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I. INTRODUCTION

A wormhole is one of the interesting objects in general
relativity [1–6]. However, there is no universal definition
that can work for general situations. To discuss a wormhole,
we often specify the throat, the flare-out condition, and so
on. There are some proposals for those [3,7–9]. As far as
we know, for static and spherical symmetric cases, the
definition of the throat was given in Ref. [3]. Therein,
the static slices are embedded to the Euclidean space to see
the throat structure. Since certain spacetime symmetries are
used for the definition of wormhole, this proposal is not
applicable for dynamical or nonspherical symmetric cases.
The issue about the extension of the concept of a

wormhole to general spacetimes has been already
addressed in Refs. [7,8] (see also Refs. [9–13]). In
Refs. [7,8], using null geodesic congruences, the wormhole
throat is defined as the minimal surface on the null
hypersurfaces, i.e., the trapping horizon [14]. We know
that, in their definition, some exotic matters are required to
maintain static wormholes [3,4,10,13,15] and dynamical
ones [7,11,12] without any singularities. Nevertheless, our
Universe may have the initial singularity, and the cosmo-
logical wormhole solutions with the initial singularity, in
which the two Friedmann–Lemaître–Robertson–Walker
(FLRW) universes are connected, were constructed without
any exotic matters [9]. Since these solutions do not meet
the definition of Refs. [7,8], the authors proposed an
alternative definition focusing on spherical symmetric
cases; the wormhole throat is the minimal surface on
spacelike hypersurfaces [9]. However, this definition
strongly depends on which spacelike hypersurfaces we
take, and, because of this dependence, even de Sitter and
FLRW spacetimes are categorized into the wormhole.
In this paper, we propose a new definition of the

wormhole throat that is better suited for the intuitive image
of a wormhole. Our definition seems to be a hybrid one of a
null hypersurface-based definition [7,8] and a spacelike
hypersurface one [9]. We describe the throat in terms of the
expansion rate of null geodesic congruences on a kind of
spacelike hypersurface.

The remaining part of this paper is organized as follows.
In Sec. II, we introduce a new definition of the wormhole
throat and discuss some general features. In Sec. III, we
look at several examples to see if our definition can work
well. Finally, we give summary and discussion in Sec. IV.

II. NEW DEFINITION

In this section, we propose a new definition of the
wormhole throat with the flare-out condition and the
feature corresponding to the traversability. We also discuss
some general features.
We consider a codimension-2 spacelike compact surface

S and the future directed outgoing/ingoing null geodesic
congruences with the affine parameter λ� emanating from
S. Then, we define the null expansion rate θ�, and we
introduce the following quantities:

k ≔ θþ − θ− ð1Þ

and

k̄ ≔ θþ þ θ−: ð2Þ

Defining the two vectors

ra ≔ ð∂þ − ∂−Þa ð3Þ

and

ta ≔ ð∂þ þ ∂−Þa; ð4Þ

where ∂� ≔ ∂λ� , k and k̄ are rewritten as

k ¼ ra∇a ln
ffiffiffi
h

p
; k̄ ¼ ta∇a ln

ffiffiffi
h

p
: ð5Þ

In the above, h is the determinant of the induced metric of
the codimension-2 surface S. Although we cannot assume
that the affine parameter λ� emanating from S provides us
the global coordinate for spacetimes in general, we can
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have a quasilocal null coordinate system ~λ� such that it
coincides with λ� when it crosses S.
Now, we define the throat as the codimension-2 surface

such that

kjS ¼ 0 ð6Þ

holds and the following flare-out condition

ra∇akjS > 0 ð7Þ

is satisfied. We emphasize that, by fixing the coordinate
locally with ~λ�, there is no ambiguity of the spatial
derivative ra∇a. To introduce the feature corresponding
to the traversability for the wormhole, we consider the time
sequence of the throat. We require that the tangent vector of
the sequence of the throat, which is normal to S, is timelike.
However, as we will see in Sec. III B 1, the above con-
ditions hold in a black hole. Therefore, we will not consider
the 2-surface S satisfying Eq. (6) and inequality (7) as the
wormhole throat if there is the event horizon such that it
encloses S. This is because travelers cannot come back to
the same region once they enter into the black hole.
Let us look at the general properties of our definition for

the wormhole. From the condition of Eq. (6), we have

θþjS ¼ θ−jS: ð8Þ

When θþjS ¼ θ−jS < 0ð> 0Þ, it means the existence of the
future (past) trapped surface. Then, if the null energy
condition holds, the singularity theorem implies the pres-
ence of singularity in the future (past) [16]. With the energy
condition, assuming the cosmic censorship conjecture to be
held, the future trapped region is always inside the event
horizon [16], and thus it is not identified as the wormhole
throat. Meanwhile, with θþjS ¼ θ−jS > 0, the singularity
theorem predicts the existence of the past singularity, but
we consider the past trapped region as the place where the
wormhole throat exists. The realization of θ−jS > 0 will be
easy in the expanding Universe, and the past singularity
may be unified to the initial one. That is, there is a room to
construct a dynamical wormhole in the cosmological
context satisfying the energy condition.
Let za be the tangent vector of the time sequence of the

throat that is normal to S. Since za is timelike, we can write
it as za ¼ αð∂þÞa þ βð∂−Þa with α; β > 0. Along the time
sequence,

za∇akjS ¼ 0 ð9Þ

holds, and this gives

∂−kjS ¼ −
α

β
∂þkjS: ð10Þ

Then, ra∇akjS becomes

ra∇akjS ¼
�
1þ α

β

�
∂þkjS

¼
�
1þ α

β

�
ð∂þθþ − ∂þθ−ÞjS > 0: ð11Þ

If the null energy condition is satisfied in D-dimensional
spacetimes, the Raychaudhuri equation tells us

∂þθþ ¼ −
1

D − 2
θ2þ − σþabσ

abþ − Rabnanb ≤ 0; ð12Þ

where σþab is the shear and na is the tangent vector of null
geodesics. Here, we used the fact that the null geodesic
congruences are normal to the throat; that is, the rotation of
the congruence vanishes. Therefore, Eq. (11) requires

∂þθ−jS < 0: ð13Þ

We can also confirm the well-known fact for static cases.
Since

ra∇akþ ta∇ak̄ ¼ 2ð∂þθþ þ ∂−θ−Þ; ð14Þ

the Raychaudhuri equation with the null energy condition
shows us

ra∇akþ ta∇ak̄ ≤ 0: ð15Þ

In particular, the flare-out condition is not satisfied when
ta∇ak̄ ¼ 0 holds.

III. EXAMPLES

Let us examine our definition in four-dimensional
spacetimes with symmetries including the spherical
symmetry.

A. General scheme

In the null coordinate, the metric of spherically sym-
metric spacetime is generically written as

ds2 ¼ −a2ðu; vÞdudvþ R2ðu; vÞdΩ2
2; ð16Þ

where dΩ2
2 is the metric of the unit 2-sphere. The throat is

supposed to be a 2-surface located at u ¼ u0, v ¼ v0.
The radial null geodesic will be on u or v ¼ constant

lines. Let us consider the geodesic on v ¼ v0 that follows
the geodesic equation

d2u
dλ2u

þ 2
∂ua
a

�
du
dλu

�
2

¼ 0: ð17Þ

In a formal way, we can solve the above as
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λu ¼ C−1
u

Z
u
a2ðu0Þdu0 ≕U; ð18Þ

where aðuÞ ≔ aðu; v0Þ. Cu is the positive integration
constant, and we choose λu such that du=dλu > 0. In the
same way, for the geodesic on u ¼ u0, we have

λv ¼ C−1
v

Z
v
a2ðv0Þdv0 ≕ V; ð19Þ

where aðvÞ ≔ aðu0; vÞ. Cv is the positive integration
constant, and we choose λv such that dv=dλv > 0.
Employing U;V as the new coordinates, the metric (16)
is rewritten as

ds2 ¼ −CuCv
a2ðu; vÞ

a2ðuÞa2ðvÞ dUdV þ R2ðu; vÞdΩ2
2: ð20Þ

We should stress that U (V) is the affine parameter on the
v0ðu0Þ ¼ constant geodesic.
The null expansion rates θU; θV are calculated to be

θU ¼ θ− ¼ 2

R
∂UR; θV ¼ θþ ¼ 2

R
∂VR: ð21Þ

So, k defined by Eq. (1) becomes

k ¼ 2

R
ð∂V − ∂UÞR

¼ 2

R
ðCva−2ðvÞ∂v − Cua−2ðuÞ∂uÞR: ð22Þ

On the throat S, k vanishes, and then we have

Cu∂uRjS ¼ Cv∂vRjS: ð23Þ

In the above, we used the fact of aðu0Þ ¼ aðv0Þ≕ a0.
We also need to check the flare-out condition (7) and

the timelike condition (9), which are written with the
coordinate (20) as

ra∇akjS ¼ ð∂V − ∂UÞkjS
¼ 2

a40R
½−2C2

v∂v ln aðvÞ∂vR − 2C2
u∂u ln aðuÞ∂uR

þC2
v∂2

vR − 2CuCv∂u∂vRþ C2
u∂2

uR�jS
> 0 ð24Þ

and

za∇akjS¼ðα∂Vþβ∂UÞkjS
¼ 2

a4R
½−2αC2

v∂v lnaðvÞ∂vRþ2βC2
u∂u lnaðuÞ∂uR

þαC2
v∂2

vR−ðα−βÞCuCv∂u∂vR−βC2
u∂2

uR�jS
¼0: ð25Þ

Equalities (23) and (25) and inequality (24) with the
positivities of Cu, Cv, α, and β are the conditions that
the wormhole should satisfy in spherically symmetric
spacetimes.

B. Examples

In this subsection, we look at concrete examples which
include nonwormhole spacetimes.

1. Schwarzschild spacetime

It is well known that the throat of the Schwarzschild
spacetime is not that of the wormhole due to the presence of
the event horizon. Nevertheless, it is nice to see the feature
bearing our definition of the throat in mind. To see this, we
adopt the Kruskal coordinate

ds2 ¼ 4r3ge−r=rg

r
ð−dT2 þ dX2Þ þ r2dΩ2

2; ð26Þ

where rg ¼ 2M and M is the Arnowitt–Deser–Misner
mass. The coordinate transformation from the Kruskal to
the ordinal one is given by

ðr=rg − 1Þer=rg ¼ X2 − T2 ð27Þ

and

T=X ¼ tanhðt=2rgÞ ð28Þ

for r > rg, or

X=T ¼ tanhðt=2rgÞ ð29Þ

for 0 < r < rg.
In this case, choosing u; v as u ¼ T − X, v ¼ T þ X,

kjS ¼ 0 [Eq. (23)] gives us

CuðT þ XÞjS ¼ CvðT − XÞjS: ð30Þ

This implies that the candidate of a throat is in the region
0 < r ≤ rg because of Cu, Cv > 0. In addition, inequality
(24) and Eq. (25) become

ra∇akjS ¼
4r4g
a40r

4
e−r=rgCuCvjS > 0; ð31Þ

za∇akjS ¼
2r4g
a40r

4
e−r=rgðα − βÞCuCvjS ¼ 0; ð32Þ
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where a20 ¼ 4ðr3g=rÞe−r=rg . The flare-out condition is sat-
isfied as expected, and the tangent vector of the throat orbit
of α ¼ β is timelike. However, there is the event horizon at
r ¼ rg, which is the boundary of the region satisfying
Eq. (23) and inequality (24). Therefore, as we have
commented in Sec. II, the Schwarzschild spacetime does
not have the wormhole throat.

2. De Sitter spacetime

Next, we examine the de Sitter spacetime. If one
elaborates the selection of a spacelike hypersurface and
follows the definition of Maeda et al. [9] for the wormhole
throat, there is a case in which the wormhole exists. This is
because their definition is not precise. Meanwhile, our
definition excludes this case.
In the flat chart, the metric of the de Sitter spacetime is

given by

ds2 ¼ a2ðηÞð−dη2 þ dr2 þ r2dΩ2
2Þ

¼ a2ðηÞð−dudvþ r2dΩ2
2Þ; ð33Þ

where aðηÞ ¼ −1=ðHηÞ, H is the Hubble constant, and
u ¼ η − r, v ¼ ηþ r. Then, Eq. (23) implies

CuðHar − 1ÞjS ¼ CvðHarþ 1ÞjS: ð34Þ

This has a solution

Har ¼ Cu þ Cv

Cu − Cv
> 1; ð35Þ

if one chooses Cu; Cv satisfying Cu > Cv. This means that
the throat candidate is in outside of the cosmological
horizon.
Let us check the flare-out condition (24). With the metric

(33), we have

ra∇akjS ¼ −
2H2

a2
CuCvjS < 0: ð36Þ

This disagrees with the flare-out condition (24). Therefore,
there is no throat in the de Sitter spacetime as expected.

3. FLRW spacetime

Now, we consider the FLRW spacetime. The metric is
given by

ds2 ¼ −dt2 þ a2ðtÞ½ð1 − kr2Þ−1dr2 þ r2dΩ2
2�

¼ a2ðηÞ½−dη2 þ dζ2 þ r2dΩ2
2�

¼ a2ðηÞ½−dudvþ r2dΩ2
2�; ð37Þ

where k ¼ −1; 0; 1 depending on the spatial topology,
η is the conformal time defined by dη ¼ a−1ðtÞdt,
dζ ¼ dr=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
, and u ¼ η − ζ, v ¼ ηþ ζ.

For the FLRW spacetime, Eq. (23) becomes

Cuð _ar −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
ÞjS ¼ Cvð _arþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
ÞjS; ð38Þ

where _a ¼ daðtÞ=dt. If one chooses Cu; Cv satisfying
Cu > Cv, the above has the solution as

HðtÞ aðtÞrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p ¼ Cu þ Cv

Cu − Cv
> 1; ð39Þ

where HðtÞ ≔ _aðtÞ=aðtÞ. Roughly speaking, as in the
de Sitter spacetime, this means that the throat candidate
is outside of the cosmological horizon.
For the current case, the flare-out condition (24) becomes

ra∇akjS ¼
2CuCv½aäð1 − kr2Þ − _a2r2ð _a2 þ kÞ�

a4½ _a2r2 − ð1 − kr2Þ�
����
S

> 0: ð40Þ

This requires

_a2r2ð _a2 þ kÞ < aäð1 − kr2Þ: ð41Þ

Together with Eq. (39), the above implies

_a2r2ð _a2 þ kÞ < aäð1 − kr2Þ < aä _a2r2: ð42Þ

Using the Friedmann equation, it is easy to see that the
inequality _a2 þ k < aä obtained from inequality (42) is
equivalent with the violation of the null energy condition,

ρþ p < 0; ð43Þ

where ρ and p are the energy density and the pressure of the
perfect fluid, respectively. This is compatible with
common sense.

4. Morris–Thorne wormhole

The Morris–Thorne wormhole, which is static and
spherically symmetric, is often investigated [3–6,13,15].
The metric is given by

ds2 ¼ −e2ΦðrÞdt2 þ
�
1 −

bðrÞ
r

�
−1
dr2 þ r2dΩ2

2

¼ e2Φð−dt2 þ dζ2Þ þ r2dΩ2
2

¼ −e2Φdudvþ r2dΩ2
2; ð44Þ

where ΦðrÞ; bðrÞ are functions of r, ζ is defined by
dζ ¼ e−Φdr=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b=r

p
, and u ¼ t − ζ, v ¼ tþ ζ. Here,

we suppose that gtt ¼ −e2Φ is negative and regular. Note
that this metric is not obtained as a solution of the Einstein
equation with a given matter field action.
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For this spacetime, Eq. (23) becomes

−Cu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b=r

p
eΦjS ¼ Cv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b=r

p
eΦjS: ð45Þ

This implies that the throat candidate is the surface that
satisfies bðrÞ ¼ r because of Cu; Cv > 0. The flare-out
condition (24) becomes

ra∇akjS ¼
ðCu þ CvÞ2ð1 − b0Þ

4r2
e−2Φ

���
S
> 0; ð46Þ

where b0 ¼ dbðrÞ=dr. This flare-out condition is satisfied if

b0 < 1 ð47Þ

on S. Equation (25) becomes

za∇akjS ¼
ðαCv − βCuÞðCv þ CuÞð1 − b0Þ

4r2
e−2Φ

���
S

¼ 0: ð48Þ

From this, we see that the tangent vector of the throat orbit
of αCv ¼ βCu is timelike.
To sum up, the conditions for the wormhole are bðrÞ ¼ r

and b0 < 1, which are the same as the well-known results
of Ref. [3].

5. Dynamical Ellis wormhole

The dynamical Ellis wormhole is the typical example
with dynamics [9,17]. The metric is given by

ds2 ¼ −dt2 þ a2ðtÞ½dl2 þ ðl2 þ b2ÞdΩ2
2�

¼ a2ðηÞ½−dη2 þ dl2 þ ðl2 þ b2ÞdΩ2
2�

¼ a2ðηÞ½−dudvþ ðl2 þ b2ÞdΩ2
2�; ð49Þ

where aðηÞ is a function of the conformal time η, b is a
constant, and u ¼ η − l, v ¼ ηþ l. Note that the metric
(49) is not obtained as a solution of the Einstein equation
with a given matter field action.
For this spacetime, Eq. (23) becomes

Cuð _aðl2 þ b2Þ − lÞjS ¼ Cvð _aðl2 þ b2Þ þ lÞjS; ð50Þ

where _a ¼ da=dt. SinceCu,Cv > 0, this gives us the rather
trivial condition

l2 < _a2ðl2 þ b2Þ2 ð51Þ

at the throat candidate. The flare-out condition (24)
becomes

ra∇akjS ¼
2CuCv½aäl2 − _a4ðl2 þ b2Þ2 þ _a2b2�

a4½ _a2ðl2 þ b2Þ2 − l2�
����
S
> 0:

ð52Þ

Inequality (52) gives

fðlÞ ≔ − _a4ðl2 þ b2Þ2 þ _a2b2 þ aäl2 > 0: ð53Þ

Using the Einstein equation Rμν − Rgμν=2 ¼ Tμν with
the given metric (49), we compute the energy-momentum
tensor Tμν. Then, the dominant energy condition requires

− Tt
t − Tl

l ¼
2

a2
ðaäþ 2_a2Þ ≥ 0; ð54Þ

− Tt
t þ Tθ

θ ¼
2

a2
ð−aäþ _a2Þ ≥ 0; ð55Þ

− Tt
t þ Tl

l ¼
2

a2

�
−aäþ _a2 −

b2

ðl2 þ b2Þ2
�

≥ 0; ð56Þ

− Tt
t − Tθ

θ ¼
2

a2

�
aäþ 2_a2 −

b2

ðl2 þ b2Þ2
�

≥ 0; ð57Þ

where θ is the angular coordinate appearing as
dΩ2

2 ¼ dθ2 þ sin2θdϕ2. Inequality (57) is stronger than
inequality (54) and gives

aäþ 2_a2 ≥
b2

ðl2 þ b2Þ2 : ð58Þ

The tightest constraint is given at l ¼ 0 as

aäþ 2_a2 ≥ b−2: ð59Þ

In a similar way, from inequality (56), we have

_a2 − b−2 ≥ aä: ð60Þ

The above two inequalities imply

−2_a2 þ b−2 ≤ aä ≤ _a2 − b−2; ð61Þ

and then we see

_a2b2 ≥
2

3
: ð62Þ

Under the energy condition (61), we can see that fðlÞ has
the maximum value at l ¼ 0. Therefore, the condition for
the existence of the region satisfying inequality (53) is
fð0Þ > 0, which becomes

_a2 < b−2: ð63Þ
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Using this, inequality (61) tells us

− _a2 < −2_a2 þ b−2 ≤ aä ≤ _a2 − b−2 < 0: ð64Þ

Here, let us suppose aðtÞ to be proportional to t
2

3ð1þwÞ, where
w is a constant. In this case, the loosest inequality in (64),
− _a2 < aä < 0, implies that w satisfies

−
1

3
≤ w <

1

3
: ð65Þ

We can see from inequalities (62) and (63) that the
wormhole satisfying the dominant energy condition is
realized in a certain time interval of the Universe and
the size is about the Hubble radius.
Note that we did not give the equation of state like p ¼

wρ here. In the current case, w will be determined through
the Einstein equation. Moreover, the energy-momentum
tensor derived through the Einstein equation does not have
isotropic pressure. Therefore, w in inequality (65) is not
directly related to the equation of state.
Setting Cu ¼ Cv ¼ 1, we see that the throat is located at

l ¼ 0 and the tangent of the throat orbit is obviously
timelike.

6. Dynamical Schwarzschild wormhole

One may be interested in a special case with the metric
given by [17]

ds2 ¼ −e2ΦðrÞdt2 þ a2ðtÞ
��

1 −
rg
r

�
−1
dr2 þ r2dΩ2

2

�

¼ a2e2Φð−dη2 þ dζ2Þ þ r2dΩ2
2

¼ −a2e2Φdudvþ r2dΩ2
2; ð66Þ

where ΦðrÞ is the function of r, aðtÞ is the function of
t, η is defined by dη ¼ a−1dt, ζ is defined by
dζ ¼ e−Φdr=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rg=r

p
, and u ¼ η − ζ, v ¼ ηþ ζ.

Here, we suppose that gtt ¼ −e2Φ is negative and regular.
We call this the dynamical Schwarzschild wormhole
because the spatial metric on the t ¼ constant hypersurface
is the same as the Schwarzschild one.
Here, we focus on the case of ΦðrÞ ¼ 0 to compare with

the dynamical Ellis wormhole. The argument below is
almost similar to the previous subsubsection. For this case,
Eq. (23) becomes

Cuað _ar −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rg=r

q
ÞjS ¼ Cvað _arþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rg=r

q
ÞjS;
ð67Þ

where _a ¼ da=dt. Since Cu, Cv > 0, this gives us

1 − rg=r < _a2r2 ð68Þ

at the throat candidate. The flare-out condition (24)
becomes

ra∇akjS ¼
2CuCv½aä − _a4r2 þ rg

2r ð _a2 − 2aäÞ�
a4ð _a2r2 − 1þ rg

r Þ

����
S
> 0. ð69Þ

Inequality (69) gives

fðrÞ ≔ aär − _a4r3 þ rg
2
ð _a2 − 2aäÞ > 0: ð70Þ

Using the Einstein equation, we compute the energy-
momentum tensor Tμν. Then, the dominant energy con-
dition requires

− Tt
t − Tr

r ¼
1

a2

�
2aäþ 4_a2 þ rg

r3

�
≥ 0; ð71Þ

− Tt
t þ Tθ

θ ¼
1

a2

�
−2aäþ 2_a2 þ rg

2r3

�
≥ 0; ð72Þ

− Tt
t þ Tr

r ¼
1

a2

�
−2aäþ 2_a2 −

rg
r3

�
≥ 0; ð73Þ

− Tt
t − Tθ

θ ¼
1

a2

�
2aäþ 4_a2 −

rg
2r3

�
≥ 0: ð74Þ

From these, we have the inequality

−2_a2 þ rg
4r3

≤ aä ≤ _a2 −
rg
2r3

: ð75Þ

Since we see from the above that fðrÞ has the maximum
value at r ¼ rg, and then inequality (70) at r ¼ rg gives us

_a2 <
1

2r2g
: ð76Þ

The tightest condition comes from inequality (75) at
r ¼ rg as

−2_a2 þ 1

4r2g
≤ aä ≤ _a2 −

1

2r2g
: ð77Þ

Then, with (76), inequality (77) tells us

−
3

2
_a2 < −2_a2 þ 1

4r2g
≤ aä ≤ _a2 −

1

2r2g
< 0: ð78Þ

Here, let us suppose aðtÞ ∝ t
2

3ð1þwÞ, where w is a constant. In
this case, the loosest condition of inequality (78),
− 3

2
_a2 < aä < 0, implies the constraint for w as

−
1

3
≤ w <

2

3
: ð79Þ
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We have the similar constraint to the dynamical Ellis
wormhole one. Together with 1=ð4r2gÞ ≤ _a2 derived from
(75), Eq. (76) tells us that the wormhole satisfying the
dominant energy condition is realized in a certain time
interval of the Universe.
Setting Cu ¼ Cv ¼ 1, we see that the throat is located at

r ¼ rg and the tangent of the throat orbit is obviously
timelike.

7. DGP wormhole

Finally, we consider the Dvali-Gabadadze-Porrati (DGP)
wormhole discussed in Refs. [18,19]. The DGP is one of
the braneworld models, and our four-dimensional space-
time is realized as a membrane in five-dimensional space-
time. In Ref. [19], the definition of Maeda et al. [9] was
employed, and it turned out that the spacetime on the brane
has the wormhole throat. Here, we reconsider the brane
geometry using our current definition.
The induced metric is

ds2 ¼ γ−2ðrÞdr2 þ r2ð−dτ2 þ cosh2τdΩ2
2Þ; ð80Þ

where

γ2ðrÞ ¼ −ðr2 − 2r2cÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − 4r20r

2
c

p
2r2c

ð81Þ

and r0; rc are positive constants satisfying r0 > rc. The
range of r is limited as r ≥ r� ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ r2c

p
so that γ2ðrÞ is

positive, and we see 0 ≤ γ2ðrÞ < 1.
To investigate the spacetime structure in the current

scheme, it is better to introduce new coordinates ðT; R̄Þ
defined by T ¼ rhðrÞ sinh τ and R̄ ¼ rhðrÞ cosh τ, where

ln hðrÞ ¼
Z

1 − γ

γr
dr: ð82Þ

Then, the metric is written as

ds2 ¼ h−2ðrÞð−dT2 þ dR̄2 þ R̄2dΩ2
2Þ: ð83Þ

Here, we choose u; v as u ¼ T − R̄, v ¼ T þ R̄,
and aðu; vÞ ¼ h−1ðrÞ.
Now, we look at Eq. (23):

Cu½ð1 − γÞeτ cosh τ − 1�jS
¼ −Cv½ð1 − γÞe−τ cosh τ − 1�jS: ð84Þ

Because of Cu, Cv > 0, this implies

γ2 < tanh2τ: ð85Þ

Note that the apparent horizon of the DGP wormhole is
located at the surface satisfying γ2 ¼ tanh2τ.

Inequality (24) becomes

ra∇akjS ¼
2C2

vh2½γ2ð1 − γ2Þcosh2τ þ rγγ0sinh2τ�
r2fð1 − γÞeτ cosh τ − 1g2

����
S

> 0; ð86Þ

where γ0 ¼ dγðrÞ=dr. Using the fact of 0 ≤ γ2ðrÞ < 1 and

rγγ0 ¼ r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − 4r20r

2
c

p ð1 − γ2Þ > 0 ð87Þ

derived from Eq. (81), it is easy to see that the flare-out
condition (86) is always satisfied.
Equation (25) is calculated to be

α½C2
ve−2τfrγγ0 þ ð1 − γ2Þg
þCuCvfrγγ0 − ð1 − γ2Þg�jS

¼ β½C2
ue2τfrγγ0 þ ð1 − γ2Þg

þCuCvfrγγ0 − ð1 − γ2Þg�jS: ð88Þ

From Eq. (87), we see rγγ0 − ð1 − γ2Þ > 0. This implies
that α and β exist and they must be positive. Therefore, the
region satisfying inequality (85) is the wormhole throat.
This result is consistent with that in Ref. [19].
Setting Cu ¼ Cv ¼ 1, Eq. (84) is solved as

r2SðτÞ ¼ r2cð1 − tanh4τÞ þ r20ð1 − tanh4τÞ−1: ð89Þ

This is the same with result in Ref. [19].
Although one considers the vacuum brane, as stressed in

Ref. [19], the energy conditions are not satisfied for the
effective energy-momentum tensor computed from the
four-dimensional Einstein tensor on the brane.

IV. SUMMARY

In this paper, we proposed a new definition of the
wormhole throat with the flare-out condition and the
feature corresponding to the traversability for general cases
in terms of the null expansion rate. This formulation refines
one of the former studies [7–9]. It can appropriately
represent not only wormholes without singularities, which
are mainly investigated in this field, but also the cosmo-
logical wormholes proposed in the recent work [9].
As a demonstration, we applied our formulation to

several examples that include nonwormhole spacetimes,
too. As a result, we could confirm that our definition can
work at least for the concrete examples considered here. All
of our examples are spherically symmetric cases, while it is
interesting to investigate whether in generic spacetimes our
definition coincides with the intuitive image of wormhole.
This is left for future study.
Practically interesting objects are wormholes that we can

actually pass through. The dynamical Ellis wormhole is
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that in the FLRW universe without violating any exotic
matters, and thus it could exist in our Universe. However, it
is too large. Because of the similar size to the Hubble
radius, even if it exists, it is not observed as a compact
object but rather affects to the cosmological scale physics.
For actual use, small wormholes are fascinating, but it
seems hard or impossible to construct such wormholes
without the violation of the energy condition.
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