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We study weak-field solutions having spherical symmetry in fðTÞ gravity; to this end, we solve the field
equations for a nondiagonal tetrad, starting from Lagrangian in the form fðTÞ ¼ T þ αTn, where α is a small
constant, parametrizing thedeparture of the theory fromgeneral relativity.Weshow that the classical spherically
symmetric solutions of general relativity, i.e., the Schwarzschild and Schwarzschild–de Sitter solutions, are
perturbed by terms in the form ∝ r2−2n and discuss the impact of these perturbations in observational tests.
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I. INTRODUCTION

Since the very discovery of the accelerated cosmic
expansion [1,2], and its confirmation due to multiple
observations [3–5], it has been customary to investigate
theories that extend general relativity (GR), in order to
get an agreement with the observations, without requiring
the existence of dark entities. Hence, motivated by this
instance, which recognizes that GR fails in describing
gravity at large scales (consider also the old issue of the
rotation curves of spiral galaxies [6]), several theories have
been proposed to generalize Einstein’s theory. Some of
these modified models of gravity are geometric extensions
of GR; in other words, they are based on a richer geometric
structure, which is supposed to give the required ingre-
dients to support the observations.
For a prototype of this approach, one can consider the

fðRÞ theories, in which the gravitational Lagrangian
depends on a function f of the curvature scalar R (see
Refs. [7,8] and references therein): when fðRÞ ¼ R, the
action reduces to the usual Einstein–Hilbert action, and
Einstein’s theory is obtained. Another example is given
by the so-called fðTÞ theories, which have similarities
and differences with respect to fðRÞ. To begin with, they
are based on teleparallel gravity (TEGR) [9], in which the
gravitational interaction is determined by torsion, and
the torsion scalar T appears in the Lagrangian instead of
the curvature scalar. Furthermore, the underlying Riemann–
Cartan space-time is endowed with the Weitzenböck
connection (instead of the Levi-Civitá connection), which
is not commutative under the exchange of the lower
indices and has non zero curvature but nonzero torsion.
Actually, Einstein himself proposed such an alternative

point of view on gravitation in terms of torsion and tetrads
[10]. In fact, in the TEGR picture, the tetrads field is
promoted to be the dynamical field instead of the metric
tensor. Despite these differences, TEGR and GR have
equivalent dynamics; in other words, every solution of
GR is also solution of TEGR. However, when TEGR is
generalized to fðTÞ by considering a gravitational
Lagrangian that is a function of the torsion scalar, the
equivalence breaks down [11,12]. As a consequence fðTÞ
theories can be considered potential candidates for
explaining (on a purely geometric ground) the accelerated
expansion of the Universe, without requiring the existence
of exotic cosmic fluids (see, e.g., Ref. [13]).
While fðRÞ theories gives fourth-order equations (at least

in the metric formalism, while they are still second order in
the Palatini approach; see, e.g., Ref. [8]), the fðTÞ field
equations are second order in the field derivatives since the
torsion scalar is a function of the square of the first derivatives
of the tetrads field. Furthermore, as for fðRÞ theories, the
generalized TEGR displays additional degrees of freedom
(the physical nature of which is still under investigation [14])
related to the fact that the equations of motion are not
invariant under local Lorentz transformations [15]. In
particular, this implies the existence of a preferential global
reference frame defined by the autoparallel curves of the
manifold that solve the equations of motion. Consequently,
even though the symmetry can help in choosing suitable
coordinates to write the metric in a simple way, this does not
give any hint on the form of the tetrad. As discussed in
Ref. [16], a diagonal tetrad—which could in principle be a
good working ansatz for dealing with diagonal metrics—is
not a good choice to properly parallelize the spacetime both
in the context of nonflat homogenous and isotropic cosmol-
ogies (Friedman–Lemaitre–Robertson–Walker universes)
and in spherically symmetric space-times (Schwarzschild
or Schwarzschild–de Sitter solutions).
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The cases of the Schwarzschild solution and, more in
general, of the spherically symmetric solutions in fðTÞ
gravity are particularly important because these solutions,
which describe the gravitational field of pointlike sources,
allow one to test fðTÞ theories at scales different from
the cosmological ones, e.g., in the Solar System. Such a
class of solutions—both with diagonal and nondiagonal
tetrads—have been receiving much attention during the last
few years; see, for instance, Refs. [17–23]. Indeed, fðTÞ
theories can be used to explain the cosmic acceleration and
observations on large scales (e.g., via galaxy clustering and
cosmic shear measurements [24]), but we must remember
that, since GR is in excellent agreement with Solar System
and binary pulsar observations [25], every theory that aims
at explaining the large-scale dynamics of the Universe
should reproduce GR in a suitable weak-field limit; the
same holds true for fðTÞ theories. Recently, Solar System
data [26,27] have been used to constrain fðTÞ theories;
these results are based on the spherical symmetry solution
found by Iorio and Saridakis [26], who used a diagonal
tetrad. In this paper, we follow the approach described in
Ref. [16] to define a “good tetrad” in fðTÞ gravity—which
is consistent with the equations of motion without con-
straining the functional form of the Lagrangian—and solve
the field equations to obtain weak-field solutions with a
power-law ansatz for an additive term to the TEGR
Lagrangian, fðTÞ ¼ T þ αTn.
This paper is organized as follows. In Sec. II, we review

the theoretical framework of fðTÞ gravity and write the
field equations, of which the solutions for spherically
symmetric space-times, in the weak-field approximation,
are given in Sec. III. Eventually, a discussion and con-
clusions are in Secs. IV and V.

II. f ðTÞ GRAVITY FIELD EQUATIONS

We start by briefly discussing the fðTÞ gravity frame-
work that leads to the field equations. To begin with, we
point out that, in this scenario, the metric tensor can be
viewed as a subsidiary field, and the vierbein field is the
dynamical object of which the components in a given
coordinate basis eaμ are related to the metric tensor by

gμνðxÞ ¼ ηabeaμðxÞebνðxÞ; ð1Þ

where ηab ¼ diagð1;−1;−1;−1Þ. Notice that Latin indices
refer to the tangent space while Greek indices label
coordinates on the manifold. Hence, the dynamics is
obtained by the action1

S ¼ 1

16πG

Z
fðTÞed4xþ SM; ð2Þ

where e ¼ det eaμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

p
and SM is the action

for the matter fields.2 Here, fðTÞ is a differentiable function
of the torsion scalar T, which is defined as

T ¼ SρμνTρ
μν; ð3Þ

where the contorsion tensor Sρμν is defined by

Sρμν ¼
1

4
ðTρ

μν − Tμν
ρ þ Tνμ

ρÞ þ 1

2
δρμTσν

σ −
1

2
δρνTσμ

σ ð4Þ

and the torsion tensor Tλ
μν is

Tλ
μν ¼ eλað∂νeaμ − ∂μeaνÞ: ð5Þ

Varying the action with respect to the vierbein eaμðxÞ, one
gets the field equations

e−1∂μðeeaρSρμνÞfT þ eaλSρνμTρ
μλfT þ eaρSρμν∂μðTÞfTT

þ 1

4
eνaf ¼ 4πGeaμT ν

μ; ð6Þ

where T ν
μ is the matter energy-momentum tensor and

subscripts T denote differentiation with respect to T.
We look for spherically symmetric solutions of the field

equations, so we start from the metric

ds2 ¼ eAðrÞdt2 − eBðrÞdr2 − r2dΩ2; ð7Þ

where dΩ2 ¼ dθ2 þ sin2θdϕ2. Because of the lack of local
Lorentz invariance, tetrads connected by local Lorentz
transformations lead to the same metric—i.e., the same
causal structure—but different equations of motions, thus
physically inequivalent solutions. This means that, even in
the spherically symmetric case, for which symmetry helps
us in choosing the coordinates and the metric tensor in a
simple form, it is quite complicated to do an ansatz for the
tetrad field. In particular, for the symmetry and coordinates
with which we are dealing, it turns out to be a mistake to
choose a diagonal form for eaμ; it does not properly
parallelize the static spherically symmetric geometry in
the context of fðTÞ gravity.
Then, with this caveat in mind, it is possible to derive the

field equations for the nondiagonal tetrad

eaμ ¼

0
BBB@
eA=2 0 0 0

0 eB=2 sinθ cosϕ eB=2 sinθ sinϕ eB=2 cosθ

0 −rcosθ cosϕ −rcosθ sinϕ rsinθ

0 r sinθ sinϕ −rsinθ cosϕ 0

1
CCCA;

1We use units such as c ¼ 1.

2Notice that many authors write the gravitational Lagrangian in
the form T þ fðTÞ, thus denoting the deviation from GR by
means of the function fðTÞ; on the contrary, here fðTÞ is the
whole Lagrangian.
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following the approach described in Ref. [16]; in doing so,
the functional form of the Lagrangian and the specific form
of the torsion scalar are not constrained a priori. We remark
once more that different choices of tetrads, while giving
back the same metric, represent different physical theories.
In this work, we are interested in a specific tetrads that does
not lead to a constant torsion scalar. In such a theory, the
Birkhoff theorem does hold, as shown in Ref. [16], while
the most general vacuum solution is not of Scwharzschild–
de Sitter kind, as it happens with tetrads for which
T ¼ const. Then, it is worthwhile to investigate the features
of the spherically symmetric solutions in this case for a
generic Lagrangian, which nevertheless should admit the
Schwarzschild solution when it reduces to the teleparallel
equivalent of GR. The field equations are

fðTÞ
4

− fT
e−BðrÞ

4r2
ð2 − 2eBðrÞ þ r2eBðrÞT − 2rB0ðrÞÞ

− fTT
T 0ðrÞe−BðrÞ

r
ð1þ eBðrÞ=2Þ ¼ 4πρ ð8Þ

−
fðTÞ
4

þ fT
e−BðrÞ

4r2
ð2 − 2eBðrÞ þ r2eBðrÞT − 2rA0ðrÞÞ

¼ 4πp ð9Þ

fT ½−4þ 4eBðrÞ − 2rA0ðrÞ − 2rB0ðrÞ þ r2A0ðrÞ2
− r2A0ðrÞB0ðrÞ þ 2r2A00ðrÞ�
þ 2rfTTT 0ð2þ 2eBðrÞ=2 þ rA0ðrÞÞ ¼ 0; ð10Þ

where ρ and p are the energy density and pressure of the
matter energy-momentum tensor and the prime denotes
differentiation with respect to the radial coordinate r.
Moreover, the torsion scalar is

T ¼ 2e−BðrÞð1þ eBðrÞ=2Þ
r2

½1þ eBðrÞ=2 þ rA0ðrÞ�: ð11Þ

III. WEAK-FIELD SOLUTIONS

Exact solutions in vacuum (ρ ¼ p ¼ 0) and in the
presence of a cosmological constant (ρ ¼ −p) of the above
field equations are thoroughly discussed in Ref. [16]; here,
we are interested in weak-field solutions with a nonconstant
torsion scalar, i.e., T 0 ¼ dT=dr ≠ 0.
Indeed, for actual physical situations such as in the Solar

System, the gravitational field is expected to be just a small
perturbation of a flat background Minkowski spacetime.
As a consequence, we write

eAðrÞ ¼ 1þ AðrÞ; eBðrÞ ¼ 1þ BðrÞ ð12Þ
and confine ourselves to linear perturbations. Moreover, we
consider Lagrangians of sufficient generality, which we
write in the form fðTÞ ¼ T þ αTn, where α is a small

constant, parameterizing the departure of these theories
from GR, and jnj ≠ 1.
To begin with, we consider the case n ¼ 2, which has

been already analyzed in Ref. [26]. From Eqs. (8)–(10), we
obtain the solutions

AðrÞ ¼ −32
α

r2
−
C1

r
ð13Þ

BðrÞ ¼ 96
α

r2
þ C1

r
; ð14Þ

where C1 is an integration constant. Then, on setting
C1 ¼ 2M, we get the weak-field limit of the
Schwarzschild solution plus a correction due to α:

ds2 ¼
�
1 −

2M
r

− 32
α

r2

�
dt2

−
�
1þ 2M

r
þ 96

α

r2

�
dr2 − r2dΩ2: ð15Þ

Eventually, the torsion scalar turns out to be

TðrÞ ¼ 8

r2
− 128

α

r4
: ð16Þ

These results can be compared to those obtained in
Ref. [26], in which a Lagrangian in the form fðTÞ ¼
T þ αT2 was considered. While to lowest-order approxi-
mation in both cases the perturbations are proportional to
1=r2, the numerical coefficients are different; this is not
surprising, since the authors in Ref. [26] solve different
field equations. In particular, they use a diagonal tetrad,
which constrains the torsion scalar to be constant (see, e.g.,
Ref. [16] and references therein); however, the solution
given in Ref. [26] does not seem to have a constant torsion
scalar, which makes it inconsistent.
Likewise, if we look for solutions of the equations

(8)–(10) with ρ ¼ k, p ¼ −k, which corresponds to a
cosmological constant, we obtain

ds2 ¼
�
1 −

2M
r

− 32
α

r2
−
1

3
Λr2

�
dt2

−
�
1þ 2M

r
þ 96

α

r2
þ 1

3
Λr2

�
dr2 − r2dΩ2; ð17Þ

where we set k ¼ Λ
8π and Λ is the cosmological constant.

The torsion scalar is the same as Eq. (16). So, the weak-
field limit of the Schwarzschild–de Sitter solution is
perturbed by terms that are proportional to α.
The previous results can be generalized to the case of a

Lagrangian in the form fðTÞ ¼ T þ αTn, and we get

AðrÞ ¼ −
C1

r
− α

r2−2n

2n − 3
23n−1 −

1

3
Λr2 ð18Þ
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BðrÞ ¼ C1

r
þ α

r2−2n

2n − 3
23n−1ð−3nþ 1þ 2n2Þ þ 1

3
Λr2:

ð19Þ

In particular, if Λ ¼ 0, we obtain vacuum solutions.
Notice that, on setting C1 ¼ 2M, we obtain a weak-field
Schwarzschild–de Sitter solution perturbed by terms that
are proportional to α and decay with a power of the radial
coordinate, the specific value depending on the power-law
chosen in the Lagrangian. The torsion scalar is

TðrÞ ¼ 8

r2
þ 2αr−2n23nðnþ 1Þ; ð20Þ

while the perturbation terms due to the deviation from GR
are in the form

AαðrÞ ¼ αanr2−2n; BαðrÞ ¼ αbnr2−2n; ð21Þ

where an ¼ 23n−1

2n−3, bn ¼ 23n−1

2n−3 ð2n2 − 3nþ 1Þ. A close
inspection of the perturbation terms reveals that they go
to zero both when r → ∞ with n > 1 and when r → 0 with
n < 1. In the latter case, to keep the perturbative approach
self-consistent, a maximum value of r must be defined to
consider these terms as perturbations of the flat space-time
background.
We remark here that our linearized approach can be

applied to arbitrary polynomial corrections to the torsion
scalar; as a consequence, by writing an arbitrary function as
a suitable power series, it is possible to evaluate its impact
as a perturbation of the weak-field spherically symmetric
solution in GR, and the nth term of the series gives a
contribution proportional to r2−2n.
It could be interesting to test the impact of the

perturbations (21). To this end, we remember that it is
possible to obtain the secular variations of the Keplerian
orbital elements due to general spherically symmetric
perturbations of the GR solution, describing the gravita-
tional field around a pointlike mass, as one of us showed
in Ref. [28]. For instance, the average over one orbital
period of the secular precession of the pericenter turns
out to be

h _ωi¼ 1

4
α
23n−1ð2n−2Þð1−e2Þ3−2n

nba2n
F
�
2−n;

5

2
−n;2;e2

�
;

for n>
3

2
ð22Þ

h _ωi¼ 1

4
α
23n−1ð2−2nÞð3−2nÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p

ð2n−3Þnba2n
F

�
n;n−

1

2
;2;e2

�
;

for n≤
1

2
: ð23Þ

In the above equations, nb, a, and e are, respectively, the
mean motion, the semimajor axis, and the eccentricity of
the unperturbed orbit, while F is the hypergeometric
function. These relations can be used to constrain the
parameters α and n, on the bases of the ephemerides data.

IV. DISCUSSION

It is useful to comment on the constraints one can infer
for the parameters of our model from Solar System data.
But before proceeding, it is important to emphasize a point
about the tests of fðTÞ gravity. In theories with torsion,
there is a sharp distinction between the test particles
trajectories: autoparallels, or affine geodesics, are curves
along which the velocity vector is transported parallel to
itself, by the space-time connection; extremals, or metric
geodesics, are curves of the extremal space-time interval
with respect to the space-time metric [29]. While in GR
autoparallels and extremals curves do coincide and we
can simply speak of geodesics, the same is not true when
torsion is present. So, it is not trivial to define the actual
trajectories of test particles. The results obtained by
Refs. [26] and [27], together with the expressions (22)
and (23) of the secular precession of the pericenter, strictly
apply to the case of metric geodesics. According to us, this
is a very important issue, which is often neglected in the
literature pertaining to theories alternative to GR based to
torsion; we will focus on this issue in a forthcoming
publication [30]. In the same publication, we will constrain
the parameters α and n, taking into account the recent data
of the ephemerides of the Solar System provided by
INPOP10a [31,32] and EPM2011 [33–35]. Actually, per-
turbations in the form of the power law are present in
different models of modified gravity, and their impact on
the Solar System dynamics has been analyzed, for instance,
in Refs. [36–38].
Bearing this in mind, it is possible to comment on our

results and compare them to those already available in the
literature pertaining to fðTÞ theories. In particular, because
of the different choice of the tetrad, our solution, even in the
case of a quadratic deformation of the TEGR Lagrangian,
differs from the one found by Iorio and Saridakis. Both
corrections are proportional to 1=r2, but they have different
numerical coefficients.
In particular, on substituting n ¼ 2 in Eq. (22), we

obtain

h _ωi ¼ 16α

a4nbð1 − e2Þ : ð24Þ

On the contrary, the corresponding expression obtained by
Iorio and Saridakis [26] is

h _ωiIS ¼
3α

a4nbð1 − e2Þ : ð25Þ
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We see that they differ for a factor 16=3; the same happens
to the constraints that can be obtained from our solution, by
applying the approach described in Refs. [26] and [27].
In particular, Iorio and Saridakis [26] derive constraints

from the rate of change of perihelia of the first four inner
planets, obtaining

jΛj ≤ 6.1 × 10−42 m−2

jαj ≤ 1.8 × 104 m2:

Tighter results have been obtained in a subsequent paper
[27], in which the authors consider upper bounds deriving
from different phenomena: perihelion advance, light bend-
ing, and gravitational time delay [39–42]. But the strongest
constraints come from the perihelion advance, in particular,
from some supplementary advances constructed by con-
sidering that the effects due to the Sun’s quadrupole mass
moment might represent possible unexplained parts of
perihelion advance in GR [31]. This gives

jΛj ≤ 1.8 × 10−43 m−2

jαj ≤ 1.2 × 102 m2:

The upper bound for the solution in Eqs. (17) would be
3=16 smaller; that is jαj ≤ 2.3 × 10 m2.
Eventually, we comment on the issue of the parametrized

post-Newtonian formalism (PPN), in the framework of
fðTÞ gravity. To test theories of gravity that give rise to
detectable torsion effects in the Solar System, a theory-
independent formalism that generalizes the PPN formalism
when torsion is present was developed in Ref. [29] (see also
Ref. [43]). Starting from symmetry arguments, the metric
and the connection around a massive body are perturba-
tively expressed in terms of dimensionless parameters
related to the matter-energy content of the source, namely,
its mass and its angular momentum per unit mass. In doing
so, the new parameters, which add to the original PPN ones,
can be constrained by the experiments. Our results, how-
ever, cannot be directly described in this framework: an
inspection of our solutions (21) clearly shows that the
perturbations are not related to the matter-energy content of
the source, but rather they depend on α, which parametrizes
the departure of the fðTÞ theory from GR (see, e.g.,
Eq. (4.2) in Ref. [43]). So, a new formalism is required
to test the content of the Lagrangian by means of

observations; in a sense, α can be considered a new
post-Newtonian parameter of this formalism.

V. CONCLUSIONS

We studied spherically symmetric solutions in the weak
approximation of fðTÞ gravity. In particular, we started
from a Lagrangian in the form fðTÞ ¼ T þ αTn, with
jnj ≠ 1, where α is a small constant that parametrizes
the departure of these theories from GR, and solved the
field equations using a nondiagonal tetrad, showing that, to
lowest approximation order, the perturbations of the cor-
responding GR solutions (Schwarzchild or Schwarzchild–
de Sitter) are in the form ∝ αr2−2n. These results can be
used to evaluate the impact of the nonlinearity of the
Lagrangian, for instance, in the Solar System.
The case n ¼ 2, corresponding to the Lagrangian

fðTÞ ¼ T þ αT2, has been already analyzed by Refs. [26]
and [27], in which the authors used Solar System obser-
vations to set constraints on the parameter α. It is important
to point out that the latter results are based on the solution
obtained by Iorio and Saridakis [26], in which a diagonal
tetrad was used, which forces the torsion scalar to be
constant; however, that solution does not seem to have a
constant torsion scalar, which makes the consequent con-
straints not reliable.
On the other hand, since because of the invariance

properties of fðTÞ the choice of the tetrad field is crucial,
we performed our calculations by using a more general
nondiagonal tetrad, according to the prescriptions given
in Ref. [16], and obtained a new solution of the fðTÞ
quadratic model, for which the torsion scalar is not forced
to be zero.
We used the results already available in the literature to

obtain the correct constraints from Solar System data on the
α parameter for the Lagrangian fðTÞ ¼ T þ αT2, even if
we pointed out that the distinction between autoparallels,
or affine geodesics, and extremals, or metric geodesics, is
crucial in fðTÞ gravity and deserves further investigation
that we are going to carry out in forthcoming publications.
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