
Melvin universe in Born-Infeld gravity

Cosimo Bambi,1,* Gonzalo J. Olmo,2,3,† and D. Rubiera-Garcia1,‡
1Center for Field Theory and Particle Physics and Department of Physics, Fudan University,

220 Handan Road, 200433 Shanghai, China
2Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia–CSIC,

Universidad de Valencia, Burjassot 46100, Valencia, Spain
3Departamento de Física, Universidade Federal da Paraíba, 58051-900 João Pessoa, Paraíba, Brazil

(Received 8 April 2015; published 12 May 2015)

We consider a magnetic flux pointing in the z direction of an axially symmetric space-time (Melvin
universe) in a Born-Infeld–type extension of general relativity (GR) formulated in the Palatini approach.
Large magnetic fields could have been produced in the early Universe, and given rise to interesting
phenomenology regarding wormholes and black hole remnants. We find a formal analytic solution to this
problem that recovers the GR result in the appropriate limits. Our results set the basis for further extensions
that could allow the embedding of pairs of black hole remnants in geometries with intense magnetic fields.
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I. INTRODUCTION

The Melvin universe is a regular, non–black hole
electrovacuum solution of the Einstein-Maxwell equations
describing a bundle of magnetic flux lines in static
equilibrium, held together by their own gravitational
interaction [1]. It represents an explicit realization of
Wheeler’s geons [2], namely, self-consistent sourceless
gravitational-electromagnetic entities [3]. This solution
has been generalized to rotating and time-dependent
configurations [4], dilatonic [5] and axion fields [6], higher
dimensions [7], and nonlinear electrodynamics [8]. Its
applications include supergravity [9] and D-branes [10].
The magnetic background of the Melvin solution can be

employed to investigate the creation of black hole pairs,
since the negative energy of the magnetic field compensates
the energy of the pair and thus energy conservation is
fulfilled [11]. If the magnetic field is strong enough, a
Wheeler wormhole solution, namely, a pair of extreme
Reissner-Nordström black holes identified at their throats
and with opposite charges, can be formed [12]. This
construction faces us with the problematic issue of topology
change processes, in which the quantum foam scenarios are
based. In the case of the Melvin space-time, such a process is
governed by tunneling effects through instantons, which can
be modeled in terms of Ernst’s metric [13].
Large-scale coherent magnetic fields with strength of

order 10−6 G are observed in galaxies and galaxy clusters
[14]. According to the primordial hypothesis, these mag-
netic fields were created in the early Universe and they
were later amplified by a dynamo mechanism (see e.g., [15]
for a review). Production of microscopic black holes/

wormholes in the early Universe by large fluctuations
was first discussed by Hawking [16], with the result that
large numbers of such objects with Planck-order mass and a
few units of charge could have been produced. Though the
interest on such an idea faded away after the discovery of
Hawking radiation, which would imply that such objects
should have evaporated by the current epoch, recent
research in extensions of GR using different approaches
has put again regular black holes, wormholes, and black
hole remnants under an intense discussion (see [17] for a
review). Indeed, a number of scenarios have been proposed
[18] and some of them have the necessary ingredients for
the production of microwormholes. Astrophysical obser-
vations put some constraints on the presence of wormholes
in our Universe, but their existence cannot be ruled out
[19]. For instance, some traversable wormholes are viable
candidates to explain the supermassive objects at the
centers of galaxies, while other kinds of wormholes can
be excluded [20].
The main goal of this paper is to work out a Melvin-type

space-time in an extension of GR which has gained interest
in the past few years, namely, Born-Infeld gravity.
Recently, it was shown [21,22] that this theory contains
static, spherically symmetric wormholes supported by the
electromagnetic field with geonic properties. A very
important question is to discuss plausible mechanisms
for the generation of such wormholes. An important step
in this sense was done in [23], where it was shown that
dynamical generation of wormholes through charged fluxes
of radiation is possible. In this paper we progress in a
different, though related, direction hoping to clarify if such
wormholes could be generated (or embedded) in highly
magnetized scenarios. The first step requires to determine if
Melvin-type solutions in analytical form can be found in
this framework. We find that the answer is partially
positive, as two analytical approximations to the exact
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solution can be found explicitly in the two regimes of
interest. The fact of having some analytical control on the
solutions suggests that an answer to the problem posed here
might be accessible, though further research is still
necessary.
The paper is organized as follows: in Sec. II, we briefly

review Born-Infeld gravity in the Palatini approach. In
Sec. III, we work out the axially symmetric Melvin-type
space-time in this scenario, and obtain analytical solutions
in the two regions of interest, namely, close to the axis and
far from it. Conclusions and future research are discussed
in Sec. IV.

II. ACTION AND MAIN EQUATIONS

In the past few years an extension of GR, which has
attracted much attention in astrophysical and cosmological
scenarios [24], has been proposed following the analogy
with the Born-Infeld theory of nonlinear electrodynamics
[25]. Initially introduced in the metric formalism [26], the
interest in this theory arose once its Palatini version was con-
sidered [27], as it avoids higher-order derivatives and ghosts.
The action of this Born-Infeld theory of gravity (BI for short)
coupled to an electromagnetic field can be written as

SBI ¼ 1

κ2ϵ

Z
d4x½ ffiffiffiffiffiffi

−q
p

− λ
ffiffiffiffiffiffi
−g

p �

−
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFμν; ð1Þ

where κ2 is Newton’s constant in suitable units (in GR,
κ2 ¼ 8πGN), g and q are the determinant of the space-time
metric gμν and of themetric qμν ≡ gμν þ ϵRμν, with ϵ a small
constant with dimensions of length squared, and RμνðΓÞ≡
Rα

μαν is the (symmetric) Ricci tensor constructed with the
affine connection Γ≡ Γλ

μν, which is a priori independent of
the metric gμν (metric-affine or Palatini approach). In the
matter (Maxwell) sector, Fμν ¼ ∂μAμ − ∂νAμ is the field
strength tensor of the vector potential Aμ. The meaning of λ
in Eq. (1) follows from a series expansion in powers of ϵ of
the gravitational sector, SG, as

SG ≈
Z

d4x
ffiffiffiffiffiffi−gp

2κ2

�
R − 2Λ −

ϵ

2

�
−
R2

2
þ RμνRμν

�
þ � � �

�
:

This theory recovers GR with a cosmological constant term
Λ ¼ λ−1

ϵ at zeroth order, while higher-order corrections in the
curvature invariants are suppressed by powers of ϵ. We note
that there are observational constraints on the parameter ϵ
[28], and these require that strong deviations from the
predictions of general relativity are confined to relatively
small scales. Since in this paper we are interested in
microscopic black holes/wormholes, these bounds are easily
satisfied.
In the Palatini formulation of modified gravity, the usual

troubles with higher-order field equations and ghostlike

instabilities are avoided for large families of models. This
is in sharp contrast with the situation in most approaches to
modified gravity,where the connection is taken to be a priori
given by the Christoffel symbols of the metric. While in the
special case of the Einstein-Hilbert action both approaches
give the same Einstein equations, this is not so for most
extensions of GR [29]. We point out that some experimental
results regarding systems with defects in solid state physics
seem to support both the Palatini approach and the Born-
Infeld gravity action [30], with potential consequences for
our understanding of the microscopic description of space-
time and gravitational phenomena [31].
To implement the Palatini formalism, we perform inde-

pendent variations of the action (1) with respect to the
metric and the connection, which yields (setting torsion to
zero for simplicity [32])

ffiffiffiffiffiffijqjp
ffiffiffiffiffijgjp qμν − λgμν ¼ −κ2ϵTμν; ð2Þ

∇Γ
αð ffiffiffi

q
p

qμνÞ ¼ 0: ð3Þ

From Eq. (3), it follows that the independent connection is
given by the Christoffel symbols of the metric qμν. Using
(2), one finds that qμν is related to the space-time metric gμν
[for which one has ∇Γ

αð ffiffiffiffiffiffi−gp
gμνÞ ≠ 0] as

q̂ ¼
ffiffiffiffiffiffi
jΣ̂j

q
Σ̂−1ĝ; q̂−1 ¼ ĝ−1Σ̂ffiffiffiffiffiffi

jΣ̂j
q ð4Þ

with the definition

Σ̂ ¼ λÎ − ϵκ2T̂; ð5Þ

where T̂ ≡ Tμαgαν and a hat denotes a matrix. This clearly
shows that the relation between qμν and gμν is algebraic and
only governed by the matter fields.
From the definition q̂ ¼ ĝþ ϵR̂ and the relations (4), a

bit of algebra allows us to write the metric field equa-
tions (2) in terms of qμν as

Rμ
νðqÞ ¼ κ2ffiffiffiffiffiffi

jΣ̂j
q ðLGδμ

ν þ Tμ
νÞ; ð6Þ

where LG ¼ ðjΣ̂j1=2 − λÞ=ðϵκ2Þ is the gravity Lagrangian.
This represents a set of second-order differential Einstein-
like field equations with all the right-hand side only
depending on the matter sources. Since qμν is algebraically
related to gμν, the field equations for it are second order as
well. In vacuum, the field equations (14) boil down to

RμνðqÞ ¼
ðλ − 1Þ
λϵ

qμν ↔ RμνðgÞ ¼
ðλ − 1Þ

ϵ
gμν:

COSIMO BAMBI, GONZALO J. OLMO, AND D. RUBIERA-GARCIA PHYSICAL REVIEW D 91, 104010 (2015)

104010-2



This clearly shows that the dynamics of this theory in
vacuum is that of GR with a cosmological constant term

with value Λ≡ ðλ−1Þ
ϵ . In addition, it implies that the theory

is free of extra propagating degrees of freedom and
ghostlike instabilities.

III. AXIAL MAGNETIC SPACE-TIME

A. Basic equations

The electromagnetic (Maxwell) field in action (1)
satisfies the equations

∇μFμν ¼ 0 ⇔ ∂μð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 0: ð7Þ

For a radial, static, and spherically symmetric field, the only
nonvanishing component is Ftr ≡ EðrÞ. In this case, one
finds that if ϵ ¼ −2l2ϵ , with lϵ representing a length scale,
then the pointlike singularity of GR is generically replaced
by a wormhole structure, whose properties have been
studied in detail in a number of papers [21,22]. We will
thus adopt from now on the choice ϵ ¼ −2l2ϵ . Our interest
here is to find the analog solution for the case of
cylindrically symmetric and magnetically charged configu-
rations in coordinates ðt; z; ρ;ϕÞ. The physical interpreta-
tion is that of a space-time sourced by a beam of magnetic
fields parallel to the z-axis. In order to solve the system of
field equations (6) for BI gravity (1) with an axially
symmetric electromagnetic field described by Maxwell
equations (7), we introduce a line element for the metric
gμν as follows:

ds2 ¼ fðρÞð−dt2 þ dz2Þ þ gðρÞdρ2 þ hðρÞρ2dφ2: ð8Þ

With this line element, from the field equations (7) we find
that the only nonvanishing component of the field strength
tensor is Fρφ, which satisfies

∂ρð
ffiffiffiffiffiffi
−g

p
FρφÞ ¼ 0 ⇒ Fρφ ¼ β

ρf
ffiffiffiffiffi
gh

p ; ð9Þ

whereβ is an integrationconstant that determines the intensity
of the magnetic field. With this result, one can verify that
the field invariant is FμνFμν ¼ 2FρφFρφ ¼ 2ðFρφÞ2ghρ2.
Accordingly, to get rid of the numerical factor, we define
X ¼ − 1

2
FμνFμν ¼ −β2=f2. We note that X depends neither

ongnoronh,which simplifies the analysis.With these results,
we find that the energy-momentum tensor of the electromag-
netic field

Tμ
ν ¼ −

1

4π

�
Fμ

αFα
ν −

1

4
δμ

νFαβFαβ

�
ð10Þ

takes the simple form

Tμ
ν ¼ X

8π
diagð1; 1;−1;−1Þ: ð11Þ

The matrix Σ̂ of the theory, Σ̂ ¼ Î þ 2l2ϵκ2T̂, then becomes

Σμ
ν ¼

�
σ−Î 0̂

0̂ σþÎ

�
; ð12Þ

where we have defined

σ� ¼ 1� f2c
f2

: ð13Þ

To simplify the notation, here we have denoted f2c ≡ ~κ2β2l2ϵ ,
with ~κ2 ≡ κ2=4π, and 0̂ and Î are the zero and identity 2 × 2

matrices, respectively. Note that ~κ2β2 can be interpreted as an
inverse squared length associated to themagnetic field, which
wedenote l2β ¼ 1=~κ2β2.This leads tofc ¼ lϵ=lβ and indicates
that the ratio of thegravitational length scale lϵ to themagnetic
length scale lβ controls the departures of our solutions from
those of GR.
Since the field equations (6) will be solved in terms of

the metric qμν associated to the affine structure, we define
an axially symmetric line element for it as

d~s2 ¼ ~fðρÞð−dt2 þ dz2Þ þ ~gðρÞdρ2 þ ~hðρÞρ2dϕ2; ð14Þ

which is formally identical to that of the metric gμν [see
Eq. (8)]. From the relations (12), we immediately see that
the functions defining the line elements of the metric qμν
(14) and gμν (8) are related by

~f ¼ σþf; ~h ¼ σ−h; ~g ¼ σ−g: ð15Þ

From the first of the above relations, it is easy to see that

f ¼
~f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~f2 − 4f2c

q

2
; ð16Þ

which indicates that ~f is bounded by ~f ≥ 2fc. For this
value of ~f, we get f ¼ fc, which corresponds to σ− ¼ 0.

B. Computation of the metric components
and the line element

With the elements above, we note that the BI Lagrangian
can be written as

LG ¼
ffiffiffiffiffiffiffiffiffiffi
det Σ̂

p
− 1

−2κ2l2ϵ
¼ β2f2c

8πf4
: ð17Þ

It is a simple calculation to show that the field equations (6)
for these axially symmetric solutions take the explicit form
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Rμ
νðqÞ ¼ −

~κ2β2

2f2

� 1
σþ
Î 0̂

0̂ − 1
σ−
Î

�
: ð18Þ

Using the xAct package for MATHEMATICA [33], the
components of Rμ

νðqÞ corresponding to the line element
(14) can be easily obtained, and are given by

R0
0 ¼ R1

1 ¼ −
1

4~f2

�
−
~f2ρ
~f
þ ~fρ

�
2

ρ
þ

~hρ
~h

�
þ 2~fρρ

�
; ð19Þ

R2
2 ¼ 1

4~f2 ~h2ρ

�
4~h2ρ

~f2ρ
~f
þ ~hðρ ~fρ ~hρ þ 2~hf ~fρ − 2ρ ~fρρgÞ

þ ~fðρ ~h2ρ − 2~hð2~hρ þ ρ ~hρρÞÞ
�
; ð20Þ

R3
3 ¼ 1

4~f2 ~h2ρ
½ ~fðρ ~h2ρ − 2~hð2~hρ þ ρ ~hρρÞÞ

− ~hðρ ~fρ ~hρ þ 2~h ~fρÞ�; ð21Þ

where we have imposed the gauge freedom ~g ¼ ~f, and have
used a subindex to denote derivative with respect to ρ.
Given the block-diagonal form of the field equations (18), it
follows that R2

2 − R3
3 ¼ 0, which implies that

0 ¼ 1

4~f2 ~h2ρ

�
4~h2ρ

~f2ρ
~f
þ ~hð2ρ ~fρ ~hρ þ 4~hf ~fρ − ρ ~fρρgÞ

�
:

ð22Þ

With elementary algebraic manipulations, this equation
becomes

� ~hρ
~h
þ 2

ρ
þ 2~fρ

~f

�
¼ 2~fρρ

~fρ
; ð23Þ

which can be readily integrated to obtain

~hρ2 ¼ α

� ~fρ
~f

�2

; ð24Þ

where α is an integration constant (with dimensions),
whose value we keep undefined for the moment.
Using now (23) in the expression for R0

0, we get the
following equation for ~f:

~fρρ −
3

4

~f2ρ
~f
¼ ~κ2β2

2

~f
f
: ð25Þ

We will next proceed to solve this equation to obtain ~fðρÞ.
With the solution, the geometry gμν can be obtained using
the relations (4).

C. Finding a solution

Using the expression (16) in (25), the equation to solve
takes the form

~fρρ −
3

4

~f2ρ
~f
¼ ~κ2β2 ~f

~f þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~f2 − 4f2c

q : ð26Þ

This equation can be written in a more convenient (dimen-
sionless) form by defining ~f ¼ 2fcϕðxÞ and ρ2 ¼ 2fc

~κ2β2
x2,

which leads to

ϕxx −
3

4

ϕ2
x

ϕ
¼ ϕ

ϕþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 − 1

p : ð27Þ

We now define a new function Ω ¼ ϕ2
x such that

dΩ=dϕ ¼ 2ϕxx, which turns (27) into

Ωϕ −
3

2ϕ
Ω ¼ 2ϕ

ϕþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 − 1

p : ð28Þ

This equation admits an exact solution forΩðϕÞ of the form

Ω ¼ Cϕ
3
2 þ 4ϕ2

3
ðϕ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 − 1

q
Þ

−
8ϕ

3 2F1

�
1

4
;
1

2
;
5

4
;
1

ϕ2

�
; ð29Þ

where C is an integration constant and 2F1 a hypergeo-
metric function. Given that Ω ¼ ϕ2

x must be a positive
function by construction, an expansion about ϕ ≈ 1 indi-
cates that C cannot be arbitrary. In fact, we find that

lim
ϕ→1

Ω≈Cþ4

3
−
2

ffiffiffi
π

p
Γð5

4
Þ

Γð7
4
Þ

þðϕ−1Þ
�
3C
2
þ4−

4
ffiffiffi
π

p
Γð5

4
Þ

Γð3
4
Þ

�
þO½ðϕ−1Þ2�; ð30Þ

which requires that the constant factor when ϕ ¼ 1 be
positive or zero. Now, given that ϕ must be greater or equal
to 1 to guarantee the reality of the differential equation (27),
on physical grounds we must demand that ϕ ¼ 1 be a
minimum. This forces us to set this constant to zero, which

implies C ¼ − 4
3
þ 2

ffiffi
π

p
Γð5

4
Þ

Γð7
4
Þ ≈ 2.16274. We note that in GR

the constant C is usually normalized as CGR ¼ 2.
The expression for ϕðxÞ can be obtained numerically by

integrating ϕx ¼ Ω1=2 with the value of C chosen above. It
is useful, however, to find approximate analytical solutions
in the two regimes of interest, namely when ϕ → 1 and
when ϕ ≫ 1. The limit ϕ ≫ 1 is particularly interesting
because the equation for ϕðxÞ converges to the equation
that one finds in GR. In fact, in this limit (27) turns into
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ϕxx −
3

2

ϕ2
x

ϕ
≈ 1; ð31Þ

and proceeding as above, we get ΩGR ¼ Cϕ3=2 − 2ϕ
(where Cϕ3=2 represents the solution of the homogeneous
equation). With this solution one can readily find
ϕðxÞ ¼ 4ð1þ ðCxÞ2=32Þ2=C2, which is the right GR
Melvin solution [1]. The choice CGR ¼ 2 arises naturally
and makes the metric Minkowskian as x → 0, where
ϕðxÞ → 1. In our case, however, C ≠ 2 is motivated by
the behavior of the differential equation near ϕ → 1. In this
other limit, we find that

ϕ2
x ≈ 2ðϕ − 1Þ; ð32Þ

which leads to ϕðxÞ ∼ 1þ x2=2. With this result, one can
verify that the line element as x → 0 takes the form

ds2

fc
≈ ð1þ xÞ

�
−dt2 þ dz2 þ ρ20

dx2

x

�
þ α

2fcρ20
xdφ2;

ð33Þ

where ρ20 ≡ 2lϵlβ and α is the (unspecified) integration
constant that arose in (24). Under a rescaling of the x
coordinate of the form dx2=x ¼ dy2, this line element
becomes

ds2

fc
≈
�
−dt2 þ dz2 þ ρ20

4
dy2

�
þ α

8fcρ20
y2dφ2; ð34Þ

where second-order corrections in y2 have been neglected.
This last expression shows that the Minkowski space-time
can be recovered near the axis by just defining r ¼ ρ0y=2
and α≡ 2fcρ40. An additional global rescaling of units
could be used to absorb the constant factor fc.
In the ϕ ≫ 1 limit, we find that f ≈ 2fcϕ. Taking the

solution for ϕ obtained above in this limit,
ϕðxÞ ¼ 4ð1þ ðCxÞ2=32Þ2=C2, the line element can be
approximated as

ds2

fc
≈ 2

�
2

C

�
2
�
1þ C2x2

32

�
2

½−dt2 þ dz2 þ dρ2�

þ
�
C
2

�
2 ρ2

ð1þ C2x2
32

Þ2 dφ
2; ð35Þ

where we have taken α≡ 2fcρ40 as above. In Fig. 1 we
show the ratio between the function fðxÞ computed
numerically and its approximation for ϕ ≫ 1. The approxi-
mation is very good for values of x ≥ 20. It is worth noting
that the line element (35) can be made to agree with the GR
solution (up to a constant conformal factor) by just
introducing a constant rescaling of ðt; z; ρÞ → ðλt; λz; λρÞ
with λ2 ¼ 64fc=C2, and by suitably choosing the integra-
tion constant α in the corresponding definition of hρ2.

IV. SUMMARY AND PERSPECTIVES

In this paperwehave investigated thepossibilityof finding
analytical solutions for axially symmetric magnetic fields in
theBorn-Infeld theoryof gravity. This type of nonasymptoti-
cally flat solutions is known as Melvin universes and are of
great interest to give plausibility to the generation of pairs of
entangled black holes by intense magnetic fields. In the
context of GR these solutions arewell known and there exist
advanced solution-generating methods that allow one to
embed electrically charged solutions within these magnet-
ized scenarios in a very elegant and robust way, even in the
case of stationary space-times. For the Born-Infeld theory of
gravity there is no guarantee that such methods can be
implementedor even exist at all. For this reason, as a first step
in this direction, we have investigated the very existence of
Melvin-type solutions. By a suitable choice of variables
(using an auxiliary line element), we have been able to write
the field equations in a simple dimensionless formandobtain
analytical solutions in the two regimes of interest, namely,
near the symmetryaxis and far from it.Thecomplete solution
can be easily worked out numerically and we have shown
that our analytical approximations fit well with the exact
computation. As a result, near the axis one recovers a
Minkowskian geometry and far from it a standard Melvin
universe. This suggests that the embedding of electrically
charged solutions, including pairs of black hole remnants
and wormholes, might be possible at least in some approxi-
mate form,whichmotivates further research in this direction.
To investigate these questions in detail one should consider
the analog of Ernst metric [13] in our scenario. Progress in
this sense is currently underway.
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