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We present a new definition of the wormhole throat including the flare-out condition and the feature
corresponding to the traversability for general dynamical spacetimes in terms of null geodesic congruences.
We will examine our definition for some examples and see advantages compared to the others.
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I. INTRODUCTION

A wormhole is one of the interesting objects in general
relativity [1-6]. However, there is no universal definition
that can work for general situations. To discuss a wormhole,
we often specify the throat, the flare-out condition, and so
on. There are some proposals for those [3,7-9]. As far as
we know, for static and spherical symmetric cases, the
definition of the throat was given in Ref. [3]. Therein,
the static slices are embedded to the Euclidean space to see
the throat structure. Since certain spacetime symmetries are
used for the definition of wormhole, this proposal is not
applicable for dynamical or nonspherical symmetric cases.

The issue about the extension of the concept of a
wormhole to general spacetimes has been already
addressed in Refs. [7,8] (see also Refs. [9-13]). In
Refs. [7,8], using null geodesic congruences, the wormhole
throat is defined as the minimal surface on the null
hypersurfaces, i.e., the trapping horizon [14]. We know
that, in their definition, some exotic matters are required to
maintain static wormholes [3,4,10,13,15] and dynamical
ones [7,11,12] without any singularities. Nevertheless, our
Universe may have the initial singularity, and the cosmo-
logical wormhole solutions with the initial singularity, in
which the two Friedmann-Lemaitre-Robertson—Walker
(FLRW) universes are connected, were constructed without
any exotic matters [9]. Since these solutions do not meet
the definition of Refs. [7,8], the authors proposed an
alternative definition focusing on spherical symmetric
cases; the wormhole throat is the minimal surface on
spacelike hypersurfaces [9]. However, this definition
strongly depends on which spacelike hypersurfaces we
take, and, because of this dependence, even de Sitter and
FLRW spacetimes are categorized into the wormhole.

In this paper, we propose a new definition of the
wormhole throat that is better suited for the intuitive image
of a wormhole. Our definition seems to be a hybrid one of a
null hypersurface-based definition [7,8] and a spacelike
hypersurface one [9]. We describe the throat in terms of the
expansion rate of null geodesic congruences on a kind of
spacelike hypersurface.
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The remaining part of this paper is organized as follows.
In Sec. II, we introduce a new definition of the wormhole
throat and discuss some general features. In Sec. III, we
look at several examples to see if our definition can work
well. Finally, we give summary and discussion in Sec. IV.

II. NEW DEFINITION

In this section, we propose a new definition of the
wormhole throat with the flare-out condition and the
feature corresponding to the traversability. We also discuss
some general features.

We consider a codimension-2 spacelike compact surface
S and the future directed outgoing/ingoing null geodesic
congruences with the affine parameter 1, emanating from
S. Then, we define the null expansion rate 6., and we
introduce the following quantities:

k=6, —-6_ (1)
and
k:= 0. +0_. (2)

Defining the two vectors

and
1= (0, +0_)°, (4)
where 9, == 0, , k and k are rewritten as

k=rV,Invh,  k=V,InVh. (5)
In the above, £ is the determinant of the induced metric of
the codimension-2 surface S. Although we cannot assume
that the affine parameter A, emanating from S provides us
the global coordinate for spacetimes in general, we can

© 2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.91.104008
http://dx.doi.org/10.1103/PhysRevD.91.104008
http://dx.doi.org/10.1103/PhysRevD.91.104008
http://dx.doi.org/10.1103/PhysRevD.91.104008

TOMIKAWA, IZUMI, AND SHIROMIZU

have a quasilocal null coordinate system /Nli such that it
coincides with A, when it crosses S.

Now, we define the throat as the codimension-2 surface
such that

kls=0 (6)
holds and the following flare-out condition
r“V klg > 0 (7)

is satisfied. We emphasize that, by fixing the coordinate
locally with 4., there is no ambiguity of the spatial
derivative r“V,. To introduce the feature corresponding
to the traversability for the wormhole, we consider the time
sequence of the throat. We require that the tangent vector of
the sequence of the throat, which is normal to S, is timelike.
However, as we will see in Sec. III B 1, the above con-
ditions hold in a black hole. Therefore, we will not consider
the 2-surface S satisfying Eq. (6) and inequality (7) as the
wormhole throat if there is the event horizon such that it
encloses S. This is because travelers cannot come back to
the same region once they enter into the black hole.

Let us look at the general properties of our definition for
the wormhole. From the condition of Eq. (6), we have

6’+|s = 9—|s- (8)

When 0, | = 6_|; < 0(> 0), it means the existence of the
future (past) trapped surface. Then, if the null energy
condition holds, the singularity theorem implies the pres-
ence of singularity in the future (past) [16]. With the energy
condition, assuming the cosmic censorship conjecture to be
held, the future trapped region is always inside the event
horizon [16], and thus it is not identified as the wormhole
throat. Meanwhile, with 6 |¢ = 6_|¢ > 0, the singularity
theorem predicts the existence of the past singularity, but
we consider the past trapped region as the place where the
wormbhole throat exists. The realization of 8_|¢ > 0 will be
easy in the expanding Universe, and the past singularity
may be unified to the initial one. That is, there is a room to
construct a dynamical wormhole in the cosmological
context satisfying the energy condition.

Let z¢ be the tangent vector of the time sequence of the
throat that is normal to S. Since z¢ is timelike, we can write
it as z¢ = a(04)% + p(0_)* with a, f > 0. Along the time
sequence,

2V klg =0 )
holds, and this gives
a
0_k|g = —Ea+k|s- (10)

Then, r*V ,k|s becomes
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a a
ks = (147 )0l

- (1 +%> 0.6, —0.0)s>0. (11)

If the null energy condition is satisfied in D-dimensional
spacetimes, the Raychaudhuri equation tells us

1

00-="p

03— - O-Jrabo-ib - Rahnanb <0, (12)

where o, is the shear and n¢ is the tangent vector of null
geodesics. Here, we used the fact that the null geodesic
congruences are normal to the throat; that is, the rotation of
the congruence vanishes. Therefore, Eq. (11) requires

9,0 |5 < 0. (13)

We can also confirm the well-known fact for static cases.
Since

PV k4 9V, k = 2(0.0, +9_6.), (14)

the Raychaudhuri equation with the null energy condition
shows us

r*V k 4+ 1V k < 0. (15)

In particular, the flare-out condition is not satisfied when
1V ,k = 0 holds.

III. EXAMPLES

Let us examine our definition in four-dimensional
spacetimes with symmetries including the spherical
symmetry.

A. General scheme

In the null coordinate, the metric of spherically sym-
metric spacetime is generically written as

ds* = —a*(u,v)dudv + R*(u, v)dQ3, (16)

where dQ3 is the metric of the unit 2-sphere. The throat is
supposed to be a 2-surface located at u = ugy, v = vy.

The radial null geodesic will be on u or v = constant
lines. Let us consider the geodesic on v = v, that follows
the geodesic equation

d*u 0,a (du\?
—— 42t =0. 17
dxll% + a (dxlu> (17)

In a formal way, we can solve the above as
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A, =C;! /u a*(u')du' =: U, (18)

where a(u) = a(u,vy). C, is the positive integration
constant, and we choose 1, such that du/dA, > 0. In the
same way, for the geodesic on u = u,, we have

i, =C;! / 2()dv' =V, (19)

where a(v) = a(ug,v). C, is the positive integration
constant, and we choose 4, such that dwv/di, > 0.
Employing U,V as the new coordinates, the metric (16)
is rewritten as

2
a5’ = —c,c, )

—_— 2(u, v)dQ3.
(e VAV + R 0)a0d (20)

We should stress that U (V) is the affine parameter on the
vo(ug) = constant geodesic.
The null expansion rates y, 8y are calculated to be

2 2
HU — 9_ — EQUR, GV — 9+ — EavR (21)

So, k defined by Eq. (1) becomes

=~
|

(Ov — 9y)R

(Cya?(v)0, — C,a=*(u)d,)R. (22)

ISR TR S

On the throat S, k vanishes, and then we have
C,0,R|s = C,0,R|s. (23)

In the above, we used the fact of a(ug) = a(vy) =: ay.

We also need to check the flare-out condition (7) and
the timelike condition (9), which are written with the
coordinate (20) as

r“Vak|S = (8\/ - 8U)k|s

2
=——[-2C30,Ina(v)0,R - 2C%0, Ina(u)d,R
agR
+C202R - 2C,C,0,0,R + C202R)|
>0 (24)

and
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7'V, k|g = (ady + POy ks

IR [—2aC20,Ina(v)0,R+2BC20,Ina(u)d,R
a

+aC%a%R - (a_ﬂ)cucvauavR —ﬁCg@ﬁR] |S
—0. (25)

Equalities (23) and (25) and inequality (24) with the
positivities of C,, C,, @, and § are the conditions that
the wormhole should satisfy in spherically symmetric
spacetimes.

B. Examples

In this subsection, we look at concrete examples which
include nonwormhole spacetimes.

1. Schwarzschild spacetime

It is well known that the throat of the Schwarzschild
spacetime is not that of the wormhole due to the presence of
the event horizon. Nevertheless, it is nice to see the feature
bearing our definition of the throat in mind. To see this, we
adopt the Kruskal coordinate

4rie=rlm

ds? (=dT? + dX?) + r?dQ3,  (26)

where rg= 2M and M 1is the Arnowitt—Deser—Misner

mass. The coordinate transformation from the Kruskal to
the ordinal one is given by

(r/ry—1)e"s = X* -T2 (27)
and
T/X = tanh(t/2r,) (28)
for r > ry, or
X/T = tanh(z/2r,) (29)

forO<r<r,
In this case, choosing u,v as u=T-X, v =T + X,
k|g = 0 [Eq. (23)] gives us

Cu(T+ X)|s = Co(T = X) 5. (30)

This implies that the candidate of a throat is in the region
0 <r <r, because of C,, C, > 0. In addition, inequality
(24) and Eq. (25) become

a 47‘3 —r/r,
r vak‘s — a4r4e gcucvls > 0, (31)
0

254

2V ks =L e i(a—p)C,C,ls =0, (32)
aor
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where a} = 4(r}/r)e~"/"s. The flare-out condition is sat-
isfied as expected, and the tangent vector of the throat orbit
of a = f is timelike. However, there is the event horizon at
r =r,, which is the boundary of the region satisfying
Eq. (23) and inequality (24). Therefore, as we have
commented in Sec. II, the Schwarzschild spacetime does
not have the wormhole throat.

2. De Sitter spacetime

Next, we examine the de Sitter spacetime. If one
elaborates the selection of a spacelike hypersurface and
follows the definition of Maeda et al. [9] for the wormhole
throat, there is a case in which the wormhole exists. This is
because their definition is not precise. Meanwhile, our
definition excludes this case.

In the flat chart, the metric of the de Sitter spacetime is
given by

ds* = a*(n)(=dn* + dr* + r?dQ3)
= a?(n)(—dudv + r*dQ3), (33)

where a(n) = —1/(Hn), H is the Hubble constant, and
u=mn—r, v=n+r. Then, Eq. (23) implies

Cu(Har_])|S:C1)(Har+1)|S‘ (34)
This has a solution

C,+C,

Har = ——
Cu _CU

> 1, (35)

if one chooses C,, C, satisfying C,, > C,,. This means that
the throat candidate is in outside of the cosmological
horizon.

Let us check the flare-out condition (24). With the metric
(33), we have

2H?

ravak|s = —?CMCJS < 0. (36)

This disagrees with the flare-out condition (24). Therefore,
there is no throat in the de Sitter spacetime as expected.

3. FLRW spacetime

Now, we consider the FLRW spacetime. The metric is
given by
ds* = —dr* + a*(1)[(1 — kr?)~Ldr? + r?dQ3]
= a*(n)[=dn* + di* + r*d]]
= a?(n)[—dudv + r*dQ3], (37)
where k= —1,0,1 depending on the spatial topology,

n is the conformal time defined by dn = a~'()dt,
d¢ =dr/V1—kr*,andu=n-¢ v=n+¢
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For the FLRW spacetime, Eq. (23) becomes

C,lar—vV1- kr2)|s =C,(ar+vV1- kr2)|s, (38)

where a = da(t)/dt. If one chooses C,,C, satisfying
C, > C,, the above has the solution as

a(t)r C,+C,
H(t = > 1, 39
()v]_er Cu_Cv ( )

where H(t) == a(t)/a(t). Roughly speaking, as in the
de Sitter spacetime, this means that the throat candidate
is outside of the cosmological horizon.

For the current case, the flare-out condition (24) becomes

2C,C,lad(1 — kr?) — a*r*(a® + k)]
AP — (1= k)] ;
> 0. (40)

ruvak|s =

This requires
a*r*(a® + k) < ad(1 = kr?). (41)
Together with Eq. (39), the above implies
a*r*(a® + k) < ad(1 — kr?) < ada’r?. (42)

Using the Friedmann equation, it is easy to see that the
inequality @ + k < ad obtained from inequality (42) is
equivalent with the violation of the null energy condition,

p+p<0, (43)

where p and p are the energy density and the pressure of the
perfect fluid, respectively. This is compatible with
common sense.

4. Morris—Thorne wormhole

The Morris—=Thorne wormhole, which is static and
spherically symmetric, is often investigated [3-6,13,15].
The metric is given by

b -1
ds* = —e**(di> + <1 - _(r)> dr* + r*dQ;3
r

= ¥ (—di* + d?) + r*dQ3
= —e?®dudv + r*dQ3, (44)

where ®(r),b(r) are functions of r, { is defined by
d¢ = e ®dr/\/1=b/r, and u =1t—{, v =1t+ (. Here,
we suppose that g,, = —e?? is negative and regular. Note
that this metric is not obtained as a solution of the Einstein
equation with a given matter field action.
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For this spacetime, Eq. (23) becomes

—C,\/1=b/re®|s = C,\/1—b/re®|s. (45)

This implies that the throat candidate is the surface that
satisfies b(r) = r because of C,,C, > 0. The flare-out
condition (24) becomes

o (Cu + Cv)z(l B b/) 2%

r'V k|g = 1,2 : >0, (46)

where b’ = db(r)/dr. This flare-out condition is satisfied if
b <1 (47)
on S. Equation (25) becomes

((XC,, _ﬁcu)(cv + Cu)(l B b/) €—2<I>
42 S

—0. (48)

Zavak|S =

From this, we see that the tangent vector of the throat orbit
of aC, = pC, is timelike.

To sum up, the conditions for the wormhole are b(r) = r
and b’ < 1, which are the same as the well-known results
of Ref. [3].

5. Dynamical Ellis wormhole

The dynamical Ellis wormhole is the typical example
with dynamics [9,17]. The metric is given by

ds* = —di® + a*(0)[dI* + (2 + b*)dQ3]
= a*(n)[—dn? + dP> + (PP + b?)dQ3]
= a?(n)|—dudv + (I + b*)dQ3), (49)

where a(n) is a function of the conformal time 7, b is a
constant, and u = — [, v =5+ [. Note that the metric
(49) is not obtained as a solution of the Einstein equation
with a given matter field action.

For this spacetime, Eq. (23) becomes

C.a(P+b*) =1)|g=C,(a(P+Db*) +1)

s (50)

where a = da/dt. Since C,,, C,, > 0, this gives us the rather
trivial condition

P < @(P + b?)? (51)

at the throat candidate. The flare-out condition (24)
becomes

PHYSICAL REVIEW D 91, 104008 (2015)

2C,C,ladl*> — a*(P + b*)* + a*b?]

ravak|s = (14[&2(12 + b2)2 _ 12] S

> 0.

(52)
Inequality (52) gives

f(l) = =a*(P + b*)* + ab* + aal> > 0. (53)

Using the Einstein equation R,, — Rg,, /2 =T,, with

the given metric (49), we compute the energy-momentum
tensor 7,,. Then, the dominant energy condition requires

2
— T, —T} == (ai +2a*) >0, (54)
a
t 0 2 - )
— T+ T == (—ai+a*) >0, (55)
a

2 . b?
—Tﬁ—i—Tf:?(—aa—I—az—m)ZO, (56)

2

2 b
0_ . (3
_Ti—Ta—;<aa+2a —m

)za (57)

where @ is the angular coordinate appearing as
dQ3 = d&” + sin’0dg*. Inequality (57) is stronger than
inequality (54) and gives

.. . b*
aa + 2612 Z m . (58)

The tightest constraint is given at [ = 0 as
ai +2a*> > b72. (59)
In a similar way, from inequality (56), we have
a*—b7? > aa. (60)
The above two inequalities imply
=2a*+b?<ai<a*-b7?, (61)

and then we see
2
a*b* > = (62)
3
Under the energy condition (61), we can see that f(/) has
the maximum value at [ = 0. Therefore, the condition for
the existence of the region satisfying inequality (53) is

f(0) > 0, which becomes

a* < b2, (63)
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Using this, inequality (61) tells us
—a* < 2a*+b?<ai<i®-b2<0. (64)

2
Here, let us suppose a(t) to be proportional to #7+%, where
w is a constant. In this case, the loosest inequality in (64),

—a® < ad < 0, implies that w satisfies

1 1

We can see from inequalities (62) and (63) that the
wormhole satisfying the dominant energy condition is
realized in a certain time interval of the Universe and
the size is about the Hubble radius.

Note that we did not give the equation of state like p =
wp here. In the current case, w will be determined through
the Einstein equation. Moreover, the energy-momentum
tensor derived through the Einstein equation does not have
isotropic pressure. Therefore, w in inequality (65) is not
directly related to the equation of state.

Setting C,, = C, = 1, we see that the throat is located at
[/ =0 and the tangent of the throat orbit is obviously
timelike.

6. Dynamical Schwarzschild wormhole

One may be interested in a special case with the metric
given by [17]

ds?* = —¢?

-1
*df + a(1) [(1 - rg) dr* + ergg]
r
= a?e®®(=dny? + d¢*) + r*dQ;
= —a?e*®dudv + r*dQ3, (66)

where ®(r) is the function of r, a(¢) is the function of
t, n is defined by dy=a"'d:, ¢ is defined by
d¢ =e*dr/\/T=r,/r, and u=n-¢ v=n+<{
Here, we suppose that gy = —e”” is negative and regular.
We call this the dynamical Schwarzschild wormhole
because the spatial metric on the # = constant hypersurface
is the same as the Schwarzschild one.

Here, we focus on the case of ®(r) = 0 to compare with
the dynamical Ellis wormhole. The argument below is
almost similar to the previous subsubsection. For this case,
Eq. (23) becomes

Cua(ar— /1 =r,/r)|s = Cpalar+ /1 =r,/7)|s

(67)

29

where a = da/dt. Since C,, C, > 0, this gives us

1—r,/r<a®r (68)

PHYSICAL REVIEW D 91, 104008 (2015)

at the throat candidate. The flare-out condition (24)
becomes

2C,C,lad — a*r* + % (@* - 2ad))

rVakls = at(a®r* =1 +) s

> 0. (69)

Inequality (69) gives
f(r) = adr —a*r’ + % (a* —2ad) > 0.  (70)

Using the Einstein equation, we compute the energy-
momentum tensor 7,. Then, the dominant energy con-
dition requires

1
—T;—T;:_2<2aa+4a2+r—§’> >0, (71)
a r

1
—Ti+T)=— <—2aéi +2a° +2%) >0, (72)

S

1 o aen T
—Ti+Tr= e (—Zaa +24° - —g) >0, (73)

3

1 r
T —T0=—(2ad+4a*—=—%)>0. (74
1 0 a2 ( aa + a 2r3 - ( )
From these, we have the inequality
20 + 4 - <ai < s (75)
-2a ai < a* - %
4 23"

Since we see from the above that f(r) has the maximum
value at r = ry, and then inequality (70) at r = r, gives us

1
@t < —. (76)

The tightest condition comes from inequality (75) at
r=r,as

1 1
2P — < ai < @ —— 77
a +4Vy ai < a® 22 (77)

Then, with (76), inequality (77) tells us

3, . 1 . 1
—Eaz <—2a2+Q§aa§a2—2—r§<O. (78)

Here, let us suppose a(r) o« 509 ) 1, where w is a constant. In

this case, the loosest condltlon of inequality (78),

za2 < ad < 0, implies the constraint for w as

1 2
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We have the similar constraint to the dynamical Ellis
wormhole one. Together with 1/(4r;) < a* derived from
(75), Eq. (76) tells us that the wormhole satisfying the
dominant energy condition is realized in a certain time
interval of the Universe.

Setting C,, = C, = 1, we see that the throat is located at
r=r, and the tangent of the throat orbit is obviously

g
timelike.

7. DGP wormhole

Finally, we consider the Dvali-Gabadadze-Porrati (DGP)
wormhole discussed in Refs. [18,19]. The DGP is one of
the braneworld models, and our four-dimensional space-
time is realized as a membrane in five-dimensional space-
time. In Ref. [19], the definition of Maeda er al. [9] was
employed, and it turned out that the spacetime on the brane
has the wormhole throat. Here, we reconsider the brane
geometry using our current definition.

The induced metric is

ds* = y72(r)dr* + r*(=dc* + COShzfdQ%), (80)
where

—(r-2r) +
2r2

7 272
rt —drgr;

ri(r) = (81)

and ry, r. are positive constants satistying rq > r.. The
range of r is limited as r > r, == \/r§ + r2 so that y*(r) is
positive, and we see 0 < y*(r) < 1.

To investigate the spacetime structure in the current
scheme, it is better to introduce new coordinates (7, R)
defined by T = rh(r)sinhz and R = rh(r) coshz, where

Inh(r) = / 127 g, (82)

yr
Then, the metric is written as

ds? = h=2(r)(—dT? + dR? + R2dQ2).  (83)

Here, we choose wu,v as u=T—-R, v=T+R,

and a(u,v) = h='(r).
Now, we look at Eq. (23):

C,[(1 =y)ecosht — 1]|¢
= —C,[(1 —y)e " cosht — 1][. (84)

Because of C,, C, > 0, this implies
y? < tanh’z. (85)

Note that the apparent horizon of the DGP wormbhole is
located at the surface satisfying y> = tanh’z.

PHYSICAL REVIEW D 91, 104008 (2015)
Inequality (24) becomes
2C2h%[y*(1 — y?)cosh?t + ryy'sinh?7]
r*{(1 —y)e*cosht — 1}? s
>0, (86)

ravak|s -

where y' = dy(r)/dr. Using the fact of 0 < y*(r) < 1 and

72

Y =
= 4r(2)r%

derived from Eq. (81), it is easy to see that the flare-out
condition (86) is always satisfied.
Equation (25) is calculated to be

(1-7)>0 (87)

alCre> {ryy + (1 -7%)}
+C,Colrry = (1 =) }s
= plCae {ryy’ + (1 =1*)}
+C,Co{rry' = (1 =7*)}s. (88)

From Eq. (87), we see ryy’ — (1 —y?) > 0. This implies
that o and f exist and they must be positive. Therefore, the
region satisfying inequality (85) is the wormhole throat.
This result is consistent with that in Ref. [19].

Setting C,, = C, = 1, Eq. (84) is solved as

r3(t) = r2(1 — tanh*z) + r3(1 — tanh*z)~1.  (89)

This is the same with result in Ref. [19].

Although one considers the vacuum brane, as stressed in
Ref. [19], the energy conditions are not satisfied for the
effective energy-momentum tensor computed from the
four-dimensional Einstein tensor on the brane.

IV. SUMMARY

In this paper, we proposed a new definition of the
wormhole throat with the flare-out condition and the
feature corresponding to the traversability for general cases
in terms of the null expansion rate. This formulation refines
one of the former studies [7-9]. It can appropriately
represent not only wormholes without singularities, which
are mainly investigated in this field, but also the cosmo-
logical wormholes proposed in the recent work [9].

As a demonstration, we applied our formulation to
several examples that include nonwormhole spacetimes,
too. As a result, we could confirm that our definition can
work at least for the concrete examples considered here. All
of our examples are spherically symmetric cases, while it is
interesting to investigate whether in generic spacetimes our
definition coincides with the intuitive image of wormhole.
This is left for future study.

Practically interesting objects are wormholes that we can
actually pass through. The dynamical Ellis wormhole is
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that in the FLRW universe without violating any exotic
matters, and thus it could exist in our Universe. However, it
is too large. Because of the similar size to the Hubble
radius, even if it exists, it is not observed as a compact
object but rather affects to the cosmological scale physics.
For actual use, small wormholes are fascinating, but it
seems hard or impossible to construct such wormholes
without the violation of the energy condition.
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