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We obtain the fully covariant linearized field equations for the metric perturbation in the de Rham-
Gabadadze-Tolley (dRGT) ghost-free massive gravities. For a subset of these theories, we show that the
nondynamical metric that appears in the dRGT setup can be completely eliminated leading to the theory of
a massive graviton moving in a single metric. This has a mass term which contains nontrivial contributions
of the space-time curvature. We show further how five covariant constraints can be obtained including one
which leads to the tracelessness of the graviton on flat space-time and removes the Boulware-Deser ghost.
The five constraints are obtained for a background metric which is arbitrary, i.e. which does not have to
obey the background field equations.
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Lately there has been a renewal of interest in massive
gravity with interesting applications to cosmology (see e.g.
[1] for reviews). The only consistent linear theory for a
massive graviton on flat space-time has been known for a
long time since the work of Fierz and Pauli [2]. It
propagates 5 degrees of freedom of positive energy, those
of a transverse, traceless, symmetric, 2 times covariant
tensor hμν. It can easily be extended to an Einstein space-
time background keeping the same number of propagating
polarizations [3,4]. However, a similar theory for an
arbitrary background metric has not been written so far.
A starting point to do so is the set of fully nonlinear theories
formulated by de Rham, Gabadadze and Tolley (dRGT in
the following) [5]. Such a theory was shown to contain only
5 dynamical degrees of freedom [5,6] and hence is devoid
from a pathology long thought unavoidable: the presence
of an extra ghostlike sixth degree of freedom in a generic
nonlinear extension of Fierz-Pauli theory first discussed by
Boulware and Deser in the seminal paper [7]. Hence, a
priori one should be able to extract from the dRGT family
a consistent linear theory for a massive graviton moving on
a large class of metrics [8]. However, the dRGT theory is
formulated using two metrics, a dynamical one called gμν in
the following, and a nondynamical one, usually taken to be
flat, called here fμν. Hence, the expectation is that when
one linearizes the dRGT field equations one will obtain a
theory for a massive graviton moving in a space-time
endowed with two background metrics which has various
drawbacks (see e.g. Ref. [9]). Moreover, this linearization is
not easy, in part because dRGT theories involve a matrix
square root S of the tensor F both defined by

SμσSσν ¼ gμσfσν ¼ Fμ
ν: ð1Þ

Lastly, it may not be easy to show that the obtained theory
contains the correct number of degrees of freedom without

using the elegant but involved proof obtained for the
nonlinear theories [6]. Here, we will overcome these
various difficulties and show how to obtain from dRGT
models a fully covariant theory for a massive graviton
moving in a single, totally arbitrary, metric (hence elimi-
nating the need for the nondynamical metric). We will also
show how, for such a theory, one can obtain five covariant
constraints, including one which leads to the tracelessness
of the graviton on flat space-time and removes the
Boulware-Deser ghost [10]. This last constraint involves
combinations of the curvature of the background metric
which become trivial when this metric describes a flat
space-time or a more general Einstein space-time.
Our starting point is the set of massive gravity theories

defined by the following action in four dimensions [5,6]

Sg;m ¼ M2
g

Z
d4x

ffiffiffiffiffi
jgj

p �
RðgÞ − 2m2

X3
n¼0

βnenðSÞ
�
; ð2Þ

the βn being dimensionless parameters, and enðSÞ the nth
order elementary symmetric polynomial of the eigenvalues
of its matrix argument S. One has in particular e0 ¼ 1
and e1 ¼ Tr½S�, where here and henceforth Tr½X� ¼ Xρ

ρ

indicates a matrix trace operation and we do not write out
anymore the functional dependence of the en when they
depend only on S [i.e. it is to be understood that
en ≡ enðSÞ]. The en can be constructed iteratively (with
e0 ¼ 1) from the relation

en ¼ −
1

n

Xn
k¼1

ð−1ÞkTr½Sk�en−k; n ≥ 1; ð3Þ

where Sk is the kth power of the tensor Sμν (considered as a
matrix), and S0 is just the identity. The field equations
deriving from the action (2) for the dynamical metric gμν are
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Eμν ≡ Gμν þm2Vμν ¼ 0; ð4Þ

where Gμν is the Einstein tensor built from the metric gμν,
and Vμν is given by

Vμν ¼ gμρ
X3
n¼0

Xn
k¼0

ð−1Þnþkβn½Sn−k�ρνek: ð5Þ

The next step in our derivation consists of linearizing these
field equations around a background solution for the
dynamical metric gμν, calling hμν the small perturbation
of this metric. This may seem at first sight an easy task;
however, it is not because it involves in general computing
the variation at first order in hμν of the matrix square root S.

This variation δS obeys (with obvious notations), as seen
from (1),

SμνðδSÞνσ þ ðδSÞμνSνσ ¼ δFμ
σ; ð6Þ

which is a special kind of Sylvester matrix equation, where
the right-hand side is easy to get in terms of hμν from the
definition of F. It is known that this equation has a unique
solution for δS if and only if the spectra of Sμν and −Sμν do
no intersect (which is generically the case here). In this
case, one can express the solution for δS linearly in terms of
δF [11]. Using our own derivation [12] which is more
convenient for our purpose here, we obtain

δSλμ
δgρσ

¼ 1

2
gνλ½e4c1ðδρνδσμ þ δσνδ

ρ
μ − gμνgρσÞ þ e4c2ðSρνδσμ þ Sσνδ

ρ
μ − Sμνgρσ − gμνSρσÞ − e3c1ðδρνSσμ þ δσνS

ρ
μÞ

þ e4c3½δσμ½S2�ρν þ δρμ½S2�σν − gρσ½S2�μν þ δρν½S2�σμ þ δσν ½S2�ρμ − gμν½S2�ρσ� þ ðe2c1 − e4c3 þ e3c2ÞSμνSρσ
− e3c2ðSρνSσμ þ SσνS

ρ
μÞ − e3c3ðSσμ½S2�ρν þ Sρμ½S2�σν þ Sρν½S2�σμ þ Sσν ½S2�ρμÞ

þ ðe3c3 − e1c1ÞðSρσ½S2�μν þ Sμν½S2�ρσÞ − ðc1 − e2c3Þð½S2�ρν½S2�σμ þ ½S2�σν ½S2�ρμÞ
þ c4½S2�μν½S2�ρσ þ c1ð½S3�μνSρσ þ Sμν½S3�ρσÞ þ c2ð½S3�μν½S2�ρσ þ ½S2�μν½S3�ρσÞ þ c3½S3�μν½S3�ρσ�; ð7Þ

where the coefficients ci are given by

c1 ¼
e3 − e1e2

−e1e2e3 þ e23 þ e21e4
; c2 ¼

e21
−e1e2e3 þ e23 þ e21e4

; c3 ¼
−e1

−e1e2e3 þ e23 þ e21e4
; c4 ¼

e3 − e31
−e1e2e3 þ e23 þ e21e4

;

ð8Þ

and here and henceforth all indices are moved with the
metric gμν. Obviously, expression (7) makes sense only if
−e1e2e3 þ e23 þ e21e4 does not vanish, which in turn can be
shown to be equivalent to the nonintersection of the spectra
of Sμν and −Sμν mentioned above.
This result was checked to agree with the one we know

from the mathematical literature [11] using in particular
nontrivial identities—syzygies—which also play a funda-
mental role for the derivation of the covariant constraints
below. These identities, as a consequence of the “second
fundamental theorem” of invariant theory [13], can be
derived using the Cayley-Hamilton theorem stating that for
an arbitrary 4 × 4 matrix M, one has

M4¼e1ðMÞM3−e2ðMÞM2þe3ðMÞM−e4ðMÞ1: ð9Þ

One can then apply this to a matrix M built out of four
arbitrary matrices A; B;C;D and four arbitrary real num-
bers fxig in the form, M¼x0Aþx1Bþx2Cþx3D. Now,
because the fxig as well as the matrices A;B; C;D are
arbitrary, it means that in Eq. (9) the terms which have the
same degree of homogeneity in the fxig must each yield

separate identities between the matrices A;B;C;D. Once
these identities are obtained, one can replace in them A by
h, B by S, C by S2 and D by S3 to get nontrivial matrix
syzygies denoted here as ½Ik�μν ¼ 0, between the tensors
of interest here. Notice that the above Cayley-Hamilton
equation (9) can also be used iteratively, when applied to
the matrix S, to replace any power of S, Sk, with k ≥ 4 by a
linear combination of powers of S, Si with i ≤ 3. This was
done systematically in order to reach the expression (7).
Using (7), one can get the linearization of field equa-

tions (4) around an arbitrary metric gμν reading [14]

δEμν ≡ δGμν þm2Mμν
ρσhρσ ¼ 0; ð10Þ

where δGμν is the linearization of the Einstein tensor

δGμν ¼ −
1

2
½δρμδσν∇2 þ gρσ∇μ∇ν − δρμ∇σ∇ν

− δρν∇σ∇μ − gμνgρσ∇2 þ gμν∇ρ∇σ�hρσ
þ 1

2
½gμνRρσ − δρμδσνR�hρσ ð11Þ
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and the “mass matrix” Mμν
ρσ is defined through

Mμν
ρσ ≡ ∂Vμν

∂gρσ ; ð12Þ

and is given by the following expression,

Mμν
ρσ ¼ 1

2
Vμ

σδρν −
1

2
ðβ2δλμ þ β3ðe1δλμ − SλμÞÞ½S2�σλδρν þ

1

4

X3
n¼1

Xn
k¼1

Xk
m¼1

ð−1Þnþkþmβnek−m½Sn−k�λμgνλgτðρ½Sm�σÞτ

−
1

2
ðβ1δτλ þ β2e1δτλ þ β3ðe2δτλ þ ½S2�τλÞÞ

δSλμ
δgρσ

gντ þ ðμ ↔ νÞ: ð13Þ

Note that here, for the sake of simplicity, we have only
considered the case of a massive graviton in vacuum, but it
can easily be coupled to some matter source by introducing
an energy-momentum tensor δTμν on the right-hand side of
Eq. (10). Provided that this tensor is conserved with respect
to the background metric gμν (as it is usually assumed in
massive gravity, and follows from dRGT action if one just
couples matter minimally to the dynamical metric), the
results presented in the following on the presence of the
extra scalar constraint will hold, since this follows from
the linearized Bianchi identity.
In the most general case, Eq. (10) still contains two

different metrics, the background dynamical metric gμν and
the nondynamical metric fμν which can be traded for the
tensor S2. However, there is a subclass of dRGT models
where one can explicitly get rid of this second metric and
obtain field equations for a massive graviton on the back-
ground of just one metric gμν. This subclass of models
(called here β1 models) is defined by setting to zero the
parameters β2 and β3. In this case, indeed, Vμν is linear in S
and the background field equations can just be reexpressed
as [15]

Sρν ¼
1

β1m2

�
Rρ

ν −
1

6
δρνR −

m2β0
3

δρν

�
; ð14Þ

where Rρν is the Ricci tensor of the metric gμν, and R the
corresponding Ricci scalar. Using (1), this can equivalently
be seen (by squaring the above equation) as expressing fμν
in terms of gμν and its Ricci curvatures. This remarkable
feature means that in the linearized equations of motion,
we can eliminate any and all occurrences of the auxiliary
metric fμν in favor of gμν and its curvature. This feature
only requires a nonvanishing β1 [16].
Having carried out this elimination, we take the obtained

linearized field equation (10) as a new starting point, and
ask if one can show from these equations that the graviton
hμν propagates five polarizations (or less) for a completely
generic metric gμν (i.e. without assuming it obeys the
background equations). The idea here is to try to parallel

what can be done for a massive graviton on flat space-time
with metric ημν (and easily extended to a massive graviton
on an Einstein space-time [3,4]). In this case, the linearized
Bianchi identities lead, by taking one derivative of the field
equations, to four constraints reading

∂μhμν − ∂νh ¼ 0: ð15Þ

Taking another derivative of this equation and subtracting
this from the trace (tracing with ημν) of the field equations,
one then concludes that h defined as h ¼ ημνhμν vanishes
in vacuum. Together with (15) this gives five Lagrangian
constraints, which eliminate as many degrees of freedom
out of the a priori 10 dynamical degrees of freedom of hμν.
Let us then try to follow a similar path from the field

equations (10). First, it is easy to find four vector con-
straints similar to (15). Indeed, as a consequence of the
Bianchi identities, one has

∇μδGμν ∼ 0; ð16Þ

where here and henceforth ∇ denotes the covariant deriva-
tive taken with respect to the background metric and two
expressions separated by the symbol “∼” are by definition
equal off shell (i.e. without using the field equations) up to
terms containing no second or higher order derivatives
acting on hμν. Hence, the field equations yield the four
vector constraints (being first order in derivatives)

∇μδEμν ¼ 0: ð17Þ

In analogy with the flat space case we are interested in
finding a fifth scalar constraint which generalizes the
constraint h ¼ 0. This fifth constraint should be the one
which eliminates the Boulware-Deser ghost and reduces the
number of degrees of freedom from 6 to 5. Accordingly, we
look for a linear combination of scalars made by tracing
over the field equations (10), and its second derivatives,
which would not contain any derivatives of hμν of order
strictly higher than one. However, we have now at hand two
(symmetric) tensors which can be used to take traces,
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namely the metric gμν and its Ricci curvature Rμν.
Equivalently we can also use the metric and the tensor
Sμν trading Rμν for Sμν via Eq. (14). Choosing the second
solution turns out to be more convenient for technical
reasons. We stress however that the two possibilities are
strictly equivalent and do not impose any restriction on gμν,
since (14) can just be considered as a definition of Sμν in
terms of Rμν and gμν (as opposed to a background field
equation). Hence we define the scalars Φi obtained by
tracing the equations of motion with powers of S,

Φi ≡ ½Si�μνδEμν; ð18Þ

together with the scalars Ψi obtained by tracing the
derivative of the divergence of the equations of motion
in various ways,

Ψi ≡ 1

2
½Si�μν∇ν∇λδEλμ: ð19Þ

An exhaustive set of linearly independent scalars is
obtained by restricting i, 0 ≤ i ≤ 3, due the Cayley-
Hamilton identity. To summarize we look for a specific
linear combination of the scalars Φi and Ψi, i ¼ 0;…; 3
with scalar coefficients fui; vig to be determined, such that

X3
i¼0

ðuiΦi þ viΨiÞ ∼ 0; ð20Þ

i.e. which contains no second (or higher) derivatives of hμν.
Computing explicitly the scalars Φi and Ψi [12], one
obtains that, in these scalars, the second derivatives of
hμν appear in the form of linear combinations (with
S-dependent coefficients) of 26 different scalars ℵi made
by contracting ∇μ∇νhρσ with powers of S (including zeroth
power which is simply the metric) in various ways. Two of
these scalars are e.g. ∇ρ∇σhρσ and ½S3�ρσ½S3�μν∇ρ∇σhμν.
We get a priori 26 equations for the seven unknowns

fui; vig [17] by setting to zero each coefficient of the ℵi
which appears in (20). However, one can show that not all
the scalars ℵi are independent, thanks to the syzygies Ik.
Indeed, the equation∇μ∇ν½Ik�μν ¼ 0, together with the use
of the Cayley-Hamilton theorem for S yields four inde-
pendent identities between the scalars ℵi which vanish up
to terms ∼0. These identities are just enough to reduce to
seven the number of equations to be solved to fulfill (20).
This yields a unique solution for the coefficients fui; vig
which translates into the identity

m2β1e4
4

Φ0 ∼ −e3Ψ0 þ e2Ψ1 − e1Ψ2 þΨ3: ð21Þ

Hence, using the field equations, we get the scalar
constraint

−
m2β1e4

4
Φ0 − e3Ψ0 þ e2Ψ1 − e1Ψ2 þΨ3 ¼ 0; ð22Þ

valid now for an arbitrary metric gμν. Notice that the
curvature of this metric enters this constraint in a nontrivial
way via the tensor S. One can check in fact that to the
lowest nontrivial order (i.e. at linear order) in curvature,
the analysis done here agrees with the one of [4] which
investigates at this order the consistent coupling of a
massive graviton to a curved background.
A nontrivial check is obtained considering the case

where the background metric is covering an Einstein
space-time with a cosmological constant Λ. In this case
one has Rμν ¼ Λgμν and the constraint (22) has the usual
form found in Einstein space [3,4], i.e. it reads

h

�
1 −

2Λ
3m2

FP

�
¼ 0; ð23Þ

where mFP is the graviton mass as appearing in the Fierz-
Pauli action extended to Einstein space-time backgrounds.
This mass is given here by the relation 3m2

FP ¼ Λ −m2β0.
For generic Einstein space-times, including flat ones, this
constraint reduces to h ¼ 0 which also shows that (22) is
independent of the vector constraints (17), as it should be.
One also recovers the partially massless case (for
3m2

FP ¼ 2Λ) where this constraint vanishes identically
(i.e. does not impose any constraint on the field hμν)
[18]. In fact the current analysis can be used to further
investigate the issue of partial masslessness on more
general backgrounds.
Another interesting direction to go would be to inves-

tigate whether an action for a single dynamical metric could
be obtained leading to the linearized equations (10). It
appears however unlikely that such an action exists with a
simple form given what we know from the dRGT theory.
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