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We consider the motion of light on different spacetime manifolds by calculating the deflection angle,
lensing properties and by probing into the possibility of bound states. The metrics in which we examine the
light motion include, among other items, a general relativistic dark matter metric, a dirty black hole, and a
worm hole metric, the last two inspired by noncommutative geometry. The lensing in a holographic screen
metric is discussed in detail. We study also the bending of light around naked singularities like, e.g., the
Janis-Newman-Winicour metric and include other cases. A generic property of light behavior in these
exotic metrics is pointed out. For the standard metric like the Schwarzschild and Schwarzschild-de Sitter
cases, we improve the accuracy of the lensing results for the weak and strong regimes.
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I. INTRODUCTION

The year 2015 has been declared by the United Nations
(UN) and UNESCO as the “International Year of Light” [1]
which commemorates the achievements of light sciences.
Simultaneously, the year 2015 is the centenary year of
general relativity. Light bending is a genuine effect of
general relativity (at least when we confront the theoretical
prediction with observations) and was the first experimental
confirmation of the newly discovered theory which, looking
back, is quite an achievement. It seems therefore timely to
revive the subject of light motion on curved backgrounds by
including new interesting examples of recently emerged
metrics and generalizing or improving/correcting existing
analytical results.
To appreciate the development of the subject let us recall

that the idea of light bending can be traced back to
Newton’s Opticks [2] which concludes with a number of
queries. In query 1 [3] Newton mentions the possibility of
light (rays) bending. However, according to [4] the first
concrete calculation within the Newtonian framework was
done by Henry Cavendish in 1784, but the result remained
unpublished. Twenty years later Johann Georg von Soldner
did a similar calculation [5] and taking into account that
both of these calculations assume a different position of the
light source (Cavendish light is emitted at infinity whereas
Soldner’s comes form a surface of a gravitating body), both
results agree in the first order approximation [4]. Moreover,
the result, ΔϕN ¼ 2GM⨀=R⨀ (M⨀ and R⨀ are the mass

and radius of the sun), is half the value obtained fromgeneral
relativity using the Schwarzschild metric. Einstein’s first
attempt to calculate the effect of gravity on light yielded the
same value obtained by Cavendish and Soldner as he also
used the Newtonian theory by invoking the energy-mass
equivalence. Only in 1916 he obtained what is now
considered the correct result (twice the Newtonian value)
within the framework of general relativity. Using the
Robertson expansion of the metric the deflection angle
can be parametrized as ΔϕN ¼ 4GM⨀=r0ð1þ γÞ=2 (r0 is
the closest approach). The most precise experiments on
quasars using very long baseline radio interference gives
ð1þ γÞ=2 ¼ 0.99992� 0.00023 [6], an impressive result
which excludes the Newtonian value γ ¼ 1 and confirms
general relativity. Of course, the above mentioned theoreti-
cal result in general relativity is only the very first approxi-
mation in the Schwarzschild metric. More accurate
expansions are possible and will be presented in this paper.
The result is valid up to ð2M=r0Þ5 based on expansion of
incomplete elliptic integrals of the first kind.
Amore pronounced effect of light bending is gravitational

lensing. The idea is usually attributed to Einstein [7], but had
been already published 12 years earlier by Chwolson [8].
Since then the field has achieved a remarkable level, from the
observational as well as from theoretical point of view [9]
reaching a high mathematical sophistication [10]. In spite of
the seniority of the subject, one can still find some niches
where an improvement is possible. As far as the lensing
in the Schwarzschild metric is concerned we offer some
corrections of expressions existing in the literature and
generalization of the formulas.More precisely, we have paid
attention to novel perturbation techniques which led us to

*davide.batic@uwimona.edu.jm
†stacyann.nelson@mymona.uwi.edu
‡mnowakos@uniandes.edu.co

PHYSICAL REVIEW D 91, 104015 (2015)

1550-7998=2015=91(10)=104015(29) 104015-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.104015
http://dx.doi.org/10.1103/PhysRevD.91.104015
http://dx.doi.org/10.1103/PhysRevD.91.104015
http://dx.doi.org/10.1103/PhysRevD.91.104015


formulas of higher precision. This is to say we presented
more accurate results as compared to results found so far in
literature. In the case of the Schwarzschildmetricwe showed
that the method used in [11] to derive the deflection formula
in the strong regime is mathematically flawed because the
regular part of the integral giving the deflection angle is
represented by means of an infinite series of definite
integrals [see equation (34) in the manuscript] where it
can be checked that higher terms in the aforementioned
series are all divergent. This contradicts the claim that such
a series can be used to compute all coefficients in the
expansion for the regular part of a certain integral appearing
in the deflection formula. In view of this fact we decided to
solve this problemby using a relatively unknown asymptotic
formula for the incomplete elliptic integral of the first
kind. This in turn allowed us to improve the accuracy of
the computation of the deflection angles by introducing
Lambert functions.
Another metric, closely related to the Schwarzschild

metric, is the Kottler or Schwarzschild-de Sitter metric
which includes a positive cosmological constant. The
interest in this metric was revived after the accelerated stage
of the expansion of the Universe was discovered and a
positive cosmological constant could account for the obser-
vational data. A natural question arises: does the cosmo-
logical constant, given its “measured value” affect the
properties of light deflection? This led to some controversy
in the literature regarding the observability of the cosmo-
logical constant in the lensing. Considering that with the
inclusion of the cosmological constant two different scales
appear in the theory, it is a priori not excluded that an effect
combines these two scales in a way that it becomes, in
principle, measurable. This does not seem to happen for the
cosmological constant at least as far as lensing is concerned.
Our result contains the cosmological constant, but the
effect is tiny. In deriving this result we made sure that our
expressions reduce to the formulae encountered in the
Schwarzschild metric when we put the cosmological con-
stant to zero. Regarding the case of the Schwarzschild-de
Sitter metric it is interesting to observe that equation (18)
in [12] fails to reproduce correctly the term going together
with ð2M=r0Þ2 in the weak field limit of the Schwarzschild
metric Λ → 0, while our (55) matches the corresponding
formula in the Schwarzschild case even at the order
ð2M=r0Þ3. Concerning strong gravitational lensing in a
Schwarzschild-deSitter manifold we solved exactly the
integral giving the deflection angle in terms of an incomplete
elliptic integral of the first kind and then applied a recent
asymptotic formula derived in [13] in the case when the sine
of the modular angle and the elliptic modulus both tends to
one. Interestingly enough this asymptotic formula seems to
be used for the first time in the context of light deflection.
The light deflection in the Schwarzschild- de Sitter metric
continues to intrigue scientist working in this area [14,15]
and we think that we presented here a novel approach.

All this shows that light bending is not a standard exercise
and a considerable amount of work in all publications
(many of them are recent) goes into the mathematically
correct handling of the expressions involved.
The higher precision of theoretical expressions has so far

proved fruitful in the development of science as a com-
parison with observation can lead to new physics. Such an
impact on science is well known and we therefore will not
quote examples but refer to a possible example below in the
case of comparing lensing of a Schwarzschild black hole
with the corresponding results in a naked singularity.
In the whole paper we probe into the light motion around

naked singularities. One case studied in detail is the Janis-
Newman-Winicour (JNW) metric. One interest is to get
an insight of the motion of light in naked singularities, in
general. Second, in [16] it has been suggested that the
center of the galaxy could eventually be modeled by such a
singularity. This means that there persists some interest in
accurate expressions of light bending and lensing in such
a case in order to be able to compare it with accurate
expressions obtained for the Schwarzschild black hole.
Therefore we focused here also on the improvement of
accuracy. But we also embedded the JNW results in a wider
context of other naked singularities. With a simple quali-
tative tool we can show that in many cases of naked
singularities (apart from the JNW metric, we examine three
other naked singularities) a narrow range of possible
parameters leads to bound states of light. This result seems
to be a novel footprint of naked singularities.
The relevance of lensing is, of course, manifold. But it

is probably its connection to dark matter (DM) [17] which
led the area to the avenues of new physics. Based on the
nonrelativistic dark matter density of Navarro-Frenk-
White, a general relativistic metric had been derived earlier
which makes it possible to study the deflection of light in
the galactic DM halos from scratch and in the context
of general relativity. We offer here the first results of such
a study for the weak lensing and leave the strong case for
future considerations. Apart from obvious phenomenologi-
cal impacts, the light bending in this metric is also of
pure theoretical interest as the latter is generated by an
anisotropic energy-momentum tensor, which by itself is a
rare case.
Next we focus on a class of metrics which have been

derived having in mind some models of quantum gravity.
To be specific, we calculate the light deflection angle for
two black hole (BH) metrics: the holographic screen and
the dirty BH inspired by noncommutative geometry. The
dirty BH contains in a limit the case of a noncommutative
BH when the parameters are chosen accordingly. These
metrics are based on the fact that noncommutativity, i.e.,
½xμ; xν� ¼ iθμν, leads to smeared objects in place of point-
like particles [18]. On the other hand, the holographic
screen metric has been obtained by “reversed engineering”
demanding that the metric has no curvature singularity and
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“self-implements” the characteristic length scale. It is, of
course, of some interest to see how light behaves in exotic
metrics like the worm hole metric and mini BH metrics
which include aspects of noncommutative geometry. The
light bending on a worm hole metric is one of the first
attempts to study light behavior in a spacetime where a
“shortcut” is possible. Visualizing spacetime as a two-
dimensional surface, a worm hole can be pictured as hole
in this surface leading to a tube. This is known as the mouth
of the worm hole and the mathematics behind this picture
requires an embedding analysis which, as a supplement, we
have performed for the worm hole and the holographic
screen. A similar analysis is possible for the dirty black hole.
The choice of the metrics to study the light deflection

covers a wide range: from the standard general relativistic
metrics of BHs over a naked singularity and a DM galactic
halo metric to metrics inspired by some aspects of quantum
gravity out of which one is a worm hole. We hope to have
added to the subject of light bending in gravitational fields
some new insight by studying these examples.

II. BASIC FORMULAS

We consider a static and radially symmetric gravitational
field represented by the line element (c ¼ G ¼ 1)

ds2¼BðrÞdt2−AðrÞdr2− r2CðrÞ½dϑ2þ sin2ϑdφ2� ð1Þ

with r ∈ ð0;þ∞Þ, ϑ ∈ ½−π; π�, and φ ∈ ½0; 2πÞ. We further
suppose that the functions A, B, and C are at least k times
continuously differentiable on some interval I⊆Rþ. The
corresponding relativistic Kepler problem is defined by the
geodesic equation

d2xκ

dλ2
¼ −Γκ

μν
dxμ

dλ
dxν

dλ

for the metric (1) and the relation

gμν
dxμ

dλ
dxν

dλ
¼
�
ds
dλ

�
2

¼
�
dτ
dλ

�
2

¼
�
1 if m ≠ 0;

0 if m ¼ 0.
ð2Þ

If we compute the Christoffel symbols we find that the
geodesic equation gives rise to the following system of
ordinary differential equations:

d2x0

dλ2
¼ −

B0ðrÞ
BðrÞ

dx0

dλ
dr
dλ

; ð3Þ

d2r
dλ2

¼ −
B0ðrÞ
2AðrÞ

�
dx0

dλ

�
2

−
A0ðrÞ
2AðrÞ

�
dr
dλ

�
2

þ r2C0ðrÞ þ 2rCðrÞ
2AðrÞ

�
dϑ
dλ

�
2

þ r2C0ðrÞ þ 2rCðrÞ
2AðrÞ sin2ϑ

�
dφ
dλ

�
2

; ð4Þ

d2ϑ
dλ2

¼ −
rC0ðrÞ þ 2CðrÞ

rCðrÞ
dr
dλ

dϑ
dλ

þ sinϑ cos ϑ

�
dφ
dλ

�
2

; ð5Þ

d2φ
dλ2

¼ −
rC0ðrÞ þ 2CðrÞ

rCðrÞ
dr
dλ

dφ
dλ

− 2 cotϑ
dϑ
dλ

dφ
dλ

: ð6Þ

Equation (5) can be solved by imposing that ϑ ¼ π=2.
There is no loss in generality in introducing this condition
since at a certain point in time the coordinate system can be
rotated in such a way that ϑ ¼ π=2 and dϑ=dλ ¼ 0. Then,
the coordinate and velocity vectors will belong to the
equatorial plane ϑ ¼ π=2. This implies that d2ϑ=dλ2 ¼ 0
and hence ϑðλÞ ¼ π=2. As a consequence the whole
trajectory will belong to the equatorial plane and Eq. (6)
becomes

1

r2CðrÞ
d
dλ

�
r2CðrÞ dφ

dλ

�
¼ 0: ð7Þ

The above equation can be immediately integrated and we
obtain

r2CðrÞ dφ
dλ

¼ l ¼ const: ð8Þ

We can also motivate the choice ϑ ¼ π=2 and Eq. (8) with
the help of the isotropy of the problem at hand. This
approach is usually adopted in the treatment of the non-
relativistic Kepler problem where the angular momentum l
is conserved because of the isotropy of the problem. Since
the direction of l is constant, we can choose the coordinate
system in such a way that ez∥l. This is equivalent to require
that ϑ ¼ π=2. Since the magnitude of l is constant, Eq. (8)
will hold. Hence, the integration constant can be interpreted
as the angular momentum per unit mass, i.e. l ¼ L=m.
Let us write (3) in the form

d
dλ

�
ln
dx0

dλ
þ lnBðrÞ

�
¼ 0: ð9Þ

Integrating the above equation we obtain

BðrÞ dx
0

dλ
¼ F ¼ const: ð10Þ

If we set ϑ ¼ π=2 and use (8) and (10) in (4), as a result we
get the equation

d2r
dλ2

þ F2B0ðrÞ
2AðrÞB2ðrÞ þ

A0ðrÞ
2AðrÞ

�
dr
dλ

�
2

−
l2½rC0ðrÞ þ 2CðrÞ�

2r3AðrÞC2ðrÞ ¼ 0: ð11Þ

Multiplication by 2AðrÞðdr=dλÞ yields
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d
dλ

�
AðrÞ

�
dr
dλ

�
2

þ l2

r2CðrÞ −
F2

BðrÞ
�
¼ 0: ð12Þ

One more integration finally gives

AðrÞ
�
dr
dλ

�
2

þ l2

r2CðrÞ −
F2

BðrÞ ¼ −ϵ ¼ const: ð13Þ

This radial equation can be seen as the most important
equation of motion since the angular motion is completely
specified by (8) and the condition ϑ ¼ π=2 whereas the
connection between t and λ is fixed by (10). If we integrate
(13) once more we obtain r ¼ rðλÞ and if we substitute this
function into (8) and (10), we get after integration φ ¼ φðλÞ
and t ¼ tðλÞ. Elimination of the parameter λ yields r ¼ rðtÞ
and φ ¼ φðtÞ. Together with ϑ ¼ π=2 they represent the
full solution of the problem. The involved integrals cannot
be in general solved in terms of elementary functions. To
determine ϵ, we rewrite (2) as

gμν
dxμ

dλ
dxν

dλ
¼ BðrÞ

�
dx0

dλ

�
2

− AðrÞ
�
dr
dλ

�
2

− r2CðrÞ
�
dϑ
dλ

�
2

− r2sin2ϑCðrÞ
�
dφ
dλ

�
2

¼ ϵ; ð14Þ

where in the last inequality we used the condition ϑ ¼ π=2
together with (8), (10) and (13). From (14) and (2) it
follows that

ϵ ¼
�
1 if m ≠ 0;

0 if m ¼ 0.
ð15Þ

We want to determine the trajectory φ ¼ φðrÞ in the
equatorial plane ϑ ¼ π=2. First of all, we observe that
(13) gives �

dr
dλ

�
2

¼ 1

AðrÞ
�
F2

BðrÞ −
l2

r2CðrÞ − ϵ

�
: ð16Þ

Taking into account that dφ=dλ ¼ ðdφ=drÞðdr=dλÞ and
using (8) together with (16), we obtain

�
dφ
dr

�
2

¼ AðrÞBðrÞ
r4CðrÞ

�
F2

l2
CðrÞ − BðrÞ

r2
−

ϵ

l2
BðrÞCðrÞ

�−1
ð17Þ

and integration yields

φðrÞ¼�
Z
dr
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞ
CðrÞ

s �
F2

l2
CðrÞ−BðrÞ

r2
−

ϵ

l2
BðrÞCðrÞ

�−1=2
þ ~C ð18Þ

where ~C is an arbitrary integration constant. The plus and
minus sign must be chosen for particles approaching the
gravitational object on the equatorial plane and having
trajectories exhibiting an anticlockwise and clockwise
direction, respectively. This integral determines the trajec-
tory φ ¼ φðrÞ in the plane where the motion takes place. In
the case of a massive particle (ϵ ¼ 1) the trajectory depends
on two integration constants (F and l). In the case of a
scattering problem these constants can be expressed in
terms of an impact parameter and the initial velocity r0ðr0Þ
where r0 is the distance of closest approach to the
gravitational object attained for some value λ0 of the affine
parameter. For massless particles (ϵ ¼ 0) the trajectory
depends only on the integration constant F=l that can be
interpreted as an impact parameter as follows [19]:

1

b2
¼ F2

l2
¼ Bðr0Þ

r20Cðr0Þ
:

This in turn permits to express (18) as

φðrÞ ¼ �
Z

dr
r

ffiffiffiffiffiffiffiffiffiffi
AðrÞ
CðrÞ

s ��
r
r0

�
2 CðrÞBðr0Þ
Cðr0ÞBðrÞ

− 1

�
−1=2

þ ~C:

It is useful to derive an inequality which gives us informa-
tion for the qualitative orbits of the particle. It is straight-
forward to see that from (18) we obtain the condition

F2 >
l2BðrÞ
r2CðrÞ þ ϵBðrÞ≡ VðrÞ: ð19Þ

For massless particles we can write

F2

l2
>

BðrÞ
r2CðrÞ≡ ~VðrÞ: ð20Þ

As a first application of Eq. (20), consider the Reissner-
Nordström metric with

BðrÞ ¼ 1 −
1

rs
þ r2Q

r2

where rs is the standard Schwarzschild radius and rQ is
proportional to the electric charge. We have a naked
singularity if rs < 2rQ. It is easy to show that ~V has a
local minimum and maximum if α≡ r2s=r2Q > 32=9. Such
a minimum in which the photons would be trapped
has a physical significance only if it occurs at a value

bigger than the horizon rþ (the horizons are r� ¼
1=2=ðrs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s − 4r2Q

q
Þ or in the case of a naked singu-

larity. In Fig. 1 we demonstrate that this minimum is of
relevance only if we have a naked singularity. Hence the
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range for such meaningful minimum is very narrow,
namely

4 > α >
32

9
:

If a particle in classical mechanics has a bound orbit (like in
the minimum) we usually talk about an attractive potential.
By the same token using similar nomenclature we could
claim that the existence of photon’s bound orbits around a
naked singularity is an indication for its attractive nature for
light in contrast to some other results for massive particles
[20]. Wewill see later that this statement is generic for other
naked singularities as well.

A. Lens equation for compact gravitational objects

We give a short derivation of the lens equation in the
presence of compact gravitational objects, i.e. any astro-
physical object whose size is comparable to the event
horizon of a black hole. The corresponding lens equation
may be also applied to black holes and other compact objects
that did not fully undergo the gravitational collapse. Let
S, L,O, and I denote the light source, the lens, the observer,
and the image of the source seen by the observer, respec-
tively. By OL we denote the optical axis. Furthermore, we
introduce angles β and θ giving the position ofSwith respect
to OL and the position of I as seen by O, respectively.
In general, the closest approach distance r0 does not need to
be identified with the impact parameter b. ByΔφwe denote
the deflection angle. Then, simple trigonometric arguments
lead to the full lens equation [11,19,21,22]

tan β ¼ tan θ −
DLS

DOS
½tan θ þ tan ðΔφ − θÞ�; ð21Þ

where DLS is the distance between L and S, and DOS ¼
DOL þDLS withDOL the distance betweenO and L. Given
β and Δφ, (21) allows one to compute the positions θ of the
images I of S seen byO. The magnification of an image for
circularly symmetric gravitational lenses is

μ ¼
�
sin β
sin θ

dβ
dθ

�
−1
; ð22Þ

where the sign of μ controls the parity of the image. Critical
curves are singularities of μ in the lens plane and the
corresponding values in the source plane are called caustics.
By images of 0-parity we mean critical images. The
tangential and radial magnifications are given by

μt ¼
�
sin β
sin θ

�
−1
; μr ¼

�
dβ
dθ

�
−1
: ð23Þ

Tangential and radial critical curves are simply singularities
of μt and μr, respectively. Their values on the source plane
are called tangential and radial caustics. If β, θ, and Δφ
are small (weak gravitational field), the tangent functions
appearing in (21) can be Taylor expanded and the deflection
angle becomes Δφ ¼ 4M=r0 so that (21) can be solved
producing two images whose separation from OL is
quantified by the so-called Einstein angle

θE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4MDLS

DOSDOL

s
: ð24Þ

III. BENDING OF LIGHT IN THE
SCHWARZSCHILD METRIC

Light rays experience a bending effect due to the
presence of a gravitational field. We quantify this effect
in the case of a lens represented by a Schwarzschild black
hole with

BðrÞ ¼ 1 −
2M
r

;

where M denotes the mass of the black hole. We will also
suppose that the source, lens, and observer lie along a
straight line. Since the Schwarzschild spacetime is asymp-
totically flat we will assume that the source and observer
are located in the flat spacetime region. Setting ϵ ¼ 0 in
(18) and taking into account that AB ¼ 1, we find that

φðrÞ ¼ φðr0Þ þ
Z

∞

r0

dr
r2

�
F2

l2
−
BðrÞ
r2

�−1=2
; ð25Þ

where the source has been placed in the asymptotically
flat region and as a starting point for the integration the
minimal distance r0 of the light ray from the surface of the
gravitational object has been chosen. Note that the choice

0 1 2 3 4 5
 x

0

0.5

1

1.5

V
γ 
(x

)

α=4
α=3.8
α=3.5
α=3

FIG. 1. Behavior of the “photon potential” proportional to ~V for
the Reissner-Nordström naked singularity. As explained in the
text in the narrow range of α there is a possibility to trap photons
inside a well.
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of a plus sign in front of the above integral corresponds to
the fact that we are considering light rays moving on
trajectories having an anticlockwise direction. Without loss
of generality we also require that φðr0Þ ¼ 0. From r ¼ r0
to r ¼ ∞ the angle φ changes by a quantity φð∞Þ. Along
the photon trajectory the radial vector undergoes a rotation
with angle 2φð∞Þ. If the gravitational object would be
absent, we would have a straight line for the photon
trajectory implying that 2φð∞Þ ¼ π. Hence, the angle by
which light is bent by a spherically symmetric gravitational
field described by an asymptotically flat metric is given
by [19,23]

Δφ ¼ 2φð∞Þ − π; φðr0Þ ¼ 0: ð26Þ

Since in general AðrÞ ≠ 1 the underlying three-dimensional
space is not Euclidean. For very large distances we have
A → 1 and B → 1. This means that asymptotically far away
from the gravitational object the light ray can be described
as a straight line in the Euclidean space. The distance of
closest approach is determined by the condition r0ðr0Þ ¼ 0
with r0 ¼ rðλ0Þ and we find that

1

b2
¼ F2

l2
¼ Bðr0Þ

r20
; b2 ¼ r30

r0 − 2M
: ð27Þ

This allows us to eliminate the constant F2=l2 in (25) so
that we can rewrite (26) as

Δφþ π

2
¼
Z

∞

r0

dr
r2

�
Bðr0Þ
r20

−
BðrÞ
r2

�
−1=2

: ð28Þ

Depending on the values of the impact parameter we have
the following scenarios [19,23,24]:
(1) if b < 3

ffiffiffi
3

p
M, the photon is doomed to be absorbed

by the black hole;
(2) if b > 3

ffiffiffi
3

p
M, the photon will be deflected and it

can reach spatial infinity. Here, we must consider
two further cases
(a) if b ≫ 3

ffiffiffi
3

p
M, the orbit is almost a straight line

and the deflection angle is approximately given
by 4M=r0. Weak gravitational lensing deals with
this case which corresponds to the situation
when the distance of closest approach is much
larger than the radius rγ of the photon sphere.
For spherically symmetric and static spacetimes
rγ can be computed by solving the equation [25]

B0ðrÞ
BðrÞ ¼ 2

r
: ð29Þ

In the case of the Schwarzschild metric we
obtain rγ ¼ 3M.

(b) If 0 < b ≪ 3
ffiffiffi
3

p
M, we are in the regime of

strong gravitational lensing corresponding to a

distance of closest approach r0 ≈ rγ. In this case
the photon can orbit several times around the
black hole before it flies off.

Let rS ¼ 2M denote the Schwarzschild radius. As in
[11,25,26] we rescale the time and radial coordinates as
σ ¼ t=rS and ρ ¼ r=rS. Then, the Schwarzschild radius is
at ρS ¼ 1, the distance of closest approach will be given by
ρ0 ¼ r0=rS, and the radius of the photon sphere is located at
ρ1 ¼ 3=2. Clearly, we must require that ρ0 > ρ1. In terms
of ρ (28) becomes

Δφðρ0Þ ¼ −π þ 2

Z
∞

ρ0

dρ
ρ2

�
Bðρ0Þ
ρ20

−
BðρÞ
ρ2

�
−1=2

: ð30Þ

Let y¼BðρÞ and z ¼ ðy − y0Þ=ð1 − y0Þ where y0 ¼ Bðρ0Þ.
We find that (30) can be written as

Δφðρ0Þ ¼ −π þ 2

Z
1

0

fðz; ρ0Þdz;

fðz; ρ0Þ ¼
��

2 −
3

ρ0

�
zþ

�
3

ρ0
− 1

�
z2 −

z3

ρ0

�−1=2
: ð31Þ

The function f has three singularities located at

z1 ¼ 0; z2 ¼
3 − ρ0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 þ 2ρ0 − 3

p
2

;

z3 ¼
3 − ρ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 þ 2ρ0 − 3

p
2

:

It is straightforward to verify that z2 < 0, z3 > ρ1 > 0, and
z2 < z1 < z3. If we factorize the argument of the square
root in the expression for f in terms of its roots and
introduce the variable transformation z ¼ ~y2 þ z2 [27], we
obtain

Δφðρ0Þ

¼ −π þ 4
ffiffiffiffiffi
ρ0

p Z ffiffiffiffiffiffiffi
1−z2

pffiffiffiffiffiffi−z2
p

d~yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~y2 þ z2Þðz3 − z2 − ~y2Þ

p :

Let ~y2 ¼ z2ð1 − k2sin2ϕÞ with k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z3=ðz3 − z2Þ

p
. Then,

Δφðρ0Þ ¼−πþAðρ0ÞFðϕ1; kÞ; Aðρ0Þ ¼
4
ffiffiffiffiffi
ρ0

p
z3− z2

;

ϕ1 ¼ sin−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z3− z2

z3ð1− z2Þ
r

; ð32Þ

where F denotes the incomplete elliptic integral of the first
kind. Using the expansion 902.00 in [28] for the incomplete
elliptic integral of the first kind when k ≪ 1, we find that
the angle by which light is bent in a weak gravitational field
(ρ0 ≫ 1) is given by
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Δφðρ0Þ¼2ρ−10 þ
�
15

16
π−1

�
ρ−20 þ

�
61

12
−
15

16
π

�
ρ−30

þ
�
3465

1024
π−

65

8

�
ρ−40 þ

�
7783

320
−
3465

512
π

�
ρ−50

þOðρ−60 Þ: ð33Þ

Taking into account that ρ0 ¼ r0=ð2MÞ the weak field
approximation (33) reproduces correctly the first order term
4M=r0 derived in [19,23,24] and generalizes the weak field
approximation derived in [21,29]. Moreover, it agrees with
Eq. (23) in [30]. Concerning the strong deflection limit
(ρ0 → ρ1) we will first show that the method used by [25] is
mathematically flawed and then we will use an asymptotic
formula for the incomplete elliptic integral of the first kind
derived in [13]. First of all, [25] starts by observing that the
integrand f appearing in the integral giving the deflection
angle diverges as z → 0. The order of divergence of the
integrand can be found by expanding the argument of the
square root in f to the second order at z ¼ 0, more precisely

fðz; ρ0Þ ≈ f0ðz; ρÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αzþ βz2
p ; α ¼ 2 −

3

ρ0
;

β ¼ 3

ρ0
− 1:

Hence, for α ≠ 0 the leading order of the divergence of f0 is
z−1=2 which can be integrated while for α ¼ 0 the function
f0 diverges as z−1 thus leading to a logarithmic divergence.
The authors of Ref. [25] split the integral in (31) as follows:

2

Z
1

0

fðz; ρ0Þdz ¼ IDðρ0Þ þ IRðρ0Þ;

where

IDðρ0Þ ¼ 2

Z
1

0

f0ðz; ρ0Þdz

contains the divergence and

IRðρ0Þ ¼ 2

Z
1

0

g0ðz; ρ0Þdz;

g0ðz; ρ0Þ ¼ fðz; ρ0Þ − f0ðz; ρ0Þ

is the original integral with the divergence subtracted. At
this point one solves the above integrals and the sum of
their results will give the deflection angle. The integral ID
can be solved exactly and we get

IDðρ0Þ ¼
4ffiffiffi
β

p ln

ffiffiffiffiffiffiffiffiffiffiffi
αþ β

p þ ffiffiffi
β

pffiffiffi
β

p

¼ −2 ln
�
ρ0
ρ1

− 1

�
þ 2 ln 2þOðρ0 − ρ1Þ

after having expanded α and β around the radius of the
photon sphere. To compute the residual integral IR [25]
employs the following expansion:

IRðρ0Þ ¼
X∞
n¼0

ðρ0 − ρ1Þn
n!

Z
1

0

∂ng
∂ρn0
����
ρ0¼ρ1

dz ð34Þ

and at the first order we find

IRðρ0Þ ¼
Z

1

0

gðz; ρ1ÞdzþOðρ0 − ρ1Þ

¼ 2 ln 6ð2 −
ffiffiffi
3

p
Þ þOðρ0 − ρ1Þ:

Reference [25] claims that (34) can be used to compute all
coefficients in the expansion for the regular part of the
integral IR. This is not true since a closer inspection of the
partial derivatives ∂ngðz; ρ1Þ=∂ρn0 shows that they have
the following behaviors as z → 0:

∂g
∂ρ0
����
ρ0¼3

2

¼ −
4

3z
−
2

9
þOðzÞ;

∂2g
∂ρ20
����
ρ0¼3

2

¼ 40

9z2
−

4

27z
þOð1Þ;

∂3g
∂ρ30
����
ρ0¼3

2

¼ −
560

27z3
þOðz−2Þ:

Hence, the regular part of the integral giving the deflection
angle cannot be represented by means of (34) because
otherwise each coefficient with n ≥ 1 in the expansion for
IR would blow up due to the fact that ∂ngðz; ρ1Þ=∂ρn0 is
never integrable at z ¼ 0 for all n ≥ 1. We can overcome
this problem by observing that sinϕ1 and k both approach
one as ρ0 → ρ1 since

sinϕ1ðρ0Þ ¼ 1 −
2

9
ðρ0 − ρ1Þ þOðρ0 − ρ1Þ;

kðρ0Þ ¼ 1 −
4

9
ðρ0 − ρ1Þ þOðρ0 − ρ1Þ: ð35Þ

For sinϕ1 and k approaching one simultaneously, the
following asymptotic formula for the incomplete elliptic
integral of the first kind holds [13]:

Fðϕ1; kÞ ¼
sinϕ1

4

�
½6− ð1þ k2Þsin2ϕ1� ln

4

cosϕ1 þΔ

− 2þ ð1þ k2Þsin2ϕ1 þΔcosϕ1

	
þ θFðϕ1; kÞ

ð36Þ

with Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2ϕ1

p
and relative error bound
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9Δ4 lnΔ
64 ln ðΔ=16Þ < θ <

3

8
Δ4:

Taking into account that

Aðρ0Þ ¼ 4 −
8

9
ðρ0 − ρ1Þ þOðρ0 − ρ1Þ

and expanding (36) around ρ0 ¼ ρ1 we finally obtain

Δφðρ0Þ ¼ −π þ ln 144ð7 − 4
ffiffiffi
3

p
Þ − 2 ln

�
ρ0
ρ1

− 1

�
þ 16

9
ðρ0 − ρ1Þ þOðρ0 − ρ1Þ2: ð37Þ

In order to express the deflection angle as a function of θ
we must first rewrite ρ0 in terms of the impact parameter.
Taking into account that

~b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ30

ρ0 − 1

s
¼ ~bcr þ

ffiffiffi
3

p
ðρ0 − ρ1Þ2 þOðρ0 − ρ1Þ3;

~bcr ¼
3
ffiffiffi
3

p

2
ð38Þ

we obtain the approximated relation

ρ0 − ρ1 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b − ~bcrffiffiffi

3
p

s
: ð39Þ

Substituting ~b ¼ θ ~DOL with ~DOL ¼ DOL=rS in (39) and
replacing this relation in (37) we finally get

ΔφðθÞ ¼ −π þ ln 216ð7 − 4
ffiffiffi
3

p
Þ − ln

�
θ ~DOL

~bcr
− 1

�
þ 16

9
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ ~DOL − ~bcr

q
þOðθ ~DOL − ~bcrÞ: ð40Þ

Our formula (37) generalizes the Schwarzschild deflection
angle in the strong field limit given by [11,24,25]. At this
point a couple of remarks are in order. An expression for the
exact deflection angle of photons in terms of elliptic
integrals was first given in [24] [see Eq. (29) therein],
an equivalent representation is offered by [11], whereas
[31] derives the deflection angle by applying formula
3.131.(5) at page 254 in [32] to our (31). Furthermore,
Eq. (9) in [11] expressing the modulus of the elliptic
function is not correct and should read in the notation
therein

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − x0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ 2x0 þ x20

p
3 − x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ 2x0 þ x20

ps
:

In Fig. 2 we compare the analytical expression (32) of the
deflection angle with (33) and formula (24) with q ¼ 0 in
[29]. Figure 3 displays the exact solution (32) with the
approximated solution (50) offered by [25] and our (37).
Figure 4 shows that using our expansion up to ρ0 ¼ 1.55
the error we introduce is about 0.1% whereas the error
committed by [11] is 1%. In the strong field approximation,
when the light ray gets closer and closer to the photon
sphere, Δφ may become bigger than 2π. This implies that
the light ray will wind around the lens one or more times
before escaping the gravitational pull. In the extreme case
~bcr ¼ 3

ffiffiffi
3

p
=2 corresponding to ρ0 ¼ 3=2, Δφ diverges

logarithmically and the photon is captured by the photon
sphere. The approximated lens equation in this regime is
given by [11]

β¼ θ−
~DLS

~DOS

Δφn; Δφn ¼Δφ−2nπ; n∈N: ð41Þ

Let θ0n denote the values of θ such that Δφnðθ0nÞ ¼ 0, or
equivalently Δφðθ0nÞ ¼ 2nπ. Using (40) this equation can
be solved for θ0n and we obtain

θ0n ¼
1

~DOL

�
3
ffiffiffi
3

p

2
þ 243

64
W2

n

�
;

Wn ¼ W

�
−16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 − 4

ffiffiffi
3

pq
e−πðnþ1

2
Þ
�

ð42Þ

FIG. 2 (color online). Behavior of the exact solution (32) (solid
line) versus the weak field approximations (33) (dashed line), and
(24) in [29] with q ¼ 0 (dotted line).
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where Wn denotes the Lambert function [33]. Our (42)
generalizes formula (16) in [11]. In the limit n → ∞, i.e.
when the photon makes an infinite number of loops around
the black hole, we correctly obtain θ0∞ ¼ ð3 ffiffiffi

3
p Þ=ð2 ~DOLÞ.

If we expand Δφ at the first order around θ0n, (40) gives

Δφn ¼ Δφ − Δφðθ0nÞ ¼
dΔφ
dθ

����
θ¼θ0n

Δθn þOðΔθ2nÞ

¼ −
64

243

Wn þ 1

W2
n

~DOLΔθn þOðΔθ2nÞ; ð43Þ

where Δθn ¼ θn − θ0n. The relative error for θ10 is jΔθ1j=θ01.
Using (43) we find that

jΔθ1j
θ01

¼
�

243W2
1φ1

64 ~DOLθ
0
1ðW1 þ 1Þ

� jΔφ1j
φ1

:

In the case of the first image we can take φ1 ¼ 2π.
Moreover, we also have jΔφ1j=φ1 ≈ 0.001 for ρ0 ¼ 1.55.
By means of (42) with n ¼ 1 we find that the correspond-
ing impact parameter is

~b1 ¼ θ01 ~DOL ¼ 3
ffiffiffi
3

p

2
þ 243

64
W2

1

and employing (39) we get that the closest approach
distance for the first image is

ρ0;1 ¼
3

2
−
9

8
W1 ≈ 1.5339

instead of 1.545 as given in [11]. In Table I we listed
the impact parameters, and the distances of closest
approach for n ¼ 1; � � � ; 4. Finally, we obtain for the
relative error for θ10

jΔθ1j
θ01

¼ 486πW2
1

ðW1 þ 1Þð96 ffiffiffi
3

p þ 243W2
1Þ
jΔφ1j
φ1

≈ 8.6 × 10−6

instead of 8 × 10−5 as given in [11]. Furthermore, Eq. (43)
can be replaced into the lens equation (41) to give

β ¼ θ0n þ
�
1þ 64

243

~DLS
~DOL

~DOS

Wn þ 1

W2
n

�
Δθn; ð44Þ

which represents the position of the nth image. Since in
general ~DLS

~DOL= ~DOS≫1 and ð64=243ÞðWnþ1ÞW−2
n ≈

280.82, the second term in the bracket in (44) is much
bigger than one and therefore, we can approximate (44) as
follows:

FIG. 3 (color online). Plot of the exact solution (32) (solid line),
Bozza’s approximation (dotted line), and the approximation (37)
(dashed line).

FIG. 4 (color online). Ratio of the exact deflection angle (32)
and the approximate one (37) as a function of the closest
approach distance.

TABLE I. Impact parameters, distances of closest approach,
and positions of the relativistic rings for the black hole believed to
be hosted by our galaxy (M ¼ 2.8 × 106M⊙ andDOL ¼ 8.5 Kpc
[34]).

n ~bn ρ0;n θ0n μarcsec

1 2.601529850 1.533929564 16.91272357
2 2.598082299 1.501424471 16.89031076
3 2.598076223 1.500061482 16.89027125
4 2.598076211 1.500002656 16.89027118
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β ¼ θ0n þ
64

243

~DLS
~DOL

~DOS

Wn þ 1

W2
n

Δθn: ð45Þ

Finally, from (45) we obtain that the position of the nth
image is

θn ¼ θ0n þ
243

64

ðβ − θn0Þ ~DOS

~DLS
~DOL

W2
n

Wn þ 1
: ð46Þ

From (44) we have dβ=dθ > 0. This implies that μr > 0 in
(23) and therefore there are no radial critical curves. On the
other hand, μt becomes singular when β ¼ 0. Hence, the
only critical curves are of tangential nature and since we
already solved the lens equation, it is sufficient to set β ¼ 0
in (46) to obtain

θn;cr ¼
�
1 −

243

64

~DOS

~DLS
~DOL

W2
n

Wn þ 1

�
θ0n:

The magnification of the nth image is given by the
formula [11]

μn ¼
θn0

βdβdθ jθ¼θn
0

:

Since

dβ
dθ

����
θ¼θn

0

¼ 1þ 64

243

~DLS
~DOL

~DOS

Wn þ 1

W2
n

;

where the second term is much grater than one, the
magnification of the nth image is

μn ¼
~DOSBn

β ~D2
OL

~DLS

; Bn ¼
243

4096

W2
nð96

ffiffiffi
3

p þ 243W2
nÞ

Wn þ 1
:

ð47Þ
and it decreases very quickly because B1 ¼ 9.2 × 10−3,
B2 ¼ 1.5 × 10−5, B3 ¼ 2.9 × 10−8. Hence, the luminosity
of the first image will dominate over all others. Finally the
total magnification is [11]

μtot ¼ 2
X∞
n¼1

μn ¼
~DOS

β ~D2
OL

~DLS

X∞
n¼1

Bn: ð48Þ

Since B4 is of the order 10−11, the series above is rapidly
convergent and a good approximation for the total mag-
nification is given by

μtot ¼
~DOSB

β ~D2
OL

~DLS

; B ¼ B1 þ B2 þ B3:

Our formulas (47) and (48) generalize Eqs. (24) and (27)
in [11]. The amplification of each of the weak field images
is [11]

μwfi ¼
1

β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~DLS

~DOL
~DOS

s
:

Then,

μwfi
μtot

¼
ffiffiffi
2

p

B

�
~DLS

~DOL

~DOS

�3=2

with B ≈ 0.0092 instead of 0.017 as in [11]. This implies
that relativistic images are extremely faint in comparison to

0 1 2 3 4
 x

−0.1

−0.05

0

0.05

0.1

V
γ (

x)

 m =2
 m=2.5
 m=1.95

FIG. 6. The rescaled “photon potential” proportional to ~V for
the holographic screen metric. In case of a naked singularity,
photons can be trapped in the local minimum.

1 2 3 4 5
x

0

0.5

1

V
γ (

x)

0.9

0.75

0.5

0.25

FIG. 5. Behaviorof therescaled“photonpotential”proportional ~V
for the JNW metric (naked singularity) for different values of the
parameterγ.As longasγ < 1=2 themetricdisplaysa localmaximum
at the rescaled position bigger than 1. Since the nonremovable
singular point at x ¼ 1 cannot be crossed, light can be trapped, in
principle, between the singular point and the hump.
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the weak field images. Moreover, we also find that
the observables θ0∞ and s ¼ θ01 − θ0∞whosenumerical values
are given in Table I in [25] should read 16.89 μarcsec
and 0.02245 μarcsec instead of 16.87 μarcsec and
0.0211 μarcsec in the case of a lens represented by a
Schwarzschild black hole with mass M ¼ 2.8 × 106M⊙
and DOL ¼ 8.5 Kpc. Last but not least, the sequence of
impact parameters can be computed according to the formula

~bn ¼ ~bcr

�
1þ 27

ffiffiffi
3

p

32
W2

n

�
:

The angular size θ0n of the relativistic rings generated by
photons deflected by 2π; 4π; 6π, etc. will be given by
θ0n ¼ ~bn= ~DOL. Note that the above formula generalizes
Eq. (15) in [31]. Employing (39) we can compute the
corresponding distances of closest approach. In Table I we
give the first five values of the impact parameters, the
corresponding distances of closest approach, and the size
of the relativistic rings. Finally, from (24) we find that the
position of the main ring is θE ¼ 1.157987 arcsec.

IV. BENDING OF LIGHT IN THE
SCHWARZSCHILD-DE SITTER METRIC

The Schwarzschild-de Sitter metric describes a static
black hole of mass M in a universe with positive cosmo-
logical constant Λ. The corresponding line element is given
by (1) with

BðrÞ ¼ 1 −
rS
r
−
r2

r2Λ
; AðrÞ ¼ 1

BðrÞ ; CðrÞ ¼ 1;

rS ¼ 2M; rΛ ¼
ffiffiffiffi
3

Λ

r
:

The numerical value of the cosmological constant is
extremely small and can be taken to be Λ ≈ 10−56 cm−2
according to [35] even though astrophysical tests such as
the perihelion precession of planets in our solar system
and other tests based on the large scale geometry of the
Universe suggest an upper bound for the cosmological
constant given by Λ≲ 10−42 m−2 [36–39]. With the inclu-
sion of Λ gravity becomes essentially a two scale theory. It
might appear that whereasΛ governs only the cosmological
aspects, the only constant entering local gravity effects is
the Newtonian constant. However, in certain circumstances
a combination of the two scales also appears. For instance,
for massive particles the effective potential (19) for the
Schwarzschild-de Sitter metric develops a local maximum
of the astrophysical order of magnitude ðrSrΛÞ1=3 signifying
the largest radius of a bound state [40]. The valid question is
if lensing in the Schwarzschild-de Sitter metric gives us also
some surprises.
Following [26] we rescale the time and radial coordi-

nates as ~t ¼ t=rS and ρ ¼ r=rS. Then, the metric function B

can be rewritten in terms of only one dimensionless
parameter y as

BðρÞ ¼ 1 −
1

ρ
− yρ2; y ¼ r2S

r2Λ
¼ 4

3
M2Λ:

Note that the relation between our parameter y and the
corresponding one in [26] reads ys ¼ y=4. Instead of a
single event horizon as in the Schwarzschild metric, there
are different possibilities for the Schwarzschild-de Sitter
metric as follows:
(1) Two distinct horizons for 0 < y < 4=27 located at

ρh ¼
2ffiffiffiffiffi
3y

p cos
π þ ψ

3
; ρc ¼

2ffiffiffiffiffi
3y

p cos
π − ψ

3
;

ψ ¼ cos−1
�
3

2

ffiffiffiffiffi
3y

p �
;

where ρh and ρc denote the event and cosmological
horizon, respectively. Note that the condition
0 < y < 4=27 ensures that cosψ ∈ ð0; 1Þ. More-
over, we also have a negative root located at
ρ− ¼ −ð2= ffiffiffiffiffi

3y
p Þ cosðψ=3Þ. Finally, if we expand

the horizons with respect to the parameter y as

ρh ¼ 1þ yþOðy2Þ;

ρc ¼
1ffiffiffi
y

p −
1

2
−
3

8

ffiffiffi
y

p
−
y
2
−
105

128
y3=2 þOðy2Þ;

we can verify that the formulas for the event and
cosmological horizons predict correctly that ρh → 1
and ρc → þ∞ for y → 0þ as it should be in the
Schwarzschild case.

(2) If y > 4=27, there is only one real root of the
equation BðρÞ ¼ 0 and the space-time describes a
naked singularity located at

ρn ¼ −
2ffiffiffiffiffi
3y

p cosh
ψ

3
; ψ ¼ cosh−1

�
3

2

ffiffiffiffiffi
3y

p �
:

(3) In the case y ¼ 4=27 the event and cosmological
horizons coincide at ρh ¼ 3=2 ¼ ρc and there is also
a negative root at ~ρ ¼ −3.

We will analyze gravitational lensing for the case
0 < y < 4=27. By means of Eq. (3) in [25] the photon
sphere is found to be again at ργ ¼ 3=2 as it is the case for
the Schwarzschild metric. According to [26] the critical
parameter of the photon circular orbit depends on y and is
given by

~bcðyÞ ¼
3
ffiffiffi
3

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 27

4
y

q :
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Note that expanding ~bc around y we have ~bcðyÞ ¼ 3
ffiffiffi
3

p þ
ð81 ffiffiffi

3
p

=8ÞyþOðy2Þ and in the limit y → 0 it reproduces
correctly the critical values of the impact parameter in the
Schwarzschild case that distinguishes photons which fall
into the black hole from those escaping at infinity. Since the
Schwarzschild-de Sitter manifold is spherically symmetric,
there is no loss in generality if we suppose that the positions
of the light source and that of the observer belong to the
equatorial plane. Using formula (17) yields

dφ
dρ

¼ � 1

ρ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
~b2
− 1

ρ2
ð1 − 1

ρ − yρ2Þ
q

and with the help of the transformation u ¼ 1=ρ, we find
that the photon motion will be governed by the equation

dφ
du

¼ ∓ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u3 − u2 þ a

p ; a ¼ yþ 1

~b2
: ð49Þ

Note that the above differential equation agrees with (10) in
[15] and it clearly contains the cosmological constant. The
dependence on Λ can be removed if we use (49) to derive a
second order nonlinear differential equation for u ¼ uðφÞ
as in [41]. Furthermore, photons with ~b < ~bc are doomed to
crash into the central singularity, while those characterized
by ~b > ~bc will be able to escape the gravitational pull of the
black hole and they will eventually reach the cosmological
horizon. We are interested in the latter case. If we look back
at the term under the square root in (49), we realize that we
need to introduce a motion reality condition represented
by u3 − u2 þ a ≥ 0. Turning points will be represented by
the roots of the associated cubic equation. To study the
existence of these points it is more efficient to switch back
to the radial variable ρ and consider the cubic equation
aρ3 − ρþ 1 ¼ 0 which is in principle the same equation
we would obtain by setting BðρÞ ¼ 0 with the parameter y
replaced by a. Since we already analyzed the latter
equation, we can immediately conclude that we have the
following three cases:
(1) Two turning points for 0 < a < 4=27 at

ρ1 ¼
2ffiffiffiffiffiffi
3a

p cos
π þ β

3
; ρ2 ¼

2ffiffiffiffiffiffi
3a

p cos
π − β

3
;

β ¼ cos−1
�
3

2

ffiffiffiffiffiffi
3a

p �
such that ρh < ρ1 < ργ < ρ2 < ρc. Moreover, the
cubic aρ3 − ρþ 1 will be negative on the interval
ðργ; ρ1Þ and positive on ðρ2; ρcÞ.

(2) If a > 4=27, there is only one turning point at

ρt ¼ −
2ffiffiffiffiffiffi
3a

p cosh
β

3
; β ¼ cosh−1

�
3

2

ffiffiffiffiffiffi
3a

p �

and since ρt < 0 the cubic will be positive on the
interval ðρh; ρcÞ.

(3) In the case a ¼ 4=27 the turning points found in 1
coalesce into a single turning point at ρt ¼ ργ ¼ 3=2
and the cubic will be positive on the interval ðργ; ρcÞ.

It is interesting to observe that the conditions ~b > ~bc and
0 < y < 4=27 rule out the possibility that a ≥ 4=27 as it
can be seen from the following simple estimate:

a ¼ yþ 1

~b2
< yþ 1

~b2c
¼ 3

4
yþ 1

27
<

4

27
:

Hence, we must have 0 < y < a < 4=27. Let ρ0 denote the
distance of closest approach. According to the above
discussion we must take ρ0 in the interval ðρ2; ρcÞ. By
ρb we will denote the position of the observer. Then, from
(17) we find that

φðρ0Þ ¼
Z

ρb

ρ0

dρ
ρ

ffiffiffiffiffiffiffiffiffiffi
AðρÞ

p ��
ρ

ρ0

�
2 Bðρ0Þ
BðρÞ − 1

�
−1=2

: ð50Þ

The main difference with the Schwarzschild case is that the
observer cannot be positioned asymptotically in a region
where we can assume that the space-time is described by
the Minkowski metric. For this reason we will suppose that
the deflection angle is given by the formula

Δφðρ0Þ ¼ κ1Iðρ0Þ þ κ2 ð51Þ

where Iðρ0Þ denotes the integral in (50) and κ1 and κ2 are
two scalars to be determined in such a way that the weak
field approximation of (51) reproduces the weak field
approximation for the Schwarzschild case in the limit
y → 0. Let x ¼ ρ=ρ0. Then, we have

Iðρ0Þ ¼
Z

xb

1

dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2Bðρ0Þ − Bðρ0xÞ

p :

Let α ¼ 1=ρ0. The term under the square root in the above
expression becomes

x2Bðρ0Þ − Bðρ0xÞ ¼ ð1 − αÞx2 þ α

x
− 1

and it does not depend on the cosmological constant Λ.
This is not surprising since it is well known that Λ has an
influence over the orbits of massive particles but it can be
made to disappear from the coordinate orbital equation
when photons are considered [41]. At this point the integral
I will depend only on the parameter α and will be given by

IðαÞ ¼
Z

xb

1

dx
x

�
ð1 − αÞx2 þ α

x
− 1

�
−1=2

:

Letting ρ0 ≫ 1 corresponding to the condition α ≪ 1 we
can expand the integral I in powers of the small parameter α
according to
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IðαÞ ¼ Ið0Þ þ I0ð0Þαþ I00ð0Þ
2

α2 þ I000ð0Þ
3!

α3 þOðα4Þ;
ð52Þ

where the prime denotes differentiation with respect to α.
Note that we can differentiate under the integral since the
integrand is continuous on the interval ð1; xbÞ. The coef-
ficients in the above expansion have been computed with
the software Maple 14 and they are given by the following
formulas:

Ið0Þ¼ π

2
−f1ðxbÞ; f1ðxbÞ¼ arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffi
x2b−1

q �
;

I0ð0Þ¼ 2x2b−xb−1

2xb
ffiffiffiffiffiffiffiffiffiffiffiffi
x2b−1

q ;

I00ð0Þ¼
15x2bðxbþ1Þ2½π−2f1ðxbÞ�−2

ffiffiffiffiffiffiffiffiffiffiffiffi
x2b−1

q
f2ðxbÞ

16x2bðxbþ1Þ2 ;

f2ðxbÞ¼ 8x3bþ7x2b−6xb−3;

I000ð0Þ¼−
45x3bðxbþ1Þ3½π−2f1ðxbÞ�−2

ffiffiffiffiffiffiffiffiffiffiffiffi
x2b−1

q
f3ðxbÞ

16x3bðxbþ1Þ3 ;

f3ðxbÞ¼ 122x5bþ306x4bþ247x3bþ70x2bþ15xbþ5:

Moreover, for xb ≫ 1 the above quantities can be expanded
as follows:

Ið0Þ ¼ π

2
−

1

xb
þOðx−2b Þ; I0ð0Þ ¼ 1 −

1

2xb
þOðx−2b Þ;

ð53Þ

I00ð0Þ ¼ 15

16
π − 1 −

3

4xb
þOðx−2b Þ;

I000ð0Þ ¼ 61

4
−
45

16
π −

15

8xb
þOðx−2b Þ: ð54Þ

Hence, in the limit xb → ∞ corresponding to y → 0we find
that the deflection angle is given by

Δφðρ0Þ ¼
π

2
κ1 þ κ2 þ κ1ρ

−1
0 þ κ1

2

�
15

16
π − 1

�
ρ−20

þ κ1
6

�
61

4
−
45

16
π

�
ρ−30 þOðρ−40 Þ:

Comparison of the above expression with (33) gives κ1 ¼ 2
and κ2 ¼ −π. Letting xb approach the cosmological hori-
zon at xc and employing (53) and (54) it is not difficult to
verify that the deflection angle can be written at the third
order in the parameter α and at the first order in 1=xc as

ΔφðαÞ ¼ −
2

xc
þO

�
1

x2c

�
þ
�
2 −

1

xc
þO

�
1

x2c

��
α

þ
�
15

16
π − 1 −

3

4xc
þO

�
1

x2c

��
α2

þ
�
1

3

�
61

4
−
45

16
π

�
−

5

8xc
þO

�
1

x2c

��
α3

þOðα4Þ:
Finally, expanding the cosmological horizon in powers ofΛ
we find that the deflection angle as a function of the
distance of closest approach for an observer located
asymptotically at the cosmological horizon can be approxi-
mated by the following formula:

Δφðr0Þ ¼ −
2ffiffiffi
3

p r0
ffiffiffiffi
Λ

p
þ
�
2 −

r0
ffiffiffiffi
Λ

pffiffiffi
3

p
�
2M
r0

þ
��

15

16
π − 1

�
−

ffiffiffi
3

p

4
r0

ffiffiffiffi
Λ

p ��
2M
r0

�
2

þ
�
1

3

�
61

4
π −

45

16
π

�
−

5

8
ffiffiffi
3

p r0
ffiffiffiffi
Λ

p ��
2M
r0

�
3

þ � � � ð55Þ

Hence, we agree with [42] that weak gravitational lensing
in the Schwarzschild-de Sitter metric will depend on the
cosmological constant Λ. It is interesting to observe that
Eq. (18) in [12] in the limit Λ → 0 fails to reproduce
correctly the term going together with ð2M=r0Þ2 in theweak
field limit of the Schwarzschild metric, while our (55)
matches the corresponding formula in the Schwarzschild
case even at the order ð2M=r0Þ3. Reference [43] considered
the light orbital equation with the source located at ðrs;φsÞ
while the observer is positioned at ðrb;φbÞ with φb ¼ 0
and derived an expression for φs in powers of 1=b, 1=rs,
and 1=rb. Concerning strong gravitational lensing in a
Schwarzschild-de Sitter manifold, wewill first solve exactly
the integral in (52) in terms of an incomplete elliptic integral
of the first kind and then apply an asymptotic formula
derived by [13] in the case when the sine of the modular
angle and the elliptic modulus both tends to one. To this
purposewewrite the deflection angle asΔφðαÞ ¼ 2IðαÞ − π
where the integral IðαÞ is given by (52) and introduce the
coordinate transformation u ¼ 1=x so that we obtain

ΔφðαÞ ¼ 2

Z
1

1=xb

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αu3 − u2 þ 1 − α

p − π:

The cubic polynomial under the square root in the above
expression has zeroes at

u0 ¼ 1; u1 ¼
1 − α −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2α − 3α2

p

2α
;

u2 ¼
1 − αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2α − 3α2

p

2α
:
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Sinceρ0 > ρ2 > ργ , thenα < 2=3 andwe can order the roots
as u2 > u0 > 0 > u1. Using formula 3.131.4 in [32] we can
express the deflection angle in terms of an incomplete
elliptic integral of the first kind as follows:

ΔφðαÞ ¼ −π þ 4Fðϕ1; κÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðu2 − u1Þ

p ;

ϕ1 ¼ sin−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 − u1Þð1 − 1=xbÞ
ð1 − u1Þðu2 − 1=xbÞ

s
; κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u1
u2 − u1

s
:

Note that κ can be expanded around the photon sphere as in
(35) while the modular angle admits the Taylor expansion

sinϕ1 ¼ 1 −
4

9

3þ ρb
2ρb − 3

ðρ0 − ργÞ þOðρ0 − ργÞ;

which agrees with the corresponding expansion in (35)
when ρb → ρc andΛ → 0. Since both κ and sinϕ1 tends to 1
as ρ0 → ργ , we can apply the asymptotic expansion (36) for
the incomplete elliptic integral of the first kind developed by
[13] and the deflection angle can be approximated as

Δφðρ0Þ ¼ −π þ ln
144ð2ρb − 3Þ

½3þ 4ρb þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ρbð3þ ρbÞ

p �2

− 2 ln

�
ρ0
ργ

− 1

�
þOðρ0 − ργÞ:

The above formula reduces correctly to the corresponding
one derived in the previous section for the Schwarzschild
metric when ρb → ρc and Λ → 0. Finally, if ρb → ρc in the
above expression and we make an expansion around Λ ¼ 0
we obtain

Δφðr0Þ ¼ −π þ ln 144ð7 − 4
ffiffiffi
3

p
Þ − 2

3
ð9 − 2

ffiffiffi
3

p
ÞM

ffiffiffiffi
Λ

p

þOðM2ΛÞ − 2 ln

�
r0
rγ

− 1

�
þOðr0 − rγÞ:

V. LIGHT DEFLECTION IN THE
JANIS-NEWMAN-WINICOUR METRIC

The Janis-Newman-Winicour metric is the most general
spherically symmetric static and asymptotically flat sol-
ution of Einstein’s field equations coupled to a massless
scalar field and is given by [44]

ds2 ¼


1 −

μ

r

�
γ
dt2 −



1 −

μ

r

�
−γ
dr2

− r2


1 −

μ

r

�
1−γðdϑ2 þ sin2ϑdφ2Þ ð56Þ

with γ ¼ M=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

p
and μ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

p
where M is

the total mass and q is the strength of the scalar field also
called the “scalar charge.” Note that γ ≤ 1. For γ ¼ 1 the

JNW metric reduces to the Schwarzschild solution and the
scalar field vanishes. The metric has been rediscovered by
Wyman [45] and his solution was shown to be equivalent to
the JNW metric in [46]. The metric is not only interesting
from the point of view of an example of a naked singularity
but also has served as a model for the supermassive galactic
center in [16].
In order to study gravitational lensing it is convenient

to rescale the time and radial coordinates as ~t ¼ t=μ and
ρ ¼ r=μ. Then, the above metric can be cast into the form

d~s2 ¼ ds2

μ2
¼
�
1 −

1

ρ

�
γ

d~t2 −
�
1 −

1

ρ

�
−γ
dρ2

− ρ2
�
1 −

1

ρ

�
1−γ

ðdϑ2 þ sin2ϑdφ2Þ;

γ ¼ rS
μ
:

References [29] and [47] constructed weak field approx-
imations of the deflection angle up to the second order. We
point out that formula (51) in [47] reproduces correctly the
first order term of the weak field limit of the Schwarzschild
metric but the second order term fails to do so when ν → 0
in the aforementioned formula. Before going into the
details of light bending in this metric, let us have a closer
look at the nature of the naked singularity of this gravi-
tational background for ρ ¼ 1. The existence of the latter is
indicated by the Kretschmann invariant given by

K ¼ RabcdRabcd ¼
μ2ðr − μÞ2γ

4r2γþ4ðr − μÞ4 fγðrÞ;

fγðrÞ ¼ 48γ2r2 − 16μγðγ þ 1Þð2γ þ 1Þr
þ μ2ðγ þ 1Þ2ð7γ2 þ 2γ þ 3Þ:

At the same time it is clear that for certain choices of γ the
coordinate system used to write the line element (56) does
not represent the full maximal atlas. Indeed, it is possible
to find a coordinate system where the metric elements are
nonsingular and the naked singularity manifests itself
through the noninvertibility of the metric. As an example
let us choose γ ¼ 1=3. The null radial geodesic gives rise to
the definition of the tortoise coordinate r� via the first order
differential equation

dr�
dr

¼ 1ffiffiffiffiffiffiffiffiffiffi
1 − μ

r
3
p :

Using the integral representation of the hypergeometric
function (see 15.3.1 in [48]) one obtains

r� ¼ −
3

4
r
ffiffiffi
r
μ

3

r
2F1

�
1

3
;
4

3
;
7

3
;
r
μ

�
:

The analog of the Eddington-Finkelstein coordinates for
this metric is now ~u ¼ tþ r� and ~v ¼ t − r�. In these
coordinates the line element takes now the form
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ds2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 −

μ

r
3

r
d ~u2 − 2d ~udr − CðrÞðdϑ2 þ sin2ϑdφ2Þ

from which one can see that the presence of the naked
singularity is not obvious. On the other hand, the deter-
minant of the metric is

det g ¼ −r4
�
1 −

μ

r

�
4=3

sin2θ

which makes the metric not to be invertible at r ¼ μ. This
illustrative example shows the subtle nature of the naked
singularity.Here, bymeans of an alternativemethodweoffer
a formula extending the latter expansions up to the fifth order
and reducing correctly to the weak field approximation (33)
in the limit of a vanishing scalar charge. With the help of (7)
in [25] the integral giving the deflection angle can bewritten
as Δφðρ0Þ ¼ Iðρ0Þ − π where

Iðρ0Þ ¼ 2

Z
∞

ρ0

dρ
ρ

ffiffiffiffiffiffiffiffiffiffi
AðρÞ
CðρÞ

s ��
ρ

ρ0

�
2 CðρÞBðρ0Þ
Cðρ0ÞBðρÞ

− 1

�
−1=2

;

CðρÞ ¼
�
1 −

1

ρ

�
1−γ

:

Letting α ¼ 1=ρ0 and introducing the change of variable
u ¼ ðαρÞ−1 we obtain

IðαÞ ¼ 2

Z
1

0

½ð1 − αuÞ2−2γð1 − αÞ2γ−1 − u2ð1 − αuÞ�−1=2:

Expanding the integrand in IðαÞ around α ¼ 0 we obtain
after a tedious computation

IðαÞ ¼ π þ 2γαþ c1α2 þ � � � þ c4α5 þOðα6Þ

with

c1 ¼ ðπ − 2Þγ2 þ γ −
π

16
;

c2 ¼ ð7 − 2πÞγ3 þ ðπ − 2Þγ2 þ 1

4

�
1

3
þ π

2

�
γ −

π

16
;

c3 ¼
�
6π −

55

3

�
γ4 þ

�
21

2
− 3π

�
γ3 þ 1þ 3π

12
γ2

þ 3

8

�
π

2
− 1

�
γ −

55

1024
π;

c4 ¼
�
1975

36
−
52

3
π

�
γ5 þ

�
12π −

110

3

�
γ4

þ
�
323

72
−
13

12
π

�
γ3 þ

�
13

6
−
π

2

�
γ2

þ
�
149

768
π −

1513

2880

�
γ −

53

512
π:

Hence, the weak field limit of the deflection angle reads

Δφðρ0Þ ¼
2γ

ρ0
þ c1
ρ20

þ � � � c4
ρ50

þO
�
1

ρ60

�
:

The above expansion generalizes the weak field approx-
imations (24) in [29] and (51) in [47]. Moreover, it
reproduces the weak field approximation (33) for a
Schwarzschild manifold in the limit γ → 1. For γ ¼ 1=2
the deflection angle can be computed analytically in terms
of the complete elliptic integral of the first kind K and the
incomplete elliptic integral of the first kind F as

Δφðρ0Þ ¼ −π þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ρ0 þ 1

s "
K

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ρ0 þ 1

s !

− F

� ffiffiffi
2

p

2
;

2

ρ0 þ 1

�#
:

The above formula is new sincewe could not find any similar
result in the existing literature concerning gravitational
lensing in the JNWmetric. Concerning a numerical analysis
of gravitational lensing for the case 0 < γ < 1=2we refer to
[21]whereas the study of the strong gravitational lensing can
be found in [25]. The γ ¼ 1=2 is indeed a special case of the
JNWmetric.We are interested in the region ρ > 1 assuming
that the geodesics cannot be continued through the naked
singularity. Then, the function ~V defined in (20) (see Fig. 5)
displays a maximum (unstable circular orbit) at
ρm ¼ γ þ 1=2. In the very principle, light can be trapped
now between the hump of ~V and the line ρ ¼ 1. For γ < 1=2
the function ~V is a smoothly decreasing function between
one and infinity whereas for γ ¼ 1=2we have ~VðρÞ ¼ 1=ρ2.

VI. LIGHT DEFLECTION IN A SPACETIME WITH
GALACTIC DARK MATTER HALOS

One of the pressing problems of astrophysics is to
explain the rotational curves of galaxies. The post popular
explanation is to postulate nonbaryonic neutral matter (dark
matter) [49]. Another explanation prefers to modify the
gravity itself [50]. In both cases, an interesting task is to
extend the nonrelativistic theories within the framework of
general relativity. In the case of DM this means using
existing empirical density profiles to construct a DM halo
metric.
The line element associated with a galaxy dark matter

halo based on the Navarro-Frenk-White (NFW) [51]
density profile is a metric of the form (1) [52]

BðxÞ¼
�
1þ2Φcþ ~γC0x2 if 0≤ x≤ x0

1þ2Φcþ ~γA0−
~γ
xðB0þ ln 1þx

1þx0
Þ if x>x0

;

AðxÞ¼
�
1þ2~γC0x2 if 0≤ x≤ x0

1þ ~γ
xðD0þ ln 1þx

1þx0
þ 1

1þxÞ if x>x0
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with

D0 ¼
x20 − 3x0 − 3

3ð1þ x0Þ2
; C0 ¼

1

6x0ð1þ x0Þ2
;

B0 ¼
x0ð4x0 þ 3Þ
3ð1þ x0Þ2

; A0 ¼
3x0 þ 2

2ð1þ x0Þ2

and

~γ ¼ 2v20; x ¼ r
rg

where the two free parameters v0 and rg are the character-
istic speed and radius of the galaxy, respectively. In what
follows it will be assumed that the characteristic speed of
the galaxy is small so that ~γ ≪ 1. Moreover,

Φc ≈ −ϵ
�
1þ 2 ln ð1þ c0Þ

c0
−

1

1þ c0

�
; ϵ ¼ ~γ=2

and

c0 ¼ 62.1 ×

�
Mvirh
M⊙

�
−0.06

ð1þ ϵÞ;

where Mvir is the virial mass. According to [52] for
h ¼ 0.7 we have 108 ≲Mvir=M⊙ ≲ 1015 which implies
that 6≲ c0 ≲ 30. Furthermore, for Mvir=M⊙ varying in the
aforementioned range x0 is of the order 10−4 as it can be
evinced from Eq. (29) in [52]. At this point a comment is in
order. If we let x0 → 0, we recover the metric derived in
[53]. However, there are two conceptual differences. First
of all, in [52] there are two regions to be considered and
moreover, the calculation is valid only for small ~γ. The case
distinction above is necessary because of the singular
nature of the NFW density profile at the origin. To get
around this problem one replaces the inner region by a
regular solution [52]. We have recalculated the matching
conditions and they differ slightly with our results of the
function A and B from [52].
In what follows we are interested in the case of weak

gravitational lensing and therefore we will assume that the
distance of closest approach ex0 ≫ 1. For a generic spheri-
cally symmetric spacetime the deflection angle is given by
the integral [25]

Δφð~x0Þ ¼ −π þ 2

Z
∞

~x0

ffiffiffiffiffiffiffiffiffiffi
AðxÞp

dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð x
~x0
Þ2 Bð~x0Þ

BðxÞ − 1
q : ð57Þ

To compute the deflection angle in the case of weak
gravitational lensing ðx; ~x0 ≫ 1Þ we follow the method
outlined by [19] and make an asymptotic expansion in the
small parameters x−1 and ~x−10 . Taking into account that

BðxÞ ¼ 1þ 2Φc þ ~γA0 − ~γ
B0 − ln ð1þ x0Þ

x
− ~γ

ln x
x

þO
�
1

x2

�
we find that�
x
~x0

�
2 Bð~x0Þ
BðxÞ − 1 ¼

�
x
~x0

�
2
�
1 − ~γ

B0 − ln ð1þ x0Þ
1þ 2Φc

x − ~x0
x~x0

þ ~γ

1þ 2Φc

�
ln x
x

−
ln ~x0
~x0

�
� � �
�
− 1;

¼
��

x
~x0

�
2

− 1

�
½1þ ~γωðx; ~x0Þ þ � � ��

with

ωðx; ~x0Þ ¼ −
B0 − ln ð1þ x0Þ

1þ 2Φc

x
~x0ðxþ ~x0Þ

þ 1

1þ 2Φc

xð~x0 ln x − x ln ~x0Þ
~x0ðx2 − ~x20Þ

≪ 1:

Moreover,

AðxÞ ¼ 1þ ~γ
D0 − ln ð1þ x0Þ

x
þ ~γ

ln x
x

þO
�
1

x2

�
and the integrand in (57) can be approximated as follows:ffiffiffiffiffiffiffiffiffiffi

AðxÞp
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð x
~x0
Þ2Bð~x0ÞBðxÞ −1

q ¼ 1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð x
~x0
Þ2−1

q �
1þ ~γ

B0− lnð1þx0Þ
2ð1þ2ΦcÞ

×
x

~x0ðxþ ~x0Þ
þ ~γ

D0− lnð1þx0Þ
2x

þ ~γ

2

lnx
x
−

~γ

2ð1þ2ΦcÞ
xð~x0 lnx−xln ~x0Þ

~x0ðx2− ~x20Þ
�
:

Let hðxÞ ¼ x−1½ðx=~x0Þ2 − 1�−1=2. By means of the formulasZ
∞

~x0

hðxÞdx¼π

2
;
Z

∞

~x0

xhðxÞ
xþ ~x0

dx¼1;Z
∞

~x0

hðxÞ
x

dx¼ 1

~x0
;Z

∞

~x0

hðxÞxð~x0 lnx−x ln ~x0Þ
x2− ~x20

dx¼ ln
2

~x0
;Z

∞

~x0

hðxÞ lnx
x
dx¼ ln ~x0− ln2þ1

~x0

we find that the deflection angle can be represented at the
order ~γ as follows:
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Δφð~x0Þ ¼ ~γ

�
1 −

2ð1þ ΦcÞ
1þ 2Φc

ln 2þD0 − ln ð1þ x0Þ

þ B0 − ln ð1þ x0Þ
1þ 2Φc

�
1ex0 þ ~γ

2ð1þ ΦcÞ
1þ 2Φc

ln ~x0
~x0

þ � � � : ð58Þ

As Φc → 0 which corresponds to ϵ → 0 and x0 → 0 the
deflection angle behaves as 2~γ ln ~x0=ex0. The above results
are the first steps for calculating the deflection angle of a
dark matter halo within a general relativistic framework.
We leave the lensing and the strong lensing for future
projects.

VII. GRAVITATIONAL LENSING IN THE
PRESENCE OF A HOLOGRAPHIC SCREEN

We recall that a holographic screen can be seen as the
event horizon of a black hole characterized by a mass
spectrum bounded from below by a mass of the extremal
configuration coinciding with the Planck mass. The metric
modeling a holographic screen is [54]

ds2 ¼
�
1−

2ML2
pr

r2þL2
p

�
dt2−

�
1−

2ML2
pr

r2þL2
p

�−1
dr2− r2dΩ2;

where the mass of the holographic screen is

M ¼ r2h þ L2
p

2L2
prh

; ð59Þ

rh is the radius of the screen, and Lp denotes the Planck
length. The above line element admits a pair of distinct
horizons at

r� ¼ L2
pðM �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −M2

p

q
Þ; ð60Þ

wheneverM > Mp whereMp is the Planck mass, while for
M ¼ Mp the two horizons merge together and we have an
extremal black hole. For M ≫ Mp we get the usual
Schwarzschild metric. Inserting (59) into (60) we find that

rþ ¼ rh; r− ¼ L2
p

rh
:

In the present case the function ~V defined in (20) reads

~VðxÞ ¼ 1

L2
px2

�
1 −

mx
x2 þ 1

�
; x ¼ r

Lp
; m ¼ 2M

Mp
:

It is not difficult to verify that for 0 ≤ m ≤ 2 we have
~VðxÞ > 0 for any x > 0 and monotonically decreasing (see
Fig. 6 for instance). However, when m > 2 the same
function intersects the positive x axis at

1x2 ¼
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 4

p

2

so that ~VðxÞ is positive on the intervals ð0; x1Þ and ðx2;∞Þ
and negative on ðx1; x2Þ. It possesses a negative minimum
at xm ∈ ðx1; x2Þ and a positive maximum at xM ∈ ðx2;∞Þ
where we will have an unstable circular orbit corresponding
to the photon sphere. Before embarking ourselves into the
derivation of the formulas for the deflection angle in the
weak and strong regimes, we construct the embedding
diagram for the holographic screen. To this purpose we
consider a two-dimensional surface H ¼ fðt; x; ϑ;φÞ ∈
R × ðx2;∞Þ × S2jt ¼ const; ϑ ¼ π=2g with line element

dσ2 ¼ −
�
1 −

mx
1þ x2

�
− x2dφ2

and we introduce an additional coordinate z orthogonal to
the ðx;φÞ plane. In the cylindrical coordinate system
ðx;φ; zÞ the embedding can be realized by looking for a
surface of rotation having the same line element as H,
i.e. we search for a surface z ¼ zðxÞ with line element
d ~σ2 ¼ −dx2 − x2dφ2 − dz2 ¼ dσ2. From this condition we
find that in the extreme case m ¼ 2 the function z ¼ zðxÞ
must satisfy the differential equation

dz
dx

¼ �
ffiffiffiffiffi
2x

p

x − 1

for x > x2 ¼ 1. The solutions are found to be

z�ðxÞ ¼ �
ffiffiffi
2

p �
2
ffiffiffi
x

p þ ln
ffiffiffi
x

p
− 1ffiffiffi

x
p þ 1

�
; ð61Þ

where the integration constant has been chosen so that the
solutions meet at the point x0 ¼ 1.4392 where the expres-
sion in the bracket of (61) vanishes. In the nonextreme case
m > 2 we end up with the differential equation

dz
dx

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mx
x2 −mxþ 1

r
that must be solved for x > x2. By means of the trans-
formation x ¼ τ2 combined with 8a6 at page 85 in [55] we
find that the general solution can be expressed in terms of
incomplete elliptic integrals of the first and second kind as
follows:

z�ðxÞ¼
ffiffiffiffi
m

p ðmþ2Þ
"
−αðmÞFðϕðxÞ;kÞ

þβðmÞ
 
EðϕðxÞ;kÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−mxþ1

m2−4

r
1− τ21

τ1
ffiffiffi
x

p
−1

!#
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with

αðmÞ ¼ ðmþ 1Þð3mþ 6þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 4

p
Þ;

βðmÞ ¼ ðmþ 2Þðmþ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 4

p
Þ;

ϕðxÞ ¼ sin−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ1 þ τ2Þð

ffiffiffi
x

p
− τ1Þ

2τ1ðτ1 − τ−11 Þ

s
; k ¼ 2

ffiffiffiffiffiffiffiffi
τ1τ2

p
τ1 þ τ2

;

and

τ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 4

p

2

s
; τ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 4

p

2

s
:

A plot of the profile function zþðxÞ for different values of
the rescaled mass parameter can be found in Fig. 7.

A. The nonextreme case

To derive formulas for the deflection angle in the weak
and strong regimes we start by considering the nonextreme
case M > Mp. First of all, we rescale t and r by rh. Let
ρ ¼ r=rh > 1. Then, the original line element can be
rewritten as ds2 ¼ r2hd~s

2 with

d~s2 ¼ BðρÞd~t2 − dρ2

BðρÞ − ρ2dΩ2;

BðρÞ ¼ 1 −
ð1þ λÞρ
ρ2 þ λ

; λ ¼ L2
p=r2h:

The radius of the photon sphere can be found by solving the
equation B0ðρÞ=BðρÞ ¼ 2=ρ which leads to the problem of
finding the roots of the quartic polynomial equation

pðρÞ ¼ 2ρ4 − 3ð1þ λÞρ3 þ 4λρ2 − λð1þ λÞρþ 2λ2 ¼ 0:

ð62Þ

For 0 < λ ≪ 1 we can use a perturbative method to find
the position of the photon sphere. In this regard we
observe that for λ ¼ 0 the unperturbed roots of (62) are 0
with algebraic multiplicity 3 and 3=2. Since the latter
has algebraic multiplicity 1, we can set up an expansion
ρ3=2ðλÞ ¼ 3=2þ x1λþ x2λ2 þ x3λ3 þOðλ4Þ. Substituting
ρ3=2ðλÞ into (62), equating powers of λ, and solving the
corresponding set of equations, we find

ρ3=2ðλÞ ¼
3

2
þ 7

18
λþ 38

243
λ2 þ 1070

6561
λ4 þOðλ4Þ

which is always larger than the event horizon ρh ¼ 1. The
remaining roots of (62) cannot be candidates for the
photon sphere since they must approach zero as λ → 0
and therefore they have an asymptotic behavior of the
form ρjðλÞ ≈ λpjb0;j with pj > 0 and b0;j ≠ 0 for all
j ¼ 1; 2; 3. The relation between the impact parameter
and the distance of closest approach is

~b ¼ ρ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 þ λ

ρ20 − ð1þ λÞρ0 þ λ

s
: ð63Þ

Note that in the limit λ → 0 the above relation repro-
duces correctly (38) in the classic Schwarzschild case.
Expanding (63) around ρ0 ¼ ρ3=2 we find ~b ¼ ~bcr þ
α1ðρ0 − ρ3=2Þ2 þOðρ0 − ρ3=2Þ3 with

~bcr ¼
3
ffiffiffi
3

p

2
þ 5

ffiffiffi
3

p

6
λþ � � � ;

α1 ¼
1

2
~b00ðρ3=2Þ

¼
�
−

B0

2B
ffiffiffiffi
B

p þ ρ0
2
ffiffiffiffi
B

p
�
3

4

�
B0

B

�
2

−
B00

2B

�	����
ρ0¼ρ3=2

¼ 2
ffiffiffi
3

p
−
46

ffiffiffi
3

p

27
λþ � � �

Note that as in the Schwarzschild case ~b0ðρ3=2Þ ¼ 0

because ~b0ðρ0Þ¼pðρ0Þ=ð2
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ20þλ

p
½ρ20− ð1þ λÞρ0þλ�3=2Þ

and ρ3=2 is a root of the polynomial pðρ0Þ.
The deflection angle due to a holographic screen in
the weak field limit can be computed from (57)
with ρ; ρ0 ≫ 1. Taking into account that BðρÞ ¼ 1 −
ð1þ λÞ=ρþ � � � we find that

FIG. 7 (color online). Plot of the function zþðxÞ in the extreme
case (solid line), form ¼ 3 (dashed line), andm ¼ 6 (dotted line).
Note that the size of the event horizon increases as the value of the
rescaled mass parameter m increases. This figure refers to the
holographic screen metric.
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�
ρ

ρ0

�
2 Bðρ0Þ
BðρÞ − 1

¼
�
ρ

ρ0

�
2
�
1 −

1þ λ

ρ0
þ � � �

��
1þ 1þ λ

ρ
þ � � �

�
¼
��

ρ

ρ0

�
2

− 1

��
1 −

ð1þ λÞρ
ρ0ðρþ ρ0Þ

þ � � �
�

and ffiffiffiffiffiffiffiffiffiffi
AðρÞp

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ρρ0Þ2

Bðρ0Þ
BðρÞ − 1

q
¼ 1

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ρρ0Þ2 − 1

q �
1þ 1þ λ

2ρ
þ ð1þ λÞρ
2ρ0ðρþ ρ0Þ

þ � � �
�

where A ¼ B−1. Let hðρÞ ¼ ρ−1½ðρ=ρ0Þ2 − 1�−1=2. SinceZ
∞

ρ0

hðρÞdρ ¼ π

2
;

Z
∞

ρ0

hðρÞ
ρ

dρ ¼ 1

ρ0
;Z

∞

ρ0

ρhðρÞ
ρþ ρ0

dρ ¼ 1;

we find that in the weak field limit and at the first order
in 1=ρ0 the deflection angle is related to the distance of
closest approach through the following relation:

Δφðρ0Þ ¼
2ð1þ λÞ

ρ0
þ � � � :

To treat strong gravitational lensing we will adopt the
method developed by [25]. First of all, we introduce
new variables y ¼ BðρÞ and z ¼ ð1 − yÞ=ð1 − y0Þ with
y0 ¼ Bðρ0Þ. Then, ρ can be expressed as a function of z
as follows:

ρðzÞ ¼ 1þ λ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ λÞ2 − 4λð1 − y0Þ2ð1 − zÞ2

p
2ð1 − y0Þð1 − zÞ :

Since for λ → 0 we should get as in the Schwarzschild
case ρðzÞ ¼ 1=½ð1 − y0Þð1 − zÞ�, we must choose the
positive sign in the above expression. The formula
for the deflection angle can now be written as

Δφðρ0Þ ¼ −π þ
Z

1

0

Rðz; ρ0Þfðz; ρ0Þdz ð64Þ

with

Rðz; ρ0Þ ¼
2ð1 − y0Þρ0
ρ2ðzÞB0ðρÞ ;

fðz; ρ0Þ ¼
�
y0 −

�
y0 þ ð1 − y0Þz

�
ρ20

ρ2ðzÞ
�−1=2

; ð65Þ

where the prime denotes differentiation with respect to
ρ, Note that the function R does not exhibit singularities
for any value of z and ρ0 while f becomes singular as
z → 0 since ρð0Þ ¼ ρ0. Expanding the argument of the
square root in f at the second order we find fðz; ρ0Þ ≈
f0ðz; ρ0Þ ¼ ½αðρ0Þzþ βðρ0Þz2�−1=2 with

αðρ0Þ ¼
1 − Bðρ0Þ
ρ0B0ðρ0Þ

½2Bðρ0Þ − ρ0B0ðρ0Þ� ¼
pðρ0Þ

ρ0ðρ40 − λÞ ;

βðρ0Þ ¼
½1 − Bðρ0Þ�2
ρ20ðB0ðρ0ÞÞ3

½2ρ0ðB0ðρ0ÞÞ2 − 3Bðρ0ÞB0ðρ0Þ

− ρ0Bðρ0ÞB00ðρ0Þ�:
A closer inspection of α shows that it becomes zero
when ρ ¼ ρ3=2 and therefore the integral of f will
diverge logarithmically. Let us rewrite the integrand
in (64) as Rðz;ρ0Þfðz;ρ0Þ¼Rð0;ρ3=2Þf0ðz;ρ3=2Þþgðz;ρ0Þ
with gðz; ρ0Þ ¼ Rðz; ρ0Þfðz; ρ0Þ − Rð0; ρ3=2Þf0ðz; ρ3=2Þ
where

Rð0; ρ3=2Þ ¼
2ðρ23=2 þ λÞ
ρ23=2 − λ

¼ 2þ 16

9
λþ � � �

tends correctly to the value 2 for λ → 0 as one would
expect in the classic Schwarzschild case. Then, the
integral for the deflection angle can be written as
Δφðρ0Þ ¼ −π þ IDðρ0Þ þ IRðρ0Þ where

IDðρ0Þ ¼ Rð0; ρ3=2Þ
Z

1

0

f0ðz; ρ3=2Þdz;

IRðρ0Þ ¼
Z

1

0

gðz; ρ0Þdz

and the subscripts D and R stay for divergence and
regular, respectively. The first integral admits the
following exact solutionZ

1

0

f0ðz; ρ3=2Þdz ¼
2ffiffiffi
β

p ln

ffiffiffi
β

p þ ffiffiffiffiffiffiffiffiffiffiffi
αþ β

pffiffiffi
α

p :

Expanding α and β around ρ3=2 we obtain

IDðρ0Þ ¼ −a ln
�

ρ0
ρ3=2

− 1

�
þ bD þOðρ0 − ρ3=2Þ ð66Þ

with

a ¼ Rð0; ρ3=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðρ3=2Þ

p ¼ 2þ 40

27
λþ � � � ;

bD ¼ Rð0; ρ3=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðρ3=2Þ

p ln
2½1 − Bðρ3=2Þ�
ρ3=2B0ðρ3=2Þ

¼ 2 ln 2þ
�
40

27
ln 2þ 16

9

�
λþ � � � :
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The regular term in the deflection angle can be found by
expanding the integral IRðρ0Þ in powers of ρ0 − ρ3=2 as
follows:

IRðρ0Þ ¼
X∞
n¼0

ðρ0 − ρ3=2Þn
n!

Z
1

0

∂ng
∂ρn0
����
ρ0¼ρ3=2

dz ¼
Z

1

0

gðz; ρ3=2ÞdzþOðρ0 − ρ3=2Þ:

Hence, the additional correction to be added to the term
−π þ bD is represented by bR ¼ IRðρ3=2Þ and in the
strong field limit the formula for the deflection angle
reads

Δφðρ0Þ ¼ −a ln
�

ρ0
ρ3=2

− 1

�
þ bD þ bROðρ0 − ρ3=2Þ:

In this case it is not possible to give an analytical result
for the integral representing bR but we can construct an
expansion in the parameter λ. To this purpose note that

f0ðz; ρ3=2Þ ¼
1

z
−

4

27z
λþ � � � ;

Rðz; ρ3=2Þ ¼ 2þ 8

9
ð3z2 − 6zþ 2Þλþ � � � ;

fðz; ρ3=2Þ ¼
ffiffiffi
3

p

z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 2z

p −
4
ffiffiffi
3

p ð3z2 − 6zþ 1Þ
27z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 2z

p λþ � � � :

Taking into account that gðz; ρ3=2Þ ¼ g1ðzÞ þ g2ðzÞλþ
� � � where

g1ðzÞ ¼
2
ffiffiffi
3

p
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 2z

p

z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 2z

p ;

g2ðzÞ ¼
8ð6 ffiffiffi

3
p

z2 − 12
ffiffiffi
3

p
zþ 5

ffiffiffi
3

p
− 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 2z

p Þ
27z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 2z

p ;

and integrating we obtain bR ¼ bR;Sch þ κλþ � � � where
bR;Sch ¼ ln 36 − arctanhð

ffiffiffi
3

p
=3Þ ¼ 0.9496;

κ ¼ 40

27
ln 6þ 8ð2 ffiffiffi

3
p

− 9Þ
27

−
80

27
arctanhð

ffiffiffi
3

p
=3Þ

¼ −2.5770:

Note that bR;Sch is in agreement with the numerical
value found by [25] for the classic Schwarzschild case.

B. The extreme case

Let M ¼ Mp. Then, the Cauchy and event horizon
coincide at r� ¼ Lp. Introducing the rescaling ρ ¼ r=Lp

the metric function B is now given by BðρÞ ¼ ðρ − 1Þ2=
ðρ2 þ 1Þ. The radius of the photon sphere is obtained by

solving the equation B0ðρÞ=BðρÞ ¼ 2=ρ which gives rise to
the cubic equation qðρÞ ¼ ρ3 − 2ρ2 − 1 ¼ 0. This equation
has two imaginary roots and one real root located at

ρf ¼ 2

3
þ ð172þ 12

ffiffiffiffiffiffiffiffi
177

p Þ2=3 þ 16

ð172þ 12
ffiffiffiffiffiffiffiffi
177

p Þ1=3 ¼ 2.2057:

The impact parameter and the distance of closest approach
are related to each other through ~b ¼ ρ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 þ 1

p
=ðρ0 − 1Þ.

An expansion around the point ρ0 ¼ ρf gives ~b ¼ ~bcr þ
~α1ðρ0 − ρfÞ2 þOðρ0 − ρfÞ2 with

~bcr ¼
ρf

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2f þ 1

q
ρf − 1

¼ 4.4304;

~α1 ¼
3ρ3f þ 3ρf þ 2

2ðρf − 1Þ3ðρf þ 1Þ3=2 ¼ 0.8199:

To obtain the weak deflection limit for the angle Δφ we
suppose that ρ; ρ0 ≫ 1 and proceeding exactly as we did in
the nonextreme case we find at the first order in 1=ρ0

Δφðρ0Þ ¼
4

ρ0
þ � � � :

To study the strong gravitational lensing we change
variables according to y ¼ BðρÞ and z ¼ ð1 − yÞ=
ð1 − y0Þ. Solving the first equation for ρ we obtain
ρðyÞ ¼ ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y − y2

p
Þ=ð1 − yÞ. Since ρ → 1 as y → 0

and ρ → ∞ for y → 1, we have to pick the solution with
the plus sign which can be expressed in terms of the
variable z as

ρðzÞ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − y0Þ2ð1 − zÞ2

p
ð1 − y0Þð1 − zÞ :

At this point the deflection angle will be given by (64) with
the functions R and f formally given by (65). In the present
case the coefficients α and β entering in the expansion of f
are given by

αðρ0Þ ¼
2qðρ0Þ

ðρ0 þ 1Þðρ20 þ 1Þ ;

βðρ0Þ ¼
ρ40 − 4ρ30 − 2ρ20 − 4ρ0 − 3

ð1 − ρ0Þðρ0 þ 1Þ3 :

Note that α vanishes whenever the distance of closest
approach coincides with the radius of the photon sphere. As
in the nonextreme case we rewrite the deflection angle as
Δφðρ0Þ ¼ −π þ IDðρ0Þ þ IRðρ0Þ. The integral ID can be
expanded about ρf and one obtains formally an expression
as (66) where ρ3=2 is replaced by ρf and
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a ¼ 2ðρ2f þ 1Þ
ρf − 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2f

ρ4f − 4ρ3f − 2ρ2f − 4ρf − 3

s
¼ 2.9941;

bD ¼ a ln
2ðρ2f þ 1Þ
ρf − 1

¼ 6.8120:

To compute the coefficient bR we need the following quantities:

Rðz; ρ0Þ ¼
4ρ20ðρ20 þ 1Þ

ρ40 þ ðρ20 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ20 − 1Þ2 þ 4ρ20zð2 − zÞ

p
þ 2ρ20ð4z − 2z2 − 1Þ þ 1

; Rð0; ρ0Þ ¼
2ðρ20 þ 1Þ
ρ20 − 1

:

However, the integral giving bR can be solved only numeri-
cally andwe findbR ¼ −1.0217. The function inEq. (20) for
the holographic screen is plotted in Figs. 6, 8 and 9.

VIII. GRAVITATIONAL LENSING FOR
NONCOMMUTATIVE GEOMETRY

INSPIRED WORMHOLES

Noncommutative geometry inspired wormholes are sol-
utions of the Einstein field equations obtained by assuming
that the mass/energy distribution is a Gaussian of the form

ρðrÞ ¼ M

ð4πθÞ3=2 e
−r2=ð4θÞ;

where
ffiffiffi
θ

p
is the matter distribution width and it defines the

scale where the spacetime coordinates should be replaced
by some noncommuting coordinate operators in a suitable
Hilbert space [56]. Here,M is the total mass and is given by
the integral M ¼ 4π

R∞
0 r2ρðrÞdr. The gravitational source

is then modeled by a fluid-type energy-momentum tensor
of the form Tμ

ν ¼ diagðρðrÞ;−prðrÞ;−p⊥ðrÞ;−p⊥ðrÞÞ
with pr and p⊥ the radial and tangential pressures,
respectively, together with the condition Tμ

ν;μ ¼ 0. If we
look for a metric such that it is spherically symmetric,
static, and asymptotically flat, then we can write the
corresponding line element as

ds2 ¼ e2ΦðrÞdt2 −
�
1 −

2mðrÞ
r

�
−1
dr2 − r2dΩ2;

where ΦðrÞ and mðrÞ are the so-called red-shift and shape
functions, which must be determined by solving Einstein
equations. If we assume that prðrÞ ¼ −mðrÞ=ð4πr3Þ and
mðrÞ ¼ 4π

R
r
0 u

2ρðuÞdu, then we obtain the following line
element:

ds2 ¼ dt2 −
�
1 −

4Mffiffiffi
π

p
r
γ

�
3

2
;
r2

4θ

��−1
dr2 − r2dΩ2;

γ

�
3

2
;
r2

4θ

�
¼
Z

r2=ð4θÞ

0

ffiffiffi
s

p
e−sds ð67Þ

describing a wormhole. Properties of the metric (67) have
been investigated in [57]. Here, we extend the results of

[57] by studying gravitational lensing in the presence of the
noncommutative geometry inspired wormhole given by
(67). A throat will exist if 2mðrtÞ ¼ rt for some rt >

ffiffiffi
θ

p
.

As in [58] we will have two distinct throats rt;þ > rt;− if
M>M0¼1.9042

ffiffiffi
θ

p
, two coinciding throats rt;þ ¼ rt;− ¼

re ¼ 3.0226
ffiffiffi
θ

p
(extreme case) whenever M ¼ M0, and no

throats for M < M0. We will consider only weak gravita-
tional lensing for the nonextreme and extreme cases, since
in both regimes there is no photon sphere and therefore a
light ray approaching the wormhole will be either deflected
or disappear into the throat. The absence of a photon
sphere is due to the fact that the equation 2=x ¼
B0ðxÞ=BðxÞ can never be satisfied because the metric
coefficient B is a constant function. In order to construct
the embedding diagram for the extreme and nonextreme
noncommutative geometry inspired wormhole, we rescale
the time and spatial coordinates and the mass according to
~t ¼ t=ð2 ffiffiffi

θ
p Þ, x ¼ r=ð2 ffiffiffi

θ
p Þ, and α ¼ rS=

ffiffiffiffiffi
πθ

p
where rS

denotes the classic Schwarzschild radius. Then, the non-
extremality condition reads α > α0 ¼ 2.1 and the metric
(67) can be brought into the form ds2 ¼ 4θd~s2 with

TABLE II. Numerical values of the horizons x�, the photon
sphere xp, and the coefficients a, bD, bR for α ≥ α0. The first line
corresponds to the extreme case.

α x− xþ xp a bD bR

2.1486 1.5113 1.5113 2.8526 2.0339 3.5420 0.3675
2.1800 1.3583 1.6813 2.8952 2.0270 3.5600 0.3721
2.2000 1.3186 1.7321 2.9222 2.0233 3.5724 0.3742
2.3000 1.1972 1.9097 3.0566 2.0108 3.6406 0.3785
2.4000 1.1208 2.0433 3.1901 2.0048 3.7153 0.3787
2.5000 1.0630 2.1596 3.3233 2.0017 3.7914 0.3754
2.6000 1.0161 2.2664 3.4563 2.0007 3.8682 0.3711
2.7000 0.9765 2.3673 3.5892 2.0001 3.9424 0.3622
2.8000 0.9421 2.4643 3.7221 2.0000 4.0152 0.3614
2.9000 0.9118 2.5586 3.8550 2.0000 4.0852 0.3563
3.0000 0.8847 2.6511 3.9880 2.0000 4.1528 0.3507
4.0000 0.7089 3.5448 5.3173 2.0000 4.7284 0.3017
5.0000 0.6111 4.4311 6.6467 2.0000 5.1744 0.2577
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d~s2 ¼ d~t2 − AðxÞdx2 − x2d2Ω;

AðxÞ ¼
�
1 −

α

x
γ

�
3

2
; x2
��

−1
:

The throat condition becomes 1 − ðα=xÞγð3=2; x2Þ ¼ 0 as
for the case of the noncommutative geometry inspired dirty
black holes and therefore numerical values of the throat for
different choices of the parameter α are listed in the third
column of Table II. Proceeding as in the case of the
holographic screen we find that the profiles of the surface
of rotation are given by

z�ðxÞ ¼ �
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αγð3=2; x2Þ
x − αγð3=2; x2Þ

s
; x > xt

where the integration constants have been chosen so that
both solutions are matched on the x axis at the position of
the throat. Observing that xt is a simple zero of the
denominator in the above expression [59], and that the
integrand has an integrable singularity there, we find that

z�ðxÞ ¼ �A
ffiffiffiffiffiffiffiffiffiffiffiffi
x − xt

p þOðx − xtÞ3=2;

A ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αγð3=2; x2t Þ
1 − 2αx2t e−x

2
t

s
:

A plot of the profile function zþðxÞ for different values of
the parameter α can be found in Fig. 10.

A. Nonextreme case

Let x0 denote the distance of closest approach. Further
suppose that x; x0 ≫ 1. Since the metric coefficient
BðxÞ ¼ 1, the integral expressing the deflection angle as
a function of x0 simplifies to

Δφðx0Þ ¼ −π þ 2

Z
∞

x0

ffiffiffiffiffiffiffiffiffiffi
AðxÞp

dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=x0Þ2 − 1

p :

Taking into account that γð3=2; x2Þ ¼ ffiffiffi
π

p
=2 − Γð3=2; x2Þ

where Γð·; ·Þ denotes the upper incomplete Gamma function
and using 6.5.32 in [48] we get the following asymptotic
expansion for the lower incomplete Gamma function

γ

�
3

2
; x2
�

¼
ffiffiffi
π

p
2

− xe−x
2 ½1þOðx−2Þ�;

40 50 60 70 80 90 100 110 120
 x

4e−05

4.5e−05
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5.5e−05

6e−05

V
γ (

x)

m = 50

FIG. 8. The rescaled “photon potential” proportional to ~V for
the holographic screen metric showing the photon unstable orbit
(maximum) for a large m.
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 x
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V
γ (
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m=0.5
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m=1.5

m=1.8

m=1.9

m=1.85

FIG. 9. The rescaled photon potential proportional to ~V for the
holographic screen metric displaying the naked singularity case
where a narrow range of the parameter m leads to a local
minimum allowing bound states of photons.

FIG. 10 (color online). Plot of the function zþðxÞ for the cases
α ¼ 2.18 (solid line), α ¼ 2.20 (dotted line), and α ¼ 2.3 (dashed
line). Note that the size of the size of the throat increases as the
value of the parameter α increases. This figure refers to the
wormhole metric.

D. BATIC, S. NELSON, AND M. NOWAKOWSKI PHYSICAL REVIEW D 91, 104015 (2015)

104015-22



which in turn allows one to construct an asymptotic
expansion for

ffiffiffiffiffiffiffiffiffiffi
AðxÞp

represented by

ffiffiffiffiffiffiffiffiffiffi
AðxÞ

p
¼
�
1 −

α
ffiffiffi
π

p
2x

þ αe−x
2 þO

�
e−x

2

x2

��−1=2
: ð68Þ

To further expand the above expression we make the
substitution x2 ¼ ln u and we obtain

ffiffiffiffiffiffiffiffiffiffi
AðuÞ

p
¼
�
1 −

α
ffiffiffi
π

p

2
ffiffiffiffiffiffiffiffi
ln u

p þ α

u
þO

�
1

u ln u

��−1=2
¼ f0ðuÞ þ

f1ðuÞ
u

þ f2ðuÞ
u2

þO
�
1

u3

�
with

f0ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ffiffiffiffiffiffiffiffi
ln u

p

2
ffiffiffiffiffiffiffiffi
ln u

p
− α

ffiffiffi
π

p
s

;

f1ðuÞ ¼ −
αf0ðuÞ

ffiffiffiffiffiffiffiffi
ln u

p

2
ffiffiffiffiffiffiffiffi
ln u

p
− α

ffiffiffi
π

p ;

f2ðuÞ ¼
3α2f0ðuÞ ln u

2ð2 ffiffiffiffiffiffiffiffi
ln u

p
− α

ffiffiffi
π

p Þ2 :

A further expansion of the functions f0; f1; f2 gives

f0ðuÞ ¼ 1þ α
ffiffiffi
π

p

4
ffiffiffiffiffiffiffiffi
ln u

p þ 3α2π

32 ln u
þ 5α3π

ffiffiffi
π

p

128 ln u
ffiffiffiffiffiffiffiffi
ln u

p

þO
�

1

u ln u

�
;

f1ðuÞ
u

¼ −
α

2u
−

3α2
ffiffiffi
π

p

8u
ffiffiffiffiffiffiffiffi
ln u

p þO
�

1

u ln u

�
whereas f2=u2 is of orderOð1=ðu ln uÞÞ. Finally, going back
to the variable x yields, the following asymptotic expansion

ffiffiffiffiffiffiffiffiffiffi
AðxÞ

p
¼ 1þ α

ffiffiffi
π

p
4x

þ 3α2π

32x2
þ 5α3π

ffiffiffi
π

p
128x3

−
α

2
e−x

2

−
3α2

ffiffiffi
π

p
8

e−x
2

x
þO

�
e−x

2

x2

�
:

Let hðxÞ ¼ 2x−1½ðx=x0Þ2 − 1�−1=2 so that the integral giving
the deflection angle can bewritten in themore compact form
Δφðx0Þ ¼ −π þ R∞x0 hðxÞ ffiffiffiffiffiffiffiffiffiffi

AðxÞp
dx. Then, we getZ

∞

x0

hðxÞdx ¼ π;
Z

∞

x0

hðxÞ
x

dx ¼ 2

x0
;Z

∞

x0

hðxÞ
x2

dx ¼ π

2x20
;

Z
∞

x0

hðxÞ
x3

dx ¼ 4

3x30
:

Moreover,
R∞
x0
hðxÞe−x2dx ¼ π½1 − erfðx0Þ� where erfð·Þ is

the error function for which we can construct the asymptotic
expansion

erfðx0Þ ¼ 1 −
e−x

2
0ffiffiffi

π
p

x0
þO

�
e−x

2
0

x20

�
;

by means of relations 7.1.2 and 7.1.23 in [48] and

Z
∞

x0

hðxÞ e
−x2

x
dx ¼ x0e−x

2
0
=2

�
K1

�
x20
2

�
− K1

�
x20
2

��
¼ O

�
e−x

2
0

x20

�
where we used the asymptotic expansion 9.7.2 for the
modified Bessel functions given in [48]. Putting things
together we find that

Δφðx0Þ ¼
α
ffiffiffi
π

p
2x0

ð1 − e−x
2
0Þ þ 3α2π2

64x20
þ 5α3π

ffiffiffi
π

p
96x30

þO
�
e−x

2
0

x20

�
: ð69Þ

We plotted the behavior of (69) in Fig. 11. Going back to the
unscaled distance of closest approach, the deflection angle in
the weak field limit reads

FIG. 11 (color online). Plot of the weak field approximation
(69) as a function of the closest distance of approach for α ¼ 2.2
(solid line), α ¼ 3.2 (dotted line), α ¼ 5.2 (long dashed line).
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Δφðr0Þ ¼
2M
r0

ð1 − e−r
2
0
=ð4θÞÞ þ 3πM2

4r20
þ 10M3

3r30

þO
�
e−r

2
0
=ð4θÞ

r20=ð4θÞ
�
:

B. Extreme case

In this case the throats coincide at xe and we can
analyze the metric coefficient AðxÞ as in [59]. The line
element (67) becomes after the usual rescaling
~t ¼ t=ð2 ffiffiffi

θ
p Þ, x ¼ r=ð2 ffiffiffi

θ
p Þ, and α0 ¼ 2M0=ð

ffiffiffiffiffi
πθ

p Þ

ds2E ¼ d~t2 −
dx2

ðx − xeÞ2ϕðxÞ
− x2dΩ2;

where ϕ is a differentiable and not vanishing function in the
interval ½0;þ∞Þ. Moreover,

ϕðxeÞ ¼
1

2
f00ðxeÞ;ϕ0ðxeÞ ¼

1

6
f000ðxeÞ;

fðxÞ ¼ 1 −
α

x
γ

�
3

2
; x2
�
:

Using the software Maple we find the following numerical
valuesf00ðx1Þ ¼ 0.5620andf000ðx1Þ ¼ −0.3732.Concerning

the weak field limit we can again use formula (69) with α

replaced by α0 since asymptotically at infinity 1=
ffiffiffiffiffiffiffiffiffi
fðxÞp

has
the same asymptotic behavior

ffiffiffiffiffiffiffiffiffiffi
AðxÞp

.

IX. GRAVITATIONAL LENSING FOR
NONCOMMUTATIVE GEOMETRY INSPIRED

DIRTY BLACK HOLES

Dirty black holes are solutions of Einstein field equations
in the presence of various classical matter fields such as
electromagnetic fields, dilaton fields, axion fields, Abelian
Higgs fields, non-Abelian gauge fields, etc. We will study
gravitational lensing for a dirty black hole inspired by
noncommutative geometry and described by the line
element (1) with [56]

AðrÞ ¼
�
1 −

4Mffiffiffi
π

p
r
γ

�
3

2
;
r2

4θ

��−1
;

BðrÞ ¼ 1

AðrÞ e
−Mffiffi

θ
p ½1− 2ffiffi

π
p γð3

2
;r
2

4θÞ�

with M and
ffiffiffi
θ

p
defined as in the previous section. Note

that this line element represents a generalization of the
noncommutative geometry inspired Schwarzschild metric
derived in [58]. After the usual rescaling ~t ¼ t=ð2 ffiffiffi

θ
p Þ,

x ¼ r=ð2 ffiffiffi
θ

p Þ, and α ¼ rS=
ffiffiffiffiffi
πθ

p
the metric functions A and

B read

AðxÞ ¼
�
1 −

α

x
γ

�
3

2
; x2
��

−1
;

BðxÞ ¼ 1

AðxÞ e
−α
ffiffi
π

p
2
½1− 2ffiffi

π
p γð3

2
;x2Þ�:

The analysis of the existence of horizons xh can be performed
by studying the roots of the equation AðxÞ ¼ 0.
Unfortunately their positions can only be given implicitly as

xh ¼ αγ

�
3

2
; x2h

�
: ð70Þ

In particular, we will have the following scenarios:
(i) two distinct horizons xþ > x− for α > α0 ¼ 2.1486

(nonextremal dirty black hole);
(ii) one degenerate horizon at xe ¼ x− ¼ xþ ¼ 1.5113

for α ¼ α0 (extremal dirty black hole);
(iii) no horizons for 0 < α < α0 (dirty minigravastar).

Note that using (70) and 6.5.3 in [48] we can express the
event horizon in terms of the incomplete upper Gamma
function as

xþ ¼ α
ffiffiffi
π

p
2

− αΓ
�
3

2
; x2þ

�
:

Since Γð3=2; x2Þ → 0 as x → ∞, it can be easily checked
that xþ tends to α

ffiffiffi
π

p
=2 which corresponds correctly to

FIG. 12 (color online). Plot of (20) using the dirty black hole
metric for the nonxtremal case (solid line, α ¼ 4), extremal case
(dotted line, α ¼ α0), and the dirty minigravastar (dash dotted and
long dashed lines for α ¼ 2 and α ¼ 1, respectively). It is
interesting to observe that in the case of a minigravastar light
will form bound states only when the parameter α varies in a
certain interval.
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rþ → 2M. Concerning the embedding diagram we refer to
the previous section since noncommutative geometry
inspired wormholes and dirty black holes are characterized
by having the same metric coefficient A. The radius of the
photon sphere can be obtained by finding the roots of the
equation

B0ðxÞ
BðxÞ ¼ 2

x
: ð71Þ

Using 6.5.25 in [48] yields dγð3=2; x2Þ=dx ¼ 2x2e−x
2

and
the radius xp of the photon sphere can be given implicitly
by the following formula:

xp ¼ 3α
ffiffiffi
π

p
4

−
�
αx3pe−x

2
p þ 3

2
αΓ
�
3

2
; x2p

�
− αx4pe−x

2
p

þ α2x3pe−x
2
pγ

�
3

2
; x2p

��
; ð72Þ

where we also applied 6.5.3 in [48]. In the Schwarzschild
limit x → ∞ the above expression correctly reproduces the
radius of the photon sphere at 3M. Moreover, (72) general-
izes formula (2.10) obtained by [60] for the photon sphere
of a noncommutative geometry inspired Schwarzschild
black hole. Let x0 denote the distance of closest approach.
Then, the rescaled impact parameter is given by

~bðx0Þ ¼
x0ffiffiffiffiffiffiffiffiffiffiffiffi
Bðx0Þ

p
¼ x0e

α
ffiffi
π

p
4
½1− 2ffiffi

π
p γð3

2
;x2

0
Þ�
�
1 −

α

x0
γ

�
3

2
; x20

��
−1=2

:

Since ~b0ðx0Þ ¼ ½2Bðx0Þ − x0B0ðx0Þ�=ð2B3=2ðx0ÞÞ, it will
clearly vanish at x0 ¼ xp and the impact parameter can
be expanded in a neighbourhood of xp as

~bðx0Þ ¼ ~bðxpÞ þ
1

2
~b00ðxpÞðx0 − xpÞ2 þOðx0 − xpÞ3;

~b00ðxpÞ ¼
B0ðxpÞ − xpB00ðxpÞ

2B3=2ðxpÞ
:

Using 6.5.32 in [48] it can be verified that ~bðxpÞ → xp as

xp → ∞, from which we recover correctly bðr0Þ ¼ 3
ffiffiffi
3

p
M

as one would expect in the case of the Schwarzschild
metric. In what follows we will treat at the same time both
the nonextreme and the extreme cases by letting α ≥ α0.
Concerning the weak field limit of the deflection angle we
will suppose that x; x0 ≫ 1 in

Δφðx0Þ ¼ −π þ 2

Z
∞

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxÞdxp

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð xx0Þ2

Bðx0Þ
BðxÞ − 1

q :

An asymptotic expansion for
ffiffiffiffiffiffiffiffiffiffi
AðxÞp

has been already
derived in the previous section and it is represented by (68).
Taking into account that

Bðx0Þ ¼ 1 −
α
ffiffiffi
π

p
2x0

þ αe−x
2
0 þO

�
e−x

2
0

x20

�
;

1

BðxÞ ¼ 1þ α
ffiffiffi
π

p
2x

þO
�
1

x2

�
;

we find that

Bðx0Þ
BðxÞ ¼ 1þ α

ffiffiffi
π

p
2

�
1

x
−

1

x0

�
þ αe−x

2
0 þ � � �

and hence�
x
x0

�
2 Bðx0Þ
BðxÞ − 1 ¼

�
x
x0

�
2

− 1 −
α
ffiffiffi
π

p
2

xðx − x0Þ
x30

þ α
x2

x20
e−x

2
0 þ � � �

¼
��

x
x0

�
2

− 1

�
Ψðx; x0Þ;

where

Ψðx; x0Þ ¼ 1 −
α
ffiffiffi
π

p
2

x
x0ðxþ x0Þ

þ αx2

x2 − x20
e−x

2
0 þ � � � :

Finally, by means of (68) we obtain the asymptotic
expansionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðxÞdxp
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð xx0Þ2

Bðx0Þ
BðxÞ − 1

q ¼ 1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð xx0Þ2 − 1

q �
1þ α

ffiffiffi
π

p
4

x2 þ x0ðxþ x0Þ
x0xðxþ x0Þ

−
α

2
e−x

2 þ � � �
�
:

Let hðxÞ ¼ 2x−1½ðx=x0Þ2 − 1�−1=2. Then,Z
∞

x0

hðxÞdx¼ π;
Z

∞

x0

hðxÞx
2þx0ðxþx0Þ
x0xðxþx0Þ

dx¼ 4

x0
;Z

∞

x0

hðxÞe−x2dx¼ π½1− erfðx0Þ� ¼
ffiffiffi
π

p e−x
2
0

x0
þO

�
e−x

2
0

x20

�
and the deflection angle can be finally written as

Δφðx0Þ ¼
α
ffiffiffi
π

p
x0

�
1 −

e−x
2
0

2

�
þ � � �

Rewriting the above result by means of the distance of
closest approach r0 as
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Δφðr0Þ ¼
4M
r0

�
1 −

e−
r2
4θ

2

�
þ � � � ð73Þ

we see that in the limit r0=
ffiffiffiffiffi
2θ

p
→ ∞ it correctly repro-

duces the result one would expect for the classic
Schwarzschild metric. From the above formula we see
that the effect of noncommutative geometry is that of
reducing the deflection angle. Last but not least, formula
(73) will also apply to the noncommutative geometry
inspired Schwarzschild black hole since for large values
of x the metric of a noncommutative dirty black hole goes
over into the metric of the aforementioned noncommutative
black hole. Concerning the strong gravitational limit of the
deflection angle, we cannot introduce the transformations
y ¼ BðxÞ and z ¼ ð1 − yÞ=ð1 − y0Þ as in [25] since the
metric coefficient B contains the lower incomplete gamma
function in such a way that it results in the impossibility of
solving analytically the equation y ¼ BðxÞ for x. For this
reason we will adopt the same choice as in [60] and
introduce a new variable z ¼ 1 − x0=x in terms of which
the integral giving the deflection angle can be expressed as
Δφðx0Þ ¼ −π þ Iðx0Þ with

Iðx0Þ ¼
Z

1

0

Rðz; x0Þfðz; x0Þdz;

Rðz; x0Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðz; x0ÞBðz; x0Þ

p
;

fðz; x0Þ ¼ ½Bðx0Þ − ð1 − zÞ2Bðz; x0Þ�−1=2;

and

Bðz; x0Þ ¼ e
−α
ffiffi
π

p
2
½1− 2ffiffi

π
p γð3

2
;

x2
0

ð1−zÞ2Þ�
�
1−

αð1− zÞ
x0

γ

�
3

2
;

x20
ð1− zÞ2

��
:

At this point some comments are in order. First of all, for
the noncommutative geometry inspired Schwarzschild
black hole [58] we would have Rðz; x0Þ ¼ 2. Moreover,
R is a regular function of z and x0 with

Rð0; x0Þ ¼ 2e−
α
ffiffi
π

p
4
½1− 2ffiffi

π
p γð3

2
;x2

0
Þ�; Rð1; x0Þ ¼ 2;

where for Rð1; x0Þ we used the result limz→1γð3=2;x20=
ð1−zÞ2Þ¼ limx→∞γð3=2;x2Þ¼

ffiffiffi
π

p
=2. The result Rð1; x0Þ ¼

2 is not surprising since for x → ∞ the metric under
consideration goes over into the classic Schwarzschild
solution. A closer inspection of the function f reveals that
there is a singularity at z ¼ 0. Expanding the argument of
the square root in f to the second order in z we get
fðz; x0Þ ≈ f0ðz; x0Þ ¼ ½ ~αðx0Þz2 þ ~βðx0Þz�−1=2 where

~αðx0Þ ¼ 2Bðx0Þ − x0B0ðx0Þ;

~βðx0Þ ¼ −Bðx0Þ þ x0B0ðx0Þ −
x20
2
B00ðx0Þ; 0 ¼ d

dx
:

We immediately see that at the photon sphere ~αðxpÞ ¼ 0 and
therefore, f diverges as z−1 there, whereas for x0 > xp the
function f will behave as z−1=2 which is clearly integrable at
z ¼ 0. For x0 < xp every photon will be captured by the
dirty black hole. As in [25] we split the integral for the
deflection angle into a regular and divergent part, respec-
tively, that is Iðx0Þ ¼ IDðx0Þ þ IRðx0Þ where IDðx0Þ ¼
Rð0; xpÞ

R
1
0 f0ðz; x0Þdz contains the divergence and

IRðx0Þ ¼
R
1
0 gðz; x0Þdz with gðz; x0Þ ¼ Rðz; x0Þfðz; x0Þ −

Rð0; xpÞf0ðz; x0Þ is regular since we subtracted the diver-
gence. The integral ID can be computed analytically to give

IDðx0Þ ¼
2Rð0; xpÞffiffiffiffiffiffiffiffiffiffiffi

~βðx0Þ
q log

ffiffiffiffiffiffiffiffiffiffiffi
~βðx0Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~αðx0Þ þ ~βðx0Þ

q
ffiffiffiffiffiffiffiffiffiffiffi
~αðx0Þ

p :

Expanding ~α and ~β around the radius xp of the photon
sphere we find

~αðx0Þ ¼ ~α1ðxpÞðx0 − xpÞ þOðx0 − xpÞ2;
~βðx0Þ ¼ ~β0ðxpÞ þ ~β1ðxpÞðx0 − xpÞ þOðx0 − xpÞ2;

TABLE III. Metric components of the line elements for which the gravitational lensing has been studied. Here, NGI stands for
noncommutative geometry inspired.

Metric coefficients B A C

Schwarzschild 1 − rS
r B−1 1

Schwarzschild-de Sitter 1 − rS
r −

r2

r2Λ
B−1 1

Janis-Newman-Winicour ð1 − μ
rÞ−γ B−1 ð1 − μ

rÞ1−γ
Dark matter halo

�
1þ2Φcþ ~γC0x2 if 0≤x≤x0
1þ2Φcþ ~γA0−

~γ
xðB0þ ln 1þx

1þx0
Þ if x>x0:

�
1þ2~γC0x2 if 0≤x≤x0
1þ ~γ

xðD0þ ln 1þx
1þx0

þ 1
1þxÞ if x>x0:

1

Holographic screen 1 − rSL2
pr

r2þL2
p

B−1 1

NGI wormhole 1 − 2rSffiffi
π

p
r γð32 ; r

2

4θÞ B−1 1

NGI dirty black hole 1
AðrÞ e

−Mffiffi
θ

p ½1− 2ffiffi
π

p γð3
2
;r
2

4θÞ�
−1 ½1 − 2rSffiffi

π
p

r γð32 ; r
2

4θÞ�−1 1
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where

~α1ðxpÞ ¼ B0ðxpÞ − xpB00ðxpÞ;

~β0ðxpÞ ¼ −BðxpÞ þ xpB0ðxpÞ −
x2p
2
B00ðxpÞ;

~β1ðxpÞ ¼ −
x2p
2
B000ðxpÞ:

Hence, the divergent part ID of the integral can be expanded
according to ID ¼ −a log ðx0 − xpÞ þ bD þOðx0 − xpÞ
where

a ¼ Rð0; xpÞffiffiffiffiffiffiffiffiffiffiffiffiffi
~β0ðxpÞ

q ; bD ¼ a log
4~β0ðxpÞ
~α1ðxpÞ

:

Following [25] the deflection angle in the strong field limit
will be given by Δφðx0Þ¼−alogðx0−xpÞþbþOðx0−xpÞ
with b¼−πþbDþbR where bR¼IRðxpÞ¼

R
1
0 gðz;xpÞdzþ

Oðx0−xpÞ. Unfortunately, bR can be only computed
numerically. In Table II we present some typical numerical
values for the parameters a, bR, and bD for the extreme case
(α ¼ α0) and the nonextreme case (α > α0). For the treat-
ment of the strong field limit in the presence of the non-
commutative geometry inspired Schwarzschild metric, we
refer to [60]. In Fig. 12, we have plotted the function defined
in Eq. (20) for the dirty black hole under discussion.

X. CONCLUSIONS

In general relativity and cosmology, light becomes an
important tool for testing the theories and opening awindow
to theUniverse. The earth- or space-based telescope not only
receives the light to give us a picture of the Universe, but the
analysis of its red-shift revealed, for instance, the accelerated
expansion. Gravitational red-shift and the cosmic micro-
wave background radiation are other examples of the
importance of electromagnetic phenomena in gravity.
In this paper we have picked up the classical connection

between light and gravity, namely the deflection of light in

gravitational field and its lensing. For the “standard”
metrics, like Schwarzschild and Schwarzschild-de Sitter
we have generalized some formulas and improved upon the
numerical accuracy of the final results. With increasing
observational accuracy and competing theories of alter-
native gravity, such precision could prove useful in the
future. In the case of a Schwarzschild-de Sitter metric our
approach reveals that corrections of the cosmological
constant are small given the present value of this constant.
This is what one would expect, but other results
and approaches do exist in the literature. Therefore, even
if we obtained what one might expect, the result is not
trivial.
Gravity theory, as many other current physical theories,

does not seem to be complete and therefore it is mandatory
to venture into new fields of possible future interest (see
e.g. [61,62]). Both, on a macroscopic level, where one of
the pressing problems is dark matter [49] whose matter
content is not known, as well as on the Planck scale where a
quantum gravity theory awaits its global acceptance or
discovery. We have studied the light bending in a variety of
models which correspond to one of the above problems. We
have chosen a general relativistic DM metric, a wormhole
and a dirty black hole, both inspired by noncommutative
geometry to derive the formulas of the deflection angle for
light. To this we added a holographic screen metric which is
motivated by considerations of physics at the Planck scale.
Furthermore, we have given the formulas for the extreme
and nonextreme cases making our study quite exhaustive.
For an overview we summarize in Table III all the metric
elements (A, B, and C entering the general metric (1) of the
metrics in which we have studied in detail the motion of
light. We paid attention to a global phenomenon emerging
in connection with light motion around naked singularities.
In all the cases we have examined, we found that there is a
narrow range of possible parameters which allow the light
to be bound to the source of a naked singularity.
The details of any local metric, indeed its sole existence,

can only be revealed by a test particle where light, light
scattering, and light bending are ideal tools to do so.
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