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We study spherical and nonspherical linear acoustic perturbations of the Michel flow, which describes
the steady radial accretion of a perfect fluid into a nonrotating black hole. The dynamics of such
perturbations are governed by a scalar wave equation on an effective curved background geometry
determined by the acoustic metric, which is constructed from the spacetime metric and the particle density
and four-velocity of the fluid. For the problem under consideration in this paper the acoustic metric has the
same qualitative features as an asymptotically flat, static and spherically symmetric black hole, and thus it
represents a natural astrophysical analogue black hole. As for the case of a scalar field propagating on a
Schwarzschild background, we show that acoustic perturbations of the Michel flow exhibit quasinormal
oscillations. Based on a new numerical method for determining the solutions of the radial mode equation,
we compute the associated frequencies and analyze their dependency on the mass of the black hole, the
radius of the sonic horizon and the angular momentum number. Our results for the fundamental frequencies
are compared to those obtained from an independent numerical Cauchy evolution, finding good agreement
between the two approaches. When the radius of the sonic horizon is large compared to the event horizon
radius, we find that the quasinormal frequencies scale approximately like the surface gravity associated
with the sonic horizon.
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I. INTRODUCTION

The study of accretion into a black hole plays a very
important role in general relativity and astrophysics. In
particular, an understanding of the emission of electromag-
netic radiation generated by compression or friction in the
gas is an important subject since this radiation may carry
information about the spacetime geometry close to the
black hole and thus offer the opportunity to test Einstein’s
general theory of gravity in its strong field limit. In fact,
millimeter-wave very-long baseline interferometric arrays
such as the Event Horizon Telescope [1] are already able to
resolve the region around Sagittarius A�, the supermassive
black hole lying in the center of our Galaxy, to scales
smaller than its gravitational radius [2]. Comparing the
observations to calculated images of the black hole shadow
and the sharp photon ring surrounding it may even lead to
tests for the validity of the no-hair theorems [3].
Clearly, the features of the observed electromagnetic

signals depend on the properties and dynamics of the flow,
and therefore it is of considerable interest to study the
dynamics of the accreted gas and to identify its key
properties like its oscillation modes, for example. For a
numerical study of oscillating relativistic fluid tori around a
Kerr black hole and astrophysical implications, see Ref. [4].
For the impact of a binary black hole merger on the
dynamics of the circumbinary disk and associated electro-
magnetic signals, see Refs. [5,6] and references therein.

Motivated by the above considerations, the purpose of
the present paper is to study the oscillation modes of a
simple accretion model, namely the radial flow of a perfect
fluid on a nonrotating black hole background. Spherically
symmetric steady-state configurations in this model for
which the density is nonzero and the matter is at rest at
infinity have been studied long time ago by Michel [7],
generalizing previous work by Bondi [8] in the Newtonian
case. The Michel flow describes a transonic flow, the flow’s
radial velocity measured by static observers being subsonic
in the asymptotic region and supersonic close to the event
horizon. Although much less realistic than the case where
the black hole rotates and/or the matter has an intrinsic
angular momentum, resulting in an accretion disk, the
study of spherical accretion is still relevant in a variety of
interesting astrophysical scenarios. Examples include non-
rotating black holes accreting matter from the interstellar
medium [7,9] and supermassive black holes accreting dark
matter [10]. For a rigorous treatment on the Michel flow
and its generalization to a wide class of spherical black hole
backgrounds, we refer the reader to our recent paper [11].
In this paper, we study spherical and nonspherical linear

acoustic perturbations of the Michel flow, assuming a fixed
Schwarzschild black hole background. Moncrief [12]
showed that if the entropy and vorticity perturbations are
of bounded extent on some initial hypersurface, they will be
advected into the black hole in finite time, leaving a pure
potential flow perturbation in their wake. Furthermore,
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Moncrief showed in Ref. [12] that the potential flow
perturbation can be described in a very elegant manner
by a wave equation on an effective curved background
geometry described by the acoustic (or sound) metric,
which is constructed from the spacetime metric and the
four-velocity and particle density of the background flow.
The acoustic metric is Lorentzian and its null cones (the
sound cones) lie inside the light cones, as long as the speed
of sound is smaller than the speed of light. For further
properties of the acoustic metric, see [13].
For acoustic perturbations of the Michel flow the

geometry described by the acoustic metric is asymptotically
flat, static and spherically symmetric and possesses a sonic
horizon, defined as the boundary of the region which can
send sound signals to a distant observer, where the matter is
almost at rest. As it turns out, this boundary coincides with
the location of the sonic sphere describing the transition of
the flow’s radial velocity measured by static observers from
subsonic to supersonic. Therefore, as far as the propagation
of sound waves are concerned, the acoustic geometry for
the Michel flow has exactly the same qualitative properties
as the geometry of a static, spherically symmetric black
hole on which electromagnetic radiation propagates, and
the sonic horizon in the acoustic geometry plays the role
of the event horizon. Consequently, the acoustic geometry
for the Michel flow constitutes a natural astrophysical
“analogue black hole.” For a review on analogue black
holes in different physical contexts, we refer the reader to
Ref. [14], and for recent applications to accretion flows on
black hole backgrounds, see Refs. [15–19].
Interpreting the acoustic perturbations as an evolution

problem on an effective geometry leads to new insight and
new results. For the case of the Michel flow, for example,
one can prove that acoustic perturbations outside the sonic
horizon stay bounded, using standard energy conservation
techniques [12,15,18]. In this paper, we use this analogue
black hole interpretation and show that, similar to the case
in which a Schwarzschild black hole is perturbed, small
perturbations of the Michel flow lead to quasinormal
acoustic oscillations characterized by complex frequencies
s ¼ σ þ iω, where σ < 0 describes the decay rate and ω the
frequency of oscillation. As in the black hole case, these
frequencies describe the ringdown phase which is taken
over by a slower power-law decay at late times. We
numerically compute the quasinormal frequencies (and in
some cases also the exponent in the late-time power-law tail)
as a function of the black hole mass (or its Schwarzschild
radius rH), the radius of the sonic horizon rc and the angular
momentum number l of the perturbation. For previous
studies of quasinormal oscillations in fluid analogue
black hole modes, see for example Refs. [14,20,21].
Contrary to these references which are mainly concerned
with analogue black holes in the laboratory, the scenario
considered in this article refers to an astrophysical
analogue black hole.

The remainder of this paper is organized as follows. In
Sec. II we briefly review the main features of the Michel
flow, and in particular we discuss the properties of the flow
in the vicinity of the sonic sphere. Next, in Sec. III we first
analyze the geometric properties of the acoustic metric and
show that it indeed describes an analogue black hole whose
horizon is located at the sonic sphere. We also compute the
surface gravity associated with this sonic horizon since it
plays an important role in the description of the quasinor-
mal acoustic frequencies found in this paper. Next, by
performing a mode decomposition, we reduce the wave
equation on the acoustic metric background to a family of
radial, time-independent Schrödinger-like equations and
discuss our method for computing the quasinormal
frequencies. One important issue we would like to point
out here is that, unlike the case where the background
metric is Schwarzschild, the effective potential appearing in
our radial equation cannot be written in explicit form. This
complication stems from the fact that the Michel solution,
describing the particle density as a function of the areal
radius coordinate, is only known in implicit form, and
consequently the metric coefficients in the acoustic metric
and the effective potential in the radial equation can only be
described in terms of implicit functions. For this reason the
problem is much harder than in the Schwarzschild case, and
popular analytic methods based on series expansions like
Leaver’s method [22] do not seem feasible. This issue has
motivated us to reconsider the problem of calculating
the quasinormal frequencies based on a new numerical
matching procedure, where the local solutions of the radial
equation which are being matched are computed via a
Banach iteration method. This method, which shares some
common features with the complex coordinate WKB
approximation (see [23] and references therein), is described
and tested in Sec. III. See also [24] for a recent method
allowing to compute the quasinormal frequencies for
deformed Kerr black holes based on ideas from perturbation
theory in quantum mechanics.
Next, in Sec. IVwe describe a completely differentmethod

for computing the quasinormal frequencies based on a
numerical Cauchy evolution of the wave equation. In this
method, one specifies an initial perturbation for the fluid’s
acoustic potential, solves the wave equation numerically and
registers the signal observed by a static observer outside the
sonic horizon. The signal reveals an initial burst followed by a
ringdown signal whose oscillations frequency ω and decay
rate σ can be combined into a complex frequency. Comparing
s ¼ σ þ iω with the fundamental quasinormal frequencies
computed in Sec. III provides a further validation for our
matching procedure, and shows that the quasinormal acoustic
oscillations found in this paper are actually excited by an
initial perturbation of the fluid. The numerical results in
Sec. IValso indicate that the ringdown signal is overtaken by a
power-law decay at late times, similar to what has been
observed in laboratory-type analogue black holes [21].
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Our main results for the quasinormal acoustic frequen-
cies and their dependency on rc and rH and on the angular
momentum number l are presented in Sec. V for the case of
a polytropic fluid equation of state with adiabatic index
γ ¼ 4=3. Our results indicate that for large rc=rH the
complex frequencies s scale approximately like the surface
gravity κ of the acoustic geometry and that the rescaled
decay rates σ=κ do not depend strongly on l for rc ≫ rH
and l ≥ 1. Results for overtone frequencies and the eikonal
limit l → ∞ are also discussed in Sec. V. Conclusions are
drawn in Sec. VI and technical details related to the analytic
continuation of the effective potential needed for our
matching procedure are explained in an Appendix.

II. REVIEW OF MICHEL FLOW AND ITS
RELEVANT PROPERTIES

In this section, we review the relevant equations describing
the Michel flow on a Schwarzschild background. For details
and a generalization to more general static, spherically
symmetric black hole backgrounds, see Refs. [11,25,26].
We write the Schwarzschild metric in the form

g ¼ −NðrÞc2dt2 þ dr2

NðrÞ þ r2ðdϑ2 þ sin2ϑdφ2Þ;

NðrÞ ¼ 1 −
rH
r
; ð1Þ

where c is the speed of light and rH the Schwarzschild radius.
The fluid is described by the particle density n, energy density
ε and pressure p measured by an observer moving along the
fluid four-velocity u ¼ uμ∂μ. (u is normalized such that
uμuμ ¼ −c2.) Its dynamics is determined by the equations of
motion

∇μJμ ¼ 0; ð2Þ

∇μTμν ¼ 0; ð3Þ

wherein Jμ ¼ nuμ is the particle current density and Tμν ¼
nhuμuν þ pgμν is the stress-energy tensor, and∇ refers to the
covariant derivative with respect to the spacetime metric g.
Here and in the following, h denotes the enthalpy per particle,
defined as h ≔ ðpþ εÞ=n, and we assume that h ¼ hðnÞ is a
function of the particle density n only. In the spherically
symmetric stationary case Eqs. (2) and (3) reduce to

4πr2nur ¼ jn ¼ const; ð4Þ

4πr2nhur

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ

�
ur

c

�
2

s
¼ jε ¼ const; ð5Þ

which expresses the conservation of particle and energy flux
through a sphere of constant areal radius r. Using Eq. (4) in
order to eliminate ur in Eq. (5) gives

Fðr; nÞ ≔ hðnÞ2
�
NðrÞ þ μ2

r4n2

�
¼

�
jε
jn

�
2

¼ const;

μ ≔
jn
4πc

< 0; ð6Þ

where jn describes the accretion rate and is negative.
Therefore, the problem of determining the accretion flow
is reduced to finding an appropriate level curve of the function
Fðr; nÞ, which associates to each value of r a unique value of
the particle density nðrÞ. Once nðrÞ is known, the radial
velocity ur is obtained from Eq. (4).
In a previous paper [11] we proved that under the

conditions on the equation of state (F1)–(F3) below there
exists a unique smooth solution nðrÞ of Eq. (6) which
extends from the event horizon r ¼ rH to infinity and has a
given positive particle density n∞ > 0 at infinity. We shall
call this solution the Michel solution. Our conditions
on hðnÞ, which we assume to be a smooth function
h∶ ð0;∞Þ → ð0;∞Þ, are the following:
(F1) hðnÞ → e0 > 0 for n → 0 (positive rest energy),
(F2) 0 < ðvsðnÞc Þ2 ¼ ∂ logðhÞ

∂ logðnÞ < 1 for all n > 0 (positive and
subluminal sound velocity),

(F3) 0 ≤ WðnÞ ≔ ∂ log vs∂ log n ≤ 1
3
for all n > 0 [technical re-

striction on the derivative of vsðnÞ].
In particular, these conditions are satisfied for a polytropic
equation of state

hðnÞ ¼ e0 þ Knγ−1; ð7Þ

wherein e0 > 0, K > 0 and the adiabatic index γ lies in the
range 1 < γ ≤ 5=3. In this paper, we focus on the particular
case of an ultrarelativistic gas for which hðnÞ has the same
form as in Eq. (7) with γ ¼ 4=3. However, for the sake of
generality, all the expressions below are given for an
arbitrary equation of state satisfying the assumptions
(F1)–(F3).
The function n∶ ½rH;∞Þ → R describing the Michel

flow is a smooth, monotonously decreasing function which
is implicitly determined by Eq. (6), that is

Fðr; nðrÞÞ ¼ const ¼ hðn∞Þ2 > 0:

By differentiating both sides with respect to r one obtains

∂F
∂r ðr; nðrÞÞ þ

∂F
∂n ðr; nðrÞÞn0ðrÞ ¼ 0; ð8Þ

where the partial derivatives of F are

∂F
∂r ðr; nÞ ¼

hðnÞ2
r

�
rH
r
−

4μ2

r4n2

�
; ð9Þ

∂F
∂n ðr; nÞ ¼ 2hðnÞ2

n

�
v2s
c2

NðrÞ −
�
1 −

v2s
c2

�
μ2

r4n2

�
: ð10Þ
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The implicit function theorem guarantees local existence
and uniqueness of nðrÞ as long as ∂F=∂n ≠ 0. In the
asymptotic region (large r), ∂F=∂n > 0 is positive, and
close to the event horizon (r≃ rH) ∂F=∂n < 0 is negative,
so in these regions the slope n0 of n is uniquely determined
by Eq. (8). However, by continuity, there exists a point
rc > rH where ∂F=∂n vanishes, and at this point n0ðrcÞ can
only be finite if ∂F=∂r also vanishes. This leads to the
requirement that the flow must necessarily pass through a
critical point ðrc; ncÞ of the function Fðr; nÞ. In [11] we
proved that under the assumptions (F1),(F2),(F3) on the
fluid there is, for large enough jμj, a unique critical point of
Fðr; nÞ and a unique solution nðrÞ of Eq. (6) which extends
from rH to r ¼ ∞ and satisfies nðrcÞ ¼ nc. Furthermore,
given n∞ > 0 the value of jμj (and hence the location of the
critical point) is fixed.
Physically, the critical point corresponds to the sonic

sphere r ¼ rc, which describes the transition of the flow’s
radial velocity measured by static observers from subsonic
to supersonic. The location of the sonic sphere is deter-
mined by the equations

rc
rH

¼ 1

4

�
3 þ 1

ν2c

�
; nc ¼ 2jμjffiffiffiffiffiffiffiffiffiffi

r3crH
p ; νc ≔

vs
c
;

ð11Þ

which follow from setting the right-hand sides of Eqs. (9)
and (10) to zero. According to assumption (F2), ν−2c is
always larger than one, and Eq. (11) implies that the sonic
horizon is located outside the horizon.
For later use we shall also need the derivative of the

particle density n0c ≔ n0ðrcÞ at the critical point. For this,
we differentiate Eq. (8) with respect to r and evaluate at
r ¼ rc, obtaining

∂2F
∂r2 ðrc; ncÞ þ 2

∂2F
∂r∂n ðrc; ncÞn

0
c þ

∂2F
∂n2 ðrc; ncÞðn

0
cÞ2 ¼ 0:

ð12Þ

Using the following expression for the Hessian of F at
ðrc; ncÞ,
0
@ ∂2F

∂r2 ðrc;ncÞ ∂2F
∂r∂n ðrc;ncÞ

∂2F
∂n∂r ðrc;ncÞ ∂2F

∂n2 ðrc;ncÞ

1
A¼ h2c

n2c

rH
rc

0
@3 n2c

r2c
2 nc
rc

2 nc
rc

1− ν2c þWc

1
A;

with hc ¼ hðrcÞ and Wc ¼ WðrcÞ, we find the two
solutions

n0c
nc

¼ −
3

rc

1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ðν2c −WcÞ

p ; ð13Þ

which parametrize the two branches of the level set of F
through ðrc; ncÞ. In [11] we proved that the branch

corresponding to the global solution for nðrÞ extending
from the horizon to infinity is the one with the þ sign in
Eq. (13). In the Appendix, we show that the function nðrÞ
admits an analytic continuation to complex r. This con-
tinuation is required for the quasinormal mode calculation
in the next section.

III. QUASINORMAL OSCILLATIONS
FROM A MODE ANALYSIS

The propagation of acoustic perturbations in any rela-
tivistic perfect fluid is elegantly described by a wave
equation

□GΨ ¼ 0; ð14Þ

where the scalar field Ψ determines the perturbed enthalpy
δh and four-velocity δuμ of the fluid according to the
relation δðhuμÞ ¼ ∇μΨ, which using uμδuμ ¼ 0 yields

δh ¼ −uμ∇μΨ; δuμ ¼
1

h
½∇μΨþ uμuν∇νΨ�:

The operator□G in Eq. (14) is the wave operator belonging
to the acoustic metric G, which is constructed from the
spacetime metric g and the fluid quantities in the following
way [12]:

Gμν ≔
n
h
c
vs

�
gμν þ

�
1 −

v2s
c2

�
uμuν

�
: ð15Þ

Under our assumptions on the sound speed it follows thatG
is a Lorentzian metric whose cone (the sound cone) lies
inside the light cone of g. Notice also that u is timelike with
respect to both g and G.

A. Geometry of the acoustic metric

For simplicity, from now on we use units in which the
speed of light is one, c ¼ 1. For the particular case of the
Michel flow on a Schwarzschild metric the acoustic
metric is

G ¼ n
h
1

vs

�
−Ndt2 þ dr2

N
þ ð1 − v2sÞðutdtþ urdrÞ2

þ r2ðdϑ2 þ sin2ϑdφ2Þ
�
; ð16Þ

or

G ¼ −AðrÞdt2 þ 2BðrÞdtdrþ CðrÞdr2 þ RðrÞ2ðdϑ2
þ sin2ϑdφ2Þ; ð17Þ

with
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AðrÞ ¼ n
h
1

vs
½v2sN − ð1 − v2sÞðurÞ2�;

BðrÞ ¼ −
n
h
1 − v2s
vs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ ðurÞ2

p
ur

N
;

CðrÞ ¼ n
h
1

vs

1

N2
½N þ ð1 − v2sÞðurÞ2�;

RðrÞ ¼
ffiffiffiffiffiffiffiffi
n
h
1

vs

s
r;

where we have used the equation u2t − ðurÞ2 ¼ N and
ut < 0 in order to eliminate ut and where the quantities
n, h, vs and ur are given by the Michel flow solution
discussed in the previous section. The acousticmetric (16) is
spherically symmetric and possesses the Killing vector field

k ¼ ∂
∂t ð18Þ

whose negative square norm is AðrÞ. Since AðrÞ is positive
for r > rc and negative for r < rc [cf. Eq. (10) and the
remarks following this equation] the vector field k is time-
like for r > rc, spacelike for 0 < r < rc and null at r ¼ rc,
and the surface r ¼ rc is a Killing horizon [27,28]. Notice
that the coordinates ðt; rÞ are regular everywhere outside
the event horizon r > rH; in particular they are regular
at the sonic horizon r ¼ rc. Introducing the new time
coordinate

T ≔ t −
Z

BðrÞ
AðrÞ dr;

the acoustic metric can be brought into diagonal form
outside the sonic horizon,

G¼ n
h
1

vs

�
−XðrÞv2sdT2 þ dr2

XðrÞ þ r2ðdϑ2 þ sin2ϑdφ2Þ
�
;

XðrÞ≔ NðrÞ−
�
1

v2s
− 1

�
ðurÞ2: ð19Þ

Note that XðrÞ → 1 as r → ∞, and in this limit the acoustic
metric reduces (up to a constant conformal factor) to the
Minkowksi metric with time coordinate v∞T, where v∞ ≔
limr→∞vsðrÞ is the sound speed at infinity.

It follows that the geometry described by the acoustic
metric (16) is the same as the one of a static, spherically
symmetric and asymptotically flat black hole. The sonic
horizon r ¼ rc plays the role of the event horizon of this
analogue black hole. Its surface gravity κ with respect to the
Killing vector field k defined in Eq. (18), which will play an
important role later, can be computed using Eqs. (11) and
(13). The result is

κ ¼ A0ðrcÞ
2BðrcÞ

¼ 1

4vc

rH
r2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ðν2c −WcÞ

q
: ð20Þ

Since scalar fields propagating on static spherically
symmetric black holes like the Schwarzschild and
Reissner-Nordström black holes exhibit quasinormal oscil-
lations, and since the fluid potential Ψ satisfies a wave
equation on an analogue black hole background, it is
natural to expect that acoustic perturbations in the
Michel flow undergo quasinormal oscillations as well. In
the following, we show that such oscillations do indeed
exist and compute the associated frequencies based on two
different numerical methods.

B. Reduction to a Schrödinger-like equation

Quasinormal modes are particular solutions of Eq. (14)
which are of the form

Ψ ¼ 1

R
esTψðs; rÞYlmðϑ;φÞ;

for some complex frequency s ¼ σ þ iω ∈ C and
complex-valued function ψðs; rÞ to be determined. Here,
σ denotes the decay rate, ω the frequency of oscillations,
and Ylm the standard spherical harmonics with angular
momentum numbers lm. Introducing this ansatz into
Eq. (14) and using the diagonal parametrization (19) of
the acoustic metric, one obtains the following equation:

−N ðrÞ ∂
∂r

�
N ðrÞ ∂ψ∂r

�
þ ½s2 þN ðrÞVlðrÞ�ψ ¼ 0; ð21Þ

where the functions N ðrÞ and VlðrÞ are explicitly given
by

N ðrÞ ¼ vsX ¼ vs

�
1 −

rH
r
−
�
1

v2s
− 1

�
ðurÞ2

�
; ð22Þ

VlðrÞ ¼
1

r2vs

�
−ð1 − v2s þ 5WÞE −

r
2

n0

n

�
4W þ 3W2 þ ð1 − v2sÞ2 − 2

dW
d log n

�
Eþ rH

4r

�
1þ 3v2s þ 3W þ 4Wr

n0

n

��

þ vs
lðlþ 1Þ

r2
; ð23Þ
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with E ≔ rH=ð4rÞ − ðurÞ2, ur ¼ μ=ðr2nÞ and W ¼
∂ log vs=∂ log n. Away from the critical point n0=n can
be computed using Eq. (8), which yields

n0

n
¼ −

2

r
E
v2sX

; ð24Þ

while for r ¼ rc Eq. (13) can be used in order to compute
n0=n.
For large r the effective potential VlðrÞ behaves as

v∞lðlþ 1Þ=r2 þOðr−3Þ, so it is dominated by the cen-
trifugal term. At the sonic horizon N ðrcÞ is zero, but
VlðrcÞ is positive. Introducing the tortoise coordinate r� ¼R
dr=N ðrÞ which ranges from −∞ to þ∞ Eq. (21) can be

further simplified and is formally equivalent to the time-
independent Schrödinger equation Hψ ¼ −s2ψ with
Hamiltonian

H ≔ −
d2

dr2�
þN ðrÞVlðrÞ:

A plot of the effective potential N ðrÞVlðrÞ for l ¼ 0 is
shown in Fig. 1, which indicates that there is a potential
barrier even in the monopolar case l ¼ 0.

C. Computation of the quasinormal frequencies
using Banach iterations

The quasinormal frequencies s are determined by the
following requirement [29]. For σ ¼ ReðsÞ > 0 Eq. (21)
admits precisely two solutions ψ�ðs; rÞ satisfying the
boundary conditions

lim
r�→∞

esr�ψþðs; rÞ ¼ 1; lim
r�→−∞

e−sr�ψ−ðs; rÞ ¼ 1; ð25Þ

in the asymptotic region and at the sonic horizon, respec-
tively. These solutions can be shown to depend analytically
on s, and they can be analytically continued on the left
complex plane σ < 0. For σ > 0 the two functions ψþðs; ·Þ
and ψ−ðs; ·Þ are always linearly independent from each
other since otherwise one would have a finite energy
solution which grows exponentially in time, in contra-
diction to standard energy arguments [12] showing the
stability of the flow outside the sonic horizon. However, for
particular values of the complex frequency s ¼ σ þ iωwith
σ < 0 it is possible that the two functions become linearly
dependent. These special frequencies are the ones asso-
ciated with the quasinormal modes, and as we will show in
the next section they describe the ringdown phase in the
dynamics of the scalar field Ψ. For more general discus-
sions on quasinormal oscillations we refer the reader to the
review articles [30–32].
For ReðsÞ > 0 the solutions ψ� can be constructed using

the following iteration scheme,

ψ�ðs; rÞ ¼ e∓sr� lim
k→∞

ðTk
�s1ÞðrÞ; ð26Þ

where the operators T�s, acting on continuous and bounded
functions ξ, are defined as

ðTþsξÞðrÞ ¼ 1þ 1

2s

Z
∞

r
ð1 − e−2sðr0�−r�ÞÞVlðr0Þξðr0Þdr0;

ð27Þ

ðT−sξÞðrÞ ¼ 1þ 1

2s

Z
r

rc

ð1 − eþ2sðr0�−r�ÞÞVlðr0Þξðr0Þdr0;

ð28Þ

for rc < r < ∞, with r0 the variable of integration and r0�
the associated tortoise coordinate. Note that the integrals in
these expressions are well defined for σ ¼ ReðsÞ ≥ 0,
because je−2sðr0�−r�Þj ¼ e−2σðr0�−r�Þ ≤ 1 when r0� ≥ r� and
because the potential VlðrÞ decays at least as fast as
1=r2 for r → ∞. With these observations in mind it is not
difficult to verify that the sequences Tk

�s1ðrÞ obtained by
applying k times the operators T�s to the constant function
ξ ¼ 1, converge for all ReðsÞ ≥ 0with s ≠ 0 and all r > rc,
uniformly on compact intervals, and that ψ�ðs; ·Þ are
solutions of Eq. (21) fulfilling the required boundary
conditions (25). Furthermore, the functions ψ�ðs; rÞ are
analytic in s for any fixed r > rc. For more details on these
assertions we refer the reader to Ref. [33] or Sec. XI 8
in Ref. [34].
Next, let us discuss the analytic continuation of the

function ψþðs; rÞ for ReðsÞ < 0. In this case, the integral in
Eq. (27) does not converge anymore unless VlðrÞ decays

FIG. 1 (color online). The effective dimensionless potential
WðxÞ ≔ r2HN ðrÞV0ðrÞ in the Hamiltonian H as a function of
x ≔ r=rH is shown here for the case of the Michel flow for a
polytrope with adiabatic index γ ¼ 4=3 and sonic horizon located
at rc ¼ 2rH .
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exponentially fast. However, if the effective potential Vl
and the function N in the definition of the tortoise
coordinate r� possess appropriate analytic continuations
on the complex r plane, ψþðs; rÞ can be analytically
continued to ReðsÞ < 0 by deforming the path of integra-
tion in the definition of Tþsξ in Eq. (27). The basic idea,
which has been used in Ref. [35] in the context of the
Regge-Wheeler equation, relies on the following observa-
tion: for s ¼ jsjeiφ and r0� − r� ¼ ρeiα, ρ ≥ 0, we still have
je−2sðr0�−r�Þj ≤ 1 as long as Reðsðr0� − r�ÞÞ ¼ jsjρ cosðφþ
αÞ ≥ 0. For the integration path in Eq. (27), r0� and r� are
real and r0� > r� and consequently, α ¼ 0 which implies
that only those frequencies s ¼ ρeiφ lying in the range
jφj ≤ π=2 [that is, ReðsÞ ≥ 0] are admissible. However,
choosing a new integration path such that α ¼ −π=2 leads
to the admissible range 0 ≤ φ ≤ π, so that the integral in
Eq. (27) converges for all ImðsÞ > 0 provided the analytic
continuation of Vl decays fast enough along the path
(decay equal to or faster than 1=jrj2 is enough). Due to
Cauchy’s integral theorem the new integration path does
yield the same value for ðTþsξÞðrÞ as the one computed
using the original path in the intersection of the two
domains ReðsÞ > 0 and ImðsÞ > 0, so by deforming the
path in this way we obtain the required analytic continu-
ation of ψþðs; rÞ on the upper half plane ImðsÞ > 0.1

In our calculations, we choose the following integration
path for Tþs:

γαðλÞ ¼ rþ eiαλ; λ ≥ 0;

with angle α slightly larger than −π=2, and set

ðTþsξÞðrÞ

¼ 1þ 1

2s

Z
γα

�
1− exp

�
−2s

Z
r0

r

dr00

N ðr00Þ
��

×Vlðr0Þξðr0Þdr0; ReðrÞ> rc; ð29Þ

where it is understood that the integral from r to r0 in the
exponential is performed along the path γα. The analytic
continuations of the functions N and Vl to complex r and
their properties are discussed in the Appendix. For large jrj
and ReðrÞ > rc, Vl decays at least as fast as 1=jrj2 and N
converges to a positive real constant, so that r0� − r0 is
approximately proportional to r0 − r for large jr0j.
Hence the integral converges for all ImðsÞ > 0, as
explained above.
The analytic continuation of the function ψ−ðs; rÞ for

ReðsÞ < 0 can be obtained using similar ideas,

ðT−sξÞðrÞ ¼ 1 −
1

2s

Z
Γ

�
1 − exp

�
2s

Z
r0

r

dr00

N ðr00Þ
��

× Vlðr0Þξðr0Þdr0; ð30Þ

with Γ an integration path connecting r with rc. However,
in this case particular care has to be taken regarding the
relation between the tortoise coordinate and the physical
radius close to the sonic horizon r ¼ rc, where the function
1=N has a pole. In order to motivate our choice for the
integration path Γ, we approximate

1

N ðrÞ≃
1

N 0ðrcÞ
1

r − rc

for r close to rc. Note that N 0ðrcÞ > 0 is positive since the
surface gravity associated with the sonic horizon is pos-
itive. As a consequence of the residual theorem, the integral
over 1=N increases by a factor of 2πi=N 0ðrcÞ after each
revolution along a closed path that winds counterclockwise
around r ¼ rc. In the exponential in the integrand on the
right-hand side of Eq. (30) this would give rise to a
multiplicative factor expð4πis=N 0ðrcÞÞ, which is bounded
for all ImðsÞ ≥ 0.
Motivated by these observations, we choose the inte-

gration path

ΓβðλÞ ¼ rc þ ðr − rcÞ expð−eiβλÞ; λ ≥ 0

with β slightly larger than −π=2, which spirals counter-
clockwise around the point r ¼ rc, see Fig. 2. Along this
path we have, for s ¼ jsjeiφ,

FIG. 2 (color online). The integration path Γβ in the complex
r-plane for the case rc ¼ 1.

1A similar analytic continuation can be obtained on the lower
half plane by choosing α ¼ þπ=2. However, because the func-
tionsN and Vl in Eq. (21) are real the quasinormal frequencies s
come in complex conjugate pairs, and thus it is sufficient to
consider the upper half plane.
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exp

�
2s

Z
r0

r

dr00

N ðr00Þ
�
≃ exp

�
2s

N 0ðrcÞ
Z

λ0

0

ð−eiβÞdλ
�

¼ exp

�
−2jsjeiðβþφÞ λ0

N 0ðrcÞ
�
;

which is bounded provided jβ þ φj ≤ π=2. Therefore,
choosing β ¼ −π=2þ δ with small δ > 0 guarantees con-
vergence of the integral in Eq. (30) for all 0 < φ < π − δ,
so by choosing δ > 0 small enough we can cover the whole
upper plane ImðsÞ > 0. More details and rigorous justifi-
cations of our method will be provided elsewhere [36].
For given ImðsÞ > 0 we numerically compute the

functions ψ�ðs; rÞ and their first derivative ψ 0
�ðs; rÞ by

truncating the iteration in Eq. (26) to some finite k and
computing the operators T�s using Eqs. (29) and (30),
where we discretize the integrals using the trapezoidal rule.
We choose α ¼ −1.57 and β ¼ −1.5, and we find that in
practice only about k ∼ 10 iterations are required for good
accuracy. The functions N ðrÞ and VlðrÞ are computed
from Eqs. (22) and (23), where nðrÞ is determined numeri-
cally by solving Eq. (6) via a standard Newton algorithm
[37]. In order to find the quasinormal frequencies we match
the two solutions ψþ and ψ− by finding the zeros of their
Wronski determinant,

WðsÞ ≔ det

�
ψþðs; rÞ ψ−ðs; rÞ

Nψ 0þðs; rÞ Nψ 0−ðs; rÞ

�

¼ ξþðs; rÞN ξ0−ðs; rÞ −N ξ0þðs; rÞξ−ðs; rÞ
þ 2sξþðs; rÞξ−ðs; rÞ; ð31Þ

where ξ�ðs; rÞ ¼ limk→∞ðTk
�s1ÞðrÞ, at some intermediate

point rm (rc < rm < ∞) which we typically choose to be
about rm ≃ 1.5rc. The zeros ofW are obtained numerically
using a standard Newton algorithm [37], where the deriva-
tive of WðsÞ with respect to s is approximated using a
simple finite difference operator.
To test our algorithm, we have applied it to the

computation of the quasinormal frequencies for odd-parity
linearized gravitational perturbations of a Schwarzschild
black hole, in which case the functions N and Vl
in Eq. (21) are replaced by N ðrÞ ¼ 1 − rH=r and
VlðrÞ ¼ lðlþ 1Þ=r2 − 3rH=r3, respectively. In the quad-
rupolar case we found the following frequencies: s · rH ¼
−0.17792þ 0.74734i, −0.54783þ 0.69342i, −0.95656þ
0.60211i, −1.4103þ 0.50301i, −1.8937þ 0.41503i,
−2.3912þ 0.33859i, −2.8958þ 0.26651i, which agree
to high accuracy with those obtained from Leaver’s
continued fraction method [22]. In order to produce these
results we have chosen rm ¼ 1.5rH, discretized the inte-
grals in Eqs. (29), (30) using 40,000 points and performed
14 Banach iterations. We have varied these numbers in
order to obtain five significant figures in all the frequencies.

IV. QUASINORMAL OSCILLATIONS FROM A
CAUCHY EVOLUTION

In this section, we solve the Cauchy problem for the
wave equation (14) numerically, starting with a Gaussian
pulse with zero velocity as initial data. We show that a static
observer, after registering an initial burst of radiation,
measures a ringdown signal whose frequency is given
by the one of the fundamental quasinormal mode.

A. Reduction to a first-order symmetric
hyperbolic system

We formulate the Cauchy problem for Eq. (14) on the
t ¼ const hypersurfaces of the metric (16) outside the sonic
horizon. To this purpose we first write the acoustic metric in
its ADM form,

G ¼ −αðrÞ2dt2 þ γðrÞ2ðdrþ βðrÞdtÞ2
þ RðrÞ2ðdϑ2 þ sin2ϑdφ2Þ; ð32Þ

with the functions αðrÞ, βðrÞ and γðrÞ given by

αðrÞ ¼
ffiffiffiffiffiffiffiffi
n
h
vs

r
Nffiffiffiffi
Y

p ;

βðrÞ ¼ ð1 − v2sÞ
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ ðurÞ2

p
jurj

Y
;

γðrÞ ¼
ffiffiffiffiffiffiffiffi
n
h
1

vs

s ffiffiffiffi
Y

p

N
;

where Y ≔ N þ ð1 − v2sÞðurÞ2 and jurj ¼ jμj=ðr2nÞ. Using
the following decomposition ofΨ into spherical harmonics,

Ψ ¼ 1

r

X
lm

ϕlmðt; rÞYlmðϑ;φÞ;

and introducing the auxiliary fields (suppressing the indices
lm in what follows)

π ≔
1

α
ð∂tϕ − β∂rϕÞ; χ ≔

1

γ
∂rϕ;

Eq. (14) can be cast into first-order symmetric hyperbolic
form:

∂tϕ ¼ αϕþ γβχ; ð33Þ

∂tχ ¼ 1

γ
∂rðαπ þ γβχÞ; ð34Þ

∂tπ ¼ 1

γ

�
r
R

�
2∂r

��
R
r

�
2

ðαχ þ γβπÞ
�
− αUlðrÞϕ; ð35Þ

with the effective potential UlðrÞ given by
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UlðrÞ ¼
r

αγR2
∂r

�
αγ

�
R
r

�
2
�
1

γ2
−
β2

α2

��
þ lðlþ 1Þ

R2
:

ð36Þ

Explicit evaluation of this potential leads to

UlðrÞ ¼
2

R2v2s

�
ð3v2s − 1ÞEðrÞ þ 2ðurÞ2

×

�
1þ r

2

n0

n
ð1 − v2s þWÞ

��
þ lðlþ 1Þ

R2
; ð37Þ

where we recall that E ≔ rH=ð4rÞ − ðurÞ2 and
ur ¼ μ=ðr2nÞ. As before, n0=n can be computed using
Eq. (24) for all r ≠ rc and at r ¼ rc we can use the
expression in Eq. (13) instead.
We solve the first-order system (33)–(35) using a finite-

difference code based on the method of lines. The spatial
domain is a finite interval r ∈ ½rc; rout� with rout ≫ rc large
enough such that spurious reflections from the outer
boundary do not affect the wave signal measured by the
static observer for the times used in our simulations. There
are no boundary conditions that must be specified at the
inner boundary r ¼ rc since there all the characteristic
velocities

λ0 ¼ 0;

λ� ¼ β � α

γ
¼ N

Y

h
�vsN − ð1 − v2sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ ðurÞ2

q
ur
i

are zero or positive. At the outer boundary r ¼ rout there is
one incoming mode

vin ¼
1ffiffiffi
2

p ðπ þ χÞ

which we set to zero. Although this boundary condition is
not exactly transparent to the physical problem, it yields
only small spurious reflections when rout ≫ rH and as
mentioned above, we extract the physical information only
at events which are causally disconnected from the boun-
dary surface in order to make sure that there is no influence
from the boundary.
The spatial operators ∂r are discretized using a fifth-

order accurate finite difference operator D6−5 satisfying the
summation by parts property and the no-incoming boun-
dary condition is implemented through a penalty method.
The time derivatives ∂t are discretized using a standard
fourth-order Runge-Kutta algorithm. For more details on
the definition of the D6−5 operator, the penalty method and
numerical time integrators we refer the reader to Ref. [38]
and references therein.
We have tested our code for the Regge-Wheeler equation

on a Schwarzschild background metric in ingoing
Eddington-Finkelstein coordinates [39], for which R ¼ r,

γðrÞ ¼ 1=αðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rH=r

p
, βðrÞ ¼ rH=ðrγðrÞ2Þ and

UlðrÞ ¼ −3rH=r3 þ lðlþ 1Þ=r2 are substituted into
Eqs. (33)–(35). We checked fifth-order self-convergence
of the field ϕ, and by measuring the wave forms seen by a
static observer at r ¼ 20rH we reproduced the following
quasinormal frequencies: s · rH ¼ −0.178þ 0.747i for
l ¼ 2, srH ¼ −0.18541þ 1.19889i for l ¼ 3, and srH ¼
−0.1883þ 1.61836i for l ¼ 4, which agree with those
given in the literature, see for example Table 2 in Ref. [30].

B. Wave forms for a static observer

In Fig. 3 we show the time evolution of the acoustic
perturbations measured by a static observer located at r ¼
50rH outside the sonic horizon at rc ¼ 7rH. The initial data
for the evolution consists of a Gaussian pulse with zero
initial velocity,

fðrÞ ¼ A exp

�
−
1

2

�
r − r0
w

�
2
�
; ð38Þ

with amplitude A ¼ 1.5, width w ¼ 5.0rH and centered at
r0 ¼ 15rH, and

ϕð0; rÞ ¼ fðrÞ; χð0; rÞ ¼ 1

γðrÞ f
0ðrÞ;

πð0; rÞ ¼ −
βðrÞ
αðrÞ f

0ðrÞ: ð39Þ

In our simulations, we placed the outer boundary at r ¼
1300rH and used 2k × 4000 grid points, where we varied k
over 0,1,2,3,4 in order to perform convergence tests. We
used a Courant factor of 0.5. The background fluid
describing the Michel flow is a polytrope with adiabatic
index γ ¼ 1.3333. The quantities shown in the plots of
Fig. 3 are the multipolar components of the density
contrast, defined as

δn
n
¼ 1

v2s

δh
h
¼1

r

X
lm

ηlmYlm;

ηlm≔−
1

v2sh

�
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NþðurÞ2

q
∂tϕlmþur∂rϕlm−

1

r
urϕlm

�
;

ð40Þ

where we use Eq. (33) and the definition of the auxiliary
field χ in order to rewrite ∂tϕlm ¼ απ þ βγχ and
∂rϕlm ¼ γχ, respectively. As is apparent from these plots,
there is an initial burst of radiation which is followed by
several cycles of oscillations. The plots corresponding to
the cases l ¼ 0; 1; 2 show that these oscillations are taken
over by a power-law decay at late times. For the remaining
cases l > 2 this is probably also true; however, obtaining
the power-law tail would require much higher resolution in
this case.
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For each l > 0, there is a clear ringdown signal, and we
determined the frequency and decay rate of the correspond-
ing fundamental quasinormal oscillations by fitting the
numerical data to the function

Ceσt sinðωt − δÞ
with free parameters C, σ, ω and δ. The fit is performed in a
time window ½t1; t2� where the quasinormal ringing is

apparent. The resulting frequencies s ¼ σ þ iω are shown
in Table I. Since there is no clear ringdown signal for the
particular case l ¼ 0, only results for l > 0 are shown. The
number of significant figures shown has been estimated by
varying the time window and by comparing the results from
different resolutions.
As mentioned above, the late-time behavior is charac-

terized by a power-law decay, η ∼ t−p, as is apparent from

FIG. 3 (color online). The density contrast parameter η vs time t measured by a static observer at r ¼ 50rH for different values of the
angular momentum parameter l. In all plots, the sonic horizon is located at rc ¼ 7rH . Note that only a few oscillations appear in the
monopolar case l ¼ 0, preventing us from reading off the quasinormal frequency in this case. For the cases l ¼ 0; 1; 2 a late-time
power-law decay is also visible.
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the plots in Fig. 3 for l ¼ 0; 1; 2. We have determined the
power p, again using a standard fitting routine, obtaining
the following results2: p ¼ 3.89� 0.03 for l ¼ 0, p ¼
6.62� 0.37 for l ¼ 1, and p ¼ 9.16� 0.24 for l ¼ 2. The
error has been estimated by performing the fit in different
time windows lying between 3000rH and 8000rH and by
using different resolutions.
In order to check the validity of our numerical results we

have performed several self-convergence tests. In Fig. 4 we
show a particular example in which we plot the difference
of the density contrast function ηlm between two consecu-
tive resolutions. This plot corresponds to the quadrupolar
case l ¼ 2 in Fig. 3. Note that there is high frequency
noise appearing at t ∼ 1500rH, which is probably due to the
presence of the time and space derivatives of ϕ in the
expression for ηlm in Eq. (40). However, it is clear from
the plot that the error decreases with increasing resolution.
We have estimated the convergence factor to lie close to 5,
indicating fifth-order self-convergence.

V. RESULTS FOR THE QUASINORMAL
FREQUENCIES

In this section, we present and analyze the results from
our calculations of the quasinormal acoustic frequencies as
a function of the sonic radius rc and the angular momentum
l. All the calculations in this section refer to the Michel
flow on a Schwarzschild background for a polytropic fluid
with adiabatic index γ ¼ 1.3333. In Sec. VA, we discuss
the fundamental frequencies for values of rc ranging in the
interval ½2rH; 30rH� and l ¼ 0; 1;…; 7. In Sec. V B, we
also discuss quasinormal frequencies corresponding to the
first few overtones.

A. Fundamental frequencies

In Table II we show the fundamental monopolar, dipolar
and quadrupolar quasinormal frequencies for different

values of rc. These frequencies were calculated using
the matching method described in Sec. III, and in the
dipolar and quadrupolar cases with rc=rH ¼ 2, 7, 10, 20, 30
also using the numerical Cauchy evolution described in the
previous section. As can be seen from this table, the two
approaches give results which are consistent within their
numerical errors.
Also shown in Table II are the values for the surface

gravity κ of the acoustic metric, computed using Eq. (20). It
turns out κ plays an important role for understanding the
behavior of the quasinormal frequencies as a function of the
location of the sonic horizon rc. Indeed, κ has units of
frequency (in geometrized units) and thus it is natural to
analyze the quasinormal frequencies in units of κ. In Fig. 5
we show plots of s=κ vs rc for the fundamental quasinormal
frequencies s ¼ σ þ iω for different values of l. As is
apparent from these plots, the value of s=κ seems to be
almost independent of rc for large rc=rH. Specifically, we
have found that the empiric formula

s
κ
≃ −0.387þ ð0.21þ 0.606lÞi; 10 ≤

rc
rH

≤ 30;

l ¼ 1; 2;…; 7; ð41Þ

gives a fit for the fundamental frequency to a relative
accuracy better than 2%. Notice that in the monopolar case
l ¼ 0 the behavior of σ as a function of rc is different than
for higher multipoles l ≥ 1.

TABLE I. The quasinormal fundamental frequencies for rc ¼ 7rH and l ¼ 1, 2, 3, 4, 5 obtained from the data shown in Fig. 3.

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

−0.0080þ 0.0170i −0.0081þ 0.0301i −0.0081þ 0.04271i −0.0081þ 0.0552i −0.00811þ 0.0677i

 1e-18
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FIG. 4 (color online). Self-convergence test for the case l ¼ 2
in Fig. 3. The top curve corresponds to the error between the
results using 20 × 4000 and 21 × 4000 grid points, the second
curve to the error using 21 × 4000 and 22 × 4000 points, etc. The
convergence factor has been estimated to lie close to 5, indicating
fifth-order self-convergence.

2See Ref. [40] for a general discussion on the late-time tail
decay for wave propagation on a curved spacetime, where it is
shown that for a certain class of problems the decay only depends
on the asymptotic properties of the effective potential. Since in
our case the effective potential NVl as a function of the tortoise
coordinate r� decays as v2∞½lðlþ 1Þ=r2� þ C logðr�Þ=r3�� for
large r� with C a nonvanishing constant, it follows from the
results in Ref. [40] that the fluid potential Ψ should decay as
t−ð2lþ3Þ for l ≥ 1. We have verified that the function Ψ in our
simulations reproduce this decay rate for l ¼ 0; 1; 2 to high
accuracy. However, the results in [40] do not apply directly to the
density contrast, which is a nontrivial linear combination of Ψ
and its first derivatives.
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B. Overtones

Using the matching procedure described in Sec. III we
have also computed the quasinormal frequencies of the first
few excited modes. In Table III we present two examples
for the quasinormal spectrum, referring to dipolar and
quadrupolar acoustic perturbations, respectively, with
rc ¼ 10rH.
In Fig. 6 we show plots of the quasinormal dipolar and

quadrupolar spectrum in units of the surface gravity κ for

different values of rc. As in the case of the fundamental
frequencies, we appreciate from these plots that the
spectrum of quasinormal excitations seems to be nearly
independent of rc, indicating that the frequencies scale
like κ.

C. Eikonal limit

In the high-frequency limit, the quasinormal oscillations
can be interpreted in terms of wave packets which are

TABLE II. Fundamental quasinormal frequencies for acoustic perturbations of the Michel flow for different values
of rc and l. The frequencies in the first line of each entry for rc=rH are the ones obtained from the matching
procedure discussed in Sec. III, and four significant figures are shown. The frequencies in parentheses refer to the
ones obtained from the Cauchy evolution code and are shown for comparison. In the monopolar case l ¼ 0we have
not been able to obtain the frequencies from the Cauchy evolution, for the reasons described in the previous section.
For l ¼ 0 and rc > 15rH we have not been able to compute the frequencies in a reliable way using our matching
procedure; their computation seems to require higher accuracy than the one available in our current code.

rc=rH κ · rH s · rH ðl ¼ 0Þ s · rH ðl ¼ 1Þ s · rH ðl ¼ 2Þ
2 0.16536 −0.05947þ 0.02661i −0.06174þ 0.1398i −0.06203þ 0.2416i

(−0.06þ 0.14i) (−0.062þ 0.242i)
3 0.08334 −0.02932þ 0.008119i −0.03144þ 0.06813i −0.03162þ 0.1191i
4 0.05182 −0.01805þ 0.003508i −0.01965þ 0.04204i −0.01977þ 0.07381i
5 0.03606 −0.01249þ 0.001812i −0.01372þ 0.02920i −0.01380þ 0.05138i
6 0.02690 −0.009286þ 0.001042i −0.01026þ 0.02178i −0.01032þ 0.03838i
7 0.02104 −0.007250þ 0.0006431i −0.008036þ 0.01704i −0.008086þ 0.03006i

(−0.0080þ 0.0170i) (−0.0081þ 0.0301i)
8 0.01703 −0.005858þ 0.0004166i −0.006513þ 0.01381i −0.006553þ 0.02436i
9 0.01414 −0.004861þ 0.0002792i −0.005416þ 0.01148i −0.005449þ 0.02026i
10 0.01199 −0.004118þ 0.0001913i −0.004595þ 0.009736i −0.004623þ 0.01720i

(−0.0046þ 0.0097i) (−0.00462þ 0.0172i)
20 0.00410 −0.001577þ 0.003344i −0.001586þ 0.005914i

(−0.0016þ 0.0033i) (−0.0016þ 0.00591i)
30 0.00220 −0.0008493þ 0.001803i −0.0008546þ 0.003190i

(−0.00085þ 0.0018i) (−0.00085þ 0.00319i)

FIG. 5 (color online). The fundamental quasinormal frequencies in units of κ as a function of rc. Left panel: real part σ=κ divided by
the surface gravity κ for l ¼ 0; 1; 2;…; 7. As is apparent from the plot, for l ≠ 0 and rc=rH ≥ 10 these values are almost independent of
l and rc, and can be approximated by −0.387 to about 1% accuracy. Right panel: imaginary part ω=κ divided by the surface gravity for
l ¼ 0; 1; 2;…; 7. These values are almost independent of rc, and we found that for l ≠ 0 they are well approximated by the empiric
formula 0.21þ 0.606l.
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concentrated along a circular null geodesics and decay
because the circular null geodesic is unstable, see
Refs. [32,41] and references therein for more details.
Therefore, one expects that in this limit the quasinormal
frequencies s are related to the properties of the unstable
circular null geodesics. As shown in [41] the imaginary part
ω ¼ ImðsÞ of s, describing the oscillatory behavior, is
directly related to the angular velocity of the unstable
circular null geodesic, while the real part σ ¼ ReðsÞ is
equal to its Lyapunov exponent.
As can be deduced from the analysis in [41] an arbitrary

asymptotically flat, static spherically symmetric metric of
the form

ds2 ¼ −fðrÞdT2 þ dr2

gðrÞ þ r2ðdϑ2 þ sin2ϑdφ2Þ ð42Þ

with time coordinate T and positive smooth functions fðrÞ
and gðrÞ possesses an unstable circular null geodesic at
r ¼ rcirc if and only if the function HðrÞ ≔ fðrÞ=r2 has a
local maximum at r ¼ rcirc, and in this case the associated
angular velocity and Lyapunov exponent are given by

Ωcirc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðrcircÞ

p
;

λcirc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞ

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1

HðrÞ
d2

dr2
HðrÞ

s 				
r¼rcirc

: ð43Þ

For high values of l, these parameters determine the
quasinormal frequencies according to the formula

s ¼ −ðno þ 1=2Þλcirc þ ilΩcirc; ð44Þ

with no the overtone number, see [41]. Comparing Eq. (42)
with the form (19) of the acoustic metric and discarding the
conformal factor n=ðhvsÞ which does not affect the null
geodesics as trajectories in spacetime, we find that in our
case fðrÞ ¼ XðrÞv2s and gðrÞ ¼ XðrÞ, such that

HðrÞ ¼ XðrÞv2s
r2

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞ

p
¼ XðrÞvs:

A plot of the function HðrÞ for the case rc=rH ¼ 10 is
given in Fig. 7, which shows that the acoustic metric for the
Michel flow admits unstable circular null geodesics.
Numerically, we find the values rcirc=rH ¼ 14.158,
Ωcirc=κ ¼ 0.59159 and λcirc=ð2κÞ ¼ 0.38637 which agree
remarkably well with the corresponding values in the

TABLE III. Quasinormal dipolar and quadrupolar frequency
spectrum for acoustic perturbations of the Michel flow with sonic
horizon located at rc ¼ 10rH . no ¼ 1 denotes the first overtone,
no ¼ 2 the second etc. Four significant figures are shown. Modes
with excitation numbers n0 > 5 for l ¼ 1 and n0 > 9 for l ¼ 2
could not be obtained in a reliable way with the current version of
our code, since the computation of their frequency seems to
require a more powerful Newton algorithm or higher accuracy.

no s · rHðl ¼ 1Þ s · rHðl ¼ 2Þ
1 −0.01503þ 0.007955i −0.01437þ 0.01590i
2 −0.02691þ 0.006537i −0.02526þ 0.01408i
3 −0.03907þ 0.005732i −0.03699þ 0.01257i
4 −0.05123þ 0.005219i −0.04905þ 0.01149i
5 −0.06336þ 0.004855i −0.06120þ 0.01071i
6 −0.07336þ 0.01012i
7 −0.08551þ 0.009659i
8 −0.09764þ 0.009281i
9 −0.1098þ 0.008965i

FIG. 6 (color online). The spectrum of the quasinormal acoustic
excitations. Shown are the imaginary vs the real part of the
frequencies s=κ divided by the surface gravity for rc=rH ¼
2; 5; 10 and l ¼ 1; 2. As is apparent from the plot, the spectrum
is approximately independent of rc.

FIG. 7 (color online). Graph of the function HðrÞ for the case
where the sonic horizon is located at rc=rH ¼ 10. As is
clearly visible from the plot, this function has a maximum
where the acoustic metric has an unstable circular null
geodesics. This maximum is numerically determined to be
located at rcirc=rH ¼ 14.158.
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empirical formula (41) describing the fundamental frequen-
cies. We have repeated the analysis for higher values of
rc=rH ranging between 10 and 30, finding similar values
for Ωcirc=κ and λcirc=ð2κÞ (the difference is less than 1%).

VI. CONCLUSIONS

In this paper, we have analyzed spherical and nonspheri-
cal acoustic perturbations of the Michel flow, which
describes a perfect fluid which falls radially into a
Schwarzschild black hole. As shown by Moncrief [12],
the equations of motion for such perturbations can be cast
into a wave equation on a curved effective background
geometry described by the acoustic metric. For the case of
the Michel flow, the acoustic metric has the same quali-
tative properties as a black hole spacetime and thus
describes a natural analogue black hole.
Using this natural astrophysical analogue black hole, we

have shown by numerical computation that when per-
turbed, the Michel flow exhibits quasinormal acoustic
oscillations. We have computed the associated frequencies
s ¼ σ þ iω using two different methods. The first method
which, to our knowledge, is new is based on matching the
two local solutions ψþðs; rÞ and ψ−ðs; rÞ of the radial mode
equation which, for ReðsÞ > 0, are decaying as r → ∞ and
r → rc, respectively. A common challenge for computing
the quasinormal modes is to determine the analytic con-
tinuation of these functions for ReðsÞ < 0 and to find the
complex frequencies s for which ψþ and ψ− are linearly
dependent. While in some cases the solutions ψ� can be
represented by simple series expansions and the quasinor-
mal frequencies can be found using continued fraction
techniques [22], in our problem the effective potential
appearing in the mode equation is not even known in closed
form and so more general methods are required. The new
ingredient of our method consists in computing the analytic
continuations of ψ� via a Banach iteration technique,
where each iteration leads to an improved approximation
for the solution. Each iteration involves computing a line
integral in the complex r-plane which converges for all
ω ¼ ImðsÞ > 0. While the integral in each iteration needs
to be computed accurately, we have found that only a few
iterations are needed in order to achieve high accuracy. The
two solutions ψ� are then matched by finding the zeros
of their Wronski determinant using a standard Newton
algorithm.
Our method is rather general and does not depend on the

details of the effective potential except for the fact that it
should possess a sufficiently well-behaved analytic con-
tinuation on the complex r-plane. What precisely we mean
by “sufficiently well-behaved” will be explained in detail
elsewhere [36], but it seems flexible enough to comprise
many relevant effective potentials found in general
relativity (including the Regge-Wheeler potential and its
generalization to the Reissner-Nordström case). Another
advantage of our method is that it does not require a

closed-form expression for the effective potential. For the
case of acoustic perturbations of the Michel flow consid-
ered in this paper the potential is only known in implicit
form, though it is analytic in 1=r as we have shown in the
Appendix. In the cases we have analyzed here, our method
seems to work very well to find the fundamental frequen-
cies and the first few overtones. However, so far our code
fails to find very high overtones. The reason for this is
probably related to our simple Newton algorithm and our
crude finite-difference approximation for the derivative of
Wronski determinant.
Using our method we have computed the quasinormal

acoustic frequencies of the Michel flow for different values
rc and rH of the sonic and event horizon radii, and for
different values of the angular momentum number l. By
means of the Cauchy code described in Sec. IV we have
verified the validity of the fundamental frequency for
l > 0, and also computed the late-time power-law decay
rate in some cases. Although in general the frequency
spectrum depends on two parameters rH and rc, or,
equivalently, on rH and the surface gravity κ of the acoustic
hole, we found that for rc ≫ rH the quasinormal frequen-
cies s scale like κ, the parameter rH becoming unimportant.
Furthermore, for rc ≫ rH the real part of s describing the
decay rate depends only mildly on l for l ≥ 1. Specifically,
we have found the following empiric formula for the
fundamental frequency:

sκ−1 ≃ −0.387þ ð0.21þ 0.606lÞi ð45Þ

for l ¼ 1; 2;…; 7 and rc ranging in the interval between
10rH and 30rH, with rH the event horizon radius. In the
limit where the sound speed v∞ ≪ c at infinity is much
smaller than the speed of light, κ can be given by a simple
analytic formula. It follows from Eq. (20) and standard
expansions in ν∞ ≔ v∞=c [9,11] that

κ ≃ 8ν3∞
rH

≃ 1

2

ffiffiffiffiffiffiffi
rH
2r3c

r
; ð46Þ

for a polytropic equation of state with γ ¼ 4=3. For a black
hole of mass M this gives

κ ≃ 8 × 105
�
M⊙
M

�
ν3∞
s
; ð47Þ

with M⊙ the solar mass.
Although in this paper we have restricted ourselves to a

polytropic fluid with adiabatic index γ ¼ 1.3333≃ 4=3,
other fluid flows could be analyzed with our method,
provided they are described by an analytic equation of state
satisfying the assumptions (F1)–(F3) listed in Sec. II.
Furthermore, based on our general results in Ref. [11], it
should not be difficult to generalize our calculations to
more general nonrotating black holes, and to analyze the
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dependency of the quasinormal acoustic frequencies on the
background metric. It would be interesting to study the
impact of these acoustic oscillations on the emission of
electromagnetic and gravitational radiation.
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APPENDIX: ANALYTIC CONTINUATION OF
THE FUNCTIONS N AND Vl

In this Appendix, we prove that the functions N ðrÞ and
VlðrÞ in the mode equation (21) admit analytic continu-
ations on the domain ReðrÞ > rH with the properties that

lim
r→∞

ReðrÞ>rH
N ðrÞ ¼ v∞; lim

r→∞
ReðrÞ>rH

r2VlðrÞ ¼ v∞lðlþ 1Þ;

ðA1Þ

where v∞ ≔ vsðn∞Þ > 0 is the sound speed at infinity. For
this, we need to assume that in addition to the properties
(F1)–(F3) the specific enthalpy hðnÞ is an analytic function
of n. For definiteness, we shall assume that hðnÞ is given by
the polytropic equation of state, Eq. (7), which is analytic
on the domain ReðnÞ > 0.
Under these assumptions, we first prove that the Michel

flow solution nðrÞ, which is implicitly determined by
Eq. (6), possesses an analytic continuation on the domain
ReðrÞ > rH such that

lim
r→∞

ReðrÞ>rH
nðrÞ ¼ n∞; ðA2Þ

where n∞ > 0 is the particle density at infinity. In order
to prove this statement, following [11] we introduce
dimensionless quantities x ≔ r=rH, z ≔ n=n0, n0 ≔
ðe0=KÞ1=ðγ−1Þ, in terms of which Eq. (6) can be rewritten as

Fμðx; zÞ ≔ fðzÞ2
�
1 −

1

x
þ μ2

x4z2

�
¼ f2∞ ¼ const; ðA3Þ

where fðzÞ ¼ 1þ zγ−1 ¼ 1þ eðγ−1Þ logðzÞ is the dimension-
less enthalpy function and f∞ ¼ fðz∞Þ, z∞ > 0, its value

at infinity. The function Fμ defined by Eq. (A3) is analytic
on the domain Ωc ≔ fðx; zÞ ∈ C2∶ ReðxÞ> 0;ReðzÞ> 0g.
In [11] we showed that there exists a unique real-valued
differentiable function z0∶ ½1;∞Þ → R (the Michel solu-
tion), defined on and outside the event horizon, such that
Fμðx; z0ðxÞÞ ¼ f2∞ for all x ≥ 1 and limx→∞zðxÞ ¼ z∞.
This solution has the property that the partial derivative
of Fμ with respect to z,

∂Fμ

∂z ðx; zÞ ¼ 2fðzÞ2
z

νðzÞ2
�
1 −

1

x
−
�

1

νðzÞ2 − 1

�
μ2

x4z2

�
;

ν ≔
vs
c
; ðA4Þ

is different from zero for all x ≥ 1 except at the location of
the critical point x ¼ xc. By continuity, ∂Fμ=∂z is also
different from zero in an open neighborhoodU ⊂ Ωc of the
graph G ≔ fðx; z0ðxÞÞ∶ x ≥ 1; x ≠ xcg. Therefore, it fol-
lows from the implicit function theorem that for an open
neighborhood V ⊂ U of G in Ωc, z0ðxÞ admits a unique
analytic continuation zðxÞ whose graph lies in V and such
that Fμðx; zðxÞÞ ¼ f2∞ for all ðx; zðxÞÞ ∈ V.
It remains to prove that zðxÞ can be further extended to a

neighborhood of x ¼ ∞ and to an open neighborhood of
the critical point. For the former case, we introduce the new
variable y ≔ 1=x and rewrite Eq. (A3) as

~Fμðy; zÞ ≔ Fμ

�
1

y
; z

�
¼ fðzÞ2

�
1 − yþ μ2

z2
y4
�
¼ f2∞:

The function ~Fμ is analytic on the domain y ∈ C,
ReðzÞ > 0, and it satisfies ~Fμð0; z∞Þ ¼ f2∞ and

∂ ~Fμ

∂z ð0; z∞Þ ¼
2f2∞
z∞

νðz∞Þ2 ≠ 0:

Therefore, it follows from the implicit function theorem
that there exists an open neighborhood ~V of ð0; z∞Þ and a
unique function ~zðyÞ whose graph lies in ~V such that
~zð0Þ ¼ z∞ and ~Fμðy; ~zðyÞÞ ¼ f2∞ for all ðy; ~zðyÞÞ ∈ ~V. By
uniqueness of the analytic continuation, zðxÞ ¼ ~zð1=xÞ for
large enough jxj, which proves that the analytic extension
of zðxÞ exists for sufficiently large jxj. Furthermore,

lim
x→∞

ReðxÞ>0
zðxÞ ¼ lim

y→0
~zðyÞ ¼ z∞:

Next, we discuss the analytic continuation of z0ðxÞ in an
open neighborhood of the critical point x ¼ xc. For this, we
first note that in a vicinity of the critical point ðxc; zc ¼
z0ðxcÞÞ the function Fμ has the Taylor representation
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Fμðxc þ ξ; zc þ ζÞ ¼ Fμðxc; zcÞ þ
1

2

�∂2Fμ

∂x2 ðxc; zcÞξ2 þ 2
∂2Fμ

∂x∂z ðxc; zcÞξζ þ
∂2Fμ

∂z2 ðxc; zcÞζ2
�
þ R3ðξ; ζÞ;

where the error term R3ðξ; ζÞ is at least cubic in ðξ; ζÞ. Let z0c ∈ R denote one of the two roots of the quadratic polynomial
[cf. Eq. (12)]

∂2Fμ

∂x2 ðxc; zcÞ þ 2
∂2Fμ

∂x∂z ðxc; zcÞz
0
c þ

∂2Fμ

∂z2 ðxc; zcÞðz0cÞ2 ¼ 0;

and introduce the function

Hμðξ; ηÞ ≔
8<
:

1
ξ2
½Fμðxc þ ξ; zc þ z0cξηÞ − Fμðxc; zcÞ� for ξ ≠ 0;

1
2

h∂2Fμ

∂x2 ðxc; zcÞ þ 2
∂2Fμ

∂x∂z ðxc; zcÞz0cηþ
∂2Fμ

∂z2 ðxc; zcÞðz0cÞ2η2
i

for ξ ¼ 0:

Then, Hμ is analytic in an open neighborhood of ðξ; ηÞ ¼ ð0; 1Þ in C2, satisfies Hμð0; 1Þ ¼ 0 and

∂Hμ

∂η ð0; 1Þ ¼ ∂2Fμ

∂x∂z ðxc; zcÞz
0
c þ

∂2Fμ

∂z2 ðxc; zcÞðz0cÞ2 ¼ ∓3
h2c
x3c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ðν2c −WcÞ

p
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ðν2c −WcÞ

p ≠ 0:

Therefore, using once again the implicit function theorem,
it follows the existence of an open neighborhood Z of (0,1)
in C2 and a unique analytic function ηðξÞ whose graph lies
inside Z such that ηð0Þ ¼ 1 and Hμðξ; ηðξÞÞ ¼ 0 for all
ðξ;ηðξÞÞ∈Z. By construction zðxÞ ≔ zc þ z0cðx − xcÞηðx −
xcÞ is analytic and satisfies Fμðx; zðxÞÞ ¼ Fðxc; zcÞ ¼ f2∞.

This demonstrates the existence of the analytic continuation
of zðxÞ in a neighborhood of the critical point.
With these results, it follows directly from Eqs. (22)–(24)

that the functions N ðrÞ and VlðrÞ have analytic contin-
uations for complex r, and that these continuations
satisfy Eq. (A1).
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