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We study the role of the Barbero-Immirzi parameter γ and the choice of connection in the construction of
(a symmetry-reduced version of) loop quantum gravity. We start with the four-dimensional Lorentzian
Holst action that we reduce to three dimensions in a way that preserves the presence of γ. In the time gauge,
the phase space of the resulting three-dimensional theory mimics exactly that of the four-dimensional one.
Its quantization can be performed, and on the kinematical Hilbert space spanned by SU(2) spin network
states the spectra of geometric operators are discrete and γ dependent. However, because of the three-
dimensional nature of the theory, its SU(2) Ashtekar-Barbero Hamiltonian constraint can be traded for the
flatness constraint of an slð2;CÞ connection, and we show that this latter has to satisfy a linear
simplicitylike condition analogous to the one used in the construction of spin foam models. The physically
relevant solution to this constraint singles out the noncompact subgroup SU(1, 1), which in turn leads to the
disappearance of the Barbero-Immirzi parameter and to a continuous length spectrum, in agreement with
what is expected from Lorentzian three-dimensional gravity.
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I. INTRODUCTION

Since the introduction of the SU(2) Ashtekar-Barbero
variables [1,2] as a way to circumvent the problem of
imposing the reality conditions in the original complex
Ashtekar formulation of gravity [3], the status of the
Barbero-Immirzi parameter γ has been debated intensively
[4–17]. The reason for this is that although γ plays no role
at the classical level, it is manifestly present in the quantum
theory, for example in the spectrum of the various geo-
metrical operators [18–20]. It is often stated that the family
of canonical transformations labeled by the Barbero-
Immirzi parameter cannot be implemented unitarily upon
quantization.
From the Lagrangian point of view, γ drops out of the

classical theory (the Holst action [21]) by virtue of the
Bianchi identities once the torsion-free condition is
imposed (i.e. on half-shell). In the Hamiltonian formulation
in terms of the Ashtekar-Barbero connection, γ is featured
in both the Poisson bracket between the phase space
variables and the scalar constraint, and the mechanism
responsible for its disappearance is more complicated since
the covariant torsion two-form is broken into its various
components, some of which correspond to the Hamiltonian
evolution of the triad field. This is of course to be expected
since at the Lagrangian level it is also (half of) the equations
of motion that are responsible for the disappearance of the
Barbero-Immirzi parameter. This observation, however,

raises the question of the fate of γ in the full
Hamiltonian quantum theory, i.e. when the dynamics is
taken into account. Although there is a well-defined and
anomaly-free regularization of the quantum scalar con-
straint of loop quantum gravity, the physical state space is
not fully characterized, and nothing is known about the fate
of γ at the physical level. From the perspective of the recent
four-dimensional spin foam models (see [22] for a review)
the Barbero-Immirzi parameter plays a priori a nontrivial
(and even central) role in the definition of the dynamics of
quantum gravity. However, γ was essentially introduced in
these models in order for the boundary states to match that
of canonical loop quantum gravity, and there are no clear
indications as to why a spin foam model would necessarily
require the presence of the Barbero-Immirzi parameter in
order to be well defined.
Recently, it has been observed in the context of work on

black hole entropy [23–25] and on the asymptotic behavior
of Lorentzian spin foam amplitudes [26] that the self-dual
value γ ¼ �i can be chosen consistently (at least in some
specific calculations). This points toward the potentially
underestimated role played by the original complex
Ashtekar variables in the quantization of gravity, and the
fact that the Barbero-Immirzi ambiguity can potentially be
resolved by simply going back to the self-dual value. Of
course, when working with γ ¼ �i from the onset one runs
into the problems of defining spin network states for a
noncompact gauge group and of imposing the reality
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conditions. It is, however, relevant to try to investigate the
relationship between the present formulation of SU(2) loop
quantum gravity with the Barbero-Immirzi parameter, and
the yet-to-be defined self-dual quantum theory.
This paper is a first step toward the investigation of this

relationship. Because of the difficulties present in treating
the dynamics of four-dimensional loop quantum gravity,
we consider here a symmetry-reduced model which cap-
tures the essential features of the full theory. This symmetry
reduction consists in imposing invariance of the four-
dimensional Holst theory along a given spatial direction,
which reduces the action to that of three-dimensional
gravity with a Barbero-Immirzi parameter. Then, the
construction of the physical Hilbert space becomes in
principle possible (although we do not present it) because
three-dimensional quantum gravity is an exactly soluble
system [27], and one can properly phrase the question of
the fate of the Barbero-Immirzi parameter. In the time
gauge, the SU(2) kinematical structure is γ dependent just
as in the four-dimensional theory. However, if one tries to
rewrite the Hamiltonian constraint in the form of a flatness
constraint in order to simplify its imposition at the quantum
level, the connection turns out to become complex, and the
associated reality conditions take the form of the linear
simplicity constraint of spin foam models. Once this
simplicity constraint is imposed at the classical level, we
observe that the Barbero-Immirzi parameter disappears
already in the kinematical quantum theory, and that the
physical states are just given by that of three-dimensional
SU(1, 1) BF theory.
Our starting point for this study is the action for three-

dimensional Lorentzian gravity with a Barbero-Immirzi
parameter introduced and partially studied in [17,28]. This
action can be obtained from a spacetime symmetry reduc-
tion of the four-dimensional Holst action, and as such
its internal symmetry group is the Lorentz group
G ¼ SLð2;CÞ. In [28], it was shown that there are two
“natural” gauge fixings of the internal gauge group G that
lead to two different (but nonetheless physically equivalent)
parametrizations of the phase space. When the gauge fixing
is chosen in such a way that G is broken into its non-
compact subgroup SU(1, 1), the theory reduces to SU(1, 1)
BF theory, and the Barbero-Immirzi parameter completely
disappears from the phase space. The quantization can then
be performed in principle using the combinatorial quanti-
zation scheme [29–32], and if one were to carry out this
very technical but nonetheless well-defined procedure, the
resulting physical state space would be γ-independent (for
the simple reason that in this case γ is already absent from
the kinematical structure once the second class constraints
are taken into account).
More interestingly, when the gauge fixing is chosen to be

the three-dimensional version of the time gauge, G is
broken into its compact SU(2) subgroup, and the resulting
Hamiltonian formulation is exactly analogous to that of the

four-dimensional Ashtekar-Barbero theory. In particular,
the fundamental variables in this case are the three-
dimensional version Ai

a of the Ashtekar-Barbero connec-
tion and its conjugate triad Ea

i , and their Poisson bracket as
well as the scalar constraint are γ dependent. Following the
procedure of canonical loop quantization, we arrive at a
well-defined kinematical Hilbert space with a discrete and
γ-dependent length spectrum. The Hamiltonian constraint
can then be solved in two ways. The first one is to follow
the regularization procedure introduced for the definition of
the four-dimensional scalar constraint, and the second one
is to reformulate the theory in a BF manner at the classical
level before performing its quantization. Following this
second direction, we show that it is indeed possible to
rewrite the three-dimensional SU(2) Ashtekar-Barbero
theory as a BF theory, but at the expense of making the
connection complex. Unfortunately, by doing so we then
face the same difficulties as if we had started from the onset
with the self-dual connection obtained by choosing γ ¼ �i.
However, guided by the fact that in the aforementioned
noncompact gauge the original action reduces to that of
SU(1, 1) BF theory, we argue that the reality conditions
should select the subgroup SU(1, 1) as the real section of
the Lorentz group SLð2;CÞ. This requirement is met if and
only if the elements Ji and Pi representing the generators of
infinitesimal rotations and boosts satisfy a condition
analogous to the linear simplicity constraint arising in
the construction of four-dimensional spin foam models. Its
appearance here is not much of a surprise, since it is known
also in four dimensions that when working with the Holst
action (i.e. with γ ∈ R) and using the (anti-)self-dual
decomposition of the variables, the reality condition is
traded for the simplicity constraint [33]. The interesting
observation in our context is that this constraint admits two
types of solutions.
The first one consists in modifying the action of the

infinitesimal boosts Pi, while keeping the action of the
infinitesimal rotations Ji unchanged. By doing so, the action
of boosts is somehow compactified, and one can show that
the SLð2;CÞ connection reduces to the initial SU(2)
Ashtekar-Barbero connection. The second solution [which
turns out to involve the generators of suð1; 1Þ and their
complement in slð2;CÞ] does, however, reduce the complex
connection to an SU(1, 1) connection. In the Engle-Pereira-
Rovelli-Livine (EPRL) and Freidel-Krasnov (FKγ) spin
foam models, the first solution is selected. Here, we select
the second one because the resulting connection is suð1; 1Þ
valued, which is what we expect from the requirement of
consistencywith thenoncompactgauge.Furthermore, in this
case, the Barbero-Immirzi parameter drops out of the theory
and does not play any role at the physical level. Therefore, in
this three-dimensional model, it seems that there is a
consistent way of sending the SU(2) Ashtekar-Barbero
connection to an SU(1, 1) connection to get a theory that
at the end of the day does not depend on γ anymore.
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This paper is organized as follows. In Sec. II we
introduce the Lorentzian three-dimensional Holst action
and review some of its properties at the Lagrangian level.
Section III takes the classical analysis a step further by
studying in detail the theory in two different gauges. The
first one reduces the Lorentz group to SU(1, 1), and
the action becomes that of SU(1, 1) BF theory, while
the second gauge choice leads to the SU(2) Ashtekar-
Barbero phase space. Section IV is devoted to the study of
the quantum theory. After briefly discussing the quantiza-
tion strategies available for dealing with SU(1, 1) BF
theory, we tackle the issue of quantizing the SU(2) theory in
the time gauge. We show that the Ashtekar-Barbero
constraints can be written in a BF fashion at the expense
of working with a complex connection, and that there is a
consistent way of imposing the requirement that the
physical states be SU(1, 1) spin networks, which in turn
leads to the elimination of the Barbero-Immirzi parameter.
We conclude with a discussion on the possibility of
extending these results to the full four-dimensional theory.

II. CLASSICAL THEORY

In four spacetime dimensions, the first order action for
general relativity that serves as a starting point for canonical
loop quantum gravity is given by [21]

S4D½e;ω� ¼
Z
M4

�
1

2
εIJKLeI ∧ eJ ∧ FKL

þ 1

γ
δIJKLeI ∧ eJ ∧ FKL

�
: ð2:1Þ

The dynamical variables are the tetrad one-form fields eIμ
and the slð2;CÞ-valued connection ωIJ

μ , whose curvature is
denoted by F ¼ dωþ ðω ∧ ωÞ=2. The totally antisymmet-
ric tensor εIJKL is the Killing form on slð2;CÞ, and
δIJKL ¼ ðηIKηJL − ηILηJKÞ=2, with ηIJ ¼ diagð−1; 1; 1; 1Þ
the flat metric, is the other independent invariant bilinear
form on slð2;CÞ (with a suitable normalization).
In loop quantum gravity, one chooses to work in the time

gauge, which consists in breaking the SLð2;CÞ gauge
group into an SU(2) maximal compact subgroup by
imposing the conditions e0a ¼ 0. In this case, the canonical
analysis simplifies dramatically [17,21], and the phase
space is parametrized by an suð2Þ-valued connection
known as the Ashtekar-Barbero connection, together with
its conjugate densitized triad field. The quantization then
leads to a mathematically well-defined kinematical Hilbert
space because of the compactness of the gauge group. At
the kinematical level, the area and volume operators exhibit
discrete spectra, and the Barbero-Immirzi parameter can be
interpreted as a measure of the area gap in Planck units.
Without fixing the time gauge, the canonical analysis of

the Holst action is quite involved and was performed
originally in [34,35]. Once the second class constraints

are taken into account, there are essentially two choices of
connection that can be made. The first one corresponds to
the Lorentz-covariant extension of the Ashtekar-Barbero
connection. This connection is commutative with respect to
the Dirac bracket and leads to the same quantum theory as
the SU(2) formulation in the time gauge [36–38]. However,
just like its SU(2) counterpart, the Lorentz-covariant
Ashtekar-Barebro connection is not the pullback of a
spacetime connection [39]. Instead, one can choose to
work with the shifted connection, which can be interpreted
as a spacetime connection but has the disadvantage of being
noncommutative. In this case, the Hamiltonian formulation
becomes completely independent of γ, which drops out of
the theory as expected from the Lagrangian analysis. This
strongly suggests that in this particular Lorentz-covariant
formulation with the shifted connection the Barbero-
Immirzi parameter will play no role at the quantum level.
Unfortunately, no representation of the associated quantum
algebra has ever been found (see, however, [40] for an
attempt). It has, however, been argued by Alexandrov that
this quantization could lead to a continuous area spectrum
with no dependency on γ [39]. This nondependency on γ is
a completely natural thing to expect if one starts with a
canonical formulation which is already γ independent at the
classical level.
Evidently, there seems to be a discrepancy between the

predictions of the quantum theories based on the Ashtekar-
Barbero connection [in either the SU(2) or the Lorentz-
covariant formulation] and the shifted connection.
However, the problem is that up to now none of these
derivations are fully understood. Indeed, as we have just
mentioned above, the kinematical states are not even
defined in the Lorentz-covariant quantization with the
shifted connection due to the noncommutativity of the
connection, and in the quantization in the time gauge we do
not have full control over the physical Hilbert space and the
geometrical operators are only defined at the kinematical
level.1 It is nonetheless honest to say that the quantization
of the SU(2) theory in the time gauge is much more
advanced and mathematically well defined, although it is
very interesting and intriguing that the Lorentz-covariant
theory points toward important issues concerning the status
of the Barbero-Immirzi parameter and the relevance of the
SU(2) Ashtekar-Barbero connection.
We are going to present a formulation of three-

dimensional gravity that can help understand the tensions
that we have just described. This model was originally
introduced in [28] in the context of spin foam models and
further studied in [17] in order to illustrate the interplay

1Although it has been argued in [41] that the nature of the
spectra could change at the physical level, the results of [42,43]
seem to indicate that they remain discrete. As pointed out in
[24,44], this interpretation is tightly linked to the choice of a
classical time function, which in turn dictates the nature of the
gauge-invariant geometric operators.
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between the gauge fixing of the Holst action and the role of
the Barbero-Immirzi parameter. It can be obtained by a
reduction of the four-dimensional Holst action to three
dimensions. In this section, we will present this model in
details and recall its classical properties.

A. Symmetry reduction from four to three dimensions

Starting with the four-dimensional Holst action (2.1), we
perform a spacetime compactification without reducing the
internal gauge group. As a consequence, the resulting three-
dimensional model will be Lorentz invariant. We assume
that the four-dimensional spacetime has the topology
M4 ¼ M3 × S1 where M3 is a three-dimensional space-
time, and S1 is spacelike with coordinates x3. In this way,
we single out the third spatial component μ ¼ 3. Let us now
impose the conditions

∂3 ¼ 0; ωIJ
3 ¼ 0: ð2:2Þ

The first condition means that the fields do not depend on
the third spatial direction x3. The second one means that the
parallel transport along S1 is trivial. Therefore, the covariant
derivative of the fields along the direction μ ¼ 3 vanishes.
A direct calculation shows that the four-dimensional Holst
action reduces under the conditions (2.2) to

Sred ¼ −
Z
S1

dx3
Z
M3

d3xεμνρ
�
1

2
εIJKLeI3e

J
μFKL

νρ

þ 1

γ
δIJKLeI3e

J
μFKL

νρ

�
; ð2:3Þ

where μ ¼ 0; 1; 2 is now understood as a three-dimensional
spacetime index, and d3xεμνρ is the local volume form on
the three-dimensional spacetime manifold. Apart from a
global multiplicative factor that is not relevant at all,
and provided that we set xI ≡ eI3, we recover the three-
dimensional action with Barbero-Immirzi parameter intro-
duced in [17,28], i.e.

S½e; x;ω�

¼
Z
M3

d3xεμνρ
�
1

2
εIJKLxIeJμFKL

νρ þ 1

γ
δIJKLxIeJμFKL

νρ

�
:

ð2:4Þ

From now on, we will denote the three-dimensional
spacetime manifold M3 simply by M.

B. Lagrangian analysis

It is not immediately obvious that the action (2.4) is
equivalent to that of three-dimensional gravity, simply
because its expression is rather different from the standard
first order BF action. First of all, it seems that we have
introduced an additional degree of freedom represented by

the variable x, and second, the internal gauge group is
SLð2;CÞ instead of the usual gauge group SU(1, 1) of
Lorentzian three-dimensional gravity. Furthermore, the
action now features a Barbero-Immirzi parameter.2

Despite all these differences, it can be shown that the
action (2.4) represents a valid formulation of three-dimen-
sional gravity [17,28].
There are many ways to see that this is indeed the case.

The easiest one consists in showing that the action (2.4)
reproduces the standard Einstein-Hilbert action when one
goes from the first order to the second order formulation.
This method does also show straightforwardly that the
parameter γ disappears exactly as it does in four dimen-
sions, i.e. when one expressed the theory in the metric
form. To make this statement concrete, it is convenient to
decompose the connection ω into its self-dual and anti-self-
dual components ω� according to the decomposition of
slð2;CÞ ¼ suð2ÞC ⊕ suð2ÞC into its self-dual and anti-
self-dual complex subalgebras (see Appendix A). Then, the
action (2.4) can be expressed as a sum of two related BF
actions as follows:

S½e; x;ω� ¼
�
1þ 1

γ

�
S½Bþ;ωþ� þ

�
1 −

1

γ

�
S½B−;ω−�;

ð2:5Þ

where S½B�;ω�� is the standard suð2ÞC BF action

S½B�;ω�� ¼ 1

2

Z
M

d3xεμνρtrðB�
μ ; F�

νρÞ; ð2:6Þ

and

B�i
μ ¼ �iðx × eμÞi þ x0eiμ − xie0μ ð2:7Þ

is calculated from the relations B�i
μ ¼ BIJ

μ T�i
IJ and

BIJ
μ ¼ εIJKLxKeLμ . In this BF action, the trace tr denotes

the normalized Killing form on suð2ÞC.
As usual, going from the first order to the second order

formulation of gravity requires one to solve for the
components of the connection ω� in terms of the B
variables. This can be done by solving the equations of
motion obtained by varying the action with respect to the
connection ω�, which are nothing but the torsion-free
conditions

2A Barbero-Immirzi-like parameter was previously introduced
in [45] in the context of three-dimensional gravity, based on the
existence of two independent bilinear invariant forms on the
symmetry group of the Chern-Simons formulation. Unfortu-
nately, this parameter does not feature the properties of its
four-dimensional counterpart appearing in the Holst action. In
particular, it does not disappear when one passes from the first to
the second order formulation of the theory.
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TðB�;ω�Þ ¼ 0: ð2:8Þ

If detðB�Þ ≠ 0, this torsion-free condition can be inverted
to find the torsion-free spin connection ωðBÞ. This latter,
when plugged back into the original action (2.5), leads to
the sum of two second order Einstein-Hilbert actions,

SEH½gþμν; g−μν� ¼
1

2

�
1þ 1

γ

�
ϵþ

Z
M

d3x
ffiffiffiffiffiffiffiffi
jgþj

p
R½gþμν�

þ 1

2

�
1 −

1

γ

�
ϵ−

Z
M

d3x
ffiffiffiffiffiffiffiffi
jg−j

p
R½g−μν�;

ð2:9Þ

each being defined with respect to an Urbantke-like metric
[46] g�μν ¼ B�

μ · B�
ν . In this expression, ϵ� denotes the sign

of detðB�Þ. It is straightforward to show that the signs ϵ�
are identical [28]. To see that this is indeed the case, one can
write the fields B� as follows:

B�i
μ ¼ �iεijkxjekμ þ x0eiμ − xie0μ ¼ ð�ix−10 xþ 1ÞLi

μ;

ð2:10Þ

with Li
μ ≡ εijkB

jk
μ =2 ¼ x0eiμ − xie0μ, and where we have

introduced the three-dimensional matrix

x ¼

0
B@

0 −x3 x2
x3 0 −x1
−x2 x1 0

1
CA ð2:11Þ

associated with x such that xαi ¼ εijkxjαk for any α ∈ R3.
With this notation, we can compute the determinant

detðB�Þ ¼ detð�ix−10 xþ 1Þ detðLi
μÞ

¼ ð1 − x−20 ðx21 þ x22 þ x23ÞÞ detðLi
μÞ; ð2:12Þ

where Li
μ is considered as a 3 × 3 matrix. Therefore, we

conclude that ϵþ ¼ ϵ−, as announced above. Furthermore,
a simple calculation shows that the two Urbantke metrics
g�μν are identical and given by

g�μν ≡ gμν ¼ ðeμ · eνÞðx2 − ðx0Þ2Þ
− x2e0μe0ν þ x0x · ðe0μeν þ e0νeμÞ; ð2:13Þ

with x2 ≡ xixi.
Gathering these results on the Urbantke metrics and the

sign factors ϵ�, we can conclude that, once the torsion-free
condition is imposed, the action (2.4) reduces to the
standard Einstein-Hilbert action

SEH½gμν� ¼
Z
M

d3x
ffiffiffiffiffi
jgj

p
R½gμν�: ð2:14Þ

This shows that the theory that we are dealing with
corresponds indeed to three-dimensional gravity, and that
the Barbero-Immirzi parameter disappears once the torsion
is vanishing. This is exactly what happens with the four-
dimensional Holst action, which motivates the use of the
three-dimensional model (2.4) in order to test the role of the
Barbero-Immirzi parameter.

C. Lagrangian symmetries

Before presenting the Hamiltonian analysis in details, let
us finish the Lagrangian analysis with a study of the
symmetries. This will be helpful in what follows.
Obviously, the action (2.4) is invariant under SLð2;CÞ
and admits therefore the infinite-dimensional gauge group
G≡ C∞ðM; SLð2;CÞÞ as a symmetry group. An element
Λ ∈ G is an SLð2;CÞ-valued function on the spacetimeM,
which acts on the dynamical variables according to the
transformation rules

eμ ↦ Λ · eμ; x ↦ Λ · x;

ωμ ↦ AdΛðωμÞ − ∂μΛΛ−1; ð2:15Þ

where ðΛ · vÞI ¼ ΛIJvJ denotes the fundamental action of
Λ on any four-dimensional vector v, and AdΛðξÞ ¼ ΛξΛ−1

is the adjoint action of SLð2;CÞ on any Lie algebra
element ξ ∈ slð2;CÞ.
From the expression (2.4) of the action as the integral of

a three-form, it is immediate to see that the theory is also
invariant under spacetime diffeomorphisms, as it should be
for gravity. Infinitesimal diffeomorphisms are generated by
vector fields v ¼ vμ∂μ on M, and their action on the
dynamical variables is simply given by the following Lie
derivatives:

e ↦ Lve; x ↦ Lvx ¼ vμ∂μx; ω ↦ Lvω;

ð2:16Þ

where Lvφ ¼ ðvν∂νφμ þ φν∂μvνÞdxμ for any one-form φ.
The previous symmetries are expected from a theory of

gravity formulated in first order variables. But a theory in
three spacetime dimensions with only these symmetries
would reduce to SLð2;CÞ BF theory, which is not what our
model is. Thus, our Lagrangian should admit additional
symmetries. This is indeed the case, and it is immediate to
notice that the action (2.4) is invariant under a rescaling
symmetry and a translational symmetry. The former is
generated by nonvanishing scalar fields α on M according
to the transformation rules

eIμ ↦ αeIμ; xI ↦
1

α
xI: ð2:17Þ

The translational symmetry is generated by one-forms β ¼
βμdxμ according to
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eIμ ↦ eIμ þ βμxI: ð2:18Þ

The presence of these two symmetries follows from the fact
that the variables x and e appear in the action (2.4) in the
form x½IeJ� ¼ ðxIeJ − xJeIÞ=2. Note that they do not affect
the connection ω.
The transformations (2.15), (2.16), (2.17), and (2.18),

encode all the symmetries of the action. We will make use
of some of these invariance properties to simplify the
canonical analysis in the following section. Furthermore,
because of the SLð2;CÞ invariance, the sign of x2 ¼ xIxI ¼
xIηIJxJ is an invariant of the theory, even if its value is not
fixed because of the rescaling invariance. Thus, to define
the theory, one has to fix this sign, and we choose it to be
positive,

x2 ¼ xIηIJxJ > 0: ð2:19Þ

As we will see in the next section, this choice will make the
time gauge accessible.

III. THE DIFFERENT GAUGE CHOICES

In [47], Alexandrov performed the Hamiltonian analysis
of (2.4) without assuming any gauge fixing. This analysis
allows one to recover at the Hamiltonian level all the
symmetries that were presented above. The formulation of
the resulting phase space is unfortunately rather involved,
and the present study does not require its full knowledge.
For this reason, we will not present it here.
In [17], the canonical analysis of (2.4) was performed in

two different gauges. These gauge choices have the
advantage of simplifying the analysis drastically, and
furthermore they reveal an intriguing interplay between
the gauge fixing and the role of the Barbero-Immirzi
parameter. With the first gauge choice of [17], the initial
gauge group SLð2;CÞ is broken into its (maximal non-
compact) subgroup SU(1, 1) [at least when the original
action is chosen to be Lorentzian; otherwise one ends up
with SU(2) instead], and the canonical analysis leads to a
phase space with no γ dependency. In this case, the
Barbero-Immirzi parameter drops out of the theory already
at the kinematical level. The second gauge choice of [17] is
the three-dimensional analogue of the four-dimensional
time gauge. It reduces SLð2;CÞ to its (maximal compact)
subgroup SU(2). In this case, just as in four-dimensional
loop gravity, the phase space has an explicit γ-dependency,
both in the Poisson bracket between the connection and the
densitized triad, and in the scalar constraint.
Before going any further, let us make a comment that

will clarify potential confusion between the roles of the
gauge groups. In [17], the three-dimensional Holst action
(2.4) was chosen to be Euclidean, with gauge group SOð4Þ.
Because of this choice, the two gauge fixings described in
the previous paragraph both lead to the subgroup SU(2).
However, since in the present work we choose the gauge

group of (2.4) to be SLð2;CÞ, the two gauge fixings lead to
two different subgroups: SU(1, 1) in the first case, and
SU(2) in the time gauge.
This section is devoted to reviewing the canonical

analysis in these two gauges. The spacetime is assumed
to have the topology M ¼ Σ ×R where Σ is a spacelike
surface.

A. The noncompact gauge: From the
Lorentz group to SU(1,1)

In this subsection, μ; ν;… ∈ f0; 1; 2g are three-
dimensional spacetime indices, a; b;… ∈ f1; 2g are spatial
indices, I; J;… ∈ f0; 1; 2; 3g are internal SLð2;CÞ indices,
and i; j;… ∈ f0; 1; 2g are internal SU(1, 1) indices. The
indices i; j;… are lowered and raised with the flat three-
dimensional Minkowski metric ηij ¼ diagð−1;þ1;þ1Þ.
We will use the cross-product notation v × w to denote
the vector z whose components are given by zi ¼ εijkvjwk,
and v · w for the scalar product viwi ¼ viηijwj.
The gauge group SLð2;CÞ is broken into the subgroup

SU(1, 1) by fixing in the action (2.4) the field xI to the
special value3 (0,0,0,1). This choice is compatible with the
condition (2.19), and the rescaling symmetry (2.17) can be
used to fix the norm of x to one for simplicity. The resulting
SU(1, 1) symmetry corresponds precisely to the isotropy
group of x. Since this gauge choice singularizes the third
internal spacelike component, it is natural to decompose the
connection ωIJ into its suð1; 1Þ components, denoted by
ωi, and the complement denoted by ωð3Þi. Therefore, we
have

ωi ≡ 1

2
εijkω

jk; ωð3Þi ≡ ωðI¼3Þi: ð3:1Þ

The curvature tensor FIJ also decomposes into its suð1; 1Þ
components Fi ¼ εijkFjk=2 and the remaining part Fð3Þi.
Denoting by F the vector with components Fi, and by Fð3Þ

the vector with components Fð3Þi, we have the explicit
expressions

Fμν ¼ ∂μων − ∂νωμ − ωμ × ων − ωð3Þ
μ × ωð3Þ

ν ; ð3:2aÞ

Fð3Þ
μν ¼ ∂μω

ð3Þ
ν − ∂νω

ð3Þ
μ − ωμ × ωð3Þ

ν þ ων × ωð3Þ
μ : ð3:2bÞ

Using these notations, the action (2.4) takes the following
simple form:

S ¼
Z
M

d3xεμνρeμ ·

�
Fνρ þ

1

γ
Fð3Þ
νρ

�
: ð3:3Þ

3Note the slight difference with [17], where the gauge was
chosen to be xI ¼ ð1; 0; 0; 0Þ.
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It is then immediate to see that neither ωi
a nor ω

ð3Þi
a are the

“good” dynamical connection variables of the theory. In
fact, the canonical suð1; 1Þ connection is given by the
combination

Ai
a ≡ −

�
ωi
a þ

1

γ
ωð3Þi
a

�
; ð3:4Þ

which appears in the action through its curvature F as
follows:

S ¼ −
Z
M

d3xεμνρeμ ·

�
F νρ þ

�
1þ 1

γ2

�
ωð3Þ
ν × ωð3Þ

ρ

�
:

ð3:5Þ

In this way, S has the form of an SU(1, 1) BF action
augmented with an extra term quadratic in ωð3Þ. Solving
δS=δωð3Þi ¼ 0 implies thatωð3Þ vanishes on shell (assuming
that e is invertible), and therefore the theory becomes
strictly equivalent to an SU(1, 1) BF theory.
To perform the canonical analysis, we split the spacetime

indices μ; ν;… ∈ f0; 1; 2g into spatial indices a; b;… ∈
f1; 2g and the temporal direction denoted by μ ¼ 0. With
respect to this splitting, the action takes the following
canonical form:

S ¼
Z
R
dt
Z
Σ
d2x

�
Ea · ∂0Aa þ A0 ·Gþ e0 ·H

þ 2

�
1þ 1

γ2

�
ωð3Þ
0 · Φ

�
; ð3:6Þ

where we have introduced the electric field Ea ¼ εbaeb.

The variables A0, e0, and ωð3Þ
0 are Lagrange multipliers

enforcing the following primary constraints:

G ¼ ∂aEa þ Aa × Ea ≃ 0;

H ¼ εab
�
F ab þ

�
1þ 1

γ2

�
ωð3Þ
a × ωð3Þ

b

�
≃ 0;

Φ ¼ Ea × ωð3Þ
a ≃ 0: ð3:7Þ

From the canonical form of the action, we can see that the
only dynamical variables are the electric field Ea and its
canonically conjugated connection Aa. However, from the
point of view of the canonical analysis, one has to consider

ωð3Þ
a as a dynamical variable as well, and introduce its

conjugated momenta πa together with the constraints

πa ≃ 0 ð3:8Þ

enforced by multipliers μa. As a consequence, the sym-
plectic structure is defined by the following Poisson
brackets:

fEa
i ðxÞ; Aj

bðyÞg ¼ δabδ
j
iδ

2ðx − yÞ ¼ fπai ðxÞ;ωð3Þj
b ðyÞg;

ð3:9Þ

and the time evolution ∂0φ of any field φ it is defined from
the total Hamiltonian

Htot ¼ −
Z
Σ
d2x

�
A0 ·Gþ e0 ·H

þ 2

�
1þ 1

γ2

�
ωð3Þ
0 · Φþ μa · πa

�
ð3:10Þ

according to ∂0ϕ ¼ fHtot;ϕg.
Among all the constraints (3.7) and (3.8), only the last

one, πa ≃ 0, implies secondary constraints. Imposing that
its time evolution ∂0π

a
i ¼ fHtot; πai g be vanishing leads to

the equations

Pa ≡ εabðωð3Þ
b × e0 − ωð3Þ

0 × ebÞ≃ 0: ð3:11Þ

These six equations involve Lagrange multipliers as well as
dynamical variables, and as such they can be separated into
two sets. The first set of equations fixes the values of
Lagrange multipliers, and the second set is formed by
secondary constraints. To extract these secondary con-
straints, it is convenient to combine the six equations (3.11)
with the three primary constraints Φ≃ 0 given by (3.7).
Indeed, these nine equations can be written in the form

εμνρeν × ωð3Þ
ρ ≃ 0: ð3:12Þ

As a consequence, if e is invertible (which is what we are
assuming from the beginning), the original nine equa-

tions (3.12) are equivalent to the nine equations ωð3Þ
μ ≃ 0. It

is then clear that the vanishing of ωð3Þ
0 is a fixation of

Lagrange multipliers, whereas the remaining six equations

ωð3Þ
a ≃ 0 are (a mixture of primary and secondary) con-

straints. Moreover, these constraints together with (3.8)
clearly form a second class system and can be solved

strongly. Setting ωð3Þ
a to zero in (3.6) shows that the

Barbero-Immirzi parameter disappears completely, and
we end up with the standard action of Lorentzian three-
dimensional gravity. This closes the canonical analysis of
the action (2.4) in the noncompact gauge.
This result is consistent with the observation that we

made earlier at the Lagrangian level concerning the
irrelevance of the Barbero-Immirzi parameter in the
classical theory. As a consequence, γ will play no role
in the canonical quantum theory once we work in the
noncompact gauge. This is already an interesting observa-
tion, since it seems to be in conflict with the situation in
four dimensions where γ plays a crucial role (at least) at the
kinematical level. However, to make this conclusion
stronger and more meaningful, we have to cast our
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three-dimensional model in a form that is closer to the four-
dimensional Ashtekar-Barbero phase space, and then take
this as the starting point for the quantization. This can be
done by using the three-dimensional time gauge, as we will
show in the next subsection.

B. The time gauge: From the Lorentz group to SU(2)

The analysis of this subsection requires that we slightly
change the notations for the internal indices. Now, we split
the SLð2;CÞ indices into spatial indices i; j;… ∈ f1; 2; 3g
[which are interpreted as SU(2) indices] and the internal
time direction I ¼ 0. The indices i; j;… are lowered and
raised with the flat three-dimensional Euclidean metric
δij ¼ diagðþ1;þ1;þ1Þ. Once again, the cross product
z ¼ v × w will denote zi ¼ εijkvjwk, while the scalar
product will be given by v · w ¼ viwi ¼ viδijwj.

1. The time gauge

The gauge fixing that we refer to as the time gauge is
defined by the requirement that x0 ¼ e0a ¼ 0. This is clearly
the three-dimensional analogue of the four-dimensional
time gauge. This condition is compatible with (2.19) and
breaks the gauge group SLð2;CÞ into its maximal compact
subgroup SU(2). Since this gauge choice singles out the
time component of x, it is now natural to decompose the
connection ωIJ into its spatial suð2Þ component ωi and the
complement denoted by ωð0Þi. These components are given
explicitly by

ωi ≡ 1

2
εijkω

jk; ωð0Þi ≡ ωðI¼0Þi: ð3:13Þ

The curvature tensor FIJ does also decompose into its suð2Þ
part, denoted with the same notation F as in the previous
subsection, and its temporal part Fð0Þ. Their respective
components, Fi ¼ εijkFjk=2 and Fð0Þi, are given by

Fμν ¼ ∂μων − ∂νωμ − ωμ × ων þ ωð0Þ
μ × ωð0Þ

ν ; ð3:14aÞ

Fð0Þ
μν ¼ ∂μω

ð0Þ
ν − ∂νω

ð0Þ
μ − ωμ × ωð0Þ

ν − ων × ωð0Þ
μ : ð3:14bÞ

2. Hamiltonian decomposition

The action in the time gauge can be written in the
following form:

S ¼
Z
R
dt
Z
Σ
d2xðLC þ LV þ LSÞ; ð3:15Þ

where the “canonical,” “vectorial,” and “scalar” Lagrangian
densities, respectively, denoted by LC, LV , and LS, are
defined by

LC ¼ 2εabx × ea ·

�
Fð0Þ
0b −

1

2γ
F0b

�
; ð3:16aÞ

LV ¼ εabx ×M ·

�
−Fð0Þ

ab þ 1

γ
Fab

�
; ð3:16bÞ

LS ¼ εabNx ·

�
Fab þ

1

γ
Fð0Þ
ab

�
: ð3:16cÞ

The vectorial and the scalar Lagrangian densities are
written, respectively, in terms of the vector Mi ¼ ei0 and
the Lapse functionN ¼ e00. They encode the usual vectorial
and scalar constraints, as in the four-dimensional case. We
will come back to their expression later on.
The canonical term LC tells us about the Poisson bracket

and the Gauss constraint. Indeed, a straightforward calcu-
lation shows that, up to boundary terms that are assumed to
be vanishing, LC takes the form

LC ¼ 2

γ
ð−Ea · ∂0Aa − ω0 · ð∂aEa þ Aa × EaÞ þ ωð0Þ

0 · ðγ∂aEa − ðγωa þ ωð0Þ
a Þ × EaÞÞ; ð3:17Þ

which implies that the canonical variables are given by

Ea ≡ εabeb × x; Aa ≡ γωð0Þ
a − ωa; ð3:18Þ

whereas ω0 and ωð0Þ
0 are Lagrange multipliers that enforce

the primary constraints

G ¼ ∂aEa þ Aa × Ea ≃ 0; Φ ¼ ∂aEa − ωa × Ea ≃ 0:

ð3:19Þ

Of course, G≃ 0 is the usual Gauss constraint, and we will
show that Φ≃ 0 is in fact a second class constraint. Note

that Φ≃ 0 is not equivalent to the constraint Φ0 ¼
δS=δωð0Þ

0 ≃ 0 that the Lagrange multipliers ωð0Þi
0 impose,

but it is instead a very simple linear combination of both
Φ0 ≃ 0 and G≃ 0.
The two remaining Lagrangian densities, LV and LS, can

also be expressed in terms of the new connection variable A
(through its curvature F ), the associated electric field E
introduced in (3.18), and the components ω of the initial
slð2;CÞ connection. To see that this is indeed the case, let
us start by simplifying the expression of the vectorial
density LV. As in the four-dimensional case, it is useful to
introduce the shift vector Na defined by Mi ¼ Naeia, and
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then a straightforward calculation leads to the following
expression for the vectorial Lagrangian density LV :

LV ¼ 2

γ
NaEb · ð−F ab þ ðγ2 þ 1Þωð0Þ

a × ωð0Þ
b Þ: ð3:20Þ

Because of the identity Ea · ωð0Þ
1 × ωð0Þ

2 ¼
−γ−1εabωð0Þ

b · ðG − ΦÞ, the Lagrangian LV takes the form

LV ¼ −
2

γ
NaEb · F ab þ 2

�
1þ 1

γ2

�
Naωð0Þ

a · ðG − ΦÞ:

ð3:21Þ

The scalar Lagrangian density is given by

LS ¼
N
γ
εabx · ðF ab þ ð1þ γ2ÞRabÞ; ð3:22Þ

where Rab ¼ ∂aωb − ∂bωa − ωa × ωb is the curvature of
the suð2Þ connection ω. We see immediately that, as in
four dimensions, N and Na are Lagrange multipliers that
enforce primary constraints. These take the following
familiar form:

Ha ¼ εabEb · F 12; H0 ¼ x · ðF 12 þ ð1þ γ2ÞR12Þ:
ð3:23Þ

Notice that the variation of the action with respect to the
shift vector Na does not lead directly to the previous
expression for the vector constraint, but instead to a linear
combination of Ha with the primary constraints (3.19).
Finally, the analysis of the action in the time gauge

shows that the theory can be formulated in terms of the
variables Ea

i , A
i
a, ωi

a, ωi
0, and ωð0Þi

0 . Therefore, the initial

connection components ωð0Þ
a can be replaced by the three-

dimensional version of the Ashtekar-Barbero connection,
Aa, as it is the case in four dimensions [17]. From the
analysis of the canonical term, one can see that only E and
A are a priori dynamical, whereas all the other variables
have vanishing conjugate momenta. However, this does not
mean that all these nondynamical variables can be treated

as genuine Lagrange multipliers. ω0 and ω
ð0Þ
0 can be treated

as Lagrange multipliers, but ωa has to be associated with a
momentum πa, as in the previous subsection. Because of
this, the theory inherits new primary constraints enforcing
the vanishing of πa, i.e.

πa ≃ 0: ð3:24Þ

Up to a global factor of 2 in the action (that we can discard
for the sake of simplicity), we end up with the following
symplectic structure:

fEa
i ðxÞ; Aj

bðyÞg ¼ γδabδ
j
iδ

2ðx − yÞ;
fπai ðxÞ;ωð0Þj

b ðyÞg ¼ δabδ
j
iδ

2ðx − yÞ; ð3:25Þ

and the total Hamiltonian is given by

Htot ¼
Z
Σ
d2x

�
Λ0 ·ΦþΩ0 ·GþNaHa −

1

γ
NH0 þ μaπ

a

�
;

ð3:26Þ

and therefore appears as a linear combination of the
primary constraints (3.19), (3.23), and (3.24). The
Lagrange multipliers Ω0 and Λ0 are also linear combina-

tions of the Lagrange multipliers ω0, ω
ð0Þ
0 , and Na, and are

given explicitly by

Ω0 ¼
1

γ
ω0 −

1

γ2
ωð0Þ
0 þ

�
1þ 1

γ2

�
Naωð0Þ

a ;

Λ0 ¼
�
1

γ2
− 1

�
ωð0Þ
0 −

�
1þ 1

γ2

�
Naωð0Þ

a : ð3:27Þ

We can now study the stability of the primary constraints.

3. Analysis of the secondary constraints

As in the four-dimensional case, only the constraints
πa ≃ 0 lead to secondary constraints. Their time evolution
is given by the Poisson bracket with the total Hamiltonian
(3.26):

∂0π
a ¼ fHtot; πag ¼

�Z
Σ
d2x

�
Λ0 · Φ −

1

γ
NH0

�
; πa

�

¼ Ea × Λ0 þ
1þ γ2

γ
εacðx∂cN þ Nð∂cx − ωc × xÞÞ:

ð3:28Þ

Requiring that ∂0π
a be vanishing gives rise to nine

equations involving Lagrange multipliers and dynamical
variables. Among these equations, some determine the
values of Lagrange multipliers, and others have to be
interpreted as secondary constraints. To extract these
secondary constraints, we first project the previous equa-
tions in the directions Eb to obtain

Eb × Ea · Λ0 þ Nð∂cx − ωc × xÞ · εacEb ≃ 0; ð3:29Þ

which eliminates the term proportional to derivatives of N
in (3.28). Then, in order to eliminate the term proportional
to Λ0, we symmetrize the indices a and b. If N is
nonvanishing, this leads to the three new constraints

Ψab ¼ ð∂cx − ωc × xÞ · εcðaEbÞ ≃ 0: ð3:30Þ
This closes the Dirac analysis of the system, as one
can show that there are no more constraints in the theory.
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In conclusion, the system is defined by the two pairs of
conjugate variables (3.25) satisfying the constraints (3.19),
(3.23), (3.24), and (3.30). Among these constraints, Φ, π,
and Ψ form a complete set of nS ¼ 12 second class
constraints, and the other nF ¼ 6 constraints are the first
class generators of internal SU(2) gauge symmetry (i.e. the
Gauss constraint) and of the spacetime diffeomorphisms
(i.e. the vector and scalar constraints). Therefore, starting
with nNP ¼ 2 × 12 nonphysical variables, we end up with
nP ¼ nNP − 2nF − nS ¼ 0 local degrees of freedom, as it
should be for three-dimensional gravity.

4. Resolution of the second class constraints

Before studying the quantization of the theory, one has to
solve its second class constraints. There are two different
but equivalent ways to deal with the second class con-
straints.4 The first one consists in computing the Dirac
bracket. This makes the resolution of the second class
constraints implicit in the sense that the Dirac bracket
between any function on the phase space and a second class
constraint strongly vanishes. This method, although being
systematical, is sometimes very technical and far from the
physical intuition. Furthermore, if the Dirac bracket is too
complicated, the quantization can be very involved, as it is
the case in Lorentz-covariant loop quantum gravity. If
possible, one usually prefers to solve explicitly the second
class constraints. This can be done in the present situation.
The constraints πa ¼ 0 are trivially resolved. The difficulty
lies in the resolution of the six constraints Φ ¼ 0 and
Ψab ¼ 0. These have to be understood as six equations for
the six unknown components ωi

a that we want to express in
terms of E. It turns out to be easier to replace the six
constraints Φ ¼ 0 andΨab ¼ 0 by the following equivalent
set of six equations:

E1 · ð∂2x − ω2 × xÞ ¼ 0;

E2 · ð∂1x − ω1 × xÞ ¼ 0; ð3:31aÞ

E1 · ð∂1x − ω1 × xÞ ¼ 0;

E2 · ð∂2x − ω2 × xÞ ¼ 0; ð3:31bÞ

E1 · ð∂aEa − ω2 × E2Þ ¼ 0;

E2 · ð∂aEa − ω1 × E1Þ ¼ 0; ð3:31cÞ

whose equivalence with the original set can be shown
through a simple calculation. To find the solution to these
constraints, we use the fact that the family ðE1; E2; xÞ forms
a basis of the internal space. This is the case because the
original four-dimensional tetrad e is supposed to be non-
degenerate from the beginning. Furthermore, x is

orthogonal to the vectors Ea by virtue of the definition
(3.18), and we have that

E1 × E2 ¼ xðe1 × e2Þ · x: ð3:32Þ

Since xi ¼ ei3 in the time gauge, the quantity Nðe1 × e2Þ ·
x ¼ Njej is nothing but the determinant of the original
tetrad. For this reason, we will use from now on the
notation jEj ¼ ðE1 × E2Þ · x ¼ x2jej.
The connection components ωa can now be expended in

the previous basis, and we can look for solutions of the
form

ωa ¼ αaE1 þ βaE2 þ ζax; ð3:33Þ

where αa, βa, and ζa are coefficients to be determined.
Injecting this expression into Eqs. (3.31a) and (3.31b), we
immediately obtain the form of the coefficients αa and βa:

αa ¼ −
1

jEjE
2 · ∂ax; βa ¼

1

jEjE
1 · ∂ax: ð3:34Þ

Similarly, the coefficients ζa can be obtained by plugging
(3.33) into (3.31c). This leads to

ζa ¼
1

jEj εabE
b · ∂cEc: ð3:35Þ

Gathering these results, we finally end up with the
following solution for ωa:

ωa ¼
1

jEj ð−ðE
2 · ∂axÞE1þðE1 · ∂axÞE2þ εabðEb · ∂cEcÞxÞ;

ð3:36Þ

which is the three-dimensional analogue of the four-
dimensional Levi-Cività connection. The expression of
ωa is, however, much simpler in the present case, and it
can even be further simplified to

ωa ¼ u × ∂au − ðAa · uÞuþ 1

jEj εabðE
b ·GÞx; ð3:37Þ

where we have used the expression of the Gauss constraint
and introduced the unit normal u ¼ x=

ffiffiffiffiffi
x2

p
to the plane

ðE1; E2Þ at each point. From Eqs. (3.31a) and (3.31b), and
the fact that u is normalized, one can further show that the
vector u satisfies

Eb · ð∂au − ωa × uÞ ¼ 0; u · ð∂au − ωa × uÞ ¼ 0:

ð3:38Þ

Since ðE1; E2; uÞ forms a basis of the three-dimensional
internal space, we can finally conclude that u satisfies the
property

4One could also mention a third possibility, which is the so-
called gauge unfixing procedure [48].
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∂au − ωa × u ¼ 0: ð3:39Þ
This property will turn out to be very useful in the next
section.

5. Summary

The resolution of the second class constraints ends the
canonical analysis of the three-dimensional model in the
time gauge. The phase space is now totally parametrized by
the pair ðEa

i ðxÞ; Aj
bðyÞÞ, where A is clearly the three-

dimensional analogue of the suð2Þ Ashtekar-Barbero

connection, and E is its conjugate electric field. These
variables satisfy the Poisson bracket

fEa
i ðxÞ; Aj

bðyÞg ¼ γδabδ
j
iδ

2ðx − yÞ ð3:40Þ
and are subject to the constraints G≃ 0, Ha ≃ 0, and
H0 ≃ 0. To cast the expression of the scalar constraint H0

in a form similar to the one used in four-dimensional loop
quantum gravity, let us modify the term x · R12 ¼

ffiffiffiffiffi
x2

p
u ·

R12 in the following way:

u · R12 ¼ u · ð∂1ω2 − ∂2ω1 − ω1 × ω2Þ
¼ ∂1ðu · ω2Þ − ∂1u · ω2 − ∂2ðu · ω1Þ þ ∂2u · ω1 − u · ω1 × ω2

≃ −∂1ðu · A2Þ þ ∂2ðu · A1Þ þ u · ω1 × ω2

≃ −u · ð∂1A2 − ∂2A1Þ − ∂1u · A2 þ ∂2u · A1 þ u · ω1 × ω2

≃ −u · F 12 þ u · ðA1 × A2 þ ω1 × A2 þ A1 × ω2 þ ω1 × ω2Þ
≃ −u · F 12 þ u · K1 × K2: ð3:41Þ

In the second and fourth lines we have used the Leibniz
rule, and in the third and fifth lines we have used the
solution (3.37) and the property (3.39). Finally, in the last
line, we have introduced the quantity

Ka ¼ Aa − ðAa · uÞuþ u × ∂au ¼ u × ð∂auþ Aa × uÞ:
ð3:42Þ

The weak equality ≃ means equality up to terms propor-
tional to the Gauss constraint G or its derivatives ∂aG. In
this sense, the Hamiltonian constraint H0 is therefore
weakly equivalent to the following expression:

u · ðF 12 − ð1þ γ−2ÞK1 × K2Þ≃ 0: ð3:43Þ

Since Ka ≃ Aa þ ωa, the variable γ−1Ka can be seen as the
three-dimensional analogue of the extrinsic curvature
appearing in the four-dimensional Hamiltonian constraint.
Because the vectors Ka are orthogonal to u by virtue of
(3.42), the quantity K1 × K2 is clearly in the direction of u.
As a consequence, one can view the vectorial constraints
Ha and the modified scalar constraint (3.43) as the
components of the same three-dimensional constraint
defined by

H ¼ F 12 − ð1þ γ−2ÞK1 × K2 ≃ 0: ð3:44Þ

The fact that we can view Ha and H0 as the component
of a same vector H is a special property of this three-
dimensional model that is evidently no longer true in four
dimensions. As we will see, this is in some sense respon-
sible for the fact that the model will be exactly solvable at
the quantum level.

C. On the role of the Barbero-Immirzi parameter

Before studying the quantization of the theory, let us
conclude this section about the classical analysis with a
discussion on the role of the Barbero-Immirzi parameter.
As already emphasized in [17] and reviewed in the previous
subsections, the presence (or absence) of γ in the descrip-
tion of the classical phase space seems to be closely related
to the partial gauge fixing of the internal Lorentz group.
With the two gauge choices that we have just studied, it

seems apparent that the three-dimensional Barbero-Immirzi
parameter γ “knows something” about the Lorentzian
signature of the gauge group of the action (2.4). Indeed,
when using the time gauge and reducing the Lorentz group
to SU(2), the Lorentzian signature is lost and, if γ were not
present, there would be no way of knowing that the original
action that we started our analysis with was Lorentzian and
not Euclidean.5 Therefore, everything happens as if γ were
keeping track of the fact that we started with a Lorentzian
signature. By contrast, when SLð2;CÞ is reduced to
SU(1, 1) by using the gauge of Sec. III A, the
Lorentzian signature is still encoded in the gauge group
after the gauge fixing, and γ completely drops out of the
theory because it becomes just superfluous.
Another important observation is that the connection

variables A (3.4) and (3.18) that appear once we perform
the two gauge choices have very different properties. In
addition to their structure group being different because of

5Just as in the four-dimensional Holst theory, once the gauge
group [either SOð4Þ or SLð2;CÞ] of the action is reduced to
SU(2) by using the time gauge, the only remaining information at
the level of the phase space about the gauge group of the non-
gauge-fixed action is a relative sign in the scalar constraint.
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the gauge fixing, their transformation behavior under diffeo-
morphisms differ. Indeed, the suð1; 1Þ connection (3.4)
transforms as a one-form under spacetime diffeomorphisms,
whereas the suð2Þ connection (3.18) transforms correctly
only under spatial diffeomorphisms. Here again, the
analogy between our model and the four-dimensional theory
holds, and the anomalous transformation behavior of the
suð2Þ connection is exactly analogous to the anomalous
transformation behavior of the four-dimensional Ashtekar-
Barbero connection [17,39]. This comes from the well-
known fact that the Ashtekar-Barbero connection is not the
pullback of a spacetime connection [49].
What the three-dimensional model that we are studying

here strongly suggests is that γ should be irrelevant at the
quantum level. Indeed, we have seen that there exists a
gauge in which the dynamical variable is an suð1; 1Þ
connection (which in addition transforms correctly under
spacetime diffeomorphisms), and where γ plays no role at
all since it disappears already in the classical Hamiltonian
theory. The quantization of this suð1; 1Þ theory is far from
being trivial, but it can be done for example using the
combinatorial quantization scheme [29–32], and it is clear
that γ will play no role in this construction and will not
appear in the spectrum of any observable. This is a strong
indication that γ should not play any role at the quantum
level even in the time gauge, if we require the SU(2)
quantization to be anomaly-free. This would otherwise lead
to anomalies, i.e. different quantum predictions in two
different gauges, which is not physically acceptable. The
two different gauge choices have to lead to equivalent
physical predictions in the quantum theory. Therefore,
either one can show that the imposition of all the quantum
constraints in the SU(2) theory leads to the disappearance
of γ (which seems pretty unlikely), or the approach based
on the SU(2) Ashtekar-Barbero connection has to be
reconsidered and modified. Then, there could be two types
of modifications. (1) One could think of abandoning the
SU(2) connection at the classical level, and instead work
with the self-dual connection and deal with the reality
conditions. This is what we are going to do in the next
section. (2) Alternatively, one can use γ ∈ R and the SU(2)
formulation to start the quantization, but then an analytic
continuation back to γ ¼ �i has to be performed. We
believe that this should be the case in the four-dimensional
theory.

IV. QUANTUM THEORY

Since three-dimensional gravity admits only topological
and no local degrees of freedom, for a long time it was
thought to be too simple to be physically or mathematically
interesting. The seminal work of Witten [27] based on its
formulation as a Chern-Simons theory [50] showed that it
was actually an exactly soluble system with incredibly rich
underlying mathematical structures, and provided an
unforeseen link with topological invariants [51]. This

amazing result triggered an intense research activity around
three-dimensional quantum gravity, which led in particular
to the introduction by Ponzano and Regge [52] and later on
Turaev and Viro [53], of the first spin foam models. These
models inspired later on, in four dimensions, the attempts to
represent the covariant dynamics of loop quantum gravity
[54–59], and in [60,61] the link between three-dimensional
loop quantum gravity and spin foam models was estab-
lished in the case of a vanishing cosmological constant (see
[62] for a more general review). This illustrates concretely
the relevance of three-dimensional quantum gravity as a
way to investigate the unknown aspects of the higher-
dimensional theory. We show in this section that three-
dimensional quantum gravity can also be used to
investigate the role of the Barbero-Immirzi parameter in
canonical loop quantum gravity.
This section is organized as follows. First we discuss the

quantization of the three-dimensional model in the non-
compact SU(1,1) gauge of Sec. III A. We argue that the
combinatorial quantization scheme can give a precise
definition of the physical Hilbert space even if the gauge
group is noncompact. By contrast, the loop quantization
gives a clear definition of the kinematical Hilbert space but
a more formal description of the physical Hilbert space.
The rest of the section is devoted to the quantization in the
SU(2) time gauge of Sec. III B. We adapt and apply the
loop quantization by first turning the initial Ashtekar-
Barbero connection into a complex (self-dual) connection,
and then rewriting the associated reality conditions as a
linear simplicitylike constraint. Finally, we show that the
resolution of this constraint leads to the elimination of the
Barbero-Immirzi parameter at the quantum level.

A. Quantization in the noncompact gauge

In this subsection, we recall a few facts about the
quantization of theG ¼ SUð1; 1Þ BF theory that is obtained
from the action (2.4) in the noncompact gauge.
The total symmetry group Gtot of a BF theory is bigger

than the gauge group G and is totally determined by the
signature of the spacetime (or equivalently the “signature”
of the gauge group G) and the sign of the cosmological
constant Λ. In the case that we are interested in, G ¼
SUð1; 1Þ and Λ ¼ 0, and the total symmetry group is the
three-dimensional Poincaré group Gtot ¼ ISUð1; 1Þ. In
other words, G is somehow augmented with the group
of translations. The invariance under translations and the
action of G is equivalent (when the B field satisfies
invertibility properties) to the invariance under spacetime
diffeomorphisms. The total symmetry groupGtot has a clear
geometrical interpretation as the isometry group of the
three-dimensional Minkowski space M3, and any solution
to the Einstein equations in the Lorentzian regime with
vanishing cosmological constant is locally M3. In fact,
such a BF theory is equivalent to a three-dimensional
Chern-Simons theory whose gauge group is precisely Gtot.
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The Chern-Simons connection takes values in the Lie
algebra suð1; 1Þ ⊕ R3 and admits two components, an
suð1; 1Þ one and a translational one. The suð1; 1Þ compo-
nent is the original BF connection, whereas the transla-
tional component is given essentially by the B field (with
the correct dimension).
The symmetry group ISUð1; 1Þ is noncompact, and

inherits the noncompactness of both SU(1, 1) and the
group of translations R3. This makes the quantization quite
involved and is the reason for which quantum BF theory
was originally studied in the Euclidean case with a positive
cosmological constant. Indeed, this is the only case in
which the total symmetry group, SUð2Þ × SUð2Þ, is com-
pact. In this case, the path integral can be given a well-
defined meaning, and gives (three-manifolds or knots)
topological invariants. In the noncompact case the defi-
nition of the path integral is still an open problem. The most
recent attempts to address this issue are based on analytic
continuation methods to go from the compact case to the
noncompact one [63]. To our knowledge, the Hamiltonian
quantization offers a more efficient framework to study
Chern-Simons theory with a noncompact group.
Among the different canonical quantization methods for

three-dimensional gravity, the loop and the combinatorial
quantizations are certainly the most powerful ones. In fact,
the two schemes are closely related as it was shown in [64].
They are both based on a discretization of the spatial
surface Σ, which is replaced by an oriented graph Γ
sufficiently refined to resolve the topology of Σ. To
simplify the discussion, we will assume that Σ has no
boundaries and does not contain any particles. Then, the
graph Γ is necessary closed and contains L links and V
vertices.

1. The combinatorial quantization scheme

The combinatorial approach consists in quantizing the
theory in its Chern-Simons formulation. The dynamical
variable is the isuð1; 1Þ Chern-Simons connection, and
with each oriented link l of the graph Γ is associated an
element Ul ∈ ISUð1; 1Þ. After introducing a regularization
scheme (based on the choice of a linear order at each vertex
of Γ), the set of elements Ul forms a quadratic Poisson
algebra known as the Fock-Rosly Poisson bracket. The
Fock-Rosly bracket involves classical r-matrices of
isuð1; 1Þ, and its quantization naturally leads to the
quantum double DSUð1; 1Þ which plays a central role
for the algebra of quantum operators. The precise definition
of DSUð1; 1Þ can be found for instance in [64], where it is
shown that DSUð1; 1Þ can be interpreted as a quantum
deformation of the algebra of functions on the Poincaré
group ISUð1; 1Þ. As a consequence, the combinatorial
quantization clearly shows that, at the Planck scale,
classical isometry groups are turned into quantum groups,
and classical smooth (homogeneous) manifolds become
noncommutative spaces. To make a very long story short,

physical states are constructed from the representation
theory of DSUð1; 1Þ. The combinatorial quantization is a
very powerful technique that allows one (at least in
principle) to construct the physical Hilbert space of
three-dimensional gravity for any Riemann surface Σ, even
in the presence of point particles (see [31] or [65] for
instance).

2. The loop quantization

The loop quantization is based on the BF formulation of
three-dimensional gravity. In the continuous theory, the
basic variables (3.9) are the suð1; 1Þ-valued connection A
and its conjugate variable E. Given a graph Γ, one
introduces the holonomies Ul ∈ SUð1; 1Þ along the links
l of Γ, and the “fluxes” Xl of the electric field along edges
dual to the links of Γ. These discretized variables Ul and
Xl form the holonomy-flux Poisson algebra. The quanti-
zation promotes these classical variables to operators, the
set of which forms a noncommutative algebra which can be
represented, as usual in loop quantum gravity, on the
Hilbert space

H0ðΓÞ ¼ ðCðSUð1; 1Þ⊗LÞ; dμðΓÞÞ ð4:1Þ

of continuous functions on the tensor product SUð1; 1Þ⊗L

endowed with the measure dμðΓÞ. At this stage, the
measure is defined as the product of L measures dμ0 on
SU(1, 1). We notice immediately that the situation is more
subtle than in the four-dimensional case because of the
noncompactness of the group SU(1, 1). Indeed, for the
Hilbert space H0ðΓÞ to be well defined, one should restrict
the space of continuous functions to the space of square
integrable functions with respect to dμðΓÞ, i.e.
L2ððSUð1; 1Þ⊗L; dμðΓÞÞ. However, any solution to the
Gauss constraints is, by definition, invariant under the
action of SU(1, 1) at the vertices v of Γ, and therefore
cannot belong to the set of square integrable functions due
to the infinite volume of SU(1, 1). As a consequence, the
construction of the kinematical Hilbert space requires a
regularization process, which amounts to dividing out the
volume of the gauge group. This has been studied and well
understood in [66]. For this construction, it is useful to
consider the simplest graph Γ that resolves the topology of
Σ. When Σ is a Riemann surface (with no punctures and no
boundaries) of genus g, the simplest graph Γ consists in
only one vertex v and L ¼ 2g loops starting and ending at
v. Such a graph is called for obvious reasons a flower
graph, and each loop is in one-to-one correspondence with
a generator of the fundamental group Π1ðΣÞ. Since the
problem of defining the kinematical Hilbert space is a
consequence of the invariance of kinematical states under
the action of SU(1, 1) at each vertex, this difficulty is
considerably reduced by choosing Γ to be a flower graph,
and one can construct rigorously the kinematical Hilbert
space
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HkinðΓÞ ¼ ðCinvðSUð1; 1Þ⊗LÞ; dμregðΓÞÞ; ð4:2Þ
where “inv” stands for invariant and “reg” for regularized. One has

f ∈ HkinðΓÞ ⇒ fðU1;…; ULÞ ¼ fðVU1V−1;…; VULV−1Þ;
Z

jfj2dμregðΓÞ < ∞; ð4:3Þ

for U1;…; UL and V elements in SU(1, 1). We refer the
reader to [66] for explicit details about this construction.
Once the Gauss constraint is imposed at the quantum

level, the flatness condition has to be implemented. This
was addressed in the Euclidean regime (where the gauge
group is compact) in [60]. More precisely, it was shown that
one can define a “projector” from the kinematical state
space into the moduli space of flat SU(2) connections. This
allows one to construct rigorously the physical scalar
product between kinematical states. The idea is very simple
and consists in replacing the measure dμkinðΓÞ on the
kinematical Hilbert space associated with the graph Γ by

dμphysðΓÞ ¼ dμkinðΓÞ
Y
f∈Γ

δ

�
~Y

l⊂f
Ul

�
; ð4:4Þ

where the first product runs over the set of faces f in Γ that
can be represented by an ordered sequence ðU1;…; UnÞ of
n links, δ is the Dirac distribution on SU(2), and Ul is the
group element associated with the oriented link l. The
physical scalar product can be shown (under certain
hypothesis) to be well defined, and to reproduce exactly
the spin foam amplitudes of the Ponzano-Regge model.
Even if one does not obtain generically (for any Riemann
surface Σ) an explicit basis for the physical Hilbert space,
one can concretely compute the physical scalar product
between any two kinematical states. In principle, one could
adapt this construction in order to define the physical scalar
product in the noncompact case of SU(1, 1) BF theory, and
replace the measure on the kinematical Hilbert space (4.2)
by a measure similar to (4.4) but with δ the Dirac
distribution on SU(1, 1) instead. Even if the presentation
that we have done here is incomplete and formal, the
technical details are not needed for the main purpose of
the paper.

B. Quantization in the time gauge

We now study the quantization of the theory in the time
gauge. There are essentially two ways of doing so. The first
one is to mimic exactly four-dimensional loop quantum
gravity, where one starts with the construction of the
kinematical Hilbert space and then finds a regularization
of the Hamiltonian constraint à la Thiemann in order to find
the physical solutions. The second one relies on a refor-
mulation of the classical phase space in a way that looks
again like a BF theory. Let us start with a discussion about

the first strategy. We use the same notations as in the
previous subsection: Σ is the spatial manifold, and Γ a
graph in Σ with L links and V vertices.
In SU(2) loop quantum gravity, the construction of the

kinematical Hilbert space leads to

HkinðΓÞ ¼ ðCðSUð2Þ⊗LÞ; dμðΓÞÞ; ð4:5Þ
where CðGÞ denotes the space of continuous functions on
the groupG, and dμðΓÞ is the usual Ashtekar-Lewandowski
measure defined as a product of L Haar measures dμ0 on
SU(2). Contrary to what happens in four dimensions where
it is necessary to consider all possible graphs on Σ (and to
take a projective limit), here it is sufficient to fix only one
graph (appropriately refined to resolve the topology of Σ) in
order to define the kinematical Hilbert space. Since the
gauge group is compact, the kinematical Hilbert space is
well defined, andHkinðΓÞ carries a unitary representation of
the three-dimensional holonomy-flux algebra. The action
of a flux operator Xl on any kinematical state ψ ∈ HkinðΓÞ
can be deduced immediately from the action on the
representation matrices DðjÞðUlÞ (which are the building
blocks of the spin networks), where DðjÞ∶ SUð2Þ → V ðjÞ is
the SU(2) spin-j representation on the space V ðjÞ of
dimension dj ¼ 2jþ 1. This action is given by

Xi
l ⊳ DðjÞðUl0 Þ ¼ −iγlPlδl;l0DðjÞðUl<cÞJiDðjÞðUl>cÞ;

ð4:6Þ
where c denotes the intersection l∩l0. The constants γ and
lPl ¼ ℏGN are the Barbero-Immirzi parameter and the
three-dimensional Planck length. As in four dimensions,
the spin network states diagonalize the three-dimensional

analogue of the area operator, namely
ffiffiffiffiffiffi
X2
l

q
, whose

eigenvalues are γlPl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlðjl þ 1Þp

. Therefore, one arrives
at the conclusion that in the time gauge the kinematical
length operator has a discrete spectrum given by the
Casimir operator of SU(2), and is furthermore proportional
to the Barbero-Immirzi parameter, which can be interpreted
as the fundamental length scale in Planck units. Just as in
the four-dimensional case, one inherits a γ-dependency in
the quantum theory, which as we will argue later on is
completely artificial and an artifact of the gauge choice.
It is, however, legitimate to ask what happens if we try to

push further the derivation of physical results based on this
SU(2) formulation. For example, mimicking once again
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what is done in the four-dimensional theory, one could try
to compute the entropy of a black hole, which in this three-
dimensional model would correspond to a Bañados-
Teitelboim-Zanelli (BTZ) black hole. Using the notion
of observables in the Turaev-Viro spin foam model, one can
reproduce the calculation of [67] and choose the funda-
mental length elements to be such that the perimeter L of
the black hole is given by

L ¼ 8πγlPl
Xp
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlðjl þ 1Þ

p
; ð4:7Þ

where p is the number of spin network links l puncturing
the horizon (we have here reintroduced the appropriate
numerical factors). Then, the computation of the number of
microstates leads at leading order to an entropy formula of
the type

SBH ¼ L
4lPl

γ0
γ
; ð4:8Þ

and one can proceed by fixing the value of the three-
dimensional Barbero-Immirzi parameter to be γ0, whose
value can be computed explicitly. What is remarkable is
that this value agrees with that derived in the four-
dimensional case. This observation is a further indication
that our three-dimensional model does indeed mimic
exactly its four-dimensional counterpart, and that the
behavior of the Barbero-Immirzi parameter is the same
in both cases [once we use the time gauge and the SU(2)
formulation].
Finally, once the kinematical structure is established, one

should impose at the quantum level the three remaining
constraints H ≃ 0 (3.44). These appear as the sum of two
terms, H ¼ HE − ð1þ γ−2ÞHL, where HE ¼ F 12 and
HL ¼ K1 × K2 are, respectively, called the Euclidean
and the Lorentzian part of the constraints. In four dimen-
sions, one has to consider separately the vector constraint
and the scalar constraint, but we have seen that the
peculiarity of three-dimensional gravity is that these can
be treated as a single set. The set H of constraints needs to
be regularized in order to have a well-defined action on
HkinðΓÞ, and it is clear that the regularization of HL will
lead to the same ambiguities that are present in four-
dimensional canonical loop quantum gravity [68,69]. Since
we know (from the quantization of three-dimensional
gravity in the usual BF or spin foam setting) what the
physical states should look like, one could potentially
investigate these regularization ambiguities of the
Hamiltonian constraint and maybe try to clarify them.
Although this would be a very interesting task that could
have important consequences for the construction of the
four-dimensional theory, we are going to follow instead the
second strategy mentioned above, which consists in rewrit-
ing the SU(2) Ashtekar-Barbero phase space in the form of
a BF theory.

1. Equivalence with a complex BF theory

Our aim is to reformulate the phase space of the three-
dimensional theory in the time gauge in a way equivalent to
a BF theory. More precisely, we are looking for a pair
ðAi

a;Ea
i Þ of canonical variables such that the constraints

G≃ 0 (3.19) and H ≃ 0 (3.44) are equivalent to the
constraints

G ¼ ∂aEa þAa ×Ea ≃ 0; F12 ≃ 0; ð4:9Þ

where F12 is the curvature of A. We use the following
ansatz for the expressions of the new variables in terms of
the old ones:

A ¼ Aþ αLþ βK; E ¼ ζEþ ξu × E; ð4:10Þ

where L ¼ duþ A × u, K ¼ u × L was introduced in
(3.42), and α, β, ζ, and ξ are constants that have to be
fixed by the relations (4.9). In fact, this ansatz gives the
most general expression for a connection A and an electric
field E that transform correctly under SU(2) gauge trans-
formations. This results from the fact that u, L, and K
transform as vectors under such gauge transformations.
It is useful to derive some properties of the quantities L

and K. A direct calculation shows that L and K satisfy the
equations

∂1L2 − ∂2L1 þ A1 × L2 þ L1 × A2 ¼ F 12 × u; ð4:11aÞ

∂1K2 − ∂2K1 þ A1 × K2 þ K1 × A2

¼ u × ðF 12 × uÞ þ 2L1 × L2: ð4:11bÞ

Furthermore, we have that L1 × L2 ¼ K1 × K2. Thus, the
curvature F of A can be written in terms of F and K as
follows:

F12 ¼ F 12 þ ðα2 þ β2 þ 2βÞK1 × K2 þ αF 12 × u

þ βðu × F 12Þ × u: ð4:12Þ

Because of the fact that K1 × K2 is in the direction of u, the
curvature F takes the form

F12 ¼ ð1 − αu − βu2ÞðF 12 þ ðα2 þ β2 þ 2βÞK1 × K2Þ;
ð4:13Þ

where, for any vector a, a denotes the matrix that acts as
abi ¼ εjki ajbk on any vector b. As a consequence, since the
three-dimensional matrix ð1 − αu − βu2Þ is invertible, the
constraints H ≃ 0 are equivalent to F12 ≃ 0 if and only if

α2 þ ð1þ βÞ2 þ γ−2 ¼ 0: ð4:14Þ

Before considering the fate of the Gauss constraint, we
already see that the connection A must be complex when
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the Barbero-Immirzi parameter γ is real. Indeed, the general
solution of the previous equation is given by

α ¼ z sin θ; β ¼ z cos θ − 1; ð4:15Þ

with z2 þ γ−2 ¼ 0, and where θ is an arbitrary angle. We
will discuss the complexification in more detail later on.
Now, we compute the new Gauss constraint G in term of

the original variables. A long but straightforward calcu-
lation shows that

G ¼ ζGþ ξu ×Gþ ðζβ − ξαÞðG · uÞu
þ ðξþ αζ þ βξÞð∂au × Ea þ ðAa · EaÞuÞ; ð4:16Þ

which can be written as follows:

G ¼ MGþ ðξþ αζ þ βξÞð∂au × Ea þ ðAa · EaÞuÞ;
ð4:17Þ

where M is the matrix M ¼ ζð1þ βÞ − ξαþ ξuþ
ðζβ − ξαÞu2. A necessary condition for G ¼ 0 to be
equivalent to G ¼ 0 is that the coefficient ðξþ αζ þ βξÞ
in front of the second term in (4.17) should be vanishing.
This implies that ξ ¼ −λα and ζ ¼ λð1þ βÞ with an
arbitrary (but nonvanishing) coefficient λ which in addition
makes the matrix M necessarily invertible. As a conse-
quence, the general solution of the new constraints (4.9) is
given by

A ¼ Aþ z sin θLþ ðz cos θ − 1ÞK;
λ−1E ¼ z cos θEþ z sin θðu × EÞ; ð4:18Þ

where θ is an arbitrary angle, λ ≠ 0, and z2 þ γ−2 ¼ 0.
Since λ affects only the Poisson bracket between A and E,
we can set it to λ ¼ 1 for simplicity without loss of
generality.
At this point, there is a priori no reason forA andE to be

canonically conjugated, and even A itself might be non-
commutative. This would prevent the phase space of the
theory in the time gauge from being equivalent to that of a
BF theory. Fortunately, the previous expressions can be
simplified considerably by noticing that all the solutions
(4.18) are in fact equivalent. More precisely, for any
solution (4.18), there exists a Λ ∈ SUð2Þ that sends this
solution to the simple one corresponding to θ ¼ 0. As a
consequence, one can take θ ¼ 0without loss of generality,
and this makes the study of the new variables much simpler.
To see that this is indeed the case, let us compute how a
solution (4.18) transforms under the action of a rotation
Λðn; αÞ of angle α in the plane normal to n. Such an
element is represented by the matrix

Λðn; αÞ ¼ cos

�
α

2

�
þ 2 sin

�
α

2

�
J · n ð4:19Þ

in the fundamental (two-dimensional) representation of SU
(2), where Ji are the suð2Þ generators satisfying the Lie
algebra

½Ji; Jj� ¼ εij
kJk: ð4:20Þ

If we identify any vector a ∈ R3 with an elements of suð2Þ
according to the standard map a ↦ a · J, the transforma-
tion laws for A ↦ AΛ and E ↦ EΛ under the action of Λ
are given by

AΛ ¼ Λ−1AΛþ Λ−1dΛ; EΛ ¼ Λ−1EΛ: ð4:21Þ
To go further, we need to compute the adjoint action of
SU(2) on its Lie algebra, and the differential form in the
expression of AΛ:

AdΛJ ¼ Λ−1JΛ ¼ cos αJ þ sin αðn × JÞ

þ 2sin2
�
α

2

�
ðn · JÞn; ð4:22aÞ

Λ−1dΛ ¼
�
1þ sin2

�
α

2

�
J · n

�
dαþ sin αðJ · dnÞ

− 2sin2
�
α

2

�
J · n × dn; ð4:22bÞ

where we used the relation

JiJj ¼ −
1

4
δij þ

1

2
εij

kJk ð4:23Þ

satisfied by the suð2Þ generators in the fundamental
representation. We can now compute the transformations
(4.21) to obtain

AΛ ¼ Aþ z sinðθ þ αÞLþ ðz cosðθ þ αÞ − 1ÞK; ð4:24aÞ

EΛ ¼ zðcosðθ þ αÞE − sinðθ þ αÞn × EÞ; ð4:24bÞ

when α is assumed to be constant, i.e. dα ¼ 0. Taking α ¼
−θ simplifies the previous expressions and reduces the
variables AΛ and EΛ to AΛ and EΛ given in (4.18) where
θ ¼ 0. Finally, as announced, all the solutions of the type
(4.18) are equivalent. Therefore, we will now fix θ ¼ 0, and
use again the notation A and E to denote

A ¼ Aþ ðz − 1ÞK; E ¼ zE: ð4:25Þ
As a conclusion, there is only one choice [up to SU(2)
gauge transformations] of canonical variables that reduces
the constraints obtained in the time gauge to BF-like
constraints. However, it is immediate to notice that E
and A are not canonically conjugated, and also that the
components of the connection do not commute with respect
to the Poisson bracket. This is a priori problematic since it
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makes the symplectic structure different from that of BF
theory. Fortunately, there is a simple and very natural
explanation for this fact. Instead of the connectionA, let us
consider the connection

Aa ¼ Aa þ
z − 1

jEj εabðEb ·GÞx ¼ zAa þ ðz − 1Þωa;

ð4:26Þ
which differs from A only by a term proportional to the
Gauss constraint, and where ωi

a is the solution of the
second class constraints written in (3.37). Clearly, adding a
term proportional to the Gauss constraint does not change
anything in the previous analysis. Moreover, if we go back

to the very first definition of Ai
a ¼ γωð0Þi

a − ωi
a in terms of

the boost ωð0Þi
a and rational ωi

a components of the initial
slð2;CÞ connection, we see immediately that, depending
on the sign of γz ∈ fþ;−g, the object

Aa ¼ zAa þ ðz − 1Þωa ¼ γzωð0Þ
a − ωa ¼ �iωð0Þ

a − ωa

ð4:27Þ
is the (anti-)self-dual component of the initial slð2;CÞ
connection. This comes from the fact that z ¼ �iγ−1. In
other words, reducing the phase space of the time gauge
theory to that of a BF theory has mapped the initial suð2Þ
Ashtekar-Barbero connection to the (anti-)self-dual con-
nection, as one could have anticipated. The property (4.27)
ensures thatE andA (up to the Gauss constraint) satisfy the
“good” canonical relations (a proof of this is given in
Appendix B).
Since z ¼ �iγ−1 is purely imaginary when the Barbero-

Immirzi parameter γ is real, A is complex and can be
interpreted as an slð2;CÞ-valued connection. If we denote
by Pi ∈ slð2;CÞ the infinitesimal boost generators (see
Appendix A) that satisfy the Lie algebra

½Ji; Pj� ¼ εij
kPk; ½Pi; Pj� ¼ −εijkJk; ð4:28Þ

and make explicit the Lie algebra generators that serve as a
basis for the components of the connection, then the
complex connection (4.25) can be identified with

A ¼ A · J þ ðz − 1ÞK · J ¼ ðA − KÞ · J � iγ−1K · J

¼ ðA − KÞ · J � γ−1K · P ð4:29Þ

since P ¼ −iJ in the fundamental representation.

2. Emergence of the linear simplicitylike condition

Since the connection A is slð2;CÞ valued, we cannot
construct the quantum theory using the SU(2) kinematical
Hilbert space (4.5), but instead we have to consider an
extended space which is the space Hext

kinðΓÞ of SLð2;CÞ
cylindrical functions. Without loss of generality, we can
choose Γ to be the flower graph that contains only one
vertex. Elements of Hext

kinðΓÞ can be (formally) expanded
into SLð2;CÞ spin networks, which consist of an assign-
ment of irreducible representations of SLð2;CÞ to the links
l, and of an intertwiner to the unique vertex v of Γ. Any
representation of SLð2;CÞ is labeled by a couple ðχ0; χ1Þ of
complex numbers such that, for the principal series, χ0 ¼
mþ iρ and χ1 ¼ −mþ iρ, with ρ ∈ R and m ∈ N.
Because of the noncompactness of the Lorentz group, it
is difficult to treat the SLð2;CÞ invariance at the vertex of Γ
[i.e. the construction of SLð2;CÞ intertwiners] and to
construct a positive-definite physical scalar product, but
we will leave this technical difficulty aside. In fact, we are
going to see that it is not necessary to consider the space of
SLð2;CÞ states at all. The reason is that, as we will now
show, the reality conditions satisfied by the complex
connection ensure that it is suð1; 1Þ valued. This
SU(1, 1) connection can then be taken as the starting point
for the quantization.
Contrary to the SU(2) spin network states, the SLð2;CÞ

ones contain a priori a nontrivial boost component. To
understand this structure more precisely, let us decompose
the connection A as follows:

A ¼ A · J þ ðz − 1ÞK · J

¼ A · J þ ð�iγ−1 − 1Þðu × duþ u × ðA × uÞÞ · J
¼ ½−u × du · ðJ � γ−1PÞ� þ ½ðA · uÞðu · JÞ � γ−1ðA × uÞ · ðP × uÞ�: ð4:30Þ

To obtain this expression, we have rewritten (4.25) with
(3.42), used the relations z ¼ �iγ−1 andPi ¼ −iJi, andmade
explicit the Lie algebra generators. It shows thatA possesses
two different parts, which are the two terms between the
square brackets. Let us start by interpreting the second one.

For this, we introduce the three slð2;CÞ elements ~J3 ¼ J · u

and ~Pα ¼ P × u · vα, where the two vectors viα ∈ R3

(α ¼ 1; 2) are such that vα · vβ ¼ δαβ and v1 × v2 ¼ u.

Therefore, ðv1; v2; uÞ forms an orthonormal basis of R3.
The two vectors vα are defined up to a rotation in the plane
orthogonal to u, but this is not relevant for what follows. It is

immediate to see that ð ~J3; ~P1; ~P2Þ forms the Lie algebra
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½ ~P1; ~P2� ¼ − ~J3; ½ ~P2; ~J3� ¼ ~P1; ½ ~J3; ~P1� ¼ ~P2;

ð4:31Þ

and therefore generates an suð1; 1Þ subalgebra of the initial
slð2;CÞ algebra. In the literature, the Lie algebra suð1; 1Þ is
usually defined as being generated by the three elements
ðF0; F1; F2Þ satisfying

½F1; F2� ¼ iF0; ½F0; F2� ¼ iF1; ½F0; F1� ¼ −iF2:

ð4:32Þ

These generators are related to the previous ones through the
map ð~J3; ~P1; ~P2Þ ↦ iðF0; F1; F2Þ.
It is now easy to see that the second term between square

brackets in (4.30) defines an suð1; 1Þ-valued one-form
which has to be interpreted as an suð1; 1Þ connection. This
condition is necessary in order to avoid anomalies, i.e.
different quantum theories in two different gauges. Indeed,
we saw in the previous section that there is a gauge in
which the original three-dimensional Holst action takes the
form of an SU(1, 1) BF theory, and therefore it is natural to
recover an suð1; 1Þ connection even if we work in the time
gauge. However, for this to be true, the first term in the
expression (4.30) for the slð2;CÞ connection must vanish,
i.e. ðJ � γ−1PÞ × u ¼ 0. This relation means that the two
(independent) components of J � γ−1P that are orthogonal
to u are constrained to vanish, while the third component is
a priori unconstrained. In fact, this third component has to
be constrained as well for the sake of consistency. To
understand this point, the constraints ðJ � γ−1PÞ × u ¼ 0
have to be interpreted as reality conditions that select a real
form in SLð2;CÞ. There are only two possible ways of
doing so, which correspond to selecting the subgroup
SU(2) or the subgroup SU(1, 1). These solutions are
associated, respectively, with the linear simplicity
constraints

SUð2Þ∶ fðJ � γ−1PÞ × u ¼ 0; ðJ � γ−1PÞ · u ¼ 0g;
ð4:33aÞ

SUð1; 1Þ∶ fðJ � γ−1PÞ × u ¼ 0; ðP� γ−1JÞ · u ¼ 0g;
ð4:33bÞ

which represent the only two possible extensions of
ðJ � γ−1PÞ × u ¼ 0. Interestingly, the constraints (4.33a)
can be written as

Ji � γ−1Pi ¼ 0; i ∈ f1; 2; 3g; ð4:34Þ

which corresponds to the linear simplicity constraints of the
EPRL and FKγ spin foam models. On the other hand, the
constraints (4.33b) can be written as

J1 � γ−1P1 ¼ 0; J2 � γ−1P2; P3 � γ−1J3 ¼ 0;

ð4:35Þ
or equivalently in the more compact form

Gi � γ−1Fi ¼ 0; i ∈ f0; 1; 2g: ð4:36Þ
Here, Fi are the three generators of suð1; 1Þ introduced
in (A4), and the elements Gi span the complement of
suð1; 1Þ in slð2;CÞ, and are defined by ðG0; G1; G2Þ ¼
iðP3;−J1;−J2Þ. This constraint was introduced in [70] to
define spin foam models for general Lorentzian four-
geometries. One can check that these elements satisfy
the commutation relations

½Fi;Fj� ¼ icijkFk; ½Fi;Gj� ¼ icijkGk; i ∈ f0;1;2g;
ð4:37Þ

where the structure constants cijk are given in (A7). These
commutation relations tell us that (4.36) has the exact same
structure as (4.34), in the sense that both sets of simplicity
constraints relate two vectors that transform in a similar
way under the action of a subgroup of SLð2;CÞ [i.e. either
SU(2) or SU(1, 1)], one of these vectors being the generator
of this given subgroup. In summary, we see that the
constraints (4.33) select a subalgebra of slð2;CÞ.
(1) The constraints Ji � γ−1Pi ¼ 0 consist in modifying

the action of the infinitesimal boosts Pi while
keeping the action of the infinitesimal rotations Ji
unchanged in such a way that the relation (4.34) is
satisfied, i.e. by setting Pi ¼ �γJi. This is exactly
what is done in the construction of spin foam
models. By doing this, the action of the boosts is
somehow compactified, and if one replaces Pi by
�γJi in the expression (4.30), the slð2;CÞ con-
nection reduces to A ¼ A · J. This solution is the
initial suð2Þ-valued Ashtekar-Barbero connection,
and therefore it cannot lead to an suð1; 1Þ con-
nection. In this sense, the first sector of solutions to
the simplicitylike constraints (4.33) selects the
maximal compact subalgebra suð2Þ of slð2;CÞ.

(2) The constraints Gi � γ−1Fi ¼ 0 consist in modify-
ing the action of the infinitesimal generators Gi,
while keeping unchanged the action of the infini-
tesimal suð1; 1Þ generators Fi. In this sense, the
rotations are “decompactified,” and the complex
connection (4.30) reduces to the noncompact
element A ¼ �γ−1A · P. This object does not a pri-
ori define an suð1; 1Þ connection since the P’s do
not form a Lie subalgebra of slð2;CÞ. However, this
is only an apparent problem. Indeed, let us recall that
our extension from suð2Þ to slð2;CÞ has been done
in the two-dimensional representation. In this rep-
resentation, the generators Pi and Ji are related by a
global factor of i, i.e. Pi ¼ −iJi. As a consequence,
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in the fundamental representation, the connection
satisfying the constraint (4.36) can be written in the
form

A ¼ �γ−1A · P ¼ �iγ−1A · J

¼ �iγ−1ðA1F1 þ A2F2 − iA3F0Þ; ð4:38Þ

where we have identified the suð1; 1Þ generators
ðF0; F1; F2Þ with −iðJ3; P1; P2Þ ¼ −ðiJ3; J1; J2Þ. It
is therefore clear that the second solution selects the
noncompact suð1; 1Þ connection in the initial
Lorentz algebra.

We have presented here what seems to be the only two
consistent ways of interpreting the constraints (4.33).
Indeed, these constraints should select a three-dimensional
subalgebra of slð2;CÞ in order for the resulting connection
to be well defined. The first constraint, (4.33a), selects the
compact subalgebra and corresponds to the choice made in
the EPRL and FKγ spin foam models. In the context of our
analysis, this constraint is not physically relevant since we
expect the resulting connection to be valued in suð1; 1Þ and
not in the Lie algebra of a compact group. By contrast, the
second constraint, (4.33b), looks much more appealing
since it leads to an suð1; 1Þ-valued connection and also to
the disappearance of the Barbero-Immirzi parameter in the
spectrum of the geometrical operators due to the overall
factor of γ−1 in A (4.38). Thus, in the time gauge, we have
been able to turn the initial Ashtekar-Barbero connection to
an suð1; 1Þ connection by going through a complexifica-
tion and then imposing the reality conditions. These results
are totally consistent with the results obtained in the
noncompact gauge of Sec. III A, where the Hamiltonian
formulation was shown to be that of an SU(1, 1) BF theory.
Since the equivalence between the SU(2) theory in the time
gauge and a BF theory is established in this three-
dimensional model, the full quantization (i.e. the imposi-
tion of the quantum flatness constraint) can in principle be
performed and does not pose any conceptual problems
(even if it can be mathematically involved).

3. Action of the flux operator

Let us finish this section with a quick discussion on the
disappearance of the Barbero-Immirzi parameter from the
spectra of the geometrical operators. We refer the reader to
the companion paper [71] for more details. Once the
constraints (4.36) are selected, we have the suð1; 1Þ
connection (4.38) and the spin network states are colored
with unitary irreducible representations of SU(1, 1) that we
label by s. We know that the action of the flux operator Xi

l
defined by the triad Ea

i is given by −iℏδ=δAi
a. Moreover,

since fEa
i ; A

j
bg ¼ γδabδ

j
i , we have the Poisson bracket

fEa
i ;A

j
bg ¼ �iδabδ

j
i , and we can compute the action of

the flux on the holonomy of the connection (4.38) to find

Xi
l ⊳ DðsÞðUl0 Þ ¼ �lPlδl;l0DðsÞðUl<cÞJiDðsÞðUl>cÞ;

ð4:39Þ
where c denotes the intersection l ∩ l0. An equivalent point
of view would be to see the flux operator as acting on the
holonomy of the shifted (or self-dual) connection A
defined in (4.27), whose Poisson bracket with E is given
by �i. This action is also independent of γ. Therefore, we
see that it is equivalent to consider the self-dual theory with
an imaginary Barbero-Immirzi parameter or the complex
theory defined with (4.38) and γ ∈ R, since in this case γ
disappears due to the redefinition of the appropriate
variables. Beyond this observation about the role of γ, it
is even more interesting to see that it is possible to obtain a
positive-definite length spectrum.
Indeed, the “gauge invariant” quadratic operator X2

l is
diagonalized by the spin networks, and its eigenvalues are
given by

X2
l ⊳ DðsÞðUl0 Þ ¼ l2Plδl;l0Q

ðsÞDðsÞðUlÞ; ð4:40Þ

where QðsÞ denotes the evaluation of the SU(1, 1) Casimir
operator Q ¼ F2

1 þ F2
2 − F2

0 in the representation labeled
by s. Let us recall that there are two families of unitary
irreducible representations of suð1; 1Þ, the continuous
series (nonexceptional and exceptional classes) and the
discrete series (positive and negative). Q takes negative
values for the later and positive values for the former.
Therefore, if one requires that X2

l be a positive-definite
operator, only the continuous series is admissible. Since X2

l
is the building block of the length operator, at the physical
level this operator will necessarily have a continuous
spectrum. This is to be contrasted with the a priori
prediction that could have been made at the kinematical
level if we had stopped the analysis of the SU(2) theory in
the time gauge at the end of Sec. III, i.e. before recasting the
Hamiltonian constraint as a flatness constraint for the
complex connection A, and before arriving at the linear
constraint that selects the suð1; 1Þ connection. Indeed, if
we had stayed at the superficial level of the SU(2)
kinematics, we would have derived a discrete length
spectrum proportional to γ. The observation that working
with the SU(1, 1) representations leads to a continuous
spectrum independent of γ is completely consistent with the
fact that we are describing Lorentzian three-dimensional
gravity [72].

V. CONCLUSION AND PERSPECTIVES

In this paper we have studied the role of the Barbero-
Immirzi parameter and the choice of connection in the
construction of a symmetry reduced version of loop
quantum gravity. This symmetry reduction consists in
imposing invariance along a given spatial direction, which
reduces the original four-dimensional Holst action to an
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action for three-dimensional gravity with a Barbero-
Immirzi parameter. This action was originally introduced
and analyzed in [28] in its Plebanski form, and further
studied in [17] in Euclidean signature and for two specific
gauge choices. In the Lorentzian theory, these two gauge
choices, which we have shown to be consistent with the
dynamics of three-dimensional gravity, have drastically
different interpretations. The first one, studied in Sec. III A,
reduces the action to that of SU(1, 1) BF theory and leads to
a Hamiltonian formulation without any dependency on the
Barbero-Immirzi parameter. The second one, studied in
Sec. III B and which we refer to as the time gauge, leads
just as in the four-dimensional case to an SU(2) theory
written in terms of the Ashtekar-Barbero connection for
γ ∈ R and admitting the same type of first class Gauss,
scalar, and vector constraints. Since three-dimensional
gravity is an exactly soluble (classical and quantum)
system, we have argued that this model can serve as a
test bed to understand the relevance of the Barbero-Immirzi
parameter in the dynamics of quantum gravity.
We have seen in this three-dimensional model that it is

possible to rewrite the scalar and vector constraints of the
SU(2) theory in the time gauge in the form of a unique
flatness constraint for a complex connection A, and that
this latter is closely related to the complex (anti-)self-dual
Ashtekar-Barbero connection. However, nowhere did we
set by hand the Barbero-Immirzi parameter to the value
γ ¼ �i. Then, we have argued that in order for the quantum
theory to be consistent with the quantization of Lorentzian
three-dimensional gravity [i.e. SU(1, 1) BF theory], the
complex connection A had to be suð1; 1Þ valued, a
requirement that is met only if the generators of slð2;CÞ
satisfy the constraints J � γ−1P ¼ 0 or G� γ−1F ¼ 0.
These constraints are nothing but the linear simplicity
constraints used in the construction of four-dimensional
spin foam models, and their (individual) role is to restrict
the representations of the Lorentz group in a way that is
compatible with the dynamics of quantum general rela-
tivity. More specifically, we have seen that among these
two constraints, only G� γ−1F ¼ 0 is consistent with the
physical content of the theory. Indeed, it is this constraint
that reduces the slð2;CÞ connection to an suð1; 1Þ con-
nection, while the other one gives back an suð2Þ con-
nection. Working with the connection (4.38) then leads to
continuous spectra for the kinematical (and a priori physi-
cal) geometrical operators and to the disappearance of the
Barbero-Immirzi parameter.
These new and surprising observations raise a lot of

questions, the most important one certainly being that of
their implication for the four-dimensional theory and both
its canonical and spin foam quantizations. At first sight, it
may seem that we are running into circles. Indeed, it is
known that in four-dimensional canonical gravity one can
make the choice γ ¼ �i, which evidently gets rid of the
Barbero-Immirzi ambiguity in the theory and simplifies the

Hamiltonian constraint, but at the expense of introducing
the reality conditions which we do not know how to
implement at the quantum level. However, what our
three-dimensional model has shown is that the reality
conditions can in some sense be traded for the linear
simplicitylike constraints G� γ−1F ¼ 0. These can indeed
be thought of as reality conditions since they constrain the
components of the complex connection A in such a way
that the resulting connection is suð1; 1Þ valued (which, as
we have argued, is a physically consistent requirement
since we are describing Lorentzian three-dimensional
gravity). Moreover, we have seen that in order to obtain
the suð1; 1Þ connection, the simplicity constraint has to be
interpreted in a different way from what is done in the
EPRL and FK spin foam models, i.e. by selecting a
noncompact subgroup of SLð2;CÞ and not a compact
one. Finally, we have pointed out that this construction
leads to a positive-definite length spectrum, which trans-
lates the reality condition on the metric.
Without the new ingredient of our construction, which

consists in sending the three-dimensional Ashtekar-
Barbero phase space back to that of SU(1, 1) BF theory,
we would have derived a “wrong" kinematical structure for
three-dimensional gravity. Indeed, if we had worked with
the SU(2) theory, we would have obtained a discrete length
spectrum proportional to γ. Alternatively, if we had naively
chosen γ ¼ �i in order to get rid of the Barbero-Immirzi
ambiguity and simplify the Hamiltonian constraint, we
would have constructed the kinematical structure with
slð2;CÞ spin network states and obtained an incorrect
minus sign in the length spectrum (unless the representa-
tions entering the Casimir operator are interpreted differ-
ently). The key point is therefore the derivation of the
simplicitylike constraint which selects the suð1; 1Þ sub-
algebra as the kinematical arena on top of which to
construct the physical Hilbert space.
Let us emphasize once again that the constraint (4.36)

has been derived and imposed at the classical level, which
is the reason why the kinematical states that we consider are
SU(1, 1) spin networks. Alternatively, one could think of
constructing the kinematical states with the full slð2;CÞ
connection (4.30), and then imposing the simplicity con-
straint in the quantum theory as it is done in the con-
struction of spin foam models. However, following this
second approach one would run into the problem that the
spin foam imposition of the constraints constrains
the holonomies rather than the connection itself [73].
The relationship between these two impositions of the
constraints (constrain and quantize versus quantize and
constrain) should be investigated further in this three-
dimensional model, together with the comparison
between the path integral and canonical quantizations.
Additionally, it is important to point out that we did not
try to solve the Ashtekar-Barbero Hamiltonian constraint
(3.44) in order to find the physical states and to study the
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fate of the Barbero-Immirzi parameter. Instead, we have
argued that already at the classical level there is a different
choice of connection to be made, and that this choice
naturally comes with a set of simplicitylike constraints that
can be imposed in a natural way.
As far as the full four-dimensional theory is concerned,

we now have to think about the implementation of this
three-dimensional construction in both the canonical theory
and the spin foam models. It is quite likely that in the
canonical theory there will be analogous simplicitylike
conditions which restrict the type of representations that
have to be considered (in fact this has already been
observed in [33]). The situation might be clearer in spin
foam models, since their construction relies mainly on
properties of the internal symmetry group and not that
much on the symmetries of the spacetime, and our three-
dimensional model has been constructed without affecting
the internal symmetry group. Of course, the internal
symmetry group has been affected by our gauge choice,
but this is exactly what happens in spin foammodels, where
the simplicity constraints on the B field induce relations
between the SLð2;CÞ representations, which in turn define
the SU(2) Ashtekar-Barbero connection starting from the
initial Lorentz spin connection. It might very well be that
when implementing the linear simplicity constraint with
γ ¼ �i, one has to understand the resulting self-dual
SLð2;CÞ representations rather as representations in the
continuous series of SU(1, 1).
This idea that the original complex Ashtekar variables

may play an important role in quantum gravity has been
recently revived in the context of black hole thermody-
namics [23–25] and on work on the large spin limit of spin
foam models [26]. In [23], it has been shown that in the
context of the SU(2) Chern-Simons description of black
holes in loop quantum gravity [74,75], it is possible to
recover the Bekenstein-Hawking formula for the entropy
when γ ¼ �i. We find these relationships very interesting
and encouraging, and suspect that they will clarify and
indicate how to build a quantum theory based on the
complex variables.
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APPENDIX A: THE LIE ALGEBRAS
suð2Þ, slð2;CÞ, AND suð1;1Þ

Let us first introduce the two-dimensional traceless
Hermitian Pauli matrices

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
;

ðA1Þ

which form a basis of the Lie algebra suð2Þ. One choice of
basis for slð2;CÞ is given by the rotation generators Ji ¼
−iσi=2 and the boost generators Pi ¼ −σi=2 ¼ −iJi, with
i ∈ f1; 2; 3g. They satisfy the following commutation
relations:

½Ji;Jj� ¼ εij
kJk; ½Pi;Pj� ¼−εijkJk; ½Pi;Jj� ¼ εij

kPk:

ðA2Þ

One can see that the rotational algebra suð2Þ generated by
the elements Ji forms a subalgebra of the algebra slð2;CÞ.
On the other hand, the subalgebra suð1; 1Þ is generated by
the elements ðJ3; P1; P2Þ, and one can see from (A2) that
their commutation relations are given by

½P1; P2� ¼ −J3; ½P2; J3� ¼ P1; ½J3; P1� ¼ P2:

ðA3Þ

In the literature, the Lie algebra suð1; 1Þ is often defined as
being generated by the three elements

F0 ¼
1

2

�−1 0

0 1

�
; F1 ¼

i
2

�
0 1

1 0

�
;

F2 ¼
1

2

�
0 1

−1 0

�
; ðA4Þ

which satisfy the commutation relations

½F1; F2� ¼ iF0; ½F0; F2� ¼ iF1; ½F0; F1� ¼ −iF2:

ðA5Þ

These generators are related to the previous ones through
the map ðJ3; P1; P2Þ ↦ iðF0; F1; F2Þ. Their commutation
relations can be written in the more compact form

½Fi; Fj� ¼ icijkFk; ðA6Þ

where i ∈ f0; 1; 2g, and where the structure constants are
given by

c012 ¼ −c102 ¼ c201 ¼ −c021 ¼ c210 ¼ −c120 ¼ −1;
ðA7Þ

as can easily be verified by comparing (A5) with (A6).
Now, starting from the basis (A2), it is convenient to

define a new basis T�
i as

T�
i ≡ 1

2
ðJi � iPiÞ; ðA8Þ

TESTING THE ROLE OF THE BARBERO-IMMIRZI … PHYSICAL REVIEW D 91, 104016 (2015)

104016-21



whose generators realize two commuting copies of suð2Þ,
i.e. satisfy

½T�
i ; T

�
j � ¼ εij

kT�
k ; ½Tþ

i ; T
−
j � ¼ 0: ðA9Þ

Antisymmetric bivectors BIJ form the adjoint representa-
tion of soð3; 1Þ. The Hodge duality operator acts on them
as

⋆BIJ ¼ 1

2
εIJKLBKL; ðA10Þ

which implies that ⋆2 ¼ −id. We can therefore split the
space of bivectors into the direct sum of two eigenspaces
associated with the eigenvalues �i and write

BIJ ¼ Bþ
i T

þIJ
i þ B−

i T
−IJ
i : ðA11Þ

The action of the Hodge dual on the (anti-)self-dual
components is given by

⋆B� ¼ �iB�; ðA12Þ
and the vector representation of soð3; 1Þ that we use is

T�IJ
i ¼ 1

2
ðε0iIJ � iðη0IηiJ − ηiIη0JÞÞ; ðA13Þ

where ηIJ ¼ diagð−1; 1; 1; 1Þ.

APPENDIX B: COMMUTATOR OF TWO
ASHTEKAR-BARBERO CONNECTIONS

The existence of the connection A (4.25) is a crucial
point in the construction of Sec. IV. We have argued that

this connection, shifted with a suitable term proportional to
the Gauss constraint to give (4.26), is canonically con-
jugated to the electric field E (up to a global multiplicative
factor). This argument relies on the fact that the shifted
connection (4.26) corresponds to the self-dual or anti-self-
dual part of the initial slð2;CÞ connection, which is itself
conjugated to E. The nontrivial statement is that all the
connections of the family (3.18) (for any value of γ, either
complex or real) are commutative. This can be proved by
following the same reasoning as in the four-dimensional
case and using properties of the components ωi

a once the
second class constraints are solved.
Because of the expression (4.26) where ωi

a depends only
on the variable Ea

i , showing that fAi
aðxÞ; Aj

bðyÞg ¼ 0

reduces to the problem of showing that

fωð0Þi
a ðxÞ;ωj

bðyÞg þ fωi
aðxÞ;ωð0Þj

b ðyÞg ¼ 0; ðB1Þ

for a; b ∈ f1; 2g, i; j ∈ f1; 2; 3g, and x; y ∈ Σ, which in
turn can be written as the condition

fAi
aðxÞ;ωj

bðyÞg þ fωi
aðxÞ; Aj

bðyÞg ¼ 0; ðB2Þ

since ωi
a commutes with itself. To avoid a direct calculation

of this relation, we proceed as in four dimensions and look
for a generating functionalW½E� depending on the variable
E only and such that ωi

aðxÞ ¼ δW½E�=δEa
i ðxÞ. If this object

exists, then the condition (B2) reduces to an integrability
condition and follows immediately due to the fact that

fAi
aðxÞ;ωj

bðyÞg þ fωi
aðxÞ; Aj

bðyÞg ¼ γδ2ðx − yÞ
�
δωi

aðxÞ
δEc

kðxÞ
δAj

bðyÞ
δAk

cðyÞ
−
δAi

aðxÞ
δAk

cðxÞ
δωj

bðyÞ
δEc

kðyÞ
�

¼ γδ2ðx − yÞ
�

δ2W
δEa

i ðxÞδEb
j ðxÞ

−
δ2W

δEb
j ðxÞδEa

i ðxÞ
�

¼ 0: ðB3Þ

For the generating functional we take

W½E� ¼
Z

d2xEaðxÞ · ωaðxÞ; ðB4Þ

exactly as in four dimensions, with the difference that now
ωi
a is given by (3.37):

ωa ¼ u × ∂auþ 1

jEj εabðE
b · ∂cEcÞx: ðB5Þ

For the functional W to be such that
ωi
aðxÞ ¼ δW½E�=δEa

i ðxÞ, it should satisfy

Z
d2xEaðxÞ · δωaðxÞ ¼ 0 ðB6Þ

for any variation δω of ω, which implies that

δW¼
Z

d2xðδEa ·ωaþEa ·δωaÞ¼
Z

d2xδEa ·ωa: ðB7Þ
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For this to be true, we assume that the spatial slice Σ has no boundaries. The proof uses the fact that ωi
a satisfies

∂aEa − ωa × Ea ¼ 0; ∂au − ωa × u ¼ 0: ðB8Þ
Therefore, we have

Z
d2xEa · δωa ¼

Z
d2xEa ·

�
δðu × ∂auÞ þ δ

�
1

jEj εabE
b · ∂cEcx

��

¼
Z

d2xEa ·

�
δu × ∂auþ u × ∂aδuþ 1

jEj εabE
b · ∂cEcδx

�
; ðB9Þ

where we used the fact that x · Ea ¼ 0. The first two terms between parentheses above can now be written as follows:

Z
d2xδu · ð∂au × Ea − ∂aEa × u − Ea × ∂auÞ ¼

Z
d2xδu · ð2ðωa × EaÞu − ðωa · uÞEaÞ

¼ −
Z

d2xδu · Eaðωa · uÞ

¼ −
Z

d2x
1

jEjE
a · δxεabEb · ∂cEc; ðB10Þ

from which (B9) vanishes as announced. Notice that from the first to the second line we used the properties (B8) to replace
the derivatives ∂aEa and ∂au by expressions involving ω.
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