−

2G
drþ

þ bðrþ; r−Þ
1 − cðrþ; r−Þrþ

2G
dr−: ð82Þ

Now, Eq. (82) has its own integrability condition if dS is to
be an exact differential. Indeed, it must satisfy the equation
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∂b
∂r− ð1 − r−cÞ −

∂b
∂rþ ð1 − rþcÞ ¼

∂c
∂r− br− −

∂c
∂rþ brþ:

ð83Þ

This shows that in order to obtain a specific expression for
the entropy one can choose either b or c, and the other
remaining function can be obtained by solving the differ-
ential equation (83) with respect to that function. Since
Eq. (83) is a differential equation there is still some freedom
in choosing the other remaining function. In the first
examples we will choose to specify the function b first
and from it obtain an expression for c. We also give
examples where the function c is specified first.
From Eq. (82) we obtain

S ¼ Sðrþ; r−Þ; ð84Þ

so that the entropy is a function of rþ and r− alone. In fact S
is a function of ðM;R;QÞ, SðM;R;QÞ, but the functional
dependence has to be through rþðM;R;QÞ and
r−ðM;R;QÞ, i.e., in full form

SðM;R;QÞ ¼ SðrþðM;R;QÞ; r−ðM;R;QÞÞ: ð85Þ

This result shows that the entropy of the thin charged shell
depends on the ðM;R;QÞ through rþ and r− which
themselves are specific functions of ðM;R;QÞ.
It is also worth noting the following feature. From

Eq. (85) we see that shells with the same rþ and r−,
i.e., the same ADM mass m and charge Q, but different
radii R, have the same entropy. Let then an observer sit at
infinity and measure m and Q (and thus rþ and r−). Then,
the observer cannot distinguish the entropy of shells with
different radii. This is a kind of thermodynamic mimicker,
as a shell near its own gravitational radius and another one
far from it have the same entropy.

VI. THE THIN SHELL AND THE BLACK
HOLE LIMIT

A. The temperature equation of state and the entropy

Let us consider a charged thin shell, for which the
differential of the entropy has been deduced to be Eq. (82).
We are free to choose an equation of state for the inverse
temperature. Let us pick for convenience the following
inverse temperature dependence:

bðrþ; r−Þ ¼ γ
r2þ

rþ − r−
; ð86Þ

where γ is some constant with units of inverse mass times
inverse radius, i.e., units of angular momentum.
For a charged shell we must also specify the function

cðrþ; r−Þ, whose form can be taken from the differential
equation (83) upon substitution of the function (86). There

is a family of solutions for cðrþ; r−Þ but for our purposes
here we choose the following specific solution:

cðrþ; r−Þ ¼
1

rþ
: ð87Þ

The rationale for the choices above becomes clear when we
discuss the shell’s gravitational radius, i.e., black hole,
limit. Inserting the choice for bðrþ; r−Þ, Eq. (86), along
with the choice for the function cðrþ; r−Þ, Eq. (87), in the
differential (82) and integrating, we obtain the entropy
differential for the shell

dS ¼ γ

2G
rþdrþ: ð88Þ

Thus, the entropy of the shell is S ¼ γ
4G r

2þ þ S0, where S0 is
an integration constant. Imposing that when the shell
vanishes (i.e., M ¼ 0 and Q ¼ 0, and so rþ ¼ 0) the
entropy vanishes we have that S0 is zero, and so
S ¼ γ

4G r
2þ. Thus, we can write the entropy SðM;R;QÞ as

S ¼ γ

16πG
Aþ; ð89Þ

where Aþ is the gravitational area of the shell, as given in
Eq. (32). This result shows that the entropy of this thin
charged shell depends on ðM;R;QÞ through r2þ only, which
itself is a specific function of ðM;R;QÞ.
Now, what is the constant γ? It should be determined by

the properties of the matter in the shell, and cannot be
decided a priori.

B. The stability conditions for the specific
temperature ansatz

The thermodynamic stability of the uncharged case
(Q ¼ 0, i.e., r− ¼ 0) can be worked out [7] and elucidates
the issue. In the uncharged case the nontrivial stability
conditions are given by Eqs. (58) and (61). Equation (58)
gives immediately R ≤ 3

2
rþ, i.e., R ≤ 3Gm. On the other

hand, Eq. (61) yields R ≥ rþ, i.e., R ≥ 2Gm. Thus, the
stability conditions yield the following range for R,
rþ ≤ R ≤ 3

2
rþ, or in terms of m, 2Gm ≤ R ≤ 3Gm. This

is precisely the range for stability found by York [8] for a
black hole in a canonical ensemble in which a spherical
massless thin wall at radius R is maintained at fixed
temperature T. In Ref. [8] the criterion used for stability
is that the heat capacity of the system should be positive,
and physically such a tight range for R means that only
when the shell, at a given temperature T, is sufficiently
close to the horizon can it smother the black hole enough
to make it thermodynamically stable. The positivity of the
heat capacity is equivalent to our stability conditions,
Eqs. (58) and (61) in the uncharged case.
The stability conditions, Eqs. (58)–(64), for the general

charged case cannot be solved analytically in this instance;

ENTROPY OF A SELF-GRAVITATING ELECTRICALLY … PHYSICAL REVIEW D 91, 104027 (2015)

104027-9



they require numerical work, which will shadow what we
want to determine. Nevertheless, the approach followed in
Refs. [12,13] for the heat capacity of a charged black hole
in a grand canonical ensemble gives a hint of the procedure
that should be followed.

C. The black hole limit

1. The black hole limit properly stated

Although γ should be determined by the properties of the
matter in the shell, there is a case in which the properties of
the shell have to adjust to the environmental properties
of the spacetime. This is the case when R → rþ. In this
case, one must note that, as the shell approaches its own
gravitational radius, quantum fields are inevitably present
and their backreaction will diverge unless we choose the
black hole Hawking temperature Tbh for the temperature of
the shell. In this case, R → rþ, we must take the temper-
ature of the shell as Tbh ¼ ℏ

4π
rþ−r−
r2þ

, where ℏ is Planck’s
constant. So we must choose

γ ¼ 4π

ℏ
; ð90Þ

i.e., γ depends on fundamental constants. Then,

bðrþ; r−Þ ¼
1

Tbh
¼ 4π

ℏ
r2þ

rþ − r−
: ð91Þ

In this case the entropy of the shell is S ¼ 1
4

Aþ
Gℏ, i.e.,

S ¼ 1

4

Aþ
Ap

; ð92Þ

where lp ¼ ffiffiffiffiffiffiffi
Gℏ

p
is the Planck length, and Ap ¼ l2p the

Planck area. Note now that the entropy given in Eq. (92)
is the black hole Bekenstein-Hawking entropy Sbh of a
charged black hole since

Sbh ¼
1

4

Aþ
Ap

; ð93Þ

where Aþ is here the horizon area. Thus, when we take the
shell to its own gravitational radius the entropy is the
Bekenstein-Hawking entropy. The limit also implies that
the pressure and the thermodynamic electric potential go to
infinity as 1=k, according to Eqs. (73) and (81), respec-
tively. Note, however, that the local inverse temperature
goes to zero as k [see Eq. (75)], and so the local temperature
of the shell also goes to infinity as 1=k. These well-
controlled infinities cancel out precisely to give the
Bekenstein-Hawking entropy (92).
Note that, since A ¼ Aþ when the shell is at its own

gravitational radius, at this point the entropy of the shell is

proportional to its own area A, indicating that all the shell’s
fundamental degrees of freedom have been excited.
Note also that the shell at its own gravitational radius, at

least in the uncharged case, is thermodynamically stable,
since in this case stability requires rþ ≤ R ≤ 3

2
rþ, as

mentioned above.
Note yet that our approach and the approach followed in

Ref. [10] to find the black hole entropy have some
similarities. The two approaches use matter fields, i.e.,
shells, to find the black hole entropy. Here we use a static
shell that decreases its own radius R by steps, maintaining
its staticity at each step. In Ref. [10] a reversible contraction
of a thin spherical shell down to its own gravitational radius
was examined, and it was found that the black hole entropy
can be defined as the thermodynamic entropy stored in the
matter in the situation that the matter is compressed into a
thin layer at its own gravitational radius.
Finally we note that the extremal limit

ffiffiffiffi
G

p
m ¼ Q or

rþ ¼ r− is well defined from above. Indeed, when one
takes the limit rþ → r− one finds that 1=bðrþ; r−Þ ¼ 0 (i.e.,
the Hawking temperature is zero) and the entropy of the
extremal black hole is still given by Sextremal bh ¼ 1

4

Aþ
Ap
. It is

well known that extremal black holes and in particular their
entropy have to be dealt with care. If, ab initio, one starts
with the analysis for an extremal black hole one finds that
the entropy of the extremal black hole has a more general
expression than simply being equal to one quarter of the
area [10,11]. This extremal shell is an example of a
Majumdar-Papapetrou matter system. Its pressure p is
zero, and it remains zero, and thus finite, even when
R → rþ. This limit of R → rþ is called a quasiblack hole,
which in the extremal case is a well-behaved one.

2. The rationale for the choice of bðrþ; r−Þ and cðrþ; r−Þ
We have started with a thin shell and imposed a

temperature equation of state of the Hawking type [see
Eq. (86) as well as Eqs. (90), and (91)], and a specific
thermodynamic electric potential [see Eq. (87)]. This set of
equations of state gives an entropy for the shell proportional
to its gravitational radius area Aþ. One can moreover set the
temperature of the shell at any R precisely equal to the
Hawking temperature Tbh [see Eq. (91)]. Remarkably, we
have then shown that a self-gravitating electric thin shell at
the Hawking temperature and with a specific electric
potential has a Bekenstein-Hawking entropy.
A priori, Hawking-type choices for the temperature

[Eqs. (86), (90), and (91)], and black hole-type choices
for the electric potential [Eq. (87)], are simply choices, and
many other choices for the set of equations of state can be
taken. However, this set is really imposed on the shell when
it approaches its gravitational radius, where it takes the
precise forms given in Eqs. (86) and (90) [or, Eq. (91)], and
Eq. (87) as the spacetime quantum effects get a hold on
the shell.
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We would like to stress that the requirement b ¼ T−1
bh

[see Eqs. (86), (90), and (91)] is compulsory only for shells
that approach their own gravitational radius. Otherwise, if
we consider the radius of the shell within some constrained
region outside the gravitational radius, the shell temper-
ature can be arbitrary since away from the horizon,
quantum backreaction remains modest and does not destroy
the thermodynamic state. One can discuss whole classes of
functions bðrþ; r−Þ ≠ T−1

bh .
In addition we stress that the choice for c, Eq. (87), is

necessary only for shells at the gravitational radius limit.

According to Eq. (80), this gives us ϕ ¼
ffiffiffiffi
r−

pffiffiffiffiffiffiffi
Grþ

p , i.e.,

ϕ ¼ Q
rþ

ð94Þ

that coincides with the standard expression for the electric
potential for the Reissner-Nordström black hole. In addi-
tion, Eq. (81) acquires the form

Φ ¼ Q
k

�
1

rþ
−
1

R

�
ð95Þ

that coincides entirely with the corresponding formula for
the Reissner-Nordström black hole in a grand canonical
ensemble [12]. Meanwhile, in our case there is no black
hole. Moreover, if we go to the uncharged case, Q → 0 or
r− → 0, and thus the outer space is described by the
Schwarzschild metric, then it is seen from Eq. (82) that
the quantity c drops out from the entropy, so the choice of c
is relevant for the charged case only, of course.

3. Similarities between the thin-shell approach
and the black hole mechanics approach

There are similarities between the thin-shell approach
and the black hole mechanics approach [2]. These are
evident if we express the differential of the entropy of the
charged shell (82) in terms of the black hole ADM mass m
and charge Q, given in terms of the variables ðrþ; r−Þ by
Eqs. (30)–(31). The differential for the entropy of the shell
reads in these variables

T0dS ¼ dm − cQdQ ð96Þ

where we have defined T0 ≡ 1=bðrþ; r−Þ which is the
temperature the shell would possess if located at infinity.
Here, T0 ¼ 1=bðrþ; r−Þ and c ¼ cðrþ; r−Þ should be seen
as T0ðm;QÞ ¼ 1=bðm;QÞ and cðm;QÞ, respectively, since
rþ and r− are functions ofm andQ. As we have seen, if we
take the shell to its gravitational radius, we must fix T0 ¼
Tbh and c ¼ 1=rþ. This suggests that Q=rþ should play
the role of the black hole electric potential Φbh, which in
fact is true, as shown in Eq. (94) (see Ref. [2]; see also

Refs. [12,13]). So the conservation of energy of the shell is
expressed as

TbhdSbh ¼ dm − ΦbhdQ: ð97Þ

We thus see that the first law of thermodynamics for the
shell at its own gravitational radius is equal to the energy
conservation for the Reissner-Nordström black hole.

VII. THE THIN SHELL WITH ANOTHER
SPECIFIC EQUATION OF STATE FOR

THE TEMPERATURE

A. The temperature equation of state and the entropy

The previous equation of state is not prone to a simple
stability analysis. Here we give another equation of state
that permits finding both an expression for the shell’s
entropy and performing a simple stability analysis.
We must first specify an adequate thermal equation of

state for bðrþ; r−Þ. A possible simple choice is a power law
in the ADM mass m, i.e., bðrþ; r−Þ has the form

bðrþ; r−Þ ¼ 2Gaðrþ þ r−Þα ð98Þ

where a and α are free coefficients related to the properties
of the shell. Power laws occur frequently in thermodynamic
systems, and so this is a natural choice as well. The simple
choice above allows one to find the form of the function c.
Indeed, the integrability equation (83) gives that the
function c can be put in the form cðrþ; r−Þ ¼
2G fðrþr−Þ

ðrþþr−Þα, where fðrþr−Þ is an arbitrary function of the

product rþr− and supposedly also depends on the intrinsic
constants of the matter that makes up the shell. For
convenience we choose fðrþr−Þ ¼ dðrþr−Þδ, where d
and δ are parameters that reflect the shell’s properties,
so that

cðrþ; r−Þ ¼ 2Gd
ðrþr−Þδ

ðrþ þ r−Þα
: ð99Þ

The gravitational constant G was introduced in Eqs. (98)
and (99) for convenience. Inserting Eqs. (98)–(99) into
Eq. (82) and integrating, gives the entropy

Sðrþ; r−Þ ¼ a

�ðrþ þ r−Þαþ1

αþ 1
− d

ðrþr−Þδþ1

δþ 1

�
; ð100Þ

where the constant of integration S0 has been put to zero,
as expected in the limit rþ → 0 and r− → 0. Again, the
entropy of this thin charged shell depends on ðM;R;QÞ
through rþ and r− only, which in turn are specific functions
of ðM;R;QÞ.
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We consider positive temperatures and positive electric
potentials, so

a > 0; d > 0: ð101Þ
We consider only

α > 0; ð102Þ
for the simplicity of the upcoming stability analysis.
Although this choice somewhat narrows down the range
of cases to which the analysis is applicable, it only rules out
the cases where −1 < α < 0, since for values α ≤ −1 it
would give a diverging entropy in the limit rþ → 0 and
r− → 0, something which is not physically acceptable.
Indeed, in such a limit we would expect the entropy to be
zero which requires α > −1.

B. The stability conditions for the specific
temperature ansatz

Proceeding to the thermodynamic stability treatment, we
start with Eq. (58), which can be shown to be equivalent to

rþr− − 2R2k2αþ ð1 − k2ÞR2 ≥ 0: ð103Þ

Solving for k, this leads to the restriction

k ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2αþ 1

�
1þ rþr−

R2

�s
: ð104Þ

Going now to Eq. (59), it gives

½rþr− − ð1 − kÞ2R2�½αðrþr− − ð1 − kÞ2R2Þ
þ 3ðrþr− þ ð1 − k2ÞR2Þ� ≤ 0: ð105Þ

Since the second multiplicative term on the left must be
positive, one can solve for k and obtain the set of values
which satisfy the inequality,

α

αþ 3
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

ðαþ 3Þ2 þ
rþr−
R2

s
≤ k

≤
α

αþ 3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

ðαþ 3Þ2 þ
rþr−
R2

s
: ð106Þ

As for Eq. (60), it reduces to

dRð2δþ 1Þðrþr−Þδ
ðrþr−R þ ð1 − k2ÞRÞα ≥

R2ð1 − k2Þ þ ð2αþ 1Þrþr−
R2ð1 − k2Þ þ rþr−

:

ð107Þ
Although one cannot conclude anything directly from the
above inequality, it is nonetheless worth noting that the
right-hand side is greater than zero, and so δ must obey
the condition

δ ≥ −
1

2
: ð108Þ

Regarding Eq. (61), it is possible to show that it implies
the condition

r2þr2−ðαþ 3Þ − 2rþr−R2ð2k2αþ 2k2 − kþ α − 1Þ
þ ð1 − kÞ2R4ð3k2αþ k2 þ 2αkþ α − 1Þ ≤ 0; ð109Þ

which does not provide any information on its own since it
is a polynomial of order four in the variable k. Nonetheless,
it does need to be satisfied once a region of allowed values
for k is known, which will be ascertained in the following.
Concerning Eq. (62), we are led to

dRð2δþ 1Þðrþr−Þδ
ðrþr−R þ ð1 − k2ÞRÞα ≤

r2þr2−ð3αþ 1Þ þ 2ð1 − kÞrþr−R2ð2αðk − 1Þ þ 2k − 1Þ − ð1 − kÞ3R4ðkðαþ 3Þ − αþ 3Þ
½ð1 − kÞ2R2 − rþr−�½ðk − 1ÞR2ðkðαþ 3Þ − αþ 3Þ� ; ð110Þ

which does not contain any new information.
On the other hand, when Eq. (63) is simplified to

dRð2δþ 1Þðrþr−Þδ
ðrþr−R þ ð1 − k2ÞRÞα

≥
R2ð1 − k2Þ þ ð2αþ 1Þrþr− − 2R2k2α

R2ð1 − k2Þ þ rþr− − 2R2k2α
; ð111Þ

and one notices that the numerator on the right side must
be positive, another constraint on k naturally appears,
namely

k ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2αþ 1
þ rþr−

R2

r
: ð112Þ

Finally, the last condition (64) gives the inequality

rþr−ðαþ 1Þ − R2½ðαþ 1Þk2 þ α − 1� ≥ 0 ð113Þ

which constricts the values of k to be within the
interval
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k ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
α − 1

αþ 1
þ rþr−

R2

r
: ð114Þ

The definitive region of permitted values for k is the
intersection of the conditions (104), (106), (112) and (114).
It is possible to show that such an intersection gives the
range

α

αþ 3
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

ðαþ 3Þ2 þ
rþr−
R2

s
≤ k ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
α − 1

αþ 1
þ rþr−

R2

r

ð115Þ
where α must be restricted to

α ≥
1þ rþr−

R2

1 − rþr−
R2

: ð116Þ

Returning to Eq. (109), it is now possible to verify if the
interval (115) satisfies said condition, which indeed it does.

C. The black hole limit

If one takes the shell to its own gravitational radius, the
chosen temperature equation of state (98) is wiped out, and
a new equation of state sets in to adapt to the quantum
spacetime properties. The new equation of state is then
given by Eq. (91) and the black hole entropy (92) follows.

VIII. OTHER EQUATIONS OF STATE

Naturally, other equations of state can be sought. We
give four examples, one fixing bðrþ; r−Þ and three others
fixing cðrþ; r−Þ.
If we fix the inverse temperature

bðrþ; r−Þ ¼ γ
r2þ

rþ − r−
; ð117Þ

for some γ, as we did before, then generically, from
Eq. (83), we find

cðrþ; r−Þ ¼
aðrþr−Þðrþ − r−Þ þ r−

r2þ
; ð118Þ

where aðrþr−Þ is an arbitrary function of integration of the
product rþr− and presumably also depends on the intrinsic
constants of the matter that makes up the shell. Then, from
Eq. (82), the entropy is

Sðrþ; r−Þ ¼
γ

4G

�
r2þ þ

Z
rþr−

0

ð1 − aðxÞÞdx
�
; ð119Þ

where it is implied that the function hðxÞ vanishes at x ¼ 0
rapidly enough so that the entropy goes to zero when
rþ ¼ 0. In the example we gave previously we have put

aðrþr−Þ ¼ 1, so that cðrþ; r−Þ ¼ 1
rþ
. This case aðrþr−Þ ¼

1 gives precisely that the entropy of the shell is proportional
to the area of its gravitational radius and for γ ¼ 4π

ℏ gives
that the entropy of the shell is equal to the corresponding
black hole entropy as we have discussed previously. Of
course, many other choices can be given for aðrþr−Þ and
quite generally the entropy will be a function of rþ and
r−, S ¼ Sðrþ; r−Þ.
Inversely, instead of bðrþ; r−Þ one can give cðrþ; r−Þ.

One equation for cðrþ; r−Þ could be

cðrþ; r−Þ ¼
1

rþ
; ð120Þ

as for the black hole case. The integrability condition,
Eq. (83), for the temperature then gives

bðrþ; r−Þ ¼
hðrþÞ
rþ − r−

; ð121Þ

where hðrþÞ is a function that can be fixed in accord with
the matter properties of the shell. Then, from Eq. (82), the
entropy is

SðrþÞ ¼
1

2G

Z
rþ

0

hðxÞ
x

dx; ð122Þ

where we are assuming zero entropy when rþ ¼ 0. If we
choose hðrþÞ ¼ 4π

ℏ r2þ, then one recovers the black hole
temperature and the black hole entropy for the shell.
Another equation of state one can choose for cðrþ; r−Þ is

cðrþ; r−Þ ¼
1

r−
: ð123Þ

The integrability condition, Eq. (83), similarly gives

bðrþ; r−Þ ¼
hðr−Þ
rþ − r−

; ð124Þ

where hðr−Þ is a function that can be fixed in accord with
the matter properties of the shell. In this case, from Eq. (82),
the entropy of the shell depends on r− only, and is given by

Sðr−Þ ¼
1

2G

Z
r−

0

hðxÞ
x

dx; ð125Þ

where we are assuming zero entropy when r− ¼ 0.
Yet another example can be obtained if one puts

cðrþ; r−Þ ¼ cðrþr−Þ; ð126Þ

i.e., c is a function of the product rþr− and may also
depend on the intrinsic constants of the matter that makes
up the shell. The integrability condition then gives

b ¼ b0; ð127Þ
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where b0 is a constant, and so in this case, the temperature
measured at infinity does not depend on rþ or r−. The
entropy is then

Sðrþ; r−Þ ¼
b0
2G

�
rþ þ r− −

Z
rþr−

0

cðxÞdx
�
; ð128Þ

where we are assuming zero entropy when rþ ¼ 0
and r− ¼ 0.
One could study in detail these four cases for the

thermodynamics of a shell performing in addition a
stability analysis for each one. We refrain here to do so.
Certainly other interesting cases can be thought of.

IX. CONCLUSIONS

We have considered the thermodynamics of a self-
gravitating electrically charged thin shell thus generalizing
previous works on the thermodynamics of self-gravitating
thin-shell systems. Relatively to the simplest shell where
there are two independent thermodynamic state variables,
namely, the rest massM and the size R of the shell, we have
now a new independent state variable in the thermodynamic
system, the electric charge Q, out of which, using the first
law of thermodynamics and the equations of state one can
construct the entropy of the shell SðM;R;QÞ. Due to the
additional variable, the charge Q, the calculations are
somewhat more complex. Concomitantly, the richness in
physical results increases in the same proportion.
The equations of state one has to give are the pressure

pðM;R;QÞ, the temperature TðM;R;QÞ, and the electric
potential ΦðM;R;QÞ. The pressure can be obtained from
dynamics alone, using the thin-shell formalism and the
junction conditions for a flat interior and a Reissner-
Nordström exterior. The form of the temperature and of
the thermodynamic electric potential are obtained using the
integrability conditions that follow from the first law of
thermodynamics.
The differential for the entropy in its final form shows

remarkably that the entropy must be a function of rþ and r−
alone, i.e., a function of the intrinsic properties of the shell
spacetime. Thus, shells with the same rþ and r− (i.e., the
same ADM mass m and charge Q) but different radii R,
have the same entropy. From the thermodynamics proper-
ties alone of the shell one cannot distinguish a shell near its
own gravitational radius from a shell far from it. In a sense,
the shell can mimic a black hole.
The differential for the entropy in its final form gives that

T and Φ are related through an integrability condition. One
has then to specify either T or Φ and the form of the other
function is somewhat constrained. We gave two example
cases and mentioned other possibilities.
First, we gave the equations of state where the temper-

ature has the form of the Hawking temperature, apart from a
constant factor, and the electric potential has a simple
precise formQ=rþ, and found the entropy. When the factor

is the Hawking factor it was shown that the resulting entropy
was equal to the Bekenstein-Hawking entropy of a non-
extremal charged black hole. The need to set the temperature
of the shell equal to the Hawking temperature is justified
when the shell is taken to its own gravitational radius. At
this radius the backreaction of the nearby quantum fields
diverges unless the shell has precisely the Hawking temper-
ature. Conversely, one should note that if instead, the
function for the electric potential Q=rþ was given, the
integrability equation would then fix the function T apart
from an arbitrary function. A simple choice for this arbitrary
function is the Hawking temperature.
Second, the other set of equations of state were given as a

simple ansatz. For the thermal equation of state, we set the
temperature as proportional to some power in the ADM
mass m, and the thermodynamic electric potential was set
to be a power in the electric charge and an inverse power in
m. This choice also allows one to find an expression for the
entropy of the shell and, furthermore, allows for an analytic
stability analysis. Indeed, despite the increase in complex-
ity in the thermodynamic stability analysis due to the
existence of four new stability equations, it was possible to
obtain a unique range for the redshift parameter k, as well as
the regions of allowed values for the parameters α and δ.
Many other interesting equations of state can be chosen

and some of them were indeed given. However at the
gravitational radius all turn into the Hawking equation of
state, i.e., the Hawking temperature. Since the area of the
shell A is equal to the gravitational radius area Aþ, A ¼ Aþ,
when the shell is at its own gravitational radius, and S ¼
1
4

Aþ
Ap

in this limit, we conclude that the entropy of the shell is
proportional to its own area A. This indicates that all its
fundamental degrees of freedom have been excited. Matter
systems at their own gravitational radius are called quasi-
black holes and have thermodynamic properties similar to
black holes.
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APPENDIX A: THE DOMINANT
ENERGY CONDITION

With the expressions for the mass density and pressure,
Eqs. (23)–(24), we can consider some mechanical con-
straints which the shell should naturally obey. One can
impose that the shell satisfies the weak energy condition. It
requires that σ and p be positive, which is always verified.
One can also insist that the shell satisfies the dominant
energy condition, i.e.,
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p ≤ σ: ðA1Þ
It is then possible to show that the dominant energy
condition imposes the constraint k ∈ ½k1; k2�, where

k1 ¼
3

5

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

5

9

�
1 −

rþr−
R2

�s !
; ðA2Þ

and k2 ¼ 3
5
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 5

9
ð1 − rþr−

R2 Þ
q

Þ. Since k2 > 1, and k

trivially obeys k ≤ 1, we conclude that the dominant energy
condition restricts the values of k to obey

k1 ≤ k: ðA3Þ

In the case where there is no charge, i.e., Q ¼ 0 or r− ¼ 0,
one gets k1 ¼ 1=5, thus regaining the result obtained in
Ref. [7]. When expressed in terms of the variables R=m and
R=Q, the relation (A3) can be written as

R
m

≥
25

6þ 10 GQ2

R2 þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 5 GQ2

R2

q ðA4Þ

or in terms of R=rþ and r−=R,

R
rþ

≥
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r−

R − ðr−R Þ2 þ ðr−RÞ3
q

þ 31 r−
R − 20ðr−R Þ2 − 12

24 r−
R − 25ðr−RÞ2

:

ðA5Þ

This is a mechanical constraint. A fundamental constraint,
the no-trapped-surface condition for the shell, is R ≥ rþ, as
was given in Eq. (48).

APPENDIX B: DERIVATION OF THE
EQUATIONS OF THERMODYNAMIC STABILITY

FOR A SYSTEM WITH THREE
INDEPENDENT VARIABLES

In this appendix we shall show the derivation of the
equations of thermodynamic stability for an electrically
charged system, i.e., Eqs. (58)–(64). Thus the approach
used for two independent variables in Ref. [20] is extended
here by us to three independent variables. We name these
independent variables M, A, and Q.
We start by considering two identical subsystems, each

with an entropy S ¼ SðM;A;QÞ, where M is the internal
energy of the system (equivalent to the rest mass), A is its
area and Q its electric charge. The usual state variables of a
thermodynamic system are the internal energyU, volume V
and the number of particles, N, say. However, the system
we wish to study is an electrically charged thin shell,
and thus it is natural to use the variables ðM;A;QÞ.
Thermodynamic stability is guaranteed if dS ¼ 0 and

d2S < 0 are both satisfied, or in other words, if the entropy
is an extremum and a maximum respectively.
Now suppose we keep A and Q constant and remove a

positive amount of internal energyΔM from one subsystem
to the other. The total entropy of the two subsystems goes
from the value 2SðM;A;QÞ to SðM þ ΔM;A;QÞþ
SðM − ΔM;A;QÞ. If the initial entropy SðM;A;QÞ is a
maximum, then the sum of initial entropies must be greater
or equal to the sum of final entropies, i.e.

SðM þ ΔM;A;QÞ þ SðM − ΔM;A;QÞ ≤ 2SðM;A;QÞ:
ðB1Þ

Expanding SðM þ ΔM;A;QÞ and SðM − ΔM;A;QÞ in a
Taylor series to second order in ΔM, we see that Eq. (B1)
becomes � ∂2S

∂M2

�
A;Q

≤ 0 ðB2Þ

in the limit ΔM → 0. The same reasoning applies if we fix
M andQ instead and apply a positive change of areaΔA, so
we must have

SðM;Aþ ΔA;QÞ þ SðM;A − ΔA;QÞ ≤ 2SðM;A;QÞ
ðB3Þ

which in the limit ΔA → 0 gives�∂2S
∂A2

�
M;Q

≤ 0: ðB4Þ

If we fix M and A and make a positive change ΔQ on the
charge, we have

SðM;A;Qþ ΔQÞ þ SðM;A;Q − ΔQÞ ≤ 2SðM;A;QÞ
ðB5Þ

and so it follows that

�∂2S
∂Q2

�
M;A

≤ 0: ðB6Þ

However, if we keep only one quantity fixed, like Q for
example, we must also have a final sum of entropies smaller
than the initial sum if we apply a simultaneous change of
area and internal energy rather than separately, i.e.

SðM þ ΔM;Aþ ΔA;QÞ
þ SðM − ΔM;A − ΔA;QÞ ≤ 2SðM;A;QÞ: ðB7Þ

This inequality is satisfied by Eq. (B2) and Eq. (B4), but it
also implies a new requirement. If we expand the left side in
a Taylor series to second order in ΔM and ΔA, and use the
abbreviated notation Sij ¼ ∂2S=∂xi∂xj, we get
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SMMðΔMÞ2 þ 2SMAΔMΔAþ SAAðΔAÞ2 ≤ 0: ðB8Þ
Multiplying Eq. (B8) by SMM and adding and subtracting
S2MAðΔAÞ2 to and from the left side, allows the last
inequality to be written in the form

ðSMMΔM þ SMAΔAÞ2 þ ðSMMSAA − S2MAÞðΔAÞ2 ≥ 0:

ðB9Þ
Since the first term on the left side is always greater than
zero, we see that it is sufficient to have� ∂2S

∂M2

��∂2S
∂A2

�
−
� ∂2S
∂M∂A

�
2

≥ 0: ðB10Þ

This concludes the derivation of Eqs. (58), (59) and (61).
To derive the other stability equations, namely, Eqs. (60),

(62), (63), and (64), we note that we can repeat the same
calculations but now we fix M and A in turns. It is now
straightforward to see that, when fixing M, we must have

SAAðΔAÞ2 þ 2SAQΔAΔQþ SQQðΔQÞ2 ≤ 0; ðB11Þ

which is satisfied by�∂2S
∂A2

��∂2S
∂Q2

�
−
� ∂2S
∂A∂Q

�
2

≥ 0: ðB12Þ

Finally, by fixing A we get the inequality

SMMðΔMÞ2 þ 2SMQΔMΔQþ SQQðΔQÞ2 ≤ 0 ðB13Þ
which implies the sufficient condition

� ∂2S
∂M2

��∂2S
∂Q2

�
−
� ∂2S
∂M∂Q

�
2

≥ 0: ðB14Þ

The last case left consists of doing a simultaneous change
in all the state variables of the system, i.e.,

SðM þ ΔM;Aþ ΔA;Qþ ΔQÞ
þ SðM − ΔM;A − ΔA;Q − ΔQÞ ≤ 2SðM;A;QÞ:

ðB15Þ

To investigate the sufficient differential condition that this
inequality implies, one must first expand SðM þ ΔM;
Aþ ΔA;Qþ ΔQÞ and SðM − ΔM;A − ΔA;Q − ΔQÞ in
a Taylor series to second order in ΔM, ΔA and ΔQ, which
can be shown to lead to

SMMðΔMÞ2 þ SAAðΔAÞ2 þ SQQðΔQÞ2
þ 2SMAΔMΔAþ 2SMQΔMΔQþ 2SQAΔAΔQ ≤ 0:

ðB16Þ

Multiplying the above relation by SMM, noting that

ðSMMΔM þ SMAΔAþ SMQΔQÞ2
¼ S2MMðΔMÞ2 þ S2MAðΔAÞ2 þ S2MQðΔQÞ2

þ 2SMMSMAΔMΔAþ 2SMMSMQΔMΔQ

þ 2SMASMQΔAΔQ; ðB17Þ

and inserting this into Eq. (B16), gives

ðSMMΔM þ SMAΔAþ SMQΔQÞ2
þ ðSMMSAA − S2MAÞðΔAÞ2 þ ðSMMSQQ − S2MQÞðΔQÞ2
þ 2ðSMMSQA − SMASMQÞΔAΔQ ≥ 0: ðB18Þ

Recalling Eq. (B10) and Eq. (B14), and noting that the
first term in the above inequality is always positive, we
conclude that the condition

� ∂2S
∂M2

�� ∂2S
∂Q∂A

�
−
� ∂2S
∂M∂A

�� ∂2S
∂M∂Q

�
≥ 0 ðB19Þ

is sufficient to satisfy Eq. (B15). This concludes the
derivation of Eqs. (60), (62), (63) and (64). Thus all
stability equations, Eqs. (58)–(64), have been derived.
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