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Acoustic perturbations in an expanding hadronic fluid at temperatures below the chiral transition point
represent massless pions propagating in curved spacetime geometry. In comoving coordinates the
corresponding analog metric tensor describes a hyperbolic Friedmann-Robertson-Walker spacetime.
We study the analog cosmological particle creation of pions below the critical point of the chiral phase
transition. We compare the cosmological creation spectrum with the spectrum of analog Hawking radiation
at the analog trapping horizon.
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I. INTRODUCTION

Quantum field theory in a curved spacetime predicts that
the gravitation field creates particles and antiparticles. The
main related phenomena are the Hawking effect in black
holes and particle creation due to the cosmological expan-
sion [1]. In the latter case, the creation is caused by the time
dependence of the background metric which in turn causes
a nontrivial time evolution of the ground state similar to
what happens to a quantum harmonic oscillator with time-
dependent frequency [2]. The process of particle creation
depends only on the particulars of the metric and particle
properties (mass, spin, etc.) irrespective of whether the
expansion is of cosmological or another origin. In particu-
lar, particle creation is expected in time-dependent analog
gravity systems such as expanding Bose–Einstein (BE)
condensates [3–6], Bose and Fermi superfluids [7], and
expanding hadronic fluids [8,9].
Analog gravity has proven to be useful in studying various

physical phenomena [10], e.g., acoustics [11], optics [12],
superfluidity [13], black hole accretion [14,15], and hadron
fluid [8,9,16]. The purpose of this paper is to study in the
framework of analog gravity the phenomenon of cosmo-
logical particle creation in a hadronic fluid produced in high
energy collision experiments.
Strongly interacting matter is described at the funda-

mental level by a non-Abelian gauge theory called quantum
chromodynamics (QCD).At low energies, theQCDvacuum
is characterized by a nonvanishing expectation value [17]:
hψ̄ψi ≈ ð235 MeVÞ3, the so-called chiral condensate. This
quantity describes the density of quark-antiquark pairs
found in the QCD vacuum, and its nonvanishing value is
a manifestation of chiral symmetry breaking [18]. Our
approach is based on the linear sigma model [19] combined
with a boost invariant Bjorken-type spherical expansion
[20]. The linear sigmamodel serves as an effectivemodel for
the low-temperature phase of QCD [21,22]. In the chirally

broken phase, i.e., at temperatures below the point of the
chiral phase transition, the pions are massless but owing to
the finite temperature effects propagate slower than light
[23–25]. Moreover, the pion velocity approaches zero at the
critical temperature.
As in general relativity, a notable manifestation of analog

gravity are two effects both having a quantum origin: the
Hawking radiation and cosmological particle creation.
These two phenomena are similar but appear under differ-
ent physical conditions. The Hawking thermal radiation is
due to the information loss across the apparent horizon,
whereas the cosmological particle creation generates a
quasithermal radiation as a result of time variation of the
spacetime geometry. The Hawking radiation takes place
only if there exists a trapping (or apparent) horizon,
whereas the cosmological particle creation takes place with
or without a horizon. On the other hand, in any stationary
geometry the cosmological particle creation is absent,
whereas the Hawking radiation is present in a stationary
geometry with an event horizon. Besides, if a field theory is
conformally invariant, therewill be no cosmological particle
creation. In contrast, the Hawking radiation is present even
in the conformal case as long as a trapping horizon exists.
The analog Hawking effect has been studied in our

previous papers [8,9] in the context of an expanding hadronic
fluid. We have demonstrated that there exists a region where
the flow velocity exceeds the pion velocity and the analog
trapped region forms, which then causes the Hawking
radiation of massless pions. Here we study the effect of
cosmological creation of pions in an expanding hadronic
fluid in terms of the Bogoliubov transformation [26] and
adiabatic expansion [1,27]. For alternative approaches to
cosmological particle creation, see, e.g., Refs. [28,29].
The remainder of the paper is organized as follows. In

Sec. II, we describe the analog model based on the
expanding chiral fluid. The cosmological particle creation
of pions is studied in Sec. III, in which we derive the
spectrum of the created pions and the time dependence of
the particle number. We estimate the temperature by fitting
our spectrum to the Planck black body radiation spectrum.

*bilic@irb.hr
†dijana.tolic@irb.hr

PHYSICAL REVIEW D 91, 104025 (2015)

1550-7998=2015=91(10)=104025(14) 104025-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.104025
http://dx.doi.org/10.1103/PhysRevD.91.104025
http://dx.doi.org/10.1103/PhysRevD.91.104025
http://dx.doi.org/10.1103/PhysRevD.91.104025


In the concluding section, Sec. IV, we summarize our
results and discuss physical implications.

II. EXPANDING CHIRAL FLUID

In this section, we describe the hadron fluid in terms of
the linear sigma model at finite temperature undergoing a
spherically symmetric expansion. Our model is based
on a scalar field Lagrangian with spontaneously broken
chiral symmetry which we describe in Sec. II A. Then, in
Sec. II B, we specify the dynamics of the fluid based on the
Bjorken expansion model.

A. Linear sigma model

Consider a linear sigma model at finite temperature in
the Minkowski spacetime background. The background
medium is a hadronic fluid consisting of predominantly
pions. The dynamics of mesons in such a medium is
described by an effective Lagrangian with spontaneously
broken chiral symmetry [30],

Leff ¼
1

2
ðfgμν þ guμuνÞð∂μσ∂νσ þ ∂μπ∂νπÞ

−
m2

σ

2
σ2 −

m2
π

2
π2 − Uðσ; πÞ; ð1Þ

where gμν is the inverse of the background metric. As we
are working in units in which ℏ ¼ c ¼ 1, the velocity of the
fluid uμ is normalized as gμνuμuν ¼ 1.
The coefficients f and g depend on the local temperature

T and on the parameters of the sigma model, the coupling
constant λ and the pion decay constant fπ , and may be
calculated in perturbation theory. The scalar fields σ and πi,
where i ¼ 1; 2; 3, represent fluctuations around the expect-
ation values hσi and hπii, respectively. The expectation
values of the pion fields hπii are chosen to vanish always,
whereas the expectation value of the sigma field hσi,
usually referred to as the chiral condensate, is temperature
dependent and vanishes at the critical temperature Tc.
The scaling and universality analysis [24] yields hσi ∼ ðT −
TcÞβ in the vicinity of the critical point. At zero temper-
ature, hσi is normalized to the pion decay constant, i.e.,
hσi ¼ fπ at T ¼ 0. The meson masses depend on temper-
ature and below the chiral transition point are given by

m2
π ¼ 0; m2

σ ¼ 2λhσi2: ð2Þ

The potential U is

Uðσ; πÞ ¼ λhσiσðσ2 þ π2Þ þ λ

4
ðσ2 þ π2Þ2: ð3Þ

The temperature dependence of hσi is obtained by mini-
mizing the thermodynamic potential Ω ¼ −ðT=VÞ lnZ
with respect to hσi at fixed temperature T [22]. The scaling
and universality analysis [24] yields hσi ∼ ðT − TcÞβ in the
vicinity of the critical point with β ¼ 0.388 for the O(4)

universality class [31,32]. Furthermore, the extremum
condition was solved numerically at one-loop order
[9,22], and the value of the critical temperature Tc ¼
183 MeV was found with fπ ¼ 92.4 MeV and mσ ¼
1 GeV as a phenomenological input.
The action corresponding to the Lagrangian (1) may be

expressed as [9]

Seff ¼
Z

d4x
ffiffiffiffiffiffiffi
−G

p �
1

2
Gμνð∂μσ∂νσ þ ∂μπ∂νπÞ

−
cπ
f2

�
m2

σ

2
σ2 þm2

π

2
π2 þ Uðσ; πÞ

��
; ð4Þ

where the effective metric tensor, its inverse, and its
determinant are given by

Gμν ¼
f
cπ

½gμν − ð1 − c2πÞuμuν�; ð5Þ

Gμν ¼ cπ
f

�
gμν −

�
1 −

1

c2π

�
uμuν

�
; ð6Þ

G≡ detGμν ¼
f4

c2π
det gμν; ð7Þ

with the pion velocity cπ defined by

c2π ¼
f

f þ g
: ð8Þ

It is worth noting that there exists a straightforward map
between the metric (5) and the relativistic acoustic metric
[14,33,34]

Gμν ¼
n

m2wcs
½gμν − ð1 − c2s Þuμuν� ð9Þ

derived for acoustic perturbations in an ideal relativistic
fluid with the adiabatic speed of sound cs defined as

c2s ¼
dp
dρ

����
s=n

: ð10Þ

The symbols n, p, ρ, and w ¼ ðpþ ρÞ=n denote, respec-
tively, the particle number density, pressure, energy density,
and specific enthalpy. The expression (9) compared with
the original one [33] differs by a factor 1=m2, which we
have introduced here to make the acoustic metric dimen-
sionless. The mapping between Gμν and Gμν is achieved by
identifying the pion velocity cπ with the speed of sound cs
and the quantity f with n=ðm2wÞ. The physical meaning of
f may be seen in the nonrelativistic limit in which case
n → ρ=m and w → m, and hence f → ρ=m4. Thus, in this
limit, the quantity f is proportional to the energy density ρ.
At zero temperature, the energy density is just the rest mass
density, i.e., ρjT¼0 ¼ m=V ¼ m4 so fjT¼0 ¼ 1.
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In the absence of the medium (or equivalently at zero
temperature), we have f ¼ 1 and g ¼ 0. At nonzero
temperature, f and g are derived from the finite temperature
self-energy Σðq; TÞ in the limit when the external momen-
tum q approaches zero and can be expressed in terms of
second derivatives of Σðq; TÞ with respect to q0 and qi. The
quantities f, g, and cπ as functions of temperature have
been calculated at one-loop level by Pisarski and Tytgat in
the low temperature approximation [23]

f ≃ 1 −
T2

12f2π
−
π2

9

T4

f2πm2
σ
; g≃ 1þ 8π2

45

T4

f2πm2
σ
;

c2π ≃ 1 −
8π2

45

T4

f2πm2
σ
; ð11Þ

and by Son and Stephanov for temperatures close to the
chiral transition point [24,25] (see also Ref. [8]). In d ¼ 3
dimensions, one finds

f ≃ c1ð1 − zÞν−2β; f þ g≃ c2ð1 − zÞ−2β;
c2π ≃ c3ð1 − zÞν; ð12Þ

in the limit z≡ T=Tc → 1. Here c1, c2, and c3 are
constants, and ν ¼ 0.749 and β ¼ 0.388 are the critical
exponents for the O(4) universality class [31,32].
Combining this with (11) and the numerical results at
one-loop order [9], a good fit in the entire range 0 ≤ T ≤ Tc
is achieved with

f ¼ ð1 − z2Þν−2βð1 − pz2Þq; c2π ¼ ð1 − z4Þν; ð13Þ
where p and q are positive parameters. The constants
in (12) are then fixed to c1 ¼ 2ν−2βð1 − pÞq, c2 ¼
2−ν−2βð1 − pÞq, and c3 ¼ 22ν. With (13), we capture the
main features: with the values p ¼ 0.1 and q ¼ 3.58, we
match the zero temperature limit [23], and we recover the
correct critical behavior (12).
The variation of the action (4) yields the Klein–Gordon

wave equation in curved space,

1ffiffiffiffiffiffiffi
−G

p ∂μð
ffiffiffiffiffiffiffi
−G

p
GμνÞ∂νφþ cπ

f2
½m2

φ þ Vφðσ; πÞ�φ ¼ 0; ð14Þ

where φ stands for πi or σ and

Vφðσ; πÞ ¼ 2
∂U
∂φ2

ð15Þ

are the corresponding interaction potentials.

B. Spherical Bjorken expansion

In this section, we will completely specify the analog
metric Gμν by fixing the background metric gμν and the
velocity field uμ and by deriving the spacetime dependence

of the quantities f and cπ . So far, f and cπ are expressed as
functions of temperature via (13), and we will see that once
we specify the dynamics of the fluid the spacetime
dependence of f and cπ will follow from their temperature
dependence.
To this end, we consider a boost invariant Bjorken-type

spherical expansion [35]. This type of expansion has been
recently applied to mimic an open Friedmann-Robertson-
Walker (FRW) metric in a relativistic BE system [16,36]. In
this model, the radial three-velocity in radial coordinates
xμ ¼ ðt; r; θ;ϕÞ is a simple function v ¼ r=t. Then, the
four-velocity is given by

uμ ¼ ðt=τ; r=τ; 0; 0Þ; ð16Þ
where τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − r2

p
is the proper time of observers

comoving along the fluid worldlines. With the substitution

t ¼ τ cosh y;

r ¼ τ sinh y; ð17Þ
the four-velocity velocity is expressed as

uμ ¼ ðcosh y; sinh y; 0; 0Þ: ð18Þ
The substitution (17) may be regarded as a coordinate
transformation from ordinary radial coordinates to new
coordinates ðτ; y; θ;ϕÞ in which the flat background metric
takes the form

gμν ¼ diagð1;−τ2;−τ2sinh2y;−τ2sinh2ysin2θÞ: ð19Þ

Thus, the transformation (17) maps the spatially flat
Minkowski spacetime into an expanding FRW spacetime
with cosmological scale a ¼ τ and negative spatial curva-
ture. The resulting flat spacetime with metric (19) is known
in cosmology as the Milne universe [37].
The velocity components in this coordinate frame are

uμ ¼ ð1; 0; 0; 0Þ, and hence the new coordinate frame is
comoving. Using this and (19) from (5), we obtain the
analog metric in a diagonal form,

Gμν ¼

0
BBBB@
b2

−a2

−a2sinh2y
−a2sinh2ysin2θ

1
CCCCA; ð20Þ

where

b ¼
ffiffiffiffiffiffiffiffi
fcπ

p
; a ¼ τ

ffiffiffiffiffi
f
cπ

s
: ð21Þ

This metric is of the form of a FRW spacetime with
negative spatial curvature, provided the quantities f and cπ
are functions of time only.
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We could, in principle, convert the metric (20) back to
the original coordinates ðt; r; θ;ϕÞ using the inverse of the
transformation (17) and proceed with calculations in the
laboratory frame. However, for our purpose, it is advanta-
geous to do the calculations in the comoving reference
frame mainly for the following reasons. The original
coordinate frame (or laboratory frame) is not suitable for
thermodynamic considerations since the thermodynamic
variables, such as temperature, are always defined in the
fluid rest frame or the comoving frame. Besides, as we shall
shortly demonstrate, the comoving reference frame yields
an analog FRW cosmology. Hence, from now on, we work
in the comoving reference frame referring to the proper
time τ simply as the time.
To find the time dependence of f and cπ , we shall use

(13) and the fact that the temperature of the expanding
chiral fluid is, to a good approximation, proportional to τ−1.
This follows from the fact that the expanding hadronic
matter is dominated by massless pions, and hence the
density and pressure of the fluid may be approximated by
ρ ¼ ðπ2=10ÞT4 and p ¼ ρ=3 for an ideal massless pion gas
[38]. Using this and the continuity equation uμρ;μþ
ðpþ ρÞuμ;μ ¼ 0, where the subscript ; μ denotes the
covariant derivative associated with the background metric
(19), one finds

T
Tc

¼ τc
τ
: ð22Þ

Here Tc is the critical temperature of the chiral transition,
and τc may be fixed from the phenomenology of high energy
collisions. For example, if we take Tc ¼ 0.183 GeV, then a
typical value of ρ ¼ 1 GeV=fm3 at τ ≈ 5 fm [39] is obtained
with τc ≈ 8.2 fm ¼ 41.6 GeV−1. The physical range of τ is
fixed by Eq. (22) since the available temperature ranges
between T ¼ 0 and T ¼ Tc. Hence, the time range is
τc ≤ τ < ∞. In the following, we keep τc unspecified so
that physical quantities of the dimension of time or length are
expressed in units of τc.
Thus, the quantities f and cπ being temperature depen-

dent are implicit functions of τ through the time-dependent
T ¼ TðτÞ. In this way, the metric (20) falls into the class of
FRW spacetimes with negative spatial curvature. More
explicitly, using (13) and (22), we have

a ¼ τð1 − z2Þν=4−βð1þ z2Þ−ν=4ð1 − pz2Þq=2; ð23Þ

b ¼ ð1 − z2Þ3ν=4−βð1þ z2Þν=4ð1 − pz2Þq=2; ð24Þ

where z ¼ τc=τ ¼ T=Tc, ν ¼ 0.749, β ¼ 0.388, p ¼ 0.1,
and q ¼ 3.58.
In the next section, wewill have to address the criteria for

distinguishing an adiabatic from a sudden regime. The
relevant scale for these criteria is set by the Hubble
parameter, which for this cosmology is defined as

H ¼ 1

3
∇μuμ ¼

1

ab
∂a
∂τ ; ð25Þ

where ∇μ denotes the covariant derivative associated with
the metric (20). For large τ, the quantity H goes to zero as
H ∼ 1=τ and near the critical point diverges as

H ≃ −0.2τ−2ð1 − 1=τÞβ−3ν=4−1; ð26Þ

where τ is measured in units of τc and H in units of τ−1c .

III. CREATION OF PIONS IN ANALOG
COSMOLOGY

The particles associated with quantum fluctuations of the
chiral field are pions and sigma mesons. Since the chiral
fluid is expanding and the particles experience an effective
time-dependent metric, the pions and sigma mesons will be
created during the expansion in complete analogy with the
standard cosmological particle creation. As a consequence,
the pion and sigma-mesons numbers will not be conserved,
and a vacuum state generally evolves into a multiparticle
state. In Sec. III A, we review the standard procedure of
canonical quantization of scalar fields in an FRW geometry
and the derivation of Bogoliubov coefficients. In Sec. III B,
we deal with the particle interpretation ambiguity in a time-
dependent geometry. Next, we solve the Klein–Gordon
equation with the help of theWKB ansatz, and in Sec. III C,
we present the numerical results.

A. Canonical quantization

The effective action (4) with (3) is of the φ4 type.
However, as we are primarily interested in the effects of
cosmological particle creation, we shall in the following
disregard the self-interaction terms in the potential. In other
words, we do not consider particle production caused by
the self-interaction although this effect may be significant
[40]. Hence, we can split the action (4) into a sum of the
actions for each field,

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi
−G

p
½Gμν∂μφ∂νφ −m2

effφ
2 − ξφ2R�; ð27Þ

where φ stands for πi or σ. Here we have introduced a time-
dependent effective mass defined by

m2
eff ¼

cπ
f2

m2 ¼ τ3

a3b
m2; ð28Þ

where m stands for mπ or mσ as given by (2). For
completeness, we have included the nonminimal coupling
term of the scalar fields to the effective scalar curvature R.
This term is required by renormalization in curved space-
time because, even if the renormalized ξ ¼ 0, loop cor-
rections would induce a nonminimal coupling term of this
type [40,41]. As we shall see, this term introduces another
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type of criticality in addition to the critical behavior owing
to the above-mentioned chiral symmetry breaking and
restoration at finite temperature. The field equation derived
from (27) is the free Klein–Gordon equation

1ffiffiffiffiffiffiffi
−G

p ∂μð
ffiffiffiffiffiffiffi
−G

p
GμνÞ∂νφþm2

effφþ ξRφ ¼ 0 ð29Þ

in curved spacetime with metric (20).

1. Schrödinger representation

In the canonical quantization formalism, we expand the
field φ

φðxÞ ¼
X
J

½aJφJðxÞ þ a†JφJðxÞ��; ð30Þ

where the time-independent particle creation and annihi-
lation operators (the “Schrödinger picture”) satisfy the
commutation relations

½aJ; a†K� ¼ δJK ð31Þ

and φJðxÞ are solutions to (29) labeled by a collective index
J. In spherical coordinates, J ≡ fk; l; mg, where l is
the angular momentum, m is its projection, and k is the
magnitude of the comoving momentum related to the
physical momentum as p ¼ k=a. Note that in the coor-
dinate frame ðτ; y; θ;ϕÞwith metric (20) k is dimensionless.
Thus, the physical energy of a particle is

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=a2 þm2

eff

q
; ð32Þ

where meff is defined by (28).
In a hyperbolic space, the large volume limit V → ∞ can

be applied, and the sum over discrete momentum is
replaced by an integral over continuous k. Then, the
sum over J in (30) can be written as [26]

X
J

¼
Z

∞

0

dk
X∞
l¼0

Xl

m¼−l
: ð33Þ

As usual, we can separate the time and space dependence
using

φJðxÞ ¼
�

b
2a3

�
1=2

χkðτÞΦJðxÞ: ð34Þ

Then, the functions χk and ΦJ satisfy

χ00k þ Ω2ðτÞχk ¼ 0; ð35Þ

ΔΦJ þ k2ΦJ ¼ 0; ð36Þ

respectively. Here and from here on, the prime 0 denotes a
partial derivative with respect to τ.
The differential operator Δ is the Laplace–Beltrami

operator on the three-dimensional space with line element

dl2 ¼ γijdxidxj ¼ dy2 þ sinh2yðdθ2 þ sin2θdϕ2Þ: ð37Þ

The metric-dependent factor on the right-hand side of (34)
is introduced in order to get rid of the first-order derivative
in the equation for χ. The time-dependent function Ω is
given by

Ω2 ¼ ω2 þ
�
ξ −

1

6

�
b2Rþ Σ; ð38Þ

where

Σ ¼ 1

4

�
b
a

�
2
�
a
b

�02
−
1

2

�
b
a

��
a
b

�00
; ð39Þ

R is the Ricci scalar,

R ¼ 6

a2

�
aa00

b2
þ a0

b

�
a
b

�0
− 1

�
; ð40Þ

and

ω2 ¼ b2E2 ¼ b2

a2
k2 þ τ3b

a3
m2; ð41Þ

with mass m ¼ mðτÞ generally depending on τ by way of
its temperature dependence. The spacetime defined by the
metric (20) with (23) and (24) has a curvature singularity
since the Ricci scalar diverges at τc as

R ∼ ðτ − τcÞ−2: ð42Þ

The solutions to (36) are known, and the explicit form of
ΦJðxÞ may be found in Ref. [26]. Here we only use the
following properties:Z

d3x
ffiffiffiffiffiffiffiffiffi
det γ

p
Φ�

JðxÞΦKðxÞ ¼ δJK; ð43Þ

X
lm

jΦJðxÞj2 ¼
k2

2π2
: ð44Þ

Using these properties, the sum over l andm in (33) may be
carried out in the case of spherical symmetry. First, using
(43) with J ¼ K, we rewrite (33) as

X
J

¼
Z

∞

0

dk
X
lm

Z
d3x

ffiffiffiffiffiffiffiffiffi
det γ

p
Φ�

JðxÞΦJðxÞ: ð45Þ

Then, by (44), we obtain
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X
J

¼ V
2π2

Z
∞

0

dkk2; ð46Þ

where V denotes the comoving proper volume

V ¼
Z

d3x
ffiffiffiffiffiffiffiffiffi
det γ

p
: ð47Þ

To solve (35), we first impose the condition

χkχ
�0
k − χ�kχ

0
k ¼ 2i; ð48Þ

which we can do because the left-hand side, theWronskian,
is a constant of motion of (35). Next we make use of
the WKB ansatz, which automatically meets the
condition (48),

χkðτÞ ¼ WðτÞ−1=2e−i
R

dτ0Wðτ0Þ; ð49Þ

where the positive function WðτÞ satisfies

W2 ¼ Ω2 þW1=2ðW−1=2Þ00: ð50Þ

A solution to (50) may be expressed as

WðτÞ ¼ lim
n→∞

WðnÞðτÞ; ð51Þ

where the series fWðnÞg is obtained from the adiabatic
expansion [1]

WðnÞðτÞ ¼
Xn
i¼0

ωðiÞðτÞ: ð52Þ

The contribution ωðiÞðτÞ containing derivatives of a, b, and
ω with respect to τ of order i may be found iteratively at
each adiabatic order i starting with ωð0ÞðτÞ ¼ ωðτÞ. The
next nonvanishing term in the series in (52) is of the order
i ¼ 2 and is given by

ωð2Þ ¼
�
ξ −

1

6

�
b2R
2ω

þ Σ
2ω

þ ðω−1=2Þ00
ω1=2 : ð53Þ

Using (52), we define the adiabatic modes of order n as

φðnÞ
J ðτ; xÞ ¼

�
b
2a3

�
1=2

χðnÞk ðτÞΦJðxÞ; ð54Þ

where

χðnÞk ðτÞ ¼ ðWðnÞðτÞÞ−1=2e−i
R

dτ0WðnÞðτ0Þ: ð55Þ

2. Heisenberg representation

In the following, we assume the adiabatic invariance of
the particle number in each mode of the field φ; i.e., we

require that the particle number in each mode should be
constant [42] in the limit of an infinitely slow expansion. To
meet this requirement, we expand the field operator φðxÞ
and its derivative φ0ðxÞ in terms of the time-dependent
operators (the “Heisenberg picture”) aJðτÞ,

φðxÞ ¼
X
J

½aJðτÞ ~φJðτ; xÞ þ a†JðτÞ ~φJðτ; xÞ��; ð56Þ

φ0ðxÞ ¼
X
J

½aJðτÞ ~φ0
Jðτ; xÞ þ a†JðτÞ ~φ0

Jðτ; xÞ��; ð57Þ

where

~φJðτ; xÞ ¼
�

b
2a3

�
1=2

~χkðτÞΦJðxÞ; ð58Þ

~χkðτÞ ¼ ð ~WðτÞÞ−1=2e−i
R

dτ0 ~Wðτ0Þ; ð59Þ

and ~WðτÞ are conveniently chosen smooth functions of ω,
a, and b and their derivatives, such that

~Wðτ0Þ ¼ Wðτ0Þ; ~W0ðτ0Þ ¼ W0ðτ0Þ ð60Þ

at some initial τ ¼ τ0. In addition, for a given k, the
function ~WðτÞ should coincide with Wð0ÞðτÞ at lowest
adiabatic order; i.e., we require ~WðτÞ ¼ ωðτÞ at lowest
adiabatic order. The function ~WðτÞ is, obviously, not
unique, but the adiabatic expansion (52) offers a natural
choice—each adiabatic mode WðnÞðτÞ of order n satisfies
the above criteria. However, the lowest-order mode Wð0Þ is
unacceptable as it leads to UV divergence in particle
production rate [43,44]. We shall shortly discuss this point
in more detail.
The simplest and perhaps the most natural choice is

~WðτÞ≡Wð1ÞðτÞ ¼ ωðτÞ. Another choice, ~WðτÞ≡ΩðτÞ,
which meets the above criteria also seems natural since
Ω appears in the harmonic oscillator equation (35) as the
(time-dependent) frequency. However, in contrast to
Wð1ÞðτÞ, the function ΩðτÞ contains derivative terms of
second order but not all such terms that appear in the next
order adiabatic mode Wð2ÞðτÞ. Hence, the choice ~WðτÞ≡
ΩðτÞ is incomplete and inconsistent from the adiabatic
expansion point of view. Another problem with ~WðτÞ≡
ΩðτÞ, as we shall shortly demonstrate, is that it yields a
nonvanishing particle creation rate in the conformal case.

3. Bogoliubov transformation

The time-dependent operators aJðτÞ and a†JðτÞ are
related to aJðτ0Þ≡ aJ and a†Jðτ0Þ≡ a†J via the
Bogoliubov transformation [26,45]

aJðτÞ ¼ αkðτÞaJ þ β�kðτÞa†J̄ϑJ; ð61Þ
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a†JðτÞ ¼ α�kðτÞa†J þ βkðτÞaJ̄ϑ�J; ð62Þ

where the coefficients satisfy

αkðτ0Þ ¼ 1; βkðτ0Þ ¼ 0; jαkj2 − jβkj2 ¼ 1: ð63Þ

The conjugate label J̄ is defined so that

Φ�
JðxÞ ¼ ϑJΦJ̄ðxÞ ð64Þ

and ϑJ is a phase with property

ϑJ̄ ¼ ϑ�J: ð65Þ

For example, if J ≡ fk; l; mg, we have J̄ ≡ fk; l;−mg
and ϑJ ¼ ð−1Þm.
Consistency of the expansions (56) and (57) with (30)

implies a relationship between exact solutions χkðτÞ and the
known functions ~χkðτÞ. Plugging (61) and (62) into (56)
and (57), and comparing with (30), one finds

χk ¼ αk ~χk þ βk ~χ
�
k; ð66Þ

χ0k ¼ αk ~χ
0
k þ βk ~χ

�0
k : ð67Þ

In obtaining these equations, we have used (64) and (65).
Clearly, by virtue of (63), we have

χkðτ0Þ ¼ ~χkðτ0Þ; χ0kðτ0Þ ¼ ~χ0kðτ0Þ; ð68Þ

which serve as initial conditions when solving Eq. (35).
From (66) and (67), we find the explicit expressions for the
Bogoliubov coefficients:

αk ¼
1

2i
ðχk ~χ�0k − ~χ�kχ

0
kÞ; ð69Þ

βk ¼
1

2i
ð~χkχ0k − χk ~χ

0
kÞ: ð70Þ

B. Particle interpretation

As is well known, there exists an intrinsic ambiguity of
the particle interpretation in spacetimes with a time-
dependent metric, in particular in a FRW spacetime [27].
In this section, we present a simple demonstration of this
ambiguity and the prescription how to remove it.
At τ0, the vacuum state vector ji is defined as the state

which is annihilated by the operator aJ, i.e., aJji ¼ 0. A
one-particle state with quantum numbers J is defined using
the creation operator a†J acting on the vacuum, i.e.,
a†Jji ¼ jJi, so that in the coordinate representation we
define

hxjJi ¼ φJðτ0; xÞ: ð71Þ

In the Heisenberg picture, the state ji is time independent,
whereas aJðτÞ and a†JðτÞ evolve with τ according to (61)
and (62) so

aJðτÞji ≠ 0 ð72Þ

for τ ≠ τ0.
In the Schrödinger picture, the vacuum state ji evolves

into a new state vector jiτ which represents the vacuumwith
respect to aJðτÞ such that

aJðτÞjiτ ¼ 0; a†JðτÞjiτ ¼ jJiτ; ð73Þ

where the one-particle state in the coordinate representation
is defined as

hxjJiτ ¼ ~φJðτ; xÞ: ð74Þ

From (61) and (73), it follows that

aJjiτ ≠ 0; ð75Þ

so the state vector jiτ at late times is different from the state
vector ji containing no particles at an early time τ0, and
hence there is no unambiguous unique Heisenberg state
which can be identified as the vacuum state.
The total number of particles with quantum number

J created at time τ is

NJðτÞ≡τ hja†JaJjiτ ¼ hja†JðτÞaJðτÞji ¼ jβkðτÞj2; ð76Þ

where the last two equations follow from (61) and (62).
Then, the particle number density is the total number
divided by the physical volume a3V, i.e.,

nðτÞ ¼ 1

a3V

X
J

NJðτÞ ¼
1

2π2a3

Z
∞

0

dkk2jβkðτÞj2; ð77Þ

where we have exploited spherical symmetry and used (47)
to replace the sum by an integral. Thus, the occupation
number of created particles is equal to the square of the
magnitude of the Bogoliubov coefficient βk.
The square of the Bogoliubov coefficient may be

obtained directly from (70) and by way of (49) and (59)
may be conveniently expressed in terms of W and ~W:

jβkj2 ¼
1

4

�
~W
W

þW
~W
þ 1

4 ~WW

�
W0

W
−

~W0

~W

�2

− 2

�
: ð78Þ

The above-mentioned ambiguity is in the choice of ~χðτÞ or
~WðτÞ which one has to fix in order to evaluate the right-
hand side of (78). As we discussed previously, a natural
choice would be an adiabatic mode χðnÞ. In this case, to
maintain consistency with the adiabatic expansion, we must
keep only the terms up to the adiabatic order n [44] in the
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derivatives ~W0 ¼ WðnÞ0 in (78). For example, consider n ¼
0 and n ¼ 1. It turns out that ωð1Þ ¼ 0 in the adiabatic
expansion (52), so Wð1Þ ¼ Wð0Þ ¼ ω and Wð1Þ0 ¼ ω0, but
Wð0Þ0 must be set to zero.
Furthermore, according to the adiabatic regularization

prescription, the choice of n is dictated by the asymptotic
UV behavior of the integrand in (77): one must use the
minimal n such that jβkj → 0 faster than k−3=2 as k → ∞
[44]. For a FRW metric of the general form (20), the
integral (77) is UV divergent for n ¼ 0 apart from some
special cases discussed in detail by Fulling [43]. For
example, it is easy to verify that such a special case is
realized if b ¼ a in (20), which corresponds to the
conformal form of a spatially hyperbolic metric. In a more
general case, i.e., if b ≠ a the integral (77) is UV divergent
for n ¼ 0 and converges for n ≥ 1. We shall therefore work
with n ¼ 1 and check the convergence explicitly. Hence,
the final expression which will be used in our numerical
calculations is

jβkj2 ¼
1

4

�
ω

W
þW

ω
þ 1

4ωW

�
W0

W
−
ω0

ω

�
2

− 2

�
; ð79Þ

where ωðτÞ is given by (41) and WðτÞ is a solution to (50)
that satisfies the initial conditions

Wðτ0Þ ¼ ωðτ0Þ; W0ðτ0Þ ¼ ω0ðτ0Þ; ð80Þ

at conveniently chosen τ ¼ τ0.
To check the UV limit, we will make use of the

asymptotic expressions for W. From (52) and (53) in the
limit k → ∞, we find

W ¼ ωþ ωð2Þ þOðω−3Þ: ð81Þ

ωð2Þ ¼
�
ξ −

1

6

�
b2R
2ω

þOðω−3Þ: ð82Þ

Then, applying (79), we obtain

jβkj2 ¼
1

32

�
ξ −

1

6

�
2 b4R2

ω4
þOðω−6Þ: ð83Þ

Hence, the integrand in (77) converges as 1=k2, and the
particle number has a regular UV limit as expected. The
result (83) is generally valid for particle creation in any
FRW universe with a metric of the form (20).

C. Results

Instead of solving equation (35), for our purpose, it is
convenient to solve equation (50) for the WKB function
WðτÞ. With the help of the substitution

YðτÞ ¼ W−1=2ðτÞ; ð84Þ

from (50), we obtain the differential equation

Y 00 þ Ω2YðτÞ − Y−3 ¼ 0; ð85Þ

where the functionΩðτÞ is defined in (38) with (41). Before
proceeding to solve (85) for the analog cosmological model
defined by the metric (20) with (23) and (24), it is useful to
study three important examples which may be solved
analytically.
Consider first a conformally invariant field theory, i.e.,

for m ¼ 0 and ξ ¼ 1=6, in which case there should be no
particle creation, as has been argued on general grounds
[42]. Indeed, in this case, as may easily be verified, the
function

Yconf ¼ ω−1=2 ¼
�
k
b
a

�
−1=2

ð86Þ

is a solution to (85) for arbitrary aðτÞ and bðτÞ. This yields
WcðτÞ ¼ ωðτÞ and ωðnÞ ¼ 0 at all adiabatic orders n > 0.
Then, with the choice ~W ¼ WðnÞ ¼ ω, by virtue of (79), we
find jβkj ¼ 0 and hence no particle creation as expected. In
contrast, on account of (78), the choice ~W ¼ Ω would
generally yield jβkj ≠ 0 and hence an unphysical prediction
of particle creation for a conformally invariant field.
Second, consider the asymptotic future. In the limit

τ → ∞, our system approaches the zero temperature
regime, and the spacetime described by the analog metric
(20) approaches the Milne universe with a ¼ τ and b ¼ 1.
It is therefore instructive to compare the analog cosmo-
logical particle creation with that of the Milne universe. In
particular, in the Milne universe, there should be no
creation of massless particles since the scalar field satisfies
the conformally invariant wave equation. Indeed, for
m ¼ 0, the asymptotic solution to (85)

Y∞ ¼
�
τ

k

�
1=2

; W∞ ¼ ω ¼ k
τ
; ð87Þ

gives jβkj2 ¼ 0, and hence there is no creation of massless
particles as in the previous case.
Third, it is worth analyzing the solution to (85) in the

critical regime t≡ τ − τc → 0. In that regime, Ω2 ≃ αt−2,
where

α ¼ 6ξðβ þ β2 − ν=4 − ν2=16Þ − β − β2: ð88Þ
Equation (85) then simplifies to

d2Y
dt2

þ αt−2Y − Y−3 ¼ 0 ð89Þ

and may be solved analytically in the limit t → 0. The
behavior of the solution in that limit depends crucially on
the value of the nonminimal coupling constant ξ. We find
three distinct solutions depending on α,
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Y ¼

8>><
>>:

ðα − 1=4Þ−1=4t1=2; for α > 1=4;

Y1t1=2−
ffiffiffiffiffiffiffiffi
1−4α

p
=2; for 0 < α < 1=4;

Y2t−1=2−
ffiffiffiffiffiffiffiffi
1−4α

p
=2; for α < 0;

ð90Þ

where Y1 and Y2 are arbitrary real constants. Clearly,
Y → 0 for α > 0, and Y → ∞ for α < 0. From the
definition (88), it follows α≥ 0 (≤ 0) if ξ ≥ ξc (≤ ξc), where

ξc ¼
1

6

β þ β2

β þ β2 − ν=4 − ν2=16
ð91Þ

is the critical nonminimal coupling which takes the value
ξc ≃ 0.28322 for the O(4) critical exponents. Hence, the
WKB function WðτÞ goes to zero at the critical point if
ξ < ξc and diverges if ξ > ξc. Note that the critical coupling
ξc > ξconf ¼ 1=6, contrary to what one would expect since
the original sigma model becomes conformally invariant at
the critical point. Curiously, ξc would be equal to ξconf ¼
1=6 if the critical exponent ν were equal to zero, in which
case the pion velocity, as given by (12), would not
necessarily vanish at the critical point.
Since there is no creation of pions in the limit τ → ∞, it

is natural to choose as the initial state the vacuum state

vector ji0 at some large τ0 and evolve equation (50)
backward in time starting at τ0. The vacuum state satisfies

aJji0 ¼ 0; a†Jji0 ¼ jJi; ð92Þ

and, according to (71), the one-particle state jJi is repre-
sented by

hxjJi ¼
�

1

2τ30

�
1=2

χð0Þk ðτ0ÞΦJðxÞ; ð93Þ

where the function χð0Þk ðτÞ is defined in (55) withWð0Þ ¼ ω.
Then, the initial conditions consistent with (80) are

Yðτ0Þ ¼ ωðτ0Þ−1=2; Y 0ðτ0Þ ¼ −
1

2
ω0ðτ0Þωðτ0Þ−3=2:

ð94Þ

The results of the numerical calculations are presented in
Figs. 1–4. According to our conventions, the comoving
momentum k is dimensionless, the time is expressed in
units of τc, and the mass and temperature are in units of τ−1c .
The proper time scale has been estimated in Sec. II B from
the phenomenology of high energy collisions yielding a
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FIG. 1 (color online). The solution to (50) with (23), (24), and (38), for k ¼ ffiffiffiffiffiffiffiffi
3=4

p
, various masses, and ξ ¼ 0 (top left), ξ ¼ 1=6 (top

right), ξ ¼ 1=3 (bottom left), and ξ ¼ 1 (bottom right). W and m are expressed in units of τ−1c .
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typical value τc ≈ 8.2 fm ¼ 41.6 GeV−1, so the mass scale
is typically τ−1c ≈ 24 MeV.
Numerical solutions to (50) with (23), (24), and (38),

WðτÞ, are presented in Fig. 1 as functions of τ for the
masses m ¼ 0; 1; 2 (in units τ−1c ) and various couplings ξ.
We use the initial conditions (94) at τ=τc ¼ 12. Note a
drastically different behavior of the ξ ¼ 1=3 and ξ ¼ 1
solutions (two bottom left panels) with respect to the other
solutions. The reason for that is the the sign change of Ω2

when ξ exceeds the critical value ξc ¼ 0.28322, as pre-
dicted by the asymptotic solution (90) in the vicinity of the
critical point. Using these numerical solutions, we calculate
the square of the Bogoliubov coefficients jβkj2 as given by
(79). In Fig. 2, we present jβkj2 as a function of k for a fixed
τ=τc ¼ 1.12 and various couplings ξ.
We will now use the functional form of the Planck

(Bose–Einstein) particle distribution function to express

jβkj2 ¼
1

eE=TP − 1
; ð95Þ

where E is the particle energy defined by (32) The
“temperature” TP depends on τ and is generally a function
of k. We will call the function (95) the quasi-Planckian
distribution and TP the quasi-Planckian temperature. If TP
for a fixed τ were independent of k, the distribution

function jβkj2 as a function of k would have the exact
Planck form (95), and the spectrum of created particles
would be thermal. In this case, we would be in an exact
adiabatic regime [3]. If the quasi-Planckian temperature
weakly depends on k, the spectrum will be nearly thermal.
At the moment, we will assume that TP vary weakly with k
and check the thermalization and adiabaticity a posteriori.
We now assume that the created pions are massless, in

which case E ¼ k=a. To extract TP, it is convenient to use
the energy density distribution function [38]

fðkÞ ¼ 2π2

a3T3
P

dρk
dk

; ð96Þ

which we have normalized so that it depends only on the
dimensionless variable x≡ k=ðaTPÞ. For an ideal massless
boson gas,

fðkÞ ¼ x3

ex − 1
; ð97Þ

with a maximum at

x0 ¼ 2.822: ð98Þ

Using (95), we can express fðkÞ as
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FIG. 2 (color online). The square of the Bogoliubov coefficient jβkj2 as a function of k for fixed τ=τc ¼ 1.12, various masses, and
ξ ¼ 0 (top left), ξ ¼ 1=6 (top right), ξ ¼ 1=3 (bottom left), and ξ ¼ 1 (bottom right).
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fðkÞ ¼ jβkj2 lnð1þ 1=jβkj2Þ3 ð99Þ

and plot the right-hand side as a function of k for various τ
(Fig. 3). Then, from the position of the maximum kmaxðτÞ,
we obtain

TPðτÞ ¼
kmaxðτÞ
x0aðτÞ

: ð100Þ

For the purpose of comparison, in Fig. 3, we also plot the
exact Planck spectral function fPðkÞ given by (97) with a k-
independent temperature TP. The temperature TP is deter-
mined from (100) so that fPðkÞ coincides with our spectral
function fðkÞ at k ¼ kmax corresponding to τ ¼ 1.1. A
comparison between fðkÞ and fPðkÞ (Fig. 3) shows that our
quasi-Planckian spectrum is close to the Planckian for the
wave numbers near kmax and left from kmax. Clearly, the
departure of fðkÞ from fPðkÞ is significant for large k
because, according to (83), fðkÞ falls off asymptotically as
k−4ðln kÞ3 in contrast to the exponential decay of fPðkÞ.
Hence, the calculated quasi-Planckian temperature TP may
be regarded as reliable for almost all particles with wave
numbers k≲ kmax and some particles with k above kmax.
The number of particles thermalized at TP may be esti-
mated by performing the integral in (77) with the exact
Planck distribution function given by (95) with a k-
independent temperature TP. The excess of unthermalized
particles above kmax may be estimated evaluating the
integral from kmax to ∞ using the same Planck distribution
subtracted from the asymptotic expression (83). We find
that the proportion of such particles to the total number of
thermalized ones amounts to less than 20% at τ ¼ 1.1 and
less than 25% at τ ¼ 1.05.
To check how close we are to the adiabatic regime, for

each τ, we compare the comoving wave number k with the
Hubble scale jHj. As usual, we distinguish three regimes:
the adiabatic regime in which k ≫ jHj, the sudden regime

in which k ≪ jHj, and the intermediate regime in which
k ≈ jHj [3]. For large τ, we have H ≃ 1=τ, and we are
clearly in the adiabatic regime for almost all wave numbers
since the criteria k ≫ 1=τ is easily met. However, we
expect a departure from adiabaticity in the limit τ → τc
since in this limit H diverges according to (26). For
example, for τ ¼ 1.1, we find jHj≃ 3, so the wave
numbers satisfying k≲ 3 are not in the adiabatic regime.
In the region of τ between 1.5 and 1.1 depicted in Fig. 3,
using (26), we find 0.3≲ jHj≲ 3 corresponding to
0.4≲ kmax ≲ 3, so our estimated kmax are of the order of
jHj and fall into the intermediate regime.
In Fig. 4, we plot the quasi-Planckian temperature as a

function of τ for vanishing nonminimal coupling constant ξ
together with the Hawking temperature TH of thermal pions
emitted at the apparent horizon. For comparison, we plot in
the same figure the background temperature of the fluid vs
τ as given by Eq. (22) with Tc ¼ 7.625τ−1c .
The functional dependence of TH is calculated following

the prescription of our previous papers [8,9]. As shown in
Ref. [9], the condition that a two-dimensional surface H is
the apparent horizon for a spherically symmetric spacetime
may be expressed as

GμνnμnνjH ¼ 0; ð101Þ

where nμ is a vector field normal to the surfaces of spherical
symmetry. For the metric (20), the vector nμ is given by

nμ ¼ ∂μða sinh yÞ: ð102Þ

Using this and (101), we obtain the condition for the analog
apparent horizon in the form
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FIG. 3 (color online). The spectral function fðkÞ for ξ ¼ 0, and
various τ expressed in units of τc. The dashed line represents the
Planck spectral function fPðkÞ.
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FIG. 4 (color online). The quasi-Planckian temperature TP as a
function of τ for ξ ¼ 0 compared with the Hawking temperature
TH and the temperature of the fluid T ¼ Tcτc=τ. The temper-
atures are plotted in units of τ−1c . The label Tc at 7.625 on the
vertical axis marks the critical temperature.
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_a
b
� 1

tanh y
¼ 0: ð103Þ

Provided this condition is met, the surface gravity κ at the
horizon may be calculated using the Kodama–Hayward
prescription [46] which we have adapted to analog gravity
[8]. This prescription involves the so-called Kodama vector
Kμ [47] which generalizes the concept of the time trans-
lation Killing vector to nonstationary spacetimes. The
analog surface gravity κ is defined by

κ ¼ 1

2

1ffiffiffiffiffiffi
−h

p ∂αð
ffiffiffiffiffiffi
−h

p
hαβKnβÞ; ð104Þ

where the quantities on the right-hand side should be
evaluated at the apparent horizon. The tensor hαβ is the
inverse of the metric hαβ of the two-dimensional space
normal to the surface of spherical symmetry and
h ¼ det hαβ. The definition (104) differs from the original
expression for the dynamical surface gravity [46] by a
normalization factor K which we have introduced in order
to meet the requirement that Kμ should coincide with the
time translation Killing vector ξμ for a stationary geometry.
The details of the calculation and the final expression for κ
may be found in Ref. [8]. The corresponding temperature
TH ¼ κ=ð2πÞ represents the analog Hawking temperature
of thermal pions emitted at the apparent horizon.
As shown in Ref. [8], the Hawking temperature diverges

near the critical point as

TH ∝ ðτ − τcÞ−1: ð105Þ
The temperature TP seems to diverge at the critical point in
a similar way and vanishes in the limit τ → ∞ correspond-
ing to the zero background temperature of the hadronic
fluid. In contrast, the analog Hawking temperature vanishes
at τ ¼ τmax ¼ 1.1002τc at which the analog trapping
horizon ceases to exist [9].

IV. CONCLUSIONS

We have investigated the cosmological creation of pions
in an expanding hadronic fluid in the regime near the
critical point of the chiral phase transition. In our approach,
we have disregarded a possible particle production caused
by the self-interaction potential of the scalar field. Besides,
we have assumed that the created pions are of zero or very
light mass, and we have neglected the creation of much
heavier sigma mesons. The production rate has been
calculated using the adiabatic regularization prescription
according to which the Bogoliubov coefficients are
expressed in terms of the WKB function WðτÞ and its
first-order adiabatic approximation Wð1ÞðτÞ ¼ ωðτÞ. The
function WðτÞ has been computed by solving Eq. (50)
numerically. We have analyzed more closely the solution in
the limit when τ approaches the critical value. It turns out

that the behavior of the solution in that limit depends
crucially on the value of the nonminimal coupling constant
ξ. We have shown that there exists a certain critical value ξc
larger than the conformal value ξ ¼ 1=6 such that WðτÞ
goes to zero at the critical point for ξ < ξc and diverges
for ξ > ξc.
We have calculated the cosmological production rate as a

function of the proper time for various masses and various
nonminimal coupling constants ξ. The production rate of
massless pions shows a strong dependence on ξ and vanishes
for ξ ¼ 1=6 as it should. By fitting the production rate to the
Planck blackbody radiation spectrum, we have extracted the
temperature of the produced pion gas. We use the time
dependence of the thus obtained quasi-Planckian temper-
ature to compare the analog Hawking effect with the analog
cosmological particle creation. As we have already men-
tioned, these two effects, although being of similar quantum
origin, are quite distinct physical phenomena that appear
under different physical conditions. Compared with the
analogHawking radiation of pions at the trapping horizon, the
spectrum of the cosmological radiation shows a similar
behavior near the critical point. The temperature of the
cosmologically created pions TP diverges at the critical point
roughly in the same way as the analog Hawking temperature
TH. However, as the proper time increases, the quasi-
Planckian temperature vanishes asymptotically, whereas the
analogHawking temperaturevanishes at a finite proper timeof
the order 1.1 τc when the analog trapping horizon disappears.
Our results could not be easily confronted with obser-

vations. First of all, we are dealing with exact spherical
symmetry, whereas in most high energy collisions, the
symmetry is axial involving a transverse expansion super-
imposed on a longitudinal boost invariant expansion.
Second, the cosmologically created and Hawking radiated
pions could not be easily distinguished from the back-
ground pions produced directly from the quark-gluon
plasma (QGP). Nevertheless, we can draw a qualitative
postcollision picture as follows.
The high temperature (QGP) produced in the collision

expands and cools downuntil the temperature is as low as the
deconfinement temperature of the order of Tdec ≃ Tc ¼
183. Then, a hadronic fluidmainly consisting of pions forms
and expands further according to the Bjorken model with
the proper time related to the background fluid temper-
ature through the relation (22), where τ−1c ≃ 24 MeV.
Immediately below Tc ¼ 183, the cosmological creation
and the Hawking radiation take place. Initially, both the
Hawking and quasi-Planckian temperatures exceed the
background fluid temperature T by a factor of 2 or more.
As a consequence, a considerable fraction of the pion gas
will be briefly “reheated” but, according to Fig. 1, will
quickly cool down during the subsequent expansion.
Whereas the Hawking radiation stops at τ ¼ τmax

when the temperature of the fluid is of the order 0.9 Tc,
the cosmological creation continues up to the thermal

NEVEN BILIĆ AND DIJANA TOLIĆ PHYSICAL REVIEW D 91, 104025 (2015)

104025-12



freeze-out. The thermal (or kinetic) freeze-out takes place
soon after the so-called chemical freeze-out which is very
close or equal to the QCD deconfinement transition [48].
The kinetic freeze-out temperature depends on the collision
energy [49] and is roughly between 0.7 and 0.9 Tc, which
corresponds to the proper time interval (1.1,1.4). From
Fig. 4, it is evident that the influence of the cosmological
production and the Hawking radiation will be more pro-
nounced if the thermal freeze-out is closer to the critical
temperature.
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