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We study the scenario in which a massive particle is thrown into a rapidly rotating Kerr black hole in an
attempt to spin it up beyond its extremal limit, challenging weak cosmic censorship. We work in black-hole
perturbation theory, and focus on nonspinning, uncharged particles sent in on equatorial orbits. We first
identify the complete parameter-space region in which overspinning occurs when backreaction effects from
the particle’s self-gravity are ignored. We find, in particular, that overspinning can be achieved only with
particles sent in from infinity. Gravitational self-force effects may prevent overspinning by radiating away a
sufficient amount of the particle’s angular momentum (“dissipative effect”), and/or by increasing the
effective centrifugal repulsion, so that particles with suitable parameters never get captured (“conservative
effect”). We analyze the full effect of the self-force, thereby completing previous studies by Jacobson and
Sotiriou (who neglected the self-force) and by Barausse, Cardoso and Khanna (who considered the
dissipative effect on a subset of orbits). Our main result is an inequality, involving certain self-force
quantities, which describes a necessary and sufficient condition for the overspinning scenario to be
overruled. This “censorship” condition is formulated on a certain one-parameter family of geodesics in the
limit of an extremal Kerr geometry. We find that the censorship condition is insensitive to the dissipative
effect (within the first-order self-force approximation used here), except for a subset of perfectly fine-tuned
orbits, for which a separate censorship condition is derived. We do not obtain here the self-force input
needed to evaluate either of our two conditions, but discuss the prospects for producing the necessary data
using state-of-the-art numerical codes.
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I. INTRODUCTION

The cosmic censorship conjecture [1] has over the years
become a cornerstone of classical general relativity. In its
weak version it states, in essence, that curvature singular-
ities arising in solutions to the Einstein’s field equations
must be cloaked behind event horizons, so that they are
prevented from being in causal contact with distant
observers. Despite being strongly motivated on physical
grounds, the conjecture’s precise extent of validity remains
unclear. A notable counterexample involves finely tuned
initial conditions [2]. The formulation of the conjecture
may be refined to exclude such examples [3].
In a 1974 paper [4] Wald proposed a simple but powerful

framework for testing weak cosmic censorship, using the
gedanken experiment of a particle thrown into a Kerr-
Newman black hole. If parameters can be chosen such that
the postcapture mass Mf , charge Qf and spin Jf satisfy
M2

f < ðJf=MfÞ2 þQ2
f , then a naked singularity would

presumably form, in direct violation of weak censorship.
Whether the equations of classical general relativity permit
such a process has since been subject of much investiga-
tion. It is usually assumed that the particle’s energy and
electric charge are much smaller than those of the black
hole, which then places the problem within the realm of
black-hole perturbation theory.
In [4] Wald showed that the over-extremality scenario is

ruled out when the configuration is that of a pointlike test

particle captured by an extremal Kerr-Newman black hole.
Electrostatic and centrifugal repulsion, he showed, would
prevent a particle carrying sufficient charge and/or angular
momentum from entering the black hole. The same con-
clusion was shown to hold true also for a spinning test
particle dropped from rest at infinity along the symmetry
axis of an extremal Kerr black hole, with its spin aligned
along the axis. In this case, it is the repulsion force from
spin-spin coupling that prevents suitable particles from ever
entering the black hole.
However, later work has demonstrated that over extrem-

ality is achievable when the initial black hole is taken to be
nearly extremal—if backreaction effects on the particle’s
trajectory are ignored. This was first shown by Hubeny [5]
for a nearly extremal Reissner-Nordström black hole, and
more recently by Jacobson and Sotiriou [6] for a nearly
extremal Kerr black hole (“overcharging” and “overspin-
ning” scenarios, respectively). The nearly extremal Kerr-
Newman case was subsequently studied in Ref. [7]. In all
cases, all orbits identified as capable of driving the black
hole beyond the extremal limit lie very close, in the relevant
parameter space, to the separatrix between orbits that are
captured by the black hole and ones that are scattered off it.
In Hubeny’s analysis of a radially falling electric charge,
electrostatic repulsion only marginally fails to prevent the
particle from falling into the hole: The particle’s radial
velocity upon crossing (what would have been) the event
horizon is proportional to the ratio ~η ≪ 1 between the
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particle’s energy and the black hole’s mass. The amount of
postcapture excess charge, Qf −Mf , is found to be quad-
ratic in ~η. Similarly, in Ref. [6]’s analysis of equatorial-
plane captures, overspinning particles clear the peak of the
effective potential barrier with radial velocities ∝ ~η, and the
postcapture excess spin, Jf −M2

f , is quadratic in ~η.
This suggests strongly that backreaction effects cannot

be ignored and may well change the outcome of the
gedanken experiment. Heuristically, effects of the (electro-
magnetic and/or gravitational) self-force enter the analysis
in two ways. First, the dissipative piece of the self-force
continually removes some of the particle’s energy and
angular momentum, sending them to infinity and down the
event horizon in gravitational waves. In the Kerr case,
dissipative effects may accumulate as the particle “hovers”
above the peak of the effective potential on a nearly circular
orbit. Second, the conservative piece of the self-force might
supply just the right amount of additional repulsive force
to prevent would-be overcharging/overspinning particles
from ever entering the black hole. For particles sent in from
infinity in the Kerr case, this second effect may be
formulated in terms of a shift in the critical impact
parameter for capture: If the gravitational self-force
(GSF) shifts the critical impact parameter inward by a
sufficient amount (for a given energy at infinity), then
would-be overspinning particles may end up being scat-
tered away rather than captured.
There have been several recent attempts to quantify the

effect of backreaction in the problem. Focusing on the
Reissner-Nordström case, Isoyama, Sago and Tanaka [8]
argued that the full effect can be properly taken into
account by considering the quasiequilibrium configura-
tion of a charged particle placed precisely on the capture-
scatter separatrix. An exact solution is known for this
configuration—the static double Reissner-Nordström
spacetime—and the authors calculated that its total energy
is always greater than its total charge. They have also
established that radiative losses during the final plunge are
negligible, hence concluding that (under the assumption
that the true capture system does indeed go through a
quasiequilibrium state) the final configuration cannot be a
naked singularity.
In a later work, Zimmerman, Vega and Poisson [9] took

up the challenge of directly calculating the charged
particle’s trajectory including the full effect of the electro-
magnetic self-force. Analyzing numerically a large sample
of orbits within the domain identified by Hubeny, the
authors found no example of successful overcharging: All
particles with a combination of charge and energy suitable
for overcharging the black hole were found to be repelled
before reaching the horizon. This analysis, however,
neglected the potentially important effect of backreaction
from the gravitational perturbation sourced by the particle’s
electromagnetic energy-momentum. A complete analysis
would require calculation of the corresponding GSF, but

techniques for calculating self-forces in the coupled prob-
lem are only now starting to be developed [10,11].
In that respect, the Kerr setup provides a cleaner

environment, in which the perturbative problem is purely
gravitational (at the obvious cost of abandoning spherical
symmetry). Barausse, Cardoso and Khanna [12,13] studied
the dissipative GSF effect in the Kerr overspinning prob-
lem, focussing on ultrarelativistic particles on equatorial
orbits. Using analytic arguments backed by a numerical
calculation of the energy and angular momentum carried
away in gravitational waves, they showed that dissipation
averts the overspinning for some but not all of Jacobson-
Sotiriou’s orbits. For sufficiently small ~η, the dissipative
effect is always negligible and cannot prevent overspin-
ning. This result highlights the importance of accounting
for the full effect of GSF. To reach a definitive conclusion
necessitates an actual calculation of the full local GSF
acting on the captured particles.
In the past few years, rigorous methods for GSF

calculations in Kerr spacetime have advanced enough to
allow a more systematic and complete treatment of the
overspinning problem. The program initiated with this
paper revisits the problem from this new vantage point.
It seeks to obtain a more conclusive answer to the question
of whether it is indeed the self-force that provides the
mechanism by which black holes protect themselves from
being overspun.
Our current paper lays the necessary groundwork.

Concentrating on equatorial orbits, we first identify the
complete “window” in the parameter space in which
overspinning occurs if the GSF is ignored. We then
formulate a condition for this window to be eliminated
by the effect of the full GSF. The condition takes the form
of an inequality that is required to hold for each member of
a certain one-parameter family of geodesics, and it involves
the GSF calculated along such orbits. Here we do not obtain
the necessary GSF data, but we discuss methods for
computing it (numerically) using existing codes. With
collaborators we have began work to obtain the GSF data,
and we intend to present the results in a follow-up paper.
The rest of this Introduction summarizes our analysis

(also in relation to previous work) and describes its main
results.

A. This work: Overview and results

Jacobson and Sotiriou [6] assumed that overspinning
occurs if two conditions are met: (i) the geodesic trajectory
of the test particle is timelike at the horizon, and
(ii) Jf > M2

f . The first condition is very lax. It allows
for low-energy orbits that are deeply bound to the black
hole and confined to the immediate neighborhood of the
horizon. The physics of such orbits becomes very subtle,
especially when self-gravity and finite-size effects are
included [consider that deeply bound orbits below the
innermost stable circular orbit (ISCO) plunge into the black
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hole within an amount of proper time that shrinks to zero in
the extremal limit [14]], so one would preferably avoid such
orbits as candidates (see, however, Hod [15] for a heuristic
treatment). Jacobson and Sotiriou acknowledge this issue,
and to address it they supplement their analysis with two
specific numerical examples of overspinning orbits that are
sent in from afar. They stop short of determining the full
range of overspinning orbits when deeply bound orbits are
disallowed.
Our capture condition will be more stringent, and more

in the spirit of Ref. [9]: We will send our particle in from
“sufficiently far” (this condition will be made precise in the
next section), and deem it “captured” if it has no inner
radial turning point outside the black hole. Thus, for a
legitimate capture we demand that the particle “clears” the
peak of the effective potential on its inward journey.
In Sec. II we revisit the overspinning problem in the

geodesic approximation. We identify the precise region in
the parameter space of equatorial orbits around a nearly
extremal Kerr black hole (excluding deeply bound orbits)
where overspinning occurs, and give analytic expressions
for the boundaries of that region. The overspinning window
is illustrated in Figs. 2 and 3. Perhaps unexpectedly, we find
that only particles sent in from infinity are capable of
overspinning the black hole. This fact has somehow gone
unnoticed in previous work, to the best of our knowledge.
We find that for any given value of the particle’s energy at
infinity, there exists an open range of orbital angular
momenta and particle’s rest masses for which overspinning
occurs. That only orbits coming from infinity are potential
overspinniners is somewhat fortuitous, because for such
orbits it is straightforward to identify the system’s total
[Arnowitt-Deser-Misner (ADM)] energy and angular
momentum even when GSF effects are included.
We then turn to analyze the GSF effect. In Sec. III we

first review essential results from GSF theory, and then
discuss the determination of the “critical orbit” that
separates (in the relevant parameter space) between plung-
ing and scattered orbits. We do this in two steps. First, we
ignore the dissipative piece of the GSF, and calculate the
correction due to the conservative GSF to the critical value
of the angular momentum for a fixed value of the energy at
infinity. Then we restore dissipation and consider its
consequences. Under the full GSF, all critical orbits merge
into a “global attractor” that takes the system adiabatically
along a sequence of quasicircular unstable orbits ending at
the ISCO, before plunging into the black hole. By fine-
tuning the initial value of the angular momentum (for a
given initial energy), an orbit can be made to evolve
arbitrary far along the global attractor. We make a formal
distinction between “generic” and “fine-tuned” captured
orbits, based on how the difference between the initial and
final values of the particle’s specific energy scales with the
particle’s mass μ (in a procedure whereby μ is taken to zero
while holding fixed the initial specific energy and angular

momentum). Generic orbits are ones for which that differ-
ence vanishes for μ → 0 (this includes, for example, all of
the orbits considered in Refs. [12,13]); fine-tuned orbits are
ones for which the difference does not vanish even
for μ → 0.
With this preparatory work in place, we move on, in

Sec. IV, to obtain the overspinning condition as modified
by the full GSF. The end results are two inequalities, one
for generic orbits [Eq. (69)] and another for fine-tuned ones
[Eq. (81)], which describe conditions for overspinning to be
averted under the effect of the full GSF. In the generic case,
the condition involves only the conservative piece of the
GSF, evaluated along critical geodesics in the extremal Kerr
limit. Overspinning can be ruled out if and only if the
condition is met for each member of this one-parameter
family. The condition for fine-tuned orbits requires, in
addition to the conservative GSF, also knowledge of the
fluxes of energy and angular momentum radiated to infinity
by particles on unstable circular orbits, in the extremal Kerr
limit. Overspinning can be ruled out if and only if the
condition is met for any values of the initial and final
energies.
In Sec. V we propose an alternative form of the over-

spinning conditions, based on the framework of the “first
law of binary black-hole mechanics,” as recently applied to
orbits in Kerr [16]. The alternative form, given (for the
generic case) in Eq. (104), involves only perturbative
quantities calculated along (unstable) circular orbits, which
should be more easily computable with existing GSF codes.
This simplified formulation relies on explicit expressions,
given in [16], for the ADM-like energy and angular
momentum of circular-orbit configurations in Kerr, includ-
ing leading-order self-interaction terms. The underlying
theoretical framework is yet to be firmly established and
tested, however, so we regard the simplified condition (104)
as somewhat less rigorous than our direct condition (69).
Our stance is that it would be desirable to evaluate both
forms of the condition, for the sake of establishing
confidence in the result.
In Sec. VI we discuss the numerical input required for

evaluating our overspinning conditions, and the prospects
for obtaining it through adaptation of existing codes.
Evaluation of the direct conditions (69) and (81) involves
GSF calculations along unbound orbits on a nearly
extremal Kerr background, which has not been attempted
so far. However, we think the basic computational infra-
structure for such calculations is well in place.
Section VII summarizes our results and speculates on

what a numerical evaluation of our censorship conditions
might yield. The Appendices contain some of the details of
calculations done in Secs. III and IV: a derivation of the
ADM energy and angular momentum for the system under
consideration, a calculation of the GSF-induced shift in the
critical value of the angular momentum, and an evaluation
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of radiative losses during the final plunge into the
black hole.
Throughout this paper we set G ¼ c ¼ 1 and use the

metric signature ð−;þ;þ;þÞ.

II. OVERSPINNING ORBITS IN THE
GEODESIC APPROXIMATION

Our initial configuration features a Kerr black hole of
mass M and angular momentum J ¼ aM < M2. A point-
like test particle of rest mass μ ≪ M is sent in on a geodesic
of the background Kerr geometry. As in [6], we restrict
attention to prograde orbits in the equatorial plane, so that
the orbital angular momentum is aligned with the spin of
the black hole. (Intuitively, this configuration seems most
favorable for a successful overspinning.) We denote the
particle’s specific energy and angular momentum by E and
L, respectively; these are constants of the geodesic motion.
For the geodesic approximation to make sense, we must
assume μE ≪ M and μL ≪ J. Then, clearly, overspinning
could only be possible, in principle, if the black hole is
nearly extremal. We write

a=M ¼ 1 − ϵ2; ð1Þ

where ϵ ≪ 1.1

Below we study the overspinning scenario in the above
setup, but we begin with a survey of some essential
properties of timelike equatorial geodesics of the Kerr
metric.

A. Relevant results for Kerr geodesics

Let uα denote the particle’s four-velocity. In Boyer-
Lindquist coordinates ft; r; θ;ϕg we have uθ ≡ 0, and

_ut ¼ 0; _uϕ ¼ 0; ð2Þ

where an overdot denotes differentiation with respect to
proper time. The two equalities express the conservation
of energy E ¼ −ξαðtÞuα ¼ −ut and angular momentum
L ¼ ξαðϕÞuα ¼ uϕ, where ξαðtÞ ≔ ∂α

t and ξαðϕÞ ≔ ∂α
ϕ are

Killing vectors associated with the time translation and
rotational symmetries of the Kerr background. The pair
fE;Lg parametrizes the family of equatorial geodesics (up
to initial conditions).
The normalization uαuα ¼ −1 now gives the radial

equation of motion, which we write in the form

_r2 ¼ BðrÞ½E − V−ðL; rÞ�½E − VþðL; rÞ�: ð3Þ

Here r is the Boyer-Lindquist radius of the orbit,
BðrÞ ≔ 1þ a2ðrþ 2MÞ=r3, and (for MaL ≠ 0)

V�ðL; rÞ ≔
2MaL
Br3

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Br3½L2ðr − 2MÞ þ rΔ�

4M2a2L2

s !
;

ð4Þ

withΔ ≔ r2 − 2Mrþ a2. For prograde orbits, the potential
V− is manifestly negative definite, so the factor
BðrÞðE − V−Þ in Eq. (3) is manifestly positive definite.
Thus, Vþ plays the role of an effective potential for the
radial motion, which is allowed for E ≥ VþðL; rÞ, with an
equality identifying radial turning points.
Stationary points of VþðL; rÞ outside the black hole,

when they exist, correspond to circular orbits. These satisfy
the simultaneous conditions

E ¼ Vþ; ∂rVþ ¼ 0 ðcircular orbitsÞ: ð5Þ

Substituting from Eq. (4) and solving for E and L in terms
of the circular-orbit radius, r ¼ R, gives E ¼ EcðRÞ and
L ¼ LcðRÞ, with

EcðRÞ ¼
1 − 2 ~R−1 þ ~a ~R−3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3 ~R−1 þ 2~a ~R−3=2

p ; ð6Þ

~LcðRÞ ¼
~R1=2ð1 − 2~a ~R−3=2 þ ~a2 ~R−2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3 ~R−1 þ 2~a ~R−3=2
p : ð7Þ

Here an overtilde denotes adimensionalization using M,
i.e., ~R ≔ R=M, ~a ≔ a=M and ~L ≔ L=M; we shall adopt
this notation throughout the rest of the paper. Timelike
circular orbits exist only for R > RphðaÞ, the radius of a
photon’s unstable circular orbit (“light ring”). RphðaÞ is the
(unique) root of 1 − 3 ~R−1 þ 2~a ~R−3=2 greater than the event
horizon’s radius, ~RehðaÞ ¼ 1þ ð1 − ~a2Þ1=2. The angular
velocity Ω ≔ uϕ=ut of any circular geodesic orbit reads

~ΩðRÞ ¼ ð ~aþ ~R3=2Þ−1: ð8Þ

The number of stationary points of Vþ and their location
depend on L. There are none outside the black hole when L
is below a certain critical value LiscoðaÞ, and there are two
for L > LiscoðaÞ: a maximum representing an unstable
circular orbit, and, further out, a minimum representing
a stable one. The critical value LiscoðaÞ marks the ISCO. It
is given by Lisco ¼ LcðRiscoÞ, where the ISCO radius Risco is
found by solving Eq. (5) simultaneously with
∂2
rVþðL; rÞ ¼ 0. The ISCO may also be said to represent

the outer boundary of the region of unstable circular orbits.
The radii of unstable circular geodesic orbits span the

interval RphðaÞ < R < RiscoðaÞ. This one-parameter family
of orbits will feature dominantly in our analysis, because it
defines the capture-scatter threshold where much of the
relevant physics occurs. Members of the family may be
parametrized by either E or L, both being monotonically1Note, to avoid confusion, that [6] has instead a=M ¼ 1 − 2ϵ2.
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decreasing functions of R between Rph (where E; L → ∞)
and Risco for any ~a < 1. This monotonicity can be readily
established from Eqs. (6) and (7). Hence, the radius R itself
is also a valid parameter.
To each unstable circular orbit there correspond non-

circular homoclinic-like geodesic orbits [17] that join the
circular orbit asymptotically in either their infinite past or
their infinite future, or both. Nearly homoclinic orbits
exhibit a “zoom-whirl” behavior [18]: an episode of
prolonged rotation (“whirl”) about the location of the
associated unstable circular orbit. We will see that all
orbits relevant to the overspinning problem fall in that
category. Based on the correspondence with homoclinic
orbits, unstable circular orbits may be divided into “bound”
(E < 1) and “unbound” (E ≥ 1). The radius of the inner-
most bound circular orbit (IBCO) is obtained by solving
EcðRÞ ¼ 1, giving ~Ribco ¼ ½1þ ð1 − ~aÞ1=2�2.
Figure 1 illustrates the range of stable and unstable

circular orbits, and the location of the various special orbits
mentioned, in a particular example ( ~a ¼ 0.99). We note the
ordering

Reh < Rph < Ribco < Risco; ð9Þ

which applies for any ~a < 1.
Let us now specialize to a near-extremal Kerr back-

ground with spin as in Eq. (1). One finds

~Reh ¼ 1þ
ffiffiffi
2

p
ϵþOðϵ2Þ; ð10Þ

~Rph ¼ 1þ
ffiffiffiffiffiffiffiffi
8=3

p
ϵþOðϵ2Þ; ð11Þ

~Ribco ¼ ð1þ ϵÞ2 ðexactÞ; ð12Þ

~Risco ¼ 1þ ð2ϵÞ2=3 þOðϵ4=3Þ: ð13Þ

The function EcðRÞ in Eq. (6) can be inverted perturba-
tively in ϵ to obtain the radius of an arbitrary unstable
circular orbit in terms of its energy E. We find

~R ¼ 1þ ϵρ1ðEÞ þ ϵ2ρ2ðEÞ þOðϵ3Þ; ð14Þ

where the first two coefficients, needed below, read

ρ1 ¼
2
ffiffiffi
2

p
Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3E2 − 1
p ; ρ2 ¼

2ð2E4 − E2 þ 1Þ
ð3E2 − 1Þ2 : ð15Þ

Equation (12) is the special case of (14) with E ¼ 1, giving
ρ1 ¼ 2 and ρ2 ¼ 1.
It follows that, in the extremal limit ϵ → 0, the

Boyer-Lindquist radii of the light ring and the ISCO both
coincide with the horizon radius, and so do the radii of all
unstable circular orbits enclosed between them. Also
peculiar is the fact that the ratio of coordinate differences
ð ~Risco − ~RehÞ=ð ~Ribco − ~RehÞ diverges as ϵ → 0. A closer
look reveals [19] that the light ring, IBCO and ISCO
remain separated from the horizon, and from each other,
when examined on a Boyer-Lindquist t ¼ const slice: On
that slice, the proper radial distance between the light ring
and the horizon is finite, and so is the distance between any
fixed-E unstable circular orbit and the light ring. The
proper radial distance between the ISCO and any fixed-E
unstable circular orbit diverges on the t ¼ const slice; the
geometry of the t ¼ const hypersurface appears to “stretch”
infinitely around the ISCO location [19]. The situation,
however, is rather different when examined on a horizon-
crossing time slice. As emphasized recently by Jacobson
[14], on any such slice, the light ring, IBCO and ISCO all
actually coincide with horizon generators. From that
perspective, they—and all unstable orbits in between
them—are “at the same place” in the extremal limit.
These subtleties will not affect our analysis directly: ϵ

will be kept (arbitrarily) small but nonzero, and the strict
ordering (9) will therefore apply on any time slice.
However, we must take note of the degeneracy of R as a
parameter for unstable circular orbits when ϵ → 0. The
energy E, on the other hand, remains a good parameter even
in this limit, spanning the entire range ∞ > E > 1ffiffi

3
p . We

will thus generally adopt E for labeling unstable circular
orbits. Given E, the angular momentum LcðRðEÞÞ, which
we henceforth write as LcðEÞ, is obtained by substituting
Eqs. (1) and (14) in Eq. (7) and then expanding in ϵ. The
result is

~LcðEÞ ¼ 2Eþ ð6E2 − 2Þ1=2ϵþOðϵ2Þ: ð16Þ

FIG. 1 (color online). Timelike circular equatorial geodesics
around a nearly extremal Kerr black hole, shown here for
a ¼ 0.99M. The plot shows specific angular momentum versus
Boyer-Lindquist radius. Orbits with r > Risco (magenta) are
stable, while these with r < Risco (blue) are unstable. Also
indicated are the IBCO (E ¼ 1) and the photon orbit (light ring,
E;L → ∞). In the extremal limit, a → M, the radii Risco, Ribco
and Rph all coincide with the horizon radius Reh.
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We note that to determine the OðϵÞ term here required the
explicit values of both ρ1 and ρ2 of Eq. (15).

B. Exclusion of deeply bound orbits

Heuristically, if we assume our point particle represents a
compact object—say, a Schwarzschild black hole—then its
effective proper “diameter” is ∼μ. Below it will become
clear that a successful overspinning requires μ ∼ ϵ, and so
relevant objects have proper diameters ∼ϵ. Now consider
placing such an object in a deeply bound orbit with an outer
turning point at r < Risco [and with L > LcðEÞ]. Such an
object (it can be checked) will plunge through the horizon
within a proper time of OðϵÞ (at most), comparable to its
own “light-crossing time.” It is not clear whether the object
can be made to initially “fit” in its entirety outside the hole.
At the very least, it is not clear if the simple model of a point
particle and a stationary horizon provides a faithful
description of the physics in this case.
To avoid such subtleties, we wish to exclude deeply

bound orbits from our analysis. We achieve this by
requiring that, if the orbit possesses an outer radial turning
point at some r ¼ rout, then

rout > RiscoðϵÞ: ð17Þ

It can be checked that, under this condition, the proper-time
interval along any timelike equatorial geodesic connecting
r ¼ rout to r ¼ Reh is finite (nonzero) even in the limit
ϵ → 0 (taken with fixed E;L). The condition (17) demands
that eligible particles must clear the peak of the effective
potential (when such a peak exists) as they plunge into the
black hole.

C. Overspinning domain

Given the restriction (17), a necessary and sufficient
condition for a falling particle of specific energy E to be
captured by the black hole is

L < LcðEÞ: ð18Þ
A captured particle would overspin the black hole if and
only if

ðM þ μEÞ2 < aM þ μL: ð19Þ

Using ~a ¼ 1 − ϵ2 and introducing the small mass ratio
η ≔ μ=M, this condition becomes

ϵ2 þ ηW þ η2E2 < 0; ð20Þ

where we have introduced2

W ≔ 2E − ~L: ð21Þ

Note that Eq. (20) sets a lower bound on L (for given
E; η; ϵ), while Eq. (18) sets an upper bound. Also note that
Eq. (20) implies the necessary condition W < 0 for over-
spinning to occur.
Our goal now is to identify the complete domain in the

space of fη; E; Lg for which the conditions (18) and (20)
are simultaneously satisfied, assuming ϵ ≪ 1 and the
condition (17). For easy reference, let us call this domain
“OS,” for “overspinning”.
We first show that orbits with L ≤ Lisco all fall outside

OS. To this end, consider first the ISCO itself, where
W ¼ 2Eisco − ~Lisco ≕ Wisco. Using Eqs. (6), (7) and (13)
we obtain Wisco¼−ĉϵ4=3þOðϵ2Þ, where ĉ ¼ 21=3

ffiffiffi
3

p
> 0.

Thus, Wisco is negative as required, but it can be easily
checked that (20) is always violated for sufficiently small ϵ:
ReplacingW → −ĉϵ4=3 in Eq. (20) and considering the left-
hand side as a quadratic function of η, we find this function
is positive definite for any ϵ < ð2Eisco=ĉÞ3. [Since Eisco is
bounded from below by Eiscoðϵ ¼ 0Þ ¼ 1ffiffi

3
p , we find that

(20) is always violated for ϵ < 4
27
.] This rules out the ISCO

itself, and it immediately rules out also all orbits with
fE > Eisco; L ¼ Liscog, for which W > Wisco. Orbits with
fE < Eisco; Liscog can potentially satisfy Eq. (20), but they
are always deeply bound in the sense of failing to satisfy
Eq. (17): For any E < Eisco, the orbit has an outer radial
turning point at a radius rout < Risco.
The upshot is that orbits with L ¼ Lisco are all outside

OS. For orbits with L < Lisco we would need to require
E < Eisco in order for W to be sufficiently negative. But,
once again, such orbits are excluded on account of their
being deeply bound. We conclude that orbits with L ≤ Lisco
are all outside OS.
Let us focus therefore on orbits with L > Lisco. For such

an orbit to be in OS, we require that (given E; η; ϵ) L is
bounded from above by LcðEÞ and simultaneously from
below via Eq. (20):

ϵ2 þ 2ηEþ η2E2 < η ~L < η ~LcðE; ϵÞ: ð22Þ

We have made here the ϵ dependence of Lc explicit, for
clarity. The span of the permissible range is ηΔL ≔
−ϵ2 − η½2E − ~LcðE; ϵÞ� − η2E2, or, using Eq. (16),

ηΔL ¼ −ϵ2 þ ηϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6E2 − 2

p
− η2E2; ð23Þ

where we have omitted terms of Oðηϵ2Þ. OS is populated if
and only if we can find E; η; ϵ for which ΔL > 0.
A few conclusions can be drawn immediately. First,

considering ηΔL in Eq. (23) as a quadratic function of η, we
find it has a maximum value

2Heuristically, W=2 may be interpreted as the specific energy
in a corotating frame with ~Ω ¼ 1=2, i.e., the common angular
velocity of all unstable circular geodesics in the extremal limit.
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max
η

ηΔL ¼ ϵ2ðE2 − 1Þ
2E2

: ð24Þ

This is positive only for E > 1. Therefore, all orbits with
E ≤ 1 fall outside OS. Bound orbits cannot overspin.
Second, for any E > 1, we can obtain ΔL > 0 by

choosing the mass ratio η from within the interval

ϵη−ðEÞ < η < ϵηþðEÞ; ð25Þ

where

η� ¼ 1ffiffiffi
2

p
E2

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3E2 − 1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

p i
: ð26Þ

In other words, overspinning can be achieved for any
E > 1, as long as η satisfies (25). Since the condition ΔL >
0 is both necessary and sufficient, the converse also holds:
All orbits in OS satisfy E > 1 with Eq. (25).
Third, from Eq. (25) it follows that η must be chosen to

be ofOðϵÞ (assuming E ≪ 1=ϵ). One can check that ηþ has
a maximal value of

max
E

ηþ ¼
ffiffiffiffiffiffiffiffi
3=2

p
; ð27Þ

obtained for E ¼ 2=
ffiffiffi
3

p
. Therefore, the range η ≥

ffiffiffiffiffiffiffiffi
3=2

p
ϵ

lies outside OS. The bandwidth of admissible mass ratios,
for given E and ϵ, is

Δη ≔ ϵηþ − ϵη− ¼ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE2 − 1Þ

q
=E2; ð28Þ

which is maximal for E ¼ ffiffiffi
2

p
. Figure 2 depicts the

permissible range of η=ϵ as a function of E.
Fourth, from Eqs. (24) and (28) we learn that an E ¼

constð> 1Þ slice of OS has maximal dimensions ΔL ∼
ϵ2=η ∼ ϵ and Δη ∼ ϵ. OS is thus a narrow “tube” in the
fE;L; ηg parameter space, of a cross section ∼ϵ × ϵ, whose
boundary is tangent to the surface of unstable circular
orbits, L ¼ LcðEÞ.
To summarize, we have found that OS is a narrow

tubelike region of the fE;L; ηg space, described by E > 1,
LcðE; ϵÞ − ΔLðE; η; ϵÞ < L < LcðE; ϵÞ and ϵη−ðEÞ < η <
ϵηþðEÞ, where ΔL and η� are given in Eqs. (23) and (26),
respectively. A neater description of the OS window is
obtained in terms of the quantity W defined in Eq. (21):
Rearranging Eq. (22) and using (16), we find

ϵW−ðEÞ < W < ϵWþðE; η=ϵÞ; ð29Þ

where

W− ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6E2 − 2

p
; Wþ ¼ −

�
ϵ

η
þ η

ϵ
E2

�
: ð30Þ

This domain is illustrated in Fig. 3 for a sample of η=ϵ
values. To overspin a black hole of givenM and ϵ ≪ 1, one
should pick an E greater than 1, choose any η from within
the interval (25), and then chooseW (hence L) from within
the interval (29).

FIG. 2 (color online). Domain of mass ratios η for which
overspinning is possible in the geodesic approximation. η is
shown divided by the near-extremality parameter
ϵ ¼ ð1 − a=MÞ1=2, and E is the particle’s specific energy. The
boundaries η�ðEÞ are given in Eq. (26). Overspinning is not
possible for E < 1 or η >

ffiffiffiffiffiffiffiffi
3=2

p
ϵ. However, for any value E > 1

there is a range of η for which the black hole may be overspun.
This happens if the particle’s angular momentum is chosen from
within the range indicated in Eq. (29).

FIG. 3 (color online). The overspinning window, shown in the
plane of E;W (whereW ¼ 2E − L=M) for several values of η=ϵ.
Note W is shown divided by ϵ. The boundaries W� are given in
Eq. (30). The lower boundaryW−ðEÞ (which does not depend on
η) arises from the requirement that the particle is captured by the
black hole. The upper boundary WþðE; η=ϵÞ comes from the
requirement that the final object is an over-extremal black hole.
Overspinning is possible with any E > 1, provided η is chosen
from within the range shown in Eq. (25).
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III. SELF-FORCE PRELIMINARIES

Because the width of the overspinning window is of
OðηÞ, self-gravity effects may potentially close this win-
dow, and they must therefore be included in the analysis.
Specifically, the GSF modifies the capture condition (18)
by changing the functional relation LcðEÞ at OðηÞ. It also
modifies the overspinning condition (19) by dissipating
away some of the system’s initial energy and angular
momentum. In this section we introduce relevant results
from the theory of self-forced motion. In Sec. IV we will
then use these results to derive conditions for capture and
overspinning under the full-GSF effect.

A. Equation of motion with self-force

There now exists a rigorous formulation of the equations
of motion for compact objects in curved spacetime, valid
through first postgeodesic order in perturbation theory—
see [20,20–22] and references therein, and [23,24] for
recent reviews. The formulation applies in situations where
all length scales associated with the compact object are
much smaller than the typical curvature radius of the
background geometry. The motion of the compact object
is then determined via a systematic procedure of matched
asymptotic expansions, and interpreted as an accelerated
motion in the background spacetime, subject to an effective
GSF (∝ η2). One of the results is that the internal structure
of the object does not affect the self-acceleration at OðηÞ
(except, if the particle is spinning, through the familiar
Mathisson-Papapetrou spin term).
The GSF formalism should be applicable in our setup,

since we work under the assumption μE ≪ M. The
introduction of the small background-related parameter ϵ
should not pose a problem, because the background’s
curvature radius remains much larger than μE even in
the limit ϵ → 0, and even as the particle approaches the
horizon. We will indeed proceed under the assumption that
the standard first-order GSF formalism is applicable any-
where along the particle’s trajectory until it crosses the
horizon.
The equation of motion, including the leading-order

GSF, may be written in the form

μûβ∇βûα ¼ Fα: ð31Þ

Here ûα is the particle’s four-velocity, tangent to the
(accelerated) trajectory in the background spacetime
(Kerr, in our case) and normalized using

gαβûαûβ ¼ −1; ð32Þ

where gαβ is the background (Kerr) metric. The covariant
derivative in (31) is taken with respect to gαβ, and Fα is the
first-order GSF, proportional to μ2. The GSF is normal to
the four-velocity, gαβûαFβ ¼ 0, so that the rest mass μ
remains constant. Methods to compute Fα in Kerr

spacetime are reviewed in [25]. In should be noted that
Fα itself is a gauge-dependent notion: A full, gauge-
invariant information about the motion is contained only
in the combination of the GSF and the metric perturbation
with which it is associated [26].
Now consider a particle sent in along the equator of the

Kerr black hole, i.e. with θ ¼ π=2 and ûθ ¼ 0 at the initial
moment. In any reasonable gauge, the component Fθ

would vanish from symmetry and the motion will remain
equatorial. Let us then define

Ê ≔ −ût; L̂ ≔ ûϕ; ð33Þ

in analogy with E and L of the geodesic case. Here,
however, Ê and L̂ are not constants of the motion. Rather,
Eq. (31) tells us they evolve (slowly) according to

μ
dÊ
dτ

¼ −FtðτÞ; μ
dL̂
dτ

¼ FϕðτÞ; ð34Þ

where Fα ¼ gαβFβ and τ is proper time along the self-
accelerated orbit. With these definitions, Eq. (32) produces
the radial equation of motion

_r2 ¼ BðrÞðÊ − V−ðL̂; rÞÞðÊ − VþðL̂; rÞÞ; ð35Þ

whose form is identical to that of Eq. (3)—except that here
Ê and L̂ are slow functions of τ along the orbit.
The results of the previous section lead us to focus

attention on particles sent in from infinity, i.e., ones with
rðτ → −∞Þ → ∞. For such particles, we define

E∞ ≔ Êðτ → −∞Þ; L∞ ≔ L̂ðτ → −∞Þ: ð36Þ

From Eq. (34) we have

ÊðτÞ ¼ E∞ þ ΔEðτÞ; L̂ðτÞ ¼ L∞ þ ΔLðτÞ; ð37Þ

where

μΔEðτÞ ¼ −
Z

τ

−∞
Ftðτ0Þdτ0; μΔLðτÞ ¼

Z
τ

−∞
Fϕðτ0Þdτ0:

ð38Þ

In principle, the coupled set (35) with (37) determines the
self-accelerated orbit, given the initial values E∞; L∞ and a
method for calculating the GSF along the orbit.

B. Dissipative and conservative pieces of the self-force

The quantities ΔEðτÞ and ΔLðτÞ encapsulate both
conservative and dissipative effects of the GSF. This
terminology refers to a splitting of the GSF in the form

Fα ¼ Fα
cons þ Fα

diss; ð39Þ
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where the first and second terms are the self-forces
exerted, respectively, by the “time-symmetric” and
“time-antisymmetric” pieces of the (regularized) metric
perturbation (cf. [25] for a more precise definition). For
geodesic motion in the equatorial plane of a Kerr black
hole, Fα can be thought of as a function of only r and _r
along the orbit. The particular time symmetry of such
geodesics then implies [25]

Fα
consðr; _rÞ ¼

1

2
½Fαðr; _rÞ þ sðαÞFαðr;−_rÞ�; ð40Þ

Fα
dissðr; _rÞ ¼

1

2
½Fαðr; _rÞ − sðαÞFαðr;−_rÞ� ð41Þ

(no summation over α), where sðtÞ ¼ −1 ¼ sðϕÞ and
sðrÞ ¼ þ1. This gives a simple prescription for constructing
Fα
cons and Fα

diss along geodesics, given the full GSF.
For circular orbits we have Fαðr; _rÞ ¼ Fαðr;−_rÞ, mean-

ing Ft; Fϕ are purely dissipative while Fr is purely
conservative. In general, however, each component has
both dissipative and conservative pieces. Of particular
interest to us will be nearly circular orbits with j_rj ≪ 1.
Along such orbits we may write, to leading order in j_rj,

Fα
cons ≃ _rFα

1ðrÞ; Fα
diss ≃ Fα

0ðrÞ ð42Þ

for α ¼ t;ϕ, and

Fr
cons ≃ Fr

0ðrÞ; Fr
diss ≃ _rFr

1ðrÞ; ð43Þ

where Fα
0 and Fα

1 are some functions of r only.
Equations (40)–(43) are applicable, at leading order in η,

even for an orbit that is slowly evolving under the GSF
effect. In that case the GSF depends also on the instanta-
neous self-acceleration, but that dependence appears only
at subleading order in η. At leading order, Eqs. (40)–(43)
maintain their form at each point along the orbit.
The GSF integrals ΔE and ΔL can be related, in certain

situations, to asymptotic fluxes of energy and angular
momentum in gravitational waves. This was established
rigorously in Ref. [27] for a trajectory starting and ending at
infinity.3 A similar balance relation has been argued to hold
also for adiabatic inspiral orbits around a black hole,
subject to a suitable averaging over many orbital periods
[28,29]. In both scenarios, the contribution from Fα

cons to
the integrals ΔE and ΔL (taken from τ ¼ −∞ to τ ¼ þ∞)
vanishes at leading order, by virtue of the orbital symmetry
expressed in Eq. (40). This guarantees that the radiated
fluxes balance the work done by the dissipative piece of the
self-force alone, as expected.

C. ADM energy and angular momentum

Our analysis in the next section will require knowledge
of the total, conserved ADM energy and angular-momen-
tum contents of the spacetime in the above setup.
Specifically, we will need expressions for EADM and
LADM in terms of E∞ and L∞ (and the two masses, M
and μ), correct through Oðη2Þ. A subtlety is that ADM
quantities are most conveniently evaluated in a “center-of-
mass” (CoM) system (and, at the required order, would
include a contribution from the black hole’s “recoil”
motion), whereas E∞ and L∞ are components of the
particle’s four-velocity, defined in a coordinate system
centered around the black hole.
In our setup, the ADM quantities are most easily

evaluated on a hypersurface of constant t ≪ −M, where
the binary separation is r ≫ M. In the limit t → −∞
(r → ∞), the gravitational interaction energy vanishes
and does not contribute to EADM. Working at that limit,
we assume that, for the purpose of calculating ADM
quantities, the black hole–article system may be replaced
with that of two relativistic pointlike particles in flat
spacetime. EADM is then simply the sum of the two
relativistic energies in the center-of-mass frame, and
LADM is similarly the sum of two angular momenta (with
respect to the center of mass), plus the spin of the
black hole.
Appendix A gives the details of this calculation, which is

straightforward. The result is

EADM ¼ M

�
1þ ηE∞ −

1

2
η2ðE2

∞ − 1Þ
�
þ oðη2Þ; ð44Þ

LADM ¼ Mðaþ ηL∞ − η2L∞E∞Þ þ oðη2Þ: ð45Þ

D. Critical orbits

In the geodesic case we have introduced the function
LcðEÞ, which we now interpret as the critical value of the
angular momentum for a given energy: Geodesic orbits
with L > LcðEÞ scatter back to infinity, while ones with
L < LcðEÞ fall into the black hole. This type of critical
behavior carries over to the GSF case, though radiation
losses then introduce a subtlety, since orbits that are
initially scattered may fall into the black hole at a
subsequent approach. However, we may still speak of a
critical threshold for an immediate capture, which separates
(in the space of initial conditions) between orbits that
scatter at first approach and orbits that do not. A detailed
analysis of this critical behavior was given in Ref. [30] for
orbits in Schwarzschild spacetime (working in the first-
order GSF approximation, as here), and in the following
discussion we assume the same qualitative behavior applies
in the Kerr case too.
In particular, we assume there exists a critical value

L∞ ¼ L∞;cðE∞Þ that separates between the two possible

3The configuration considered in Ref. [27] had no black hole
in it, but the authors argue convincingly that a similar conclusion
would hold also in the black-hole case, if fluxes down the event
horizon were accounted for in the balance equation.
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outcomes. The initial conditions fE∞; L∞;cðE∞Þg thus
define a one-parameter family of “critical orbits.” Let us
denote by Êcðτ;E∞Þ and L̂cðτ;E∞Þ the functions ÊðτÞ and
L̂ðτÞ corresponding to a critical orbit with a given E∞ [so
that Êcðτ → −∞;E∞Þ ¼ E∞ and L̂cðτ → −∞;E∞Þ ¼
L∞;cðE∞Þ]. Unlike in the geodesic case where critical
geodesics of different E are disjoint, in the GSF case all
critical orbits join a global attractor, which is the perfectly
fine-tuned orbit that evolves radiatively along the sequence
of unstable circular orbits starting at the light ring and
ending at the ISCO, where it plunges into the black hole.
Figure 1 in Ref. [30] illustrates the evolution of the critical
orbit along the attractor, and see also Fig. 4 above.
Let us define the “GSF correction”

δLcðτ;E∞Þ ≔ L̂cðτ;E∞Þ − LcðE∞Þ; ð46Þ

and then

δL∞ðE∞Þ ≔ δLcðτ → −∞;E∞Þ: ð47Þ

δL∞ is the GSF-induced shift in the critical value of L∞ at a
fixed E∞. It may also be interpreted in terms of a GSF

correction to the critical impact parameter. We assume that
the difference δLcðτ;E∞Þ remains small [OðηÞ] during the
approach, which should be the case in any reasonable
gauge. However, clearly, that difference ceases to remain
small as the critical orbit joins the global attractor and
evolves along it; then the meaning of δLcðτ;E∞Þ as a small
GSF correction is lost.
For our analysis of overspinning orbits in the next

section, we will require an explicit expression for
δL∞ðE∞Þ in terms of GSF quantities. It is instructive to
derive this relation first with the dissipative piece of the
GSF turned off, i.e. replacing the full GSF with its
conservative piece (in which case the global attractor
disappears, and critical orbits of different E∞ remain
disjoint). Let us call the resulting quantity δLcons

∞ ðE∞Þ.
As a second step we will restore dissipation and consider its
effect.

1. Conservative GSF effect

With dissipation turned off, the critical orbit becomes
exactly stationary at τ → ∞, where it joins an unstable
(nongeodesic) circular orbit of radius R̂ðE∞Þ ¼
RðE∞Þ þ δR. Here RðE∞Þ is the geodesic relation given
in Eq. (14), and δR is a conservative GSF correction. To
obtain δLcons

∞ we first substitute Ê and L̂ from Eq. (37) into
the radial equation of motion (35), replacing L∞ with
LcðE∞Þ þ δLcons

∞ ðE∞Þ, where LcðE∞Þ is the geodesic
relation given in Eq. (16). We then demand dr=dτ ¼ 0
as well as d2r=dτ2 ¼ 0 at r ¼ R̂ through OðηÞ. At leading
order in ϵ this yields two algebraic equations for the two
OðηÞ unknowns δLcons

∞ and δR, given E∞ and the GSF. The
solution is

δLcons
∞ ðE∞Þ ¼ 2MΔEconsð∞Þ − ΔLconsð∞Þ; ð48Þ

and δRðE∞Þ ¼ OðϵÞOðηÞ. Here ΔEcons and ΔLcons are the
same as ΔE and ΔL of Eq. (38), but with Fα → Fcons

α , and
with the GSF integrals evaluated along the critical orbit
with energy at infinity E∞. The precise dependence of δR
on the GSF will not be needed, but we note that the OðϵηÞ
GSF correction to the radius of the critical circular orbit is
reassuringly small compared to the OðϵÞ radial distance to
the light ring.
To simplify the appearance of subsequent equations, let

us from now on use units in which M ¼ 1. This, in
particular, makes our “tilde” notation redundant (with
~L ¼ L, etc.) and μ becomes interchangeable with η.
Recalling our W notation from Eq. (21), we rewrite
Eq. (48) as

δLcons
∞ ðE∞Þ ¼ ΔWconsð∞Þ; ð49Þ

where ΔWcons represents the conservative piece of

FIG. 4 (color online). Schematic illustration of the evolution of
orbital energy along a perfectly fine-tuned critical orbit (solid
blue curve). The orbit approaches from infinity, becomes trapped
on an unstable circular orbit, and then evolves adiabatically in a
quasicircular fashion before transiting to plunge around the ISCO
location. Radiative losses are small during the approach and
plunge, but, through fine-tuning, the orbit can be made to lose
“all” its energy during the quasicircular stage. Intermediate values
of the final energy Ef may also be obtained by fine-tuning
(dashed magenta line). Note the orbital radius increases through
radiation losses during the quasicircular stage. In the near-
extremal case, ϵ ≪ 1, the quasicircular evolution and final plunge
occur within a small range of coordinate radii, Δr ¼ OðϵÞ.
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ΔWðτÞ ≔ 2ΔEðτÞ − ΔLðτÞ

¼ −η−1
Z

τ

−∞
ð2Ft þ FϕÞdτ: ð50Þ

The quantity ΔWconsð∞Þ is the limit τ → ∞ of ΔWconsðτÞ.
Does this limit actually exist? The answer is positive, since
both Fcons

t and Fcons
ϕ vanish exponentially fast in τ as the

orbit approaches the limiting circular orbit at τ → ∞.
To make this last statement more precise, let us split the τ

integral into an “approach” piece,
R
τc
−∞, and a “quasicir-

cular” piece,
R∞
τc
, with τc chosen so that δrðτcÞ, where

δrðτÞ ≔ rðτÞ − R̂, is already very small. For a small δr we
have the form Fcons

t ≃ _rF1tðrÞ [Eq. (42)] and similarly for
Fcons
ϕ . Thus

R∞
τc
Fcons
t dτ≃ −F1tðR̂ÞδrðτcÞ, and similarly for

the ϕ component. A local analysis of Eq. (35) near the
limiting circular orbit gives δr ∼ e−λτ, with a Lyapunov
exponent λ ¼ M−1ð3E2

∞ − 1Þ1=2 at leading order in ϵ (and
ignoring the small effect of the GSF). The choice
τc ¼ −λ−1 log η, for example, gives δrðτcÞ ∼ η, and the
quasicircular piece of ΔWcons does not contribute to δLcons

∞
at leading order in η.
Our discussion assumes that ΔEðτcÞ and ΔLðτcÞ [hence

also ΔWðτcÞ] are OðηÞ quantities, i.e. that the accumulated
GSF-induced positional shift in the orbit during the
approach is a small, OðηÞ quantity. This should be the
case in any reasonable gauge. Under this assumption, we
note that the value of the integral ΔW remains unchanged,
at leading order in η, if in Eq. (50) we replace the
integration along the actual, GSF-perturbed orbit, with
an integration along the critical geodesic of energy E∞.
This can be exploited to simplify actual calculations: To
compute δLcons

∞ at leading order in η requires only an
evaluation of the GSF along a fixed geodesic, and there is
no need to consider the backreaction from the GSF on the
orbital trajectory.

2. Full-GSF effect

Now restore dissipation. The fine-tuned critical orbit no
longer settles into a strictly stationary motion, but rather it
continues to evolve radiatively, in an adiabatic fashion,
through a sequence of unstable circular orbits of decreasing
energies (hence increasing radii). With a perfect fine-
tuning, the orbit can reach the ISCO before plunging into
the black hole—a scenario illustrated in Fig. 4. A relation
between the degree of fine-tuning and the amount of energy
loss was derived in Ref. [30] (for the Schwarzschild case):
Rewriting their Eq. (124) in terms of angular momentum,
we have the scaling δL=L∞;c ∼ exp½ðEf − EiÞ=η�, where δL
(not to be confused with the GSF shift δL∞) is any small
perturbation in the value of the initial angular momentum
off the critical value L∞;c, and Ef − Ei is the resulting
change in specific energy as the orbit progresses along the
global attractor. To achieve an Oð1Þ change in the specific

energy requires an “exponentially delicate” fine-tun-
ing, δL=L∞;c ∼ expð−1=ηÞ.
For our analysis we do not require knowledge of

the perfectly fine-tuned angular momentum at that
level. We need L∞;c through OðηÞ only. Fine-tuning at
OðηÞ [corresponding to δL ¼ oðηÞ] guarantees only
Ef − Ei ¼ Oðη ln ηÞ. Therefore, for the purpose of deter-
mining L∞;c through OðηÞ, it is sufficient to restrict
attention to the early part of the critical orbit, where ΔE
and ΔL (specific values) are still Oðη ln ηÞ at most, and
have not yet accumulated Oð1Þ changes. This observation
assists us in Appendix B, where we derive an expression for
the leading-order full-GSF correction δL∞ðE∞Þ.
Our main result in Appendix B is that

δL∞ðE∞Þ ¼ ΔWðτcÞ þOðϵÞOðη ln ηÞ; ð51Þ

in analogy with the “no dissipation” case, Eq. (49). Here,
ΔWðτcÞ is the full-GSF integral shown in Eq. (50),
evaluated along the orbit from infinity and up to the
“end-of-approach” time τc, when the orbit settles into a
quasicircular motion. Crucially, the contribution to ΔW
from the quasicircular part of the orbit is suppressed by a
factor of ϵ, so that the precise choice of τc does not affect
the value of ΔWðτcÞ at leading order. This assumes only
that ϵ ≪ j ln ηj−1, so that the error terms in Eq. (51) are
negligible compared to ΔWðτcÞ ¼ Oðϵ0ÞOðηÞ. All we
require of τc is to be sufficiently late that j_rj is already
very small [specifically, _rðτcÞ ¼ OðηÞ], but sufficiently
early that ΔE is Oðη ln ηÞ at most. In practice, ΔW may
again be evaluated along the critical geodesic of energy at
infinity E∞, with the integral in Eq. (51) truncated after, say,
4–5 orbital revolutions. Truncating instead after (e.g.) 10
revolutions should change the result by a negligible amount
of only OðϵÞOðηÞ.
The dissipative piece of ΔWðτcÞ [call it ΔWdiss, defined

by replacing Fα → Fdiss
α in Eq. (51)] may be expressed in

terms of radiated quantities. Let EðaprÞ and LðaprÞ be the total
energy and angular momentum in gravitational waves
radiated out to infinity and down the black hole during
the approach. We shall assume that the balance relation,4,5

WðaprÞ ≔ 2EðaprÞ − LðaprÞ ¼ −ηΔWdissðτcÞ ð52Þ

4The balance (52) does not follow directly from the theorem of
Ref. [27], because the approach part of the critical orbit does not
end at infinity. It may be possible to construct a proof by
considering a small outward deformation of the orbit (such that
the new orbit starts at infinity and scatters back to infinity), then
invoking the approximate symmetry about the periapsis, together
with the ϵ-suppression of the quasicircular contribution toΔWdiss.
We shall not endeavor to provide the details of such a proof here.

5One cannot expect to be able to similarly balance EðaprÞ and
LðaprÞ individually, because the dissipative pieces of ΔEðτcÞ and
ΔLðτcÞ, unlike ΔWdissðτcÞ, are sensitive to the choice of τc
already at leading order. However, such individual balance
relations will not be needed in our analysis.
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holds at leading order in η and in ϵ. Equations (49) and (51)
then lead to

δL∞ ¼ δLcons
∞ −WðaprÞ=η; ð53Þ

where subleading terms have been omitted. This reex-
presses δL∞ as a sum of conservative and radiative
contributions, the motivation for which will become clear
in the next section.
Finally, let us further write EðaprÞ ¼ Eþ

ðaprÞ þ E−
ðaprÞ and

similarly for LðaprÞ andWðaprÞ, where hereafter superscripts
“þ” and “−” denote contributions from fluxes to infinity
and down the black hole, respectively. The following
argument, based on the first law of black-hole mechanics,
suggests that W−

ðaprÞ must vanish in the limit ϵ → 0. If we

assume the black hole is not overspun during the approach,
its horizon’s area should increase by an amount δA
satisfying

κ

8π
δA ¼ E−

ðaprÞ −ΩHL−
ðaprÞ; ð54Þ

where κ ¼ ϵ=
ffiffiffi
2

p þOðϵ2Þ is the horizon’s surface gravity,
and ΩH its angular velocity. Since ΩH ¼ 1

2
þOðϵÞ, we

identify the right-hand side of (54) as W−
ðaprÞ at leading

order in ϵ. We thus have, in the extremal limit,
W−

ðaprÞ ≃ ϵðc1δAþ c2L−
ðaprÞÞ, with c1; c2 certain numerical

coefficients. Since δA and L−
ðaprÞ must remain bounded even

in the extremal limit, we conclude that W−
ðaprÞ vanishes in

that limit. Thus, at leading order in ϵ, Eq. (53) becomes

δL∞ ¼ δLcons
∞ −Wþ

ðaprÞ=η; ð55Þ

which now features only outgoing fluxes.
With this we have completed the necessary groundwork

for our overspinning analysis, to be presented next.

IV. OVERSPINNING WITH THE FULL
SELF-FORCE

A. General form of the censorship condition and
reduction to near-critical orbits

Starting with a near-extremal Kerr geometry with
a=M ¼ 1 − ϵ2, consider a particle sent in from infinity
with specific energy E∞ and specific angular momentum
L∞ at t → −∞. The ADM mass and angular momentum of
the spacetime are given in Eqs. (44) and (45) through
Oðη2Þ. We assume the particle crosses the event horizon6 at
some retarded time uh, and we let Eþ and Lþ be the total
energy and angular momentum radiated to null infinity up
until uh (with uh → ∞ if the postcapture geometry relaxes

to a Kerr black hole). Then the Bondi mass and angular
momentum of spacetime at retarded time uh are EADM − Eþ
and LADM − Lþ, respectively. Overspinning is avoided if
and only if7

ðEADM − EþÞ2 ≥ LADM − Lþ: ð56Þ

To rule out the overspinning scenario, we need to show that
this inequality holds for all E∞; L∞ and for all η; ϵ. Since
we work in first-order perturbation theory, we only demand
that (56) is satisfied at leading order in η. We also assume
ϵ ≪ 1 and keep only leading terms in ϵ, but we do not a
priori restrict the magnitude of ϵ relative to that of η. We
shall refer to the inequality (56) as the censorship
condition.8

Substituting from Eqs. (1), (44) and (45), the censorship
condition becomes

ϵ2 þ ηW∞ þ η2ð1þ L∞E∞ − E2
∞Þ

þ ðηE∞ − EþÞ2 −Wþ ≥ 0; ð57Þ

where W∞ ≔ 2E∞ − L∞, Wþ ≔ 2Eþ − Lþ, and we have
omitted subleading terms of oðη2Þ. Note how the various
terms here scale with η. The quantities E∞ and L∞ (hence
also W∞) are specific values, thus a priori they are Oðη0Þ.
The radiated energy Eþ is generically Oðη2Þ, but may
accumulate at OðηÞ for orbits that are fine-tuned to evolve
along the global attractor; it is to allow for such orbits that
we have kept the terms 2ηE∞Eþ and ðEþÞ2 in Eq. (57). The
quantity Wþ is likewise Oðη2Þ generically and up to OðηÞ
with fine-tuning, but, as will be shown below, in the latter
case the OðηÞ term is also proportional to ϵ.
Inspecting Eq. (57), we observe that, for all captured

orbits that are not sufficiently close to criticality, the term
ηW∞ is OðηÞ and positive, so the censorship condition (57)
is trivially satisfied at leading order in η and ϵ. Violation of
(57) (hence overspinning) may only be achieved, poten-
tially, if L∞ is tuned so that L∞ ¼ 2E∞ þOðϵ; ηÞ, giving
W∞ ¼ Oðϵ; ηÞ. It is therefore sufficient to restrict attention
to this class of orbits, to be referred to in what follows as
“near critical.” Formulated on near-critical orbits, the
censorship condition takes the sufficient form

6More pedantically, we refer here to the crossing of a margin-
ally trapped surface; spacetime need not contain a global horizon.

7We do not know, and for our purpose do not need to know, the
future evolution of spacetime beyond retarded time uh in the
hypothetical case where (56) is not satisfied. The likely scenario
involves the formation of a naked singularity and a breakdown of
predictability for u > uh [4]. If (56) is satisfied, then, by “no-
hair” theorems, geometry should relax to a Kerr black hole.

8It may be argued that (56) is guaranteed to hold (with a strong
inequality) by virtue of the third law of black-hole mechanics
[31], though it is clear that some of the third law’s assumptions
are not satisfied within our model—see [9] for a discussion. Even
if that can be established, it is still of interest to explore the
physical mechanism that enforces the third law in our setup,
which is what our study aims to achieve.
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ϵ2 þ ηW∞ þ η2ð1þ E2
∞Þ þ ðηE∞ − EþÞ2 −Wþ ≥ 0;

ð58Þ
where we have dropped Oðϵη2; η3Þ terms. This is required
to hold for each member of the reduced two-parameter
family fE∞; L∞g with L∞ − 2E∞ ¼ Oðϵ; ηÞ.
To proceed, we need to make more precise the distinction

between fine-tuned orbits and generic near-critical orbits
that are not fine-tuned. Referring to Fig. 4, let Ef be the
final value of the specific energy with which the particle
plunges into the hole, and let L∞;cðE∞Þ be the perfectly
fine-tuned value of L∞, for which the orbit joins the global
attractor and evolves along it to the ISCO. Assuming the
universal scaling L∞ − L∞;cðE∞Þ ∼ exp½ðEf − E∞Þ=η�
[30], near-critical orbits as defined above generically have
Ef − E∞ ¼ Oðη ln ηϵÞ [here we neglect theOðηÞ difference
between E∞ and Ei]. Calibrating L∞ at higher order in η; ϵ
[so that L∞ − L∞;c ¼ Oðηn; ϵkÞ with some n; k > 1] does
not qualitatively change this generic scaling of Ef − E∞.
To achieve Ef − E∞ ¼ Oð1Þ requires an exponentially
accurate tuning, i.e. L∞ − L∞;c ∼ expð−1=ηÞ. In what
follows we use the η-scaling of Ef − E∞ to distinguish
between generic and fine-tuned members of the near-
critical family: The former admit Ef − E∞ ¼ Oðη ln ηϵÞ,
and the latter Ef − E∞ ¼ Oð1Þ. This distinction can also be
formulated in terms of the radiated quantities Eþ or Lþ:

Eþ;Lþ ¼ Oðη2 ln ηϵÞ ðgenericÞ; ð59Þ

Eþ;Lþ ¼ OðηÞ ðfine-tunedÞ: ð60Þ

B. Further reduction to critical orbits

The inequality (58) is still a condition on a two-
parameter family of orbits. Ignoring fine-tuned orbits for
now, it is possible—and beneficial—to reduce it further to a
sufficient condition formulated on a one-parameter family.
We achieve this by minimizing the left-hand side of
Eq. (58) over all near-critical orbits for a given E∞. We
argue that the minimizing orbit is one with L∞ tuned to its
critical value at least through Oðη; ϵÞ, namely

L∞ ¼ 2E∞ þ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6E2

∞ − 2

q
þ δL∞ðE∞Þ þ oðη; ϵÞ; ð61Þ

where we have recalled Eq. (16), and δL∞ðE∞Þ is the OðηÞ
GSF term derived in the previous section. To see this, note
first that W∞ ¼ 2E∞ − L∞ is trivially minimized by
L∞ ¼ L∞;cðE∞Þ, since L∞;cðE∞Þ maximizes L∞ (over
all captured orbits of a fixed E∞) by definition of a critical
orbit. This means that, to minimize W∞ through Oðη; ϵÞ
(higher orders are irrelevant in our approximation) it
suffices to demand L∞ − L∞;cðE∞Þ ¼ oðη; ϵÞ. Then also
note that the two radiative terms on the left-hand side of
(58) are insensitive, at relevant order, to variations of L∞
within the family of nearly critical orbits for a fixed E∞. For

generic orbits, the term ðηE∞ − EþÞ2 is simply η2E2
∞ at

leading order, recalling Eq. (59). As for the term −Wþ, we
note that the contribution to that term from the approach
part of the orbit, which is already Oðη2Þ, is not sensitive, at
that order, to Oðη; ϵÞ variations in L∞. Meanwhile, the
contribution to Wþ from the quasicircular part of the orbit
is ofOðϵÞOðη2 ln ηϵÞ at most (the occurrence of the factor ϵ
will be explained below) and hence negligible in Eq. (58),
assuming only ϵ ≪ j ln ηj−1.
Thus, discounting fine-tuned orbits, we find that the

entire left-hand side of Eq. (58) is minimized by L∞ as
given in Eq. (61). A new sufficient version of the censor-
ship condition may therefore be written as

ϵ2 − ηϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6E2

∞ − 2

q
− ηδL∞ þ η2ð1þ E2

∞Þ
þ ðηE∞ − EþÞ2 −Wþ ≥ 0; ð62Þ

which, at the relevant, leading order, is a condition on the
one-parameter family of (generic) critical orbits parame-
trized by E∞ alone.
It should now be noted that the condition (62) also

applies to fine-tuned orbits [whether or not they minimize
the left-hand side of (58)], simply because such orbits
always satisfy Eq. (61). However, for fine-tuned orbits the
condition still involves two parameters, conveniently
chosen as E∞ and Ef. Different values of Ef correspond
to a fine-tuning of L∞ at an exponential level. In principle,
any value of Ef in the range Eisco ≲ Ef ≲ E∞ may be
obtained this way. To rule out overspinning by fine-tuned
orbits, the censorship condition (62) must hold for all
fE∞; Efg with Ef in the above range.
Observe that in Eq. (62) we have

ηδL∞ þWþ ¼ ηδLcons
∞ þWþ −Wþ

ðaprÞ

¼ ηδLcons
∞ þWþ

ðqcÞ þWþ
ðendÞ; ð63Þ

where in the first line we have recalled Eq. (55),Wþ
ðqcÞ is the

piece of Wþ coming from the evolution along the quasi-
circular part of the orbit, and Wþ

ðendÞ is the piece coming
from the transition to a final plunge into the black hole and
from the plunge itself. It follows that only the conservative
piece of the shift δL∞ actually enters our condition:

ϵ2 − ηϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6E2

∞ − 2

q
− ηδLcons

∞ þ η2ð1þ E2
∞Þ

þ ðηE∞ − EþÞ2 −Wþ
ðqcÞ −Wþ

ðendÞ ≥ 0: ð64Þ

In this last form, conservative and dissipative terms of
the GSF feature separately. The former are associated with
the approach leg of the orbit, and the latter accumulate
during the adiabatic evolution along the attractor. In
Appendix C we combine results by Ori and Thorne
[32], Kesden [33] and Mino and Brink [34], to argue that
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the term Wþ
ðendÞ is always subdominant and negligible in

Eq. (64). We shall therefore omit that term in the rest of our
discussion.
In Sec. IV D below we will show that the radiative term

Wþ
ðqcÞ scales as OðϵÞO½ηðE∞ − EfÞ�. This term can thus

feature at leading order in Eq. (64) only for fine-tuned
orbits, for which E∞ − Ef ¼ Oð1Þ. Likewise, terms involv-
ing Eþ feature only for fine-tuned orbits and are negligible
otherwise. On the other hand, the conservative term ηLcons

∞
is always Oðη2Þ, featuring in the censorship condition
regardless of fine-tuning. An important consequence is that
dissipative effects of the GSF enter the censorship con-
dition only for fine-tuned orbits. This seems consistent with
suggestions made in earlier analyses [13,33,35] (in which
fine-tuning has not been considered).
Below we further simplify the condition (64), and

reformulate it explicitly in terms of E∞ alone (for generic
orbits) or E∞ and Ef alone (for fine-tuned ones), without
reference to η and ϵ. We shall consider separately the cases
of generic and fine-tuned orbits, starting with the former,
simpler case.

C. Censorship condition for generic orbits

As mentioned above (and shown in the next subsection),
without fine-tuning the radiative terms Eþ and Wþ

ðqcÞ
become subdominant in Eq. (64) and drop out of it. The
censorship condition then reduces to

ϵ2 þ ηϵF þ η2H ≥ 0; ð65Þ
with

F ≔ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6E2

∞ − 2

q
; ð66Þ

H ≔ 1þ 2E2
∞ − δL̆cons

∞ : ð67Þ

Here we have made the η-scaling of δLcons
∞ explicit by

introducing the shift per eta

δL̆cons
∞ ≔ η−1δLcons

∞ ; ð68Þ

which should have a finite (nonzero) limit η → 0.
For the overspinning scenario to be ruled out, the

inequality (65) must be satisfied for all η; ϵ > 0 and all
E∞ ≥ 1. The condition can be written in the equivalent
form Φ ≔ α2 þ αF þH ≥ 0, with α ≔ ϵ=η > 0. At fixed
E∞, Φ is quadratic in α, with a minimum value
Φðα ¼ −F=2Þ ¼ H − F2=4. To guarantee Φ ≥ 0 for all
E∞ and all α > 0 (hence all η; ϵ > 0) we must demand
H ≥ F2=4; if H < F2=4 for some E∞, then for that E∞
there exist η; ϵ values for which overspinning is achieved.
In that way, H ≥ F2=4 is both sufficient and necessary for
overspinning to be avoided. Inserting the values of F and
H, the censorship condition takes the simple form

δL̆cons
∞ ≤

1

2
ðE2

∞ þ 3Þ: ð69Þ

Overspinning is averted (for orbits that are not fine-tuned) if
and only if (69) is satisfied for each member of the one-
parameter family of critical orbits with E∞ ≥ 1, in the
limit η; ϵ → 0.
Equation (69) states our final result for generic orbits. As

already mentioned, it involves only conservative GSF
effects, specifically the shift in the critical value of the
angular momentum at infinity (at fixed E∞) due to the
conservative piece of the GSF. For easy reference, we give
here the explicit formula for δL̆cons

∞ in terms of GSF
components:

δL̆cons
∞ ðE∞Þ ¼ lim

ϵ→0

1

μ2

Z
∞

Rϵ

ð2MFcons
t þ Fcons

ϕ Þdr=_r; ð70Þ

where we have recalled Eqs. (49) and (50) (and have
restored a factor M for clarity). The integration is carried
out along the critical geodesic of specific energy E∞ on a
background with spin a=M ¼ 1 − ϵ2, starting at the unsta-
ble circular orbit of radius Rϵ ¼ Rϵðϵ; E∞Þ and ending at
infinity.
Inspecting Eq. (69), it may seem peculiar that over-

spinning may be averted even for some positive values of
δLcons

∞ : A positive δLcons
∞ would seem to mean that the GSF

increases the critical impact parameter, allowing in par-
ticles that would otherwise be scattered away. However, we
must recall that the shift δLcons

∞ is defined not with respect to
the physical, ADM angular momentum, but with respect to
the quantity L̂ ¼ ûϕ, which (while convenient to work with
in practice) does not have a clear invariant meaning beyond
the geodesic approximation. To rewrite (69) in a more
physically insightful way, let us, then, recast it in terms of
ADM quantities, as follows.
First, let us introduce the specific quantities Ep

ADM and
Lp
ADM defined through

μEp
ADM ≔ EADM −M;

μLp
ADM ≔ LADM −Ma ð71Þ

(restoring factors M for clarity), which may be thought of
as the particle’s contributions to the total ADM energy and
angular momentum of the system. Then, denote by
δLp

ADMðEp
ADMÞ the shift, due to the conservative GSF, in

the critical value of Lp
ADM for a fixed Ep

ADM. A short
calculation, based on Eqs. (44) and (45), gives

δLp
ADMðEp

ADMÞ ¼ δLcons
∞ ðE∞Þ − ηðE2

∞ þ 1Þ þOðη2Þ:
ð72Þ

Thus, in terms of δL̆p
ADM ≔ η−1δLp

ADM, the censorship
condition (69) becomes
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δL̆p
ADM ≤

1

2
ð1 − E2

∞Þ; ð73Þ

where on the right-hand side E∞ may be replaced with
Ep
ADM at relevant order.
The alternative form (73) is now more intuitive: For

unbound orbits (E∞ ≥ 1), the GSF averts overspinning if it
shifts the critical value of the (ADM-related) angular
momentum by a sufficiently negative amount, which
depends only on E∞. In the marginal case of E∞ ¼ 1
(where overspinning is marginally prevented already in the
geodesic case), the shift δL̆p

ADM need only be nonpositive.
We are not aware of any a priori argument to suggest that
δL̆p

ADM must necessarily be nonpositive for all E∞ ≥ 1.
Verifying this would need to await a numerical calculation.
Any counterexample would imply a direct violation of
cosmic censorship.
Let us make a few more points about the condition (69).

First, in its form (73) it is manifestly gauge invariant (within
a class of suitable asymptotically flat gauges) despite the
gauge dependence of the local GSF featuring in δL̆cons

∞
[Eq. (70)]. The condition involves only quantities that are
defined and evaluated at infinite separation, namely the
specific energy E∞ (or Ep

ADM) and angular-momentum shift
δL̆p

ADM, each having a clear gauge-invariant physical
meaning. The evident invariance of our final condition is
reassuring.
Second, as already mentioned, the condition that (69) is

satisfied for all E∞ ≥ 1 is both sufficient and necessary for
overspinning to be avoided within the scenario considered
here. It is a sufficient condition only in the sense that it
guarantees no overspinning occurs for sufficiently small
mass ratio η; since we work in the first-order self-force
approximation, we cannot make the statement any stronger.
Equation (69) describes a necessary condition in the sense
that its violation for any E∞ would mean there exist (small)
η values for which overspinning occurs.
Finally, the condition (69) involves the single parameter

E∞, and the task of testing whether it is satisfied amounts to
evaluating a single function of E∞, namely δL̆cons

∞ ðE∞Þ.
The perturbative parameters themselves, η and ϵ, do not
feature in the final condition. This is expected, given our
first-order perturbative treatment and the fact that GSF
effects (including ADM terms) appear in the overspinning
condition already at leading order. It is precisely because of
this “order mixing” that one cannot neglect the GSF in
considering the overspinning problem, and why there is no
sense in which the geodesic limit may be said to provide a
useful approximation here.

D. Censorship condition for fine-tuned orbits

It is not a priori clear whether fine-tuning favors the
overspinning scenario or disfavors it: The answer depends
on the details of the radiative evolution along the attractor.
Indeed, for fine-tuned orbits the radiative terms Eþ and

Wþ
ðqcÞ feature already at leading order in Eq. (64), and

cannot be neglected. We may again write Eq. (64) in the
form (65), with F and H replaced with, respectively,

F̄ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6E2

∞ − 2

q
− W̆þ

ðqcÞ;

H̄ ¼ 1þ E2
∞ þ ðE∞ − ĔþÞ2 − δL̆cons

∞ : ð74Þ

Here we have introduced the rescaled quantities

Ĕ� ≔ η−1E�; W̆�
ðqcÞ ≔ ðϵηÞ−1W�

ðqcÞ; ð75Þ

which should have finite (nonzero) limits ϵ; η → 0 for fine-
tuned orbits [that W�

ðqcÞ ¼ OðϵÞOðηÞ will be discussed in

the next two paragraphs].
It will prove beneficial to reexpress F̄ and H̄ in terms of

the absorption-related quantities Ĕ− and W̆−
ðqcÞ, in place of

Ĕþ and W̆þ
ðqcÞ. This is easily done for H̄, noting E∞ − Ĕþ ¼

Ef þ Ĕ− at the relevant, leading order. As for F̄, we start by
writing Wþ

ðqcÞ ¼ WðqcÞ −W−
ðqcÞ, where, under the

assumption of adiabaticity, the total WðqcÞ may be
expressed as an integral over the local GSF:

WðqcÞ ¼
Z

Ef

E∞

ð2Fdiss
t þ Fdiss

ϕ ÞdE= _E: ð76Þ

Here we have used Eq. (50), changing the integration
variable from τ to specific energy E, and assumed a balance
relation as in Eq. (52). We have also neglected the
subdominant [Oðη2Þ] amount of radiated energy during
the approach, replacing the initial energy of the quasicir-
cular motion with E∞. Then, following the method of
Appendix B [cf. Eq. (B4)], we use uαFdiss

α ¼ 0 to obtain

Fdiss
t þ Fdiss

ϕ =2 ¼ −ður=utÞFdiss
r −

3Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6E2 − 2

p ϵFdiss
t ; ð77Þ

where subdominant terms in ϵ have been omitted. The
contribution from the term ∝ Fdiss

r to the integral in (76) can
be evaluated following the same steps as in Appendix B
[see the paragraph containing Eq. (B5)], and shown to be of
only OðϵÞOðη2Þ (or smaller)—hence negligible. The con-
tribution from the term ∝ Fdiss

t can be evaluated explicitly
upon replacing Ft ¼ μ _E, giving

WðqcÞ ¼ −ηϵ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6E2
∞ − 2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6E2

f − 2
q �

: ð78Þ

Thus, Eqs. (74) are obtained in their alternative form
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F̄ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6E2

f − 2
q

þ W̆−
ðqcÞ;

H̄ ¼ 1þ E2
∞ þ ðEf þ Ĕ−Þ2 − δL̆cons

∞ : ð79Þ

We note that Eq. (78) establishes the scaling WðqcÞ ¼
OðϵÞOðηÞ for fine-tuned orbits. The first-law argument
used in the previous section [refer to the discussion
around Eq. (54)] can also be used to show
W−

ðqcÞ ¼ OðϵÞOðηÞ. This then establishes the scaling

Wþ
ðqcÞ ¼ OðϵÞOðηÞ assumed above.

In both Eqs. (74) and (79), the radiative quantities Ĕ�

and W̆�
ðqcÞ should be thought of as functions of E∞ and Ef

only. While Ĕþ is necessarily positive, the absorbed energy
Ĕ− may be either positive, or—due to superradiance—
negative, depending on E∞ and Ef. Circular equatorial
geodesics are superradiant for Ω < ΩH, which, in the
extremal limit, translates to E < 2ffiffi

3
p . Thus, Ĕ− is necessarily

negative for any Ef < E∞ ≤ 2ffiffi
3

p . The sign (and magnitude)

of Ĕ− for other values of E∞ and Ef, as well as the sign (and
magnitude) of W̆−

ðqcÞ, remain to be determined numerically.

The quantity W̆þ
ðqcÞ, on the other hand, is easily shown to be

negative definite. In fact, Eqs. (84) and (89), given below,
imply

−W̆þ
ðqcÞ > Ĕþ > 0: ð80Þ

Note this means that F̄ in Eq. (74) may change sign,
depending on E∞; Ef.
To proceed, we once again write the condition (65)

(for the barred quantities) in the form Φ̄ ≔ α2þ
αF̄ þ H̄ ≥ 0, with α ¼ ϵ=η. Here, however, the sign of
F̄ is not known a priori, which somewhat complicates
matters. For F̄ < 0, Φ̄ has its minimum at
Φ̄ðα ¼ −F̄=2Þ ¼ H̄ − F̄2=4, so the condition becomes
H̄ ≥ F̄2=4 as before. However, for F̄ ≥ 0 the condition
Φ̄ ≥ 0 is satisfied trivially for all H̄ ≥ 0, and violated
trivially for all H̄ < 0 (by choosing a sufficiently small
α). In that case, therefore, a necessary and sufficient
condition for Φ̄ ≥ 0 to hold for any η; ϵ is H̄ ≥ 0. In
summary, we obtain

H̄ ≥ ðminfF̄=2; 0gÞ2 ð81Þ

as a necessary and sufficient condition for overspinning
to be averted for all η; ϵ. In this condition, F̄ and H̄ are
both functions of the two independent parameters E∞ and
Ef. To rule out overspinning we must require that (81) is
satisfied for all E∞ > Efð> EiscoÞ.
Evaluation of the condition (81) requires knowledge of

the radiative quantities Ĕ� and W̆�
ðqcÞ (in addition to δL̆

cons
∞ ).

To conclude our discussion, we now give convenient

expressions for these two quantities in terms of a single
function of one variable, namely the ratio

RðEÞ ≔
_E−ðEÞ
_EþðEÞ ; ð82Þ

where _Eþ=−ðEÞ are the outgoing/incoming fluxes of energy
in gravitational waves sourced by a particle on a circular
geodesic, evaluated in the extremal limit at a fixed specific
energy E. [In deviation from our notation elsewhere, here
and in the next two paragraphs an overdot denotes differ-
entiation with respect to (any suitable) coordinate time.] We
note R < 0 for E < 2ffiffi

3
p , the superradiance regime in the

extremal limit.
First, we use the specific energy E as a parameter along

the global attractor, to write

Ĕþ ¼
Z

Ef

E∞

_Eþ

η _E
dE ¼ −

Z
Ef

E∞

_Eþ

_Eþ þ _E− dE; ð83Þ

where we assumed the balance relation η _E ¼ −ð _Eþ þ _E−Þ
applies during the adiabatic evolution along the attractor.
Thus,

ĔþðE∞; EfÞ ¼ −
Z

Ef

E∞

dE
1þRðEÞ ; ð84Þ

and, similarly,

Ĕ−ðE∞; EfÞ ¼ −
Z

Ef

E∞

RðEÞ
1þRðEÞ dE; ð85Þ

which should be evaluated in the extremal limit, ϵ → 0.
Note _E� → 0 in the extremal limit [13], while the ratio R
admits a finite, nonzero limit [36,37]. Thus, by writing Ĕ�

as in Eqs. (84) and (85) we have made it possible for the
limit ϵ → 0 to be taken before the integration, which is
advantageous in practice.
As for W�

ðqcÞ, we start by writing

_W�
ðqcÞ ≔ 2 _E� − _L� ¼ −ϵbðEÞ _E�; ð86Þ

where _L� are the angular-momentum fluxes corresponding
to _E�, and

bðEÞ ≔ 6Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6E2 − 2

p : ð87Þ

To derive the second equality in (86), which is valid to
leading order in ϵ, we have used the small-ϵ expansion of
the orbital angular velocity at fixed E,
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Ω ¼ 1

2
−
1

4
bðEÞϵþOðϵ2Þ; ð88Þ

together with the general relation _E� ¼ Ω _L� applicable to
the radiation from any circular orbit [38]. Thus, proceeding
as with Ĕþ, we obtain

W̆þ
ðqcÞ ¼ lim

ϵ→0

Z
Ef

E∞

_Wþ

ϵη _E
dE ¼

Z
Ef

E∞

bðEÞ
1þRðEÞ dE; ð89Þ

and, similarly,

W̆−
ðqcÞ ¼

Z
Ef

E∞

bðEÞRðEÞ
1þRðEÞ dE: ð90Þ

Equations (84), (85), (89) and (90) express Ĕ� and W̆�
ðqcÞ in

terms of the single function RðEÞ, left to be determined
numerically.
In Sec. VI we will assess the numerical task of evaluating

our censorship conditions, review the status of relevant
existing GSF codes, and comment on how they would need
to be modified in order to provide the necessary data. But
first, in the next section, we take a short detour to explore an
alternative approach to the determination of δL̆cons

∞ , which
offers a practical advantage.

V. REFORMULATION IN TERMS OF
REDSHIFT VARIABLE

Our final overspinning conditions (69) and (81) feature
the critical angular-momentum shift δLcons

∞ , whose evalu-
ation, through Eq. (70), requires an integration of the GSF
from infinity along critical geodesics. As we discuss in the
next section, this step is the main stumbling block when it
comes to evaluating the conditions using currently available
GSF codes. The integration from infinity comes about,
essentially, because of the need to relate the local properties
Ê and L̂ of the particle just before it falls into the black hole,
to ADM properties of spacetime defined at infinity. This
would have been unnecessary if we had available explicit
formulas for EADM and LADM (or for the corresponding
Bondi quantities EADM − Eþ and LADM − Lþ), correct
through Oðη2Þ, for the configuration of a particle in an
unstable circular orbit around a Kerr black hole.
Furthermore, given such formulas we would have been
able to relax the requirement that the particle is sent in from
infinity, and explore the possibility of overspinning with
“bound” orbits. (We recall our result from Sec. II that
bound geodesics cannot overspin; however, in principle,
there remains the possibility that GSF effects change this
situation.)
By good fortune, suitable formulas have been proposed

very recently, in Ref. [16]. The expressions, to be presented
below, were obtained using (and in agreement between)
two independent frameworks. One is the Hamiltonian

approach of Isoyama and collaborators [39], in which
the conservative portion of the orbital dynamics is
described (through first order in η beyond the geodesic
approximation) in terms of geodesic motion in a certain
effective smooth spacetime. The other is based on the
recently proposed “first law of binary black-hole mechan-
ics” [40,41] (itself a limiting case of the generalized law
established in [42]), which relates ADM properties of a
helically symmetric binary system of post-Newtonian (PN)
particles to the so-called “redshift” of the particles (see
below). Neither frameworks is a priori guaranteed to
correctly describe the strong-field dynamics in the black
hole–particle system relevant to us, but some evidence
suggests that they might (we return to discuss this point at
the end of the section).
The said results, as they are stated in [16], apply to a

particle in a circular equatorial orbit (stable or unstable)
around a Kerr black hole, ignoring the dissipative piece of
the gravitational interaction (or, more precisely, time-
symmetrizing the gravitational perturbation, so that space-
time admits a global helical symmetry). They express the
Bondi9 energy and angular momentum of that configura-
tion, through Oðη2Þ, in terms of Detweiler’s redshift
variable [28]

ẑ ≔ ðûtÞ−1; ð91Þ

where ut is the t component of the four-velocity on the
circular orbit, and overhats, recall, denote properties of the
GSF-corrected orbit. The usefulness of such relations is in
the fact that a computation of ẑ requires only GSF
information for circular orbits, and there is no need to
integrate from infinity. Such information is essentially
accessible to existing GSF codes.
Following [16], let us formally expand the redshift ẑ in

powers of η, in the form

ẑ ¼ z0ðΩÞ þ ηz1ðΩÞ þOðη2Þ; ð92Þ

where Ωð¼ dϕ=dtÞ is the circular orbit’s angular velocity,

z0 ¼ ð1 − aΩÞ1=2½1þ aΩ − 3Ω2=3ð1 − aΩÞ1=3�1=2 ð93Þ

is the geodesic limit of ẑ, and ηz1ðΩÞ is the OðηÞ GSF
correction, defined for a fixed value of Ω. According to
Ref. [16], the Bondi energy and angular momentum of the
circular-orbit binary are given, through Oðη2Þ, by

9First-law literature [40,41,43] usually alludes to ADM proper-
ties, which are defined even in helical symmetry within the PN
context in which these works operate. In the context of black-hole
perturbation theory, the first-law results should be interpreted as
referring to Bondi properties. See also [44], where first-law
results are formulated directly in terms of Bondi quantities for a
black hole–particle system.
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Esym
B ¼ M þ μEp

B; Lsym
B ¼ Maþ μLp

B; ð94Þ

where

Ep
B ¼ ~z − Ω

d~z
dΩ

; Lp
B ¼ −

d~z
dΩ

; ð95Þ

with

~zðΩÞ ¼ z0ðΩÞ þ
1

2
ηz1ðΩÞ þOðη2Þ: ð96Þ

The label “sym” is to remind us that these Bondi properties
are defined in a time-symmetrized (“half-retarded-plus-
half-advanced”) spacetime. The function z1ðΩÞ explicitly
determines Esym

B and Lsym
B through Oðη2Þ.

We are now reaching the crux of our discussion.
Consider a critical orbit, subject to the conservative GSF
alone (dissipation ignored), which asymptotes to a certain
unstable circular orbit at τ → ∞. Let Esym

B ðuÞ and Lsym
B ðuÞ

be the Bondi energy and angular momentum of the
corresponding time-symmetrized spacetime, with u a
suitable retarded-time coordinate. At u → ∞, these quan-
tities must approach the corresponding Bondi quantities of
the asymptotic circular-orbit configuration, as given in
Eq. (94). Furthermore,

Esym
B ðu → ∞Þ ¼ EADM; Lsym

B ðu → ∞Þ ¼ LADM;

ð97Þ
where on the right-hand side we have the ADM properties
of the physical (“retarded”) critical-orbit spacetime. [That
this must be the case follows from Esym

B ðu → ∞Þ ¼
Esym
ADM − Fþ ¼ Esym

ADM − F− ¼ EADM, where Fþ and F−

are the total energies flowing, respectively, outward at
future null infinity and inward at past null infinity, in the
time-symmetrized setup where Fþ ¼ F−. A similar argu-
ment applies to the angular momentum.] As a result, we can
write EADM ¼ M þ μEp

ADM and LADM ¼ M þ μLp
ADM [as

in Eqs. (71)], with

Ep
ADM ¼ ~z − Ω

d~z
dΩ

; Lp
ADM ¼ −

d~z
dΩ

: ð98Þ

These expressions relate the ADM properties of the
physical critical-orbit configuration to the redshift of the
asymptotic circular orbit when dissipation is ignored.
The conservative GSF shift δLp

ADMðEp
ADMÞ [recall

Eq. (72)] may now be obtained simply by considering
the OðηÞ piece of Lp

ADM in Eq. (98), for a fixed Ep
ADM.

Equations (98) with (96) immediately give us the OðηÞ
piece of Lp

ADM for a fixed angular velocity: δðΩÞLp
ADM ¼

−ðη=2Þdz1=dΩ, where we introduced the operator δðXÞ to
denote a linear variation with respect to η at fixed X. To
obtain the shift at fixed energy, δLp

ADM ≡ δðEÞLp
ADM, we

write

δLp
ADM ¼ δðΩÞLp

ADM þ dLp
ADM

dΩ
δðEÞΩ

¼ δðΩÞLp
ADM −

dLp
ADM

dEp
ADM

δðΩÞEp
ADM

¼ δðΩÞLp
ADM −Ω−1δðΩÞEp

ADM; ð99Þ

where in the second line we used δðEÞΩ ¼
−ðdΩ=dEp

ADMÞδðΩÞEp
ADM, and in the third line we

applied dLp
ADM=dE

p
ADM ¼ Ω−1, which is valid for any

circular geodesic (omitting subdominant terms in η).
From Eqs. (98) and (96) we find δðΩÞEp

ADM ¼ ðη=2Þ½z1 −
Ωðdz1=dΩÞ�, and substituting this with the above result for
δðΩÞLp

ADM, we arrive at the simple expression

δLp
ADM ¼ −

η

2Ω
z1: ð100Þ

Note that in the analysis leading to Eq. (100) we have not
assumed anything about the spin a of the central black hole,
so the result should apply in general (and suggests an
interesting new interpretation of z1 in terms of a shift in the
critical value of the angular momentum). In the extremal
case, Ω ¼ 1=2þOðϵÞ, so at leading order in ϵ we obtain

δLp
ADMðEÞ ¼ −ηZ1ðEÞ; ð101Þ

where

Z1ðEÞ ≔ lim
ϵ→0

z1ðΩðE; ϵÞ; ϵÞ; ð102Þ

with the limit taken at fixed energy E. Here, for clarity, we
have made explicit the functional dependence of z1 and Ω
on ϵ, and have parametrized the circular orbits by their
geodesic energy E, noting that the difference between E
and Ep

ADM is subdominant in Eq. (101). Indeed, in practice,
Z1ðEÞ may be evaluated by considering a sequence of
circular geodesics of diminishing ϵ (and a fixed E).
Equation (101) may now be used with Eq. (72) to obtain

the sought-for relation

δL̆cons
∞ ðEÞ ¼ E2 þ 1 − Z1ðEÞ; ð103Þ

which may then be used in place of (70) in both conditions
(69) and (81). The relation (103) relieves us from the need
to restrict attention to particles coming from infinity, which
is why we have used in it the argument E in place of E∞.
The energy may now take any value E > Eiscoð¼ 1=

ffiffiffi
3

p Þ,
and the conditions (69) and (81) may be evaluated for all
corresponding orbits.
We may also use Eq. (101) directly in conjunction with

Eq. (73), to write the censorship condition (in the generic
case) in the remarkably simple form
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Z1ðEÞ ≥
1

2
ðE2 − 1Þ: ð104Þ

Overspinning is averted if and only if this inequality holds
for all E > Eisco. The evaluation of the condition (104)
requires only redshift information on unstable circular
orbits, evaluated at the extremal limit ϵ → 0 with E
held fixed.
It should be emphasized that the applicability of the

theoretical framework underpinning Eq. (95) is yet to be
rigorously established within our black hole–perturbative
context. There is, however, accumulating evidence to
suggest it. The first-law framework has been tested
exhaustively against results from PN theory in both the
Schwarzschild [43] and Kerr [16] cases, and, more impor-
tantly for us, it has been shown to precisely reproduce
certain rigorous GSF results in the strong-field regime, at
least in the Schwarzschild case [43]. Further reassurance is
provided, in the Kerr case, by the agreement between the
first-law framework and the perturbative Hamiltonian one
[16]. Ideally, δL̆cons

∞ should be evaluated via both Eq. (103)
and the more rigorous GSF formula (70). Indeed, if nothing
else, a demonstrated agreement between these two expres-
sions would lend a strong support to the validity of both
first-law and Hamiltonian frameworks in the strong-field
regime.

VI. ASSESSMENT OF NUMERICAL TASK

A direct evaluation of the censorship condition (69)
requires the function δLcons

∞ ðE∞Þ, which involves the
conservative piece of the GSF along critical equatorial
geodesics on a Kerr background, in the extremal limit. To
explore the case of fine-tuned orbits, via the condition (81),
would require, in addition, a calculation of the radiative
fluxes (either at infinity or down the event horizon) for
unstable circular equatorial geodesics, again in the extremal
limit. Finally, to evaluate the overspinning condition in its
alternative form (104) demands redshift data for these same
unstable circular geodesics. To the best of our knowledge,
these numerical tasks are beyond the capability of existing
GSF codes—though, perhaps, not by much. We think that
custom-built codes to produce the necessary data could be
developed through relatively mild adaptations of existing
codes. In this section we review relevant numerical meth-
ods that are currently available, and discuss how they
should be customized.
There now exist two computational frameworks for

strong-field GSF calculations in Kerr geometry. One, by
Dolan and collaborators [45], tackles the metric perturba-
tion equations in the time-domain (TD), via a direct
numerical evolution of the hyperbolic set of linearized
Einstein’s equations in the Lorenz gauge. A judiciously
designed “puncture” scheme is applied to extract the
correct regular piece of the metric perturbation, from which
the local GSF is calculated along the orbit. The second

framework, due to Shah and collaborators [46,47], is based
on Teukolsky’s perturbation formalism: The relevant per-
turbation equations are decomposed into Fourier-harmonic
modes and tackled numerically mode by mode, in the
frequency domain (FD). The GSF is then reconstructed
using a recently formulated mode-sum regularization pro-
cedure [48]. Both methods are underpinned by (the same)
rigorous theory, and have been tested against each other and
against results from PN theory. All applications so far
considered the GSF on fixed geodesic orbits, neglecting
backreaction on the orbit.
The above two methods are somewhat complementary

with respect to the range of problems they can tackle. The
FD method does best with bound-orbit configurations,
where the perturbation field admits a discrete spectrum.
It is not immediately clear how to apply the method to
orbits that come from infinity. The TD method, on the other
hand, can handle all types of orbits equally well. The
special case of circular orbits can be tackled by both
methods, but much more efficiently in the FD, thanks to the
simple spectrum of radiation from such orbits.
Let us consider first the more straightforward of the

aforementioned numerical tasks: calculation of energy and
angular-momentum fluxes from circular orbits (for the fine-
tuning case). This is a standard calculation, most efficiently
performed by solving Teukolsky’s equation in the FD,
either numerically [49] or via the semianalytical method of
Mano, Suzuki and Takasugi [50]. Usually calculations
focus on stable circular orbits as the source of radiation,
but exactly the same techniques should be applicable
without change to unstable orbits below the ISCO; the
stability properties of the orbit are immaterial here. The
only potential complication comes from the need to
evaluate the fluxes in the extremal limit. Care would need
to be taken in correctly identifying an inner “wave zone” in
which to impose the boundary conditions, for each finite
value ϵ ≪ 1. It may prove convenient to work with a
rescaled radial coordinate [such as r̄ ≔ ðr − RehÞ=ϵ] in
order to better resolve the near-horizon wave dynamics.
However, we do not see any issues of principle to hinder
such a calculation, and it could be based on any of the
existing platforms, such as the one by Shah et al. [47].
We next turn to the calculation of δLcons

∞ ðEÞ using the
form (103). This requires an evaluation of the redshift
function z1ðΩ; ϵÞ [recall Eq. (102)] on unstable circular
orbits, at the limit ϵ → 0. Calculations of z1 for stable (or
otherwise near-ISCO) geodesic orbits have been performed
using both FD [16,47] and TD [16] methods, in a non-
extremal Kerr geometry. In the Schwarzschild case, such a
calculation was performed (in the FD) even for unstable
orbits, reaching very near the light ring [51]. The challenge
is to extend these calculations to the near-extremal Kerr
case in order to take the extremal limit. The issues here are
similar to the ones affecting fluxes. In the FD, one would
need to carefully set inner boundary conditions, and also
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carefully monitor the convergence of the multipole mode
sum, particularly at large energy (lessons can be learned
from the Schwarzschild analysis of [51]). Some develop-
ment, tests, and a careful error analysis would be required,
but the problem seems to us perfectly tractable.
If one is satisfied with the level of rigor provided by the

first-law and Hamiltonian formulations, then no further
calculations would be needed: The question of overspin-
ning, for both generic and fine-tuned orbits, can be
answered based on numerical data pertaining to circular
orbits only. However, to establish a full confidence in the
results, a direct evaluation of δLcons

∞ ðEÞ via Eq. (70) would
be required. Since this involves GSF data on unbound
orbits, a TD treatment is preferable. So far, TD calculations
of the GSF in Kerr have been limited to circular (and
equatorial) orbits in a nonextremal geometry [52].
However, it should not be hard to implement orbits that
arrive from infinity, including critical orbits in the extremal
case, at least in principle. To achieve this, certain technical
details would need to be addressed. In the rest of this
section we give an assessment of the challenges involved.
First, to probe the extremal limit, we would need GSF

data for a sequence of spacetimes approaching extremality.
In the current code [52], accuracy has been observed to
degrade with increasing a. In the circular-orbit case the
code can handle spins up to a ¼ 0.7–0.8M, beyond which
the loss of accuracy is rapid. The cause of the accuracy
degradation is not quite clear yet, but work towards a full
diagnosis of the problem, and towards its resolution, is now
in progress. It appears likely that the code could be pushed
to very high spins with only moderate effort.
Second, one would need to implement plunging (geo-

desic, critical) orbits. In a TD framework this would entail
only a minor coding effort; the basic code architecture
should remain intact. Two of the technical details that
would need addressing are (1) the handling of the auxiliary
world tube (see [45] for details), which would now be
moving to track the radial motion of the particle; and (2) the
treatment of “junk radiation” (again, see [45] for details),
whose problematic effect is expected to be more pro-
nounced than for circular orbits. A method for tackling the
latter problem has been developed and successfully imple-
mented in the electromagnetic case, by Zimmerman et al.
[9]. It remains to test its performance in the gravita-
tional case.
Perhaps the most significant remaining problem is that

of the m ¼ 1 mode instability—an issue identified and
thoroughly analyzed in [45]. In numerical experiments,
this particular azimuthal mode of the Lorenz-gauge
metric perturbation appeared to develop a linear insta-
bility at late time, which so far could not be cured. The
seed of the instability appears to be a certain non-
radiative, Lorenz-gauge mode, which is perfectly regular
on each time slice. Various methods have been tried in
attempt to filter that mode out of the numerical solutions,

so far without much success. A simple filter can be
applied in the circular-orbit case [45], giving a satisfac-
tory ad hoc solution, but the method would not work for
noncircular orbits. We are aware of at least two parallel
efforts, by two groups, to obtain a more fundamental
solution to the problem, and we remain optimistic that
the issue will be resolved soon.
The problem of m ¼ 1 mode instability is entirely

avoided within a third computational framework, now
being developed by a collaboration involving one of the
authors (L. B.). The new method combines the simplicity of
the Teukolsky formulation with the utility and flexibility of
the TD approach. It essentially involves a TD implemen-
tation of the Teukolsky equation, together with a scheme
for constructing the GSF in a certain (non-Lorenz) gauge.
When completed, the code will offer a most natural tool for
performing the calculation required here.

VII. SUMMARY AND CONCLUDING REMARKS

We studied the scenario in which a massive (spinless)
particle is dropped into a nearly extremal Kerr black hole
on an equatorial-plane trajectory. For this scenario, we
presented a systematic analysis of the censorship condition
at first order in the self-force approximation. One of our
main goals was to determine what GSF information,
precisely, would be needed in order to provide a definitive
answer to the question of whether an over-extremal black
hole was a possible outcome (within the classical theory).
We achieved this by formulating concrete, necessary and
sufficient conditions for overspinning to be averted; these
are given explicitly in terms of GSF quantities, ready for
numerical evaluation.
Along the way, we have established several interesting

results:
(i) When the GSF is ignored, overspinning can be

achieved in a certain open domain of the parameter
space, mapped here precisely for the first time.

(ii) Overspinning is possible (when the GSF is ignored)
only with particles thrown in from infinity. For any
value of the initial energy at infinity, overspinning
can be achieved by choosing the particle’s rest mass
and angular momentum from within certain open
intervals, as prescribed in the last sentence of Sec. II,
below Eq. (30).

(iii) In the full-GSF case, a sufficient and necessary
censorship condition for generic orbits may be
formulated on the one-parameter family of critical
geodesics. That condition is sensitive only to the
conservative piece of the GSF.

(iv) A more general condition may be formulated to
encompass also fine-tuned orbits (ones whose
parameters are exponentially fine-tuned to produce
an adiabatic evolution along the global attractor).
That condition involves also the radiative fluxes
from unstable circular geodesics.
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(v) The conservative GSF effect may be reformulated in
terms of the “redshift” variable. This results in an
alternative form of the censorship conditions, which
involves only perturbative quantities (redshift and
radiative fluxes) calculated on unstable circular
geodesics.

Our main results are expressed in Eqs. (69), (81) and
(104). Equation (69) [with (70)] is the censorship condition
for generic orbits. It required as input δL̆cons

∞ ðE∞Þ, the
conservative GSF correction to the critical value of the
angular momentum at a fixed E∞. The condition is a
sufficient one in the sense that its validity for all E∞ ≥ 1
would imply that censorship is protected in our scenario, at
least for sufficiently small values of the particle’s rest mass
(this last caveat is to remind us that our analysis and
conditions are formulated within the first-order self-force
approximation). Equation (69) is also a necessary con-
dition, in the sense that its violation for any value E∞ ≥ 1
would mean a direct infringement of cosmic censorship.
Equation (81) [with (74) or (79)] is the more general

censorship condition that covers also fine-tuned orbits. Its
evaluation requires, in addition to δL̆cons

∞ , also the radiative
quantities Ĕþ and W̆þ

ðqcÞ [or Ĕ
− and W̆−

ðqcÞ] associated with
the adiabatic evolution along the global attractor. Without
fine-tuning, Ĕ� and W̆�

ðqcÞ vanish at relevant order, and (81)
reduces to the generic condition (69). With fine-tuning, the
condition (81) should be evaluated on the two-parameter
space of initial and final energies, fE∞; Efg. It is both
sufficient and necessary, in the same sense as (69).
Finally, Eq. (104) is a reformulation of (69) in terms of

the redshift variable Z1ðEÞ, calculated on unstable circular
geodesics in the extremal limit (taken with fixed E). The
more general condition (81) may also be formulated in
terms of the redshift, by substituting for δL̆cons

∞ using
Eq. (103). This alternative form is more readily amenable
to numerical evaluation, because it requires only circular-
orbit information. An additional advantage is that (104) is
applicable to any value E∞ > Eisco of the initial energy,
without the restriction that particles have to be sent from
infinity. However, the redshift formulation relies on some
layers of nonrigorous theory, so a direct evaluation of the
conservative GSF effect, via Eq. (70), would be desirable as
a check.
We are unable to predict, in advance of a numerical

calculation, whether our censorship conditions (69) or
(104) hold. We are not familiar with an argument to suggest
even the signs of the terms δL̆cons

∞ and Z1 appearing in these
conditions. However, if we assume that the generic-orbit
conditions (69) [or (104)] are satisfied, then it is possible to
conclude that censorship is protected also for fine-tuned
orbits [i.e., the inequality (81) holds], assuming only a
certain plausible lower bound on the flux ratio RðEÞ.
Specifically, one can show, with the help of Eqs. (84) and
(89), that (81) is satisfied for all E∞ > Ef ≥ Eisco if

RðEÞ ≥ − 1
3
. This lower bound lies comfortably below

the ISCO value RðEiscoÞ ∼ −0.1 estimated in Ref. [53],
and we expect unstable circular orbits to be less super-
radiant than the ISCO [i.e, have RðEÞ > RðEiscoÞ] on
account of their frequency being larger than the ISCO
frequency (recall also R > 0 for E > 2ffiffi

3
p ). If a numerical

calculation of RðEÞ confirms this expectation, it would
mean that fine-tuning disfavors overspinning. In that case,
establishing the simple inequality (69) [or (104)] would
suffice for ruling out the overspinning scenario.
We remind, finally, that our analysis concentrates on

capture orbits that are equatorial and prograde (“corotat-
ing”). Ruling out overspinning in this scenario would not
automatically preclude overspinning by nonequatorial pro-
grade orbits [retrograde (“counterrotating”) orbits cannot
overspin, with or without the self-force]. Such nonequa-
torial orbits require a separate analysis.
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APPENDIX A: ADM ENERGY AND
ANGULAR MOMENTUM

This appendix gives a detailed derivation of Eqs. (44)
and (45). We consider two relativistic point particles in flat
space, representing the black hole–particle system at an
infinite separation. We are given the two rest masses,M and
μ, and the particle’s energy μE∞ð> μÞ and angular momen-
tum μL∞ in a reference frame attached to the mass M. The
mass M has an intrinsic spin Ma perpendicular to the
orbital plane, and the mass μ is spinless. Our goal is to
obtain the system’s total energy and angular momentum in
the CoM frame.
First, we note that, in the limit of infinite separation, both

black-hole frame and CoM frame are inertial, and they are
related via a simple Lorentz boost. Let xα ¼ ðt; x; y; zÞ be a
Cartesian frame centered at M, so that the spin of M is
aligned with the z direction, and the particle’s orbit lies in
the x-y plane. Denote the four-momenta of μ and M in the
black-hole frame by
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pα
ðμÞ ¼ ðμE∞; px

ðμÞ; p
y
ðμÞ; 0Þ;

pα
ðMÞ ¼ ðM; 0; 0; 0Þ: ðA1Þ

The magnitude of particle’s three-momentum satisfies

jpðμÞj2 ¼ ðpx
ðμÞÞ2 þ ðpy

ðμÞÞ2 ¼ μ2ðE2
∞ − 1Þ: ðA2Þ

The CoM system ~xα is related to xα via a Lorentz boost Λα
β

in the x–y plane. Let ~pα
ðμÞ ¼ Λα

βp
β
ðμÞ and ~pα

ðMÞ ¼ Λα
βp

β
ðMÞ

denote the 4-momenta of μ and M in ~xα. The CoM
condition,

~pðMÞ þ ~pðμÞ ¼ 0; ðA3Þ

yields two nontrivial equations for the two boost param-
eters βx ¼ vx=c and βy ¼ vy=c (where vx and vy are
components of the boost velocity). One finds βi ¼
pi
ðμÞðM þ μE∞Þ−1 for i ¼ x; y. Thus, using (A2),

β ¼ ½ðβxÞ2 þ ðβyÞ2�1=2 ¼ ηðE2
∞ − 1Þ1=2

1þ ηE∞
; ðA4Þ

where η ¼ μ=M.
Now that we have at hand the boost Λα

βðβÞ, the
relativistic energies of μ and M in the CoM system are
obtained as ~p0

ðμÞ ¼ Λ0
βp

β
ðμÞ and ~p0

ðMÞ ¼ Λ0
βp

β
ðMÞ. The sum

of these two energies is the total, ADM energy of the
system. A short calculation gives

EADM ¼ ~p0
ðμÞ þ ~p0

ðMÞ ¼ Mð1þ 2ηE∞ þ η2Þ1=2: ðA5Þ

This result is valid for any mass ratio η. For η ≪ 1, an
expansion in η through OðηÞ gives Eq. (44).
To obtain the total angular momentum in the CoM

system, we need first to relate the particle’s CoM position
~xðμÞ and black hole’s CoM position ~xðMÞ to their separation
x in the black-hole frame. This is achieved by solving the
CoM condition

~xðμÞ ~p0
ðμÞ þ ~xðMÞ ~p0

ðMÞ ¼ 0; ðA6Þ

simultaneously with j ~xðμÞj þ j ~xðMÞj ¼ j ~xj, where ~xi ¼
Λi

βxβ (i ¼ x; y) is the separation in the CoM frame. The
particle’s CoM orbital angular momentum is then given by
~LðμÞ ¼ ~xðμÞ ~p

y
ðμÞ − ~yðμÞ ~px

ðμÞ, and similarly for the mass M.

The total, ADM angular momentum of the system (with
respect to the CoM) is the sum of ~LðμÞ, ~LðMÞ and the spin
angular momentum. A short calculation, using Eqs. (A2)
and (A4) and the relation μL∞ ¼ xpy

ðμÞ − ypx
ðμÞ, gives

LADM ¼ Mðaþ μL∞=EADMÞ: ðA7Þ

This is valid for any η. Substituting for EADM and
expanding through Oðη2Þ produces Eq. (45).

APPENDIX B: SHIFT IN THE CRITICAL VALUE
OF THE ANGULAR MOMENTUM DUE TO THE

FULL SELF-FORCE

In this appendix we derive Eq. (51), which describes the
GSF-induced shift δL∞ in the critical value of the angular
momentum at infinity for a given energy at infinity, at
leading order in η and in ϵ. In Sec. III D 1 we obtained an
expression for δL∞ [Eq. (49)] under the (nonphysical)
simplifying assumption that the GSF has no dissipative
piece. Here we restore dissipation and calculate the shift
δL∞ caused by the full GSF.
In our analysis we only require the leading order [OðηÞ]

of δL∞. As explained in the text, for that purpose it is
sufficient to ignore fine-tuning and assume the changes in
(specific) energy and angular momentum along the critical
orbit are Oðη ln ηÞ at most.
Consider, then, a critical orbit parametrized by E∞ð≥ 1Þ,

and an arbitrary moment τ ¼ τ0 after the orbit had settled
into quasicircular motion, but before ΔEðτ0Þ and ΔLðτ0Þ
have accumulated Oð1Þ changes [specifically, assume
ΔEðτ0Þ;ΔLðτ0Þ ¼ Oðη ln ηÞ at most]. Evaluate the full-
GSF radial equation of motion (35) at time τ0, subject to the
near-circularity condition dr=dτ ¼ OðηÞ, substituting for
Êðτ0Þ and L̂ðτ0Þ from Eq. (37), and replacing L∞ with
LcðE∞Þ þ δL∞ðE∞Þ. At leading order in η and in ϵ one
obtains the solution

δL∞ðE∞Þ ¼ ΔWðτ0Þ; ðB1Þ
where ΔW is the GSF integral defined in Eq. (50). This
result can only make sense if (i) the expression on the right-
hand side is in fact independent of τ0 at leading order, and
(ii) the quantity ΔWðτ0Þ ¼ 2ΔEðτ0Þ − ΔLðτ0Þ remains of
OðηÞ even for τ0 large enough that the individual terms
ΔEðτ0Þ and ΔLðτ0Þ are already ofOðη ln ηÞ. We now argue
that both conditions are satisfied.
To make the argument, let us split ΔWðτ0Þ into an

“approach” piece ΔWðτcÞ, and a “quasicircular” piece

ΔWðτc; τ0Þ ≔ ΔWðτ0Þ − ΔWðτcÞ

¼ −η−1
Z

τ0

τc

ð2Ft þ FϕÞdτ: ðB2Þ

Here the end-of-approach time τc can be taken to be any
moment τc < τ0 after the orbit had settled into quasicircular
motion, in the sense that _rðτcÞ ¼ OðηÞ at most. We will
now show that

ΔWðτc; τ0Þ ¼ OðϵÞOðη ln ηÞ ðB3Þ
at most, for any choice of τ0 and of τc. Assuming
ϵj ln ηj ≪ 1, this would mean that ΔWðτ0Þ is dominated
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by its approach piece ΔWðτcÞ, so that (i) ΔWðτ0Þ does
not depend on τ0 at leading order, and (ii) ΔWðτ0Þ≃
ΔWðτcÞ ¼ OðηÞ as argued above.
To establish the scaling in (B3), use the orthogonality

relation ûαFα ¼ 0 to write Ft þ ΩFϕ ¼ −ður=utÞFr,
where Ω ¼ uϕ=ut, and the replacement ûα → uα does
not affect the expression at leading order in η. We wish
to evaluate this relation for τc ≤ τ ≤ τ0, when the orbit is
quasicircular. At leading order in η, Ω ¼ ΩðE; ϵÞ is then
equal to the angular velocity of an unstable circular
geodesic of specific energy E ¼ ÊðτÞ. At fixed energy,
the angular velocity admits the small-ϵ expansion Ω¼
1
2
− 1

4
bðEÞϵþOðϵ2Þ with b¼6Eð6E2−2Þ−1=2 [see Eqs. (87)

and (88)]. Thus, omitting terms that are subdominant in ϵ,
the integrand in Eq. (B2) is 2Ft þ Fϕ ¼ −2ður=utÞFrþ
1
2
bϵFϕ, or, equivalently,

2Ft þ Fϕ ¼ −2ður=utÞFr − bϵFt: ðB4Þ

Let us denote the contributions to ΔWðτ0; τcÞ from the first
and second terms on the right-hand side of (B4) by ΔWðrÞ
and ΔWðtÞ, respectively. In what follows we consider each
of the two contributions in turn.
Start with ΔWðrÞ, given by

ΔWðrÞ ¼ ð2=ηÞ
Z

rðτ0Þ

rðτcÞ
ðFr=utÞdr: ðB5Þ

Note rðτ0Þ − rðτcÞ ¼ OðϵÞ, since both radii belong to
unstable circular geodesics. From Eq. (43) we recall that
for j_rj ≪ 1 the radial component Fr is dominated by its
conservative piece, Fcons

r ≃ F0rðrÞ, which is approxi-
mately constant within the integration domain and may
therefore (as we only keep track of the leading term in ϵ)
be pulled out of the integral. A simple calculation gives
1=ut ∝ ϵ (at fixed E), and this factor can likewise be
taken out of the integral. We thus obtain the scaling
ΔWðrÞ ∼ ϵ2F0r=η, where F0r is evaluated, e.g., at
r ¼ rðτcÞ, the end of approach. It remains to determine
the ϵ-scaling of F0r. Numerical evidence, to be presented
elsewhere [36], suggests the scaling F0r ∼ ϵ−1. This is
consistent with what one would obtain by assuming that
the GSF components in a normalized coordinate basis are
finite: F0r ¼ F0r̂ðgrrÞ−1=2 ∼ ϵ−1 (or smaller), assuming
the normalized component F0r̂ is finite and noting
grr ∼ ϵ2. Assuming, therefore, that F0r does not diverge
faster than ∼ϵ−1, and recalling F0r ∝ η2 as usual, we
arrive at

ΔWðrÞ ¼ OðϵÞOðηÞ ðB6Þ

(or smaller).

Next, consider the contribution ΔWðtÞ:

ΔWðtÞ ¼ ðϵ=ηÞ
Z

τc

τ0

bðEÞFtdτ ¼ −ϵ
Z

Eðτ0Þ

EðτcÞ
bðEÞdE

¼ −ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6E2 − 2

p
jEðτ0ÞEðτcÞ: ðB7Þ

In the second equality we have used Ft ¼ −μdE=dτ, and in
the third we have substituted for bðEÞ and integrated
explicitly. Since the energy difference Eðτ0Þ − EðτcÞ is
at most of Oðη ln ηÞ, we conclude that

ΔWðtÞ ¼ OðϵÞOðη ln ηÞ ðB8Þ

(or smaller).
The combination of Eqs. (B6) and (B8) leads to the

scaling stated in Eq. (B3). The upshot is that the con-
tribution to ΔWðτ0Þ from the quasicircular part,
ΔWðτc; τ0Þ, is negligible compared to the contribution
from the approach part, ΔWðτcÞ ¼ Oðϵ0ÞOðηÞ (assuming
ϵj ln ηj ≪ 1). In other words, the GSF integral ΔWðτ0Þ in
Eq. (B1) may be truncated at the end-of-approach time τc,
with the latter taken to be any instance after the orbit had
settled into quasicircular motion [but before the specific
energy has accumulated Oð1Þ changes]. This establishes
Eq. (51) in the main text.

APPENDIX C: RADIATION FROM TRANSITION
TO PLUNGE AND FINAL PLUNGE

In this appendix we argue that the termWþ
ðendÞ in Eq. (64)

is subdominant for η; ϵ ≪ 1 and may therefore be dropped
within our leading-order analysis. RecallWþ

ðendÞ ¼2Eþ
ðendÞ−

Lþ
ðendÞ, where Eþ

ðendÞ and Lþ
ðendÞ are the energy and angular

momentum radiated out to infinity during the transition
from adiabatic inspiral along the attractor to a final plunge
into the black hole, and during the plunge itself.
Critical orbits may transit into plunge in one of two

ways: If the orbit is perfectly fine-tuned, the transition will
occur around the location of the ISCO, and will then be
similar to the transition at the end of a physical adiabatic
inspiral (on a stable orbit) that has already been studied in
detail [32,33,35,54]. With any less than perfect fine-tuning,
the particle will slide off the peak of the effective potential
and into the black hole before the ISCO is reached (cf.
Fig. 4). It is reasonable to expect the former scenario
(transition through the ISCO) to yield the maximal radi-
ation output, because (i) orbits linger much longer around
the ISCO location, where the potential is very flat, than they
do around the peak of the potential, and (ii) the remaining
distance to the horizon is maximal when the transition is at
the ISCO. Below we start by looking at the “worse case”
scenario of transition through the ISCO, and argue that,
even in that case, Wþ

ðendÞ is negligible in Eq. (64). We then

also examine the more generic scenario of a transition from
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an unstable orbit, and, as expected, arrive at a similar
conclusion.

1. Plunge from the ISCO

For a transition through the ISCO, we use results by Ori
and Thorne [32], who studied radiation from the transition
regime at the end of a quasicircular inspiral. An inspection
of their analysis reveals that the main results are insensitive
to whether the particle arrives at the transition regime along
stable or unstable orbits. In particular, their Eq. (3.26) for
the deficits in (specific) energy and angular moment over
the entire transition should hold in either case. We write it
here in the form

ðΔLÞtrans ¼ −AðaÞη4=5;
ðΔEÞtrans ¼ −ΩiscoAðaÞη4=5; ðC1Þ

where AðaÞ is a certain (positive) function of the spin a
only, given explicitly in [32]. These expressions hold for
any a, at leading order in η ≪ 1. The factor η4=5 arises,
essentially, from the fact that the transiting orbit spends an
amount of proper time ∝ η−1=5 whirling around the ISCO
location on a nearly circular orbit [cf. Eq. (3.20) of [32]].
The function AðaÞ involves a certain a-dependent

dimensionless factor, denoted _E in [32] (not to be confused
with our E�), which describes corrections to the leading-
order quadrupole emission formula for circular orbits, and
is to be determined numerically. Kesden [33] used numeri-
cal data by Hughes (from a code presented in [55]) to
estimate, in the near-extremal case, _E ∝ ϵ2=3, a scaling
previously suggested by Chrzanowski [56]. We have
confirmed this scaling using much more accurate numerical
results by M. van de Meent [37], to be presented elsewhere
[36]. We also note that the scaling _E ∝ ϵ2=3 follows simply
from a regularity assumption, namely that dE=dτ must
remain bounded (and nonzero) even in the limit ϵ → 0:
Noting that the Ori-Thorne function _E is defined with
respect to coordinate time t (not proper time τ), and that
ðdτ=dtÞisco ∝ ϵ2=3, we obtain _E∝ðdE=dτÞðdτ=dtÞisco∝ϵ2=3.
Assuming this scaling, and expanding the remaining a
dependence of AðaÞ in ϵ, we obtain, at leading order in ϵ,

ðΔLÞtrans ¼ −a0ϵ−2=15η4=5;

ðΔEÞtrans ¼ −a0Ωiscoϵ
−2=15η4=5; ðC2Þ

with some (positive) numerical coefficient a0 whose
explicit value will not be needed here.
References [33,35] discuss the reason for the non-

physical divergence of ðΔEÞtrans and ðΔLÞtrans when
ϵ → 0 is taken with a fixed η, but this will not concern
us here. We are instead interested in the combination
ðΔWÞtrans ≔ 2ðΔEÞtrans − ðΔLÞtrans, which, noting Ωisco ¼
1
2
þOðϵ2=3Þ and keeping only the leading term, reads

ðΔWÞtrans ¼ b0ϵ8=15η4=5; ðC3Þ

with some (positive) numerical coefficient b0. Assuming
the usual balance between the local dissipative GSF and the
flux of energy and angular momentum in gravitational
waves emitted during the transition, we have Wþ

trans ¼
−ηðΔWÞtrans and thus

Wþ
trans ¼ −b0ϵ8=15η9=5: ðC4Þ

Now examine the magnitude of Wþ
trans compared to that

of other terms in the censorship condition (64). If ϵ > η, we
have ϵ8=15η9=5 < ϵ7=3, which, for ϵ ≪ 1, is much smaller
than the ϵ2 term in Eq. (64). If instead we have ϵ ≤ η, then
ϵ8=15η9=5 ≤ η7=3, which, for η ≪ 1, is much smaller than the
Oðη2Þ terms in that equation. The conclusion is that the
contribution toWþ

ðendÞ from the transition regime,Wþ
trans, is

always subdominant in Eq. (64) for η; ϵ ≪ 1.
It remains to assess the contribution to Wþ

plng from the
final plunge into the hole. In general (when the black hole is
not near extremal) one identifies a final stage, extending
smoothly from the transition regime, where radiation
reaction is negligible and the orbit plunges into the black
hole on a nearly geodesic trajectory [32,34]. The picture
may change a little in the near-extremal case, because the
radial velocity remains small, j_rj ∝ ϵ ≪ 1, all the way to
the horizon. This can mean that the conditions that define
the transition regime never quite break down before the
horizon is reached. In other words, there is a possibility that
the particle crosses the horizon while still in the transition
regime.10

That possibility can be assessed using Eq. (3.20) of [32],
according to which the radial extent ðΔrÞtrans of the
transition regime, in the near-extremal case, is
∝ ϵ4=15η2=5, with a coefficient of order unity. This should
be compared with the radial distance from the ISCO to the
horizon,Δr≃ ð2ϵÞ2=3 [recall Eqs. (10) and (13)]. It follows
that for ϵ=η smaller than a number of order unity, the
transition regime extends to the horizon. In such cases, the
amplitude of Wþ

trans in Eq. (C4) serves as an upper bound
for the amplitude ofWþ

ðendÞ, and it follows immediately that

the entire term Wþ
ðendÞ is negligible in Eq. (64).

Let us then consider the case where the transition ends
before the horizon is reached, so that a plunge regime is
identifiable. In the plunge regime, by definition, the motion
is very nearly geodesic, and the near-horizon analysis of
Mino and Brink [34] should be applicable. Reference [34]
obtained (among other things) an analytic expression for
the energy output from the final plunge, by analyzing
solutions to Teukolsky’s equation in the near-horizon,

10This possibility was studied in some detail in Ref. [33]; see,
in particular, Fig. 5 therein, in which “δ” is equivalent to our ϵ2.
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low-frequency, quadrupole approximations. They find (in
our notation),11,12

Eþ
plung ∝ η2ϵ5ðrinit − rehÞðE − ΩHLÞ−2 ðC5Þ

at leading order in ϵ, where rinit is the radius at the start of
the plunge, and reh is the horizon’s radius (denoted Reh in
the main text). For a plunge following a transition at the
ISCO, rinit − reh ¼ Oðϵ2=3Þ and E − ΩHL ¼ OðϵÞ, giving
Eþ
plung ¼ Oðη2ϵ11=3Þ. Thus Eþ

plung is strongly suppressed at
small ϵ. Since the motion is nearly circular even during the
plunge, we have Lþ

plung ≃Ω−1Eþ
plung ≃ 2Eþ

plung and the
radiated angular momentum is similarly suppressed. The
combination Wþ

plung ≔ 2Eþ
plung − Lþ

plung is even more
strongly suppressed at small ϵ, and clearly contributes
negligibly to Wþ

ðendÞ.
In conclusion, we have found that, for a transition

through the ISCO, Wþ
ðendÞ ¼ Wþ

trans þWþ
plunge ≃Wþ

trans is

always negligible in Eq. (64) for η; ϵ ≪ 1. That radiation
from the transition to plunge should have a negligible effect
on the conditions for overspinning was previously sug-
gested by Kesden [33] and Harada and Kimura [35].

2. Plunge from an unstable circular orbit

This scenario is rather different from—and much simpler
than—a transition through the ISCO. As the orbit is
perturbed away from unstable equilibrium, its subsequent
evolution is almost immediately controlled by the “geo-
sedic” radial force (proportional to the derivative of the
effective potential), and backreaction corrections become
negligible. Let us state this point more precisely. Suppose
r ¼ rend is the radius at which the particle leaves the
attractor (for concreteness, this may be chosen as the radius
of the last turning point along the attractor). Note that the
radial acceleration due to the geodesic potential is
∝ ðr − rendÞ, with a coefficient of order unity [since the

second derivative of the effective potential at rend is of
Oðϵ0Þ]. Since rend − reh ¼ OðϵÞ, the magnitude of the
geodesic radial acceleration is of OðϵÞ throughout much
of the plunge. This should be compared with the magnitude
of the radial self-acceleration, which is ofOðηϵÞ.13 We may
define the onset of plunge as the point where the geodesic
acceleration takes over from the GSF in controlling the
motion; this happens near a radius r ¼ rplng satisfying
rplng − rend ¼ OðηϵÞ. For r≲ rplng, the motion is governed
by the geodesic equation of motion (3) to a good
approximation.
We wish to bound the magnitude of Wþ

ðendÞ sufficiently
well to show that it contributes negligibly in Eq. (64). Let
us first consider the contribution to Wþ

ðendÞ from the
preplunge orbital segment rplng ≤ r ≤ rend. The proper-
time interval along this segment is Δτ ∼ ðrend − rplngÞ=_r ¼
Oðη0ϵ0Þ (at most), since _r ¼ OðηϵÞ along the attractor,
where the evolution is driven by radiation reaction. Hence,
the change experienced by the specific energy and angular
momentum along this segment is ΔE≃ΩΔL ¼ OðηÞ.
Recalling Ω ¼ 1=2þOðϵÞ, this gives ΔW ¼ OðϵηÞ and
thus a contribution of Oðϵη2Þ to Wþ

ðendÞ, negligible com-

pared to the Oðη2Þ terms in Eq. (64).
Next consider the contribution toWþ

ðendÞ from the plunge

segment reh ≤ r < rplng. Using the geodesic equation of
motion (3), one finds that the proper-time interval along
that segment is ∝ ln½ðrend − rehÞ=ðrend − rplngÞ� ∼ ln η. The
corresponding change in specific energy is
ΔE ¼ Oðη ln ηÞ. Since the radial velocity remains small,
_r ¼ OðϵÞ, throughout the entire plunge, we have
ΔL≃Ω−1ΔE, giving ΔW ¼ Oðϵη log ηÞ and a contribu-
tion ofOðϵη2 log ηÞ toWþ

ðendÞ. Once again, this is negligible
compared to the Oðη2Þ terms in Eq. (64), assuming
only ϵ ≪ 1=j ln ηj.
We conclude that, whether the plunge from the attractor

occurs at the ISCO or earlier, the term Wþ
ðendÞ in Eq. (64) is

always subdominant and negligible for ϵ; η ≪ 1. Within
our approximation, the energy the particle carries with it as
it crosses the horizon is the energy with which it has left the
attractor.

12It is not clear to us whether the low-frequency and quadru-
pole approximations, introduced in [34] to enable analytic
calculation, are justifiable for near-horizon orbits in the near-
extremal case (where the dimensionless angular velocity is
∼1=2). We prefer to regard the form of Eq. (C5) as indicative
only, but this should suffice for our purpose.

11See Eq. (4.3) of [34], noting their κ is
ffiffiffi
2

p
ϵ in our notation.

The discussion following that equation seems to ignore the ϵ
dependence implicit in the factors exp½−κðT − t0Þ=rþ� ∼ ðrinit −
rþÞ=rþ and ðE −ΩHLÞ.

13This can be seen in one of two ways. First, by noting that the
shift in the radial location of the unstable equilibrium due to the
GSF is ofOðϵηÞ [see the discussion below Eq. (48)], and, second,
by using the regularity argument presented below Eq. (B5) to
show that Fr must be ∝ ϵ (in addition to being ∝ η2).
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