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The bumblebee model of spontaneous Lorentz symmetry breaking is explored in a cosmological context,
considering a single nonzero time component for the vector field. The relevant dynamic equations for the
evolution of the Universe are derived and their properties and physical significance are studied. We
conclude that a late-time de Sitter expansion of the Universe can be replicated, and attempt to constrain the
parameter of the potential driving the spontaneous symmetry breaking.
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I. INTRODUCTION

Several outstanding questions in cosmology, such as the
current accelerated expansion of the Universe [1] or the
presence and origin of dark matter [2], have motivated many
efforts to expand upon the conventional formalism of general
relativity (GR), as the latter cannot provide a direct explan-
ation of such phenomena. A great number of attempts have
been made to phenomenologically study putative modifica-
tions ofGR, ranging from the inclusionof nontrivial curvature
terms in the Einstein-Hilbert action [3,4] to the addition of
suitable scalar [5] and vector fields [6–9], among others [10].
Amongst the latter, the bumblebee model was initially put

forward in 1989 [11] as a toy model for spontaneous Lorentz
symmetry breaking (LSB) using a vector field; being an
extension of GR, it takes the usual Einstein-Hilbert action
and expands it with a vector field and a potential. It provided
a simple and more tractable scenario than the more general
Standard Model extension (SME), a framework for studying
Lorentz-breaking terms added to the Standard Model of
interactions and general relativity [12]; several aspects of the
impact of the SME on the gravitational sector have been
addressed, e.g., in Refs. [13–18].
The bumblebee model can be considered as a particular

case of vector-tensor models [6,7], which also include the
more well-known Einstein-aether models [8]; in the latter,
the potential of the vector field resorts to a Lagrange
multiplier that constrains its norm, and exhibits couplings
between the vector field and the Ricci tensor and scalar.
Distinctively, the bumblebee model assumes only that the
potential has a nonvanishing vacuum expectation value
(VEV), but restricts the coupling to just the Ricci tensor, as
depicted in the action functional (1).

The bumblebee model incorporates a mechanism of spon-
taneous breaking of the Lorentz symmetry, which is compat-
ible with general Riemann-Cartan geometries [9,12,19–22].
This mechanism is inspired by the Higgs mechanism of the
Standard Model of fundamental particles and interactions
(itself anallusion to theLandau theoryofphase transitions that
first originated in condensed matter physics), and serves to
both safeguardLorentz symmetry as a symmetry of the action
and regulate the way in which that symmetry is broken.
The coupling of curvature to the vector field and the

presence of a potential leads to a higher complexity of the
equation of motion that cannot be extrapolated from
approaches that eschew the use of a potential [23,24] or
that uncouple the vector field from the curvature [25].
The aim of this work is to further assess the impact of the

bumblebee model and explore the effects of a spontaneous
LSB in a cosmological context, namely its potential as a
candidate for dark energy.
This work is organized as follows: first, the model and its

governing equations are described; the impact of the latter
on cosmology is then presented, prompting the study of the
ensuing dynamical system; finally, the obtained results are
discussed and conclusions are drawn.

II. THE BUMBLEBEE MODEL FOR
SPONTANEOUS LORENTZ SYMMETRY

BREAKING

As mentioned in the previous section, the bumblebee
model extends the standard formalism of general relativity
by allowing an LSB; this is dynamically driven by a
suitable potential exhibiting a nonvanishing VEV, so that
the bumblebee vector field Bμ acquires a specific four-
dimensional orientation.
The action functional should capture the most relevant

features of the bumblebee model, namely the coupling
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between the bumblebee field and geometry and the presence
of a general potential. As discussed in detail in Ref. [7],
the simultaneous inclusion of kinetic terms for the vector
field of the forms FμνFμν (where Fμν is the field strength)
and ð∇μBμÞ2 leads to the appearance of ghost degrees of
freedom, which vanish if only one of the latter is considered.
Furthermore, an extensive discussion of the symmetries

of a model with couplings of the form BμBνRμν and BμBμR
was presented in Ref. [14]; in particular, if the potential
is quadratic and includes a Lagrange multiplier λ,
Vðλ; BμÞ ¼ λðBμBμ � b2Þ, so that variation with respect
to the former fixes BμBμ ¼ �b2, then the coupling term
BμBμR can be gauged away by rescaling G.
That being said, the fixed points obtained in this study

indicate that the bumblebee field does not rest at its
nonvanishing VEV, for a general potential, so that the
inclusion of both types of couplings should have physical
consequences. However, for simplicity we drop the cou-
pling to the Ricci scalar and thus consider the model
posited in Ref. [9], thus obtaining a more computationally
tractable problem which still retains the main features
mentioned above; a discussion of the effect of an additional
coupling with the Ricci scalar can be found in the
Appendix, where it is shown that—although the strength
of the additional coupling could lead to new fixed points—
the overall dynamical structure of the field equations is not
substantially modified.
Given the above, we consider the action functional

S ¼
Z ffiffiffiffiffiffi

−g
p �

1

2κ
ðRþ ξBμBνRμνÞ

−
1

4
BμνBμν − VðBμBμ � b2Þ þ LM

�
d4x; ð1Þ

where κ ¼ 8πG, ξ is a coupling constant (with dimensions
½ξ� ¼ M−2), Bμ is the bumblebee field (with ½Bμ� ¼ M),
Bμν ≡ ∂μBν − ∂νBμ is the field-strength tensor, b2 ≡
bμbμ ¼ hBμBμi0 ≠ 0 is the expectation value for the
contracted bumblebee vector, V is a potential exhibiting
a minimum at BμBν � b2 ¼ 0, and LM is the Lagrangian
density for the matter fields.
By varying Eq. (1) with respect to the metric, the

modified Einstein equations are obtained,

Gμν ¼ κ

�
2V 0BμBν − BμαBα

ν −
�
V þ 1

4
BαβBαβ

�
gμν

�

þ ξ

�
1

2
BαBβRαβgμν − BμBαRαν − BνBαRαμ

þ 1

2
∇α∇μðBαBνÞ þ

1

2
∇α∇νðBαBμÞ

−
1

2
∇α∇βðBαBβÞgμν −

1

2
□ðBμBνÞ

�
þ Tμν; ð2Þ

where V 0 denotes the derivative of the potential V with
respect to its argument and Tμν is the energy-momentum
tensor of matter.
Variation of Eq. (1) with respect to the bumblebee field

yields its equation of motion,

∇μBμν ¼ 2

�
V 0Bν −

ξ

2κ
BμRμν

�
: ð3Þ

If the lhs of the equation vanishes, the above results in a
simple algebraic relation between the bumblebee, its
potential, and the geometry of spacetime.

III. COSMOLOGY

In most cosmological studies, the Friedmann-Robertson-
Walker metric (FRW) metric is assumed, reflecting the
cosmological principle which posits a homogeneous and
isotropic universe. However, if Lorentz symmetry is spon-
taneously broken, it is possible that the bumblebee field
acquires a nonvanishing spatial orientation, which would
dynamically break the aforementioned isotropy and require
a more evolved geometry. This possibility (elaborated in
the final section) shall not be pursued in this study; instead,
one considers the ansatz for the bumblebee field,

Bμ ¼ ðBðtÞ; ~0Þ; ð4Þ

thus upholding the validity of the cosmological principle,
i.e., maintaining the assumption of the large-scale homo-
geneity and isotropy of the Universe. One thus adopts the
flat FRW metric, as given by the line element

ds2 ¼ −dt2 þ aðtÞ2½dr2 þ r2dθ2 þ r2sin2ðθÞdϕ2�; ð5Þ

where aðtÞ is the scale factor.
From Eq. (4), one sees that the field-strength tensor

vanishes, Bμν ¼ 0, and the only nontrivial component of
the bumblebee (3) is

�
V 0 −

3ξ

2κ

ä
a

�
B ¼ 0; ð6Þ

which, for a nonvanishing bumblebee field, establishes a
relation between the dynamics of the potential and the scale
factor. This is probably the reason that motivated the
authors of Ref. [7] to describe bumblebee models with
only a Maxwell kinetic term as “nondynamical”; we
maintain, however, that the nonminimal coupling of cur-
vature in our case is enough to drive a meaningful process,
as shall be studied below.
Considering the matter energy-momentum tensor for

pressureless dust,

Tμν ¼ ρuμuν; ð7Þ
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where ρ is the energy density of matter, uμ is the four-

velocity [with uμ ¼ ð1; ~0Þ due to the normalization con-
dition uμuμ ¼ −1], and using the above expression together
with Eq. (4), the t − t component of the modified field
equations (2) becomes

H2ð1 − ξB2Þ ¼ 1

3
κðρþ VÞ þ ξHB _B; ð8Þ

while the diagonal i − i components read

�
H2 þ 2

ä
a

�
ð1− ξB2Þ ¼ κV þ ξð4HB _Bþ _B2 þBB̈Þ; ð9Þ

where H ≡ _a=a is the Hubble parameter.
Using the Bianchi identities, one also obtains the follow-

ing modified equation for the conservation of energy:

_ρ ¼ −3Hρ − 3
ξ

κ

ä
a
BðHBþ _BÞ þ 3

ξ

κ

a
:::

a
B2; ð10Þ

which shows that there is an energy exchange between
matter and the bumblebee field.
Due to the complexity of the equations derived in this

section, a simple, closed-form solution cannot be obtained
by purely analytical means. Given this difficulty, it
becomes more enlightening to study instead the full
dynamical picture presented by the Friedmann and
Raychaudhuri equations under the constraints imposed
by the bumblebee field equation of motion.

A. Absence of coupling between the bumblebee
field and the Ricci tensor

At this point, it is useful to notice the relevance of the
coupling strength ξ: if this is “switched off” by setting
ξ ¼ 0, the modified Einstein equations (2) become

Gμν ¼Tμν

þ κ

�
2V 0BμBν−BμαBα

ν −
�
Vþ1

4
BαβBαβ

�
gμν

�
; ð11Þ

while the bumblebee equation of motion (3) reads

∇μBμν ¼ 2V 0Bν: ð12Þ

Although simplified, the above equations in principle still
allow for dynamical behavior. However, the assumption (4)
leads to a vanishing field force Bμν ¼ 0, so that the
bumblebee (6) collapses to

V 0B ¼ 0; ð13Þ

forcing the bumblebee field to either vanish or rest at one of
the extrema of its potential, and keeping it from evolving
with time.

Thus, setting ξ ¼ 0 and _B ¼ B̈ ¼ 0 in Eqs. (8)–(10)
yields the simplified set

H2 ¼ 1

3
κðρþ V0Þ; ð14Þ

H2 þ 2
ä
a
¼ κV0; ð15Þ

_ρ ¼ −3Hρ: ð16Þ

Thus, the bumblebee field contributes solely through
the value of its constant potential VðB2Þ≡ V0: checking
the action functional (1), one sees that it collapses to the
Einstein-Hilbert form with a cosmological constant
Λ ¼ κV0. Indeed, Eq. (15) can be directly integrated,
yielding a de Sitter solution,

aðtÞ ¼ a0eH0ðt−t0Þ; ð17Þ

with H2
0 ≡ κV0=3 ¼ Λ=3; Eq. (14) then requires that

ρ ¼ 0, as expected.
As the next section will show, the existence of a phase of

exponential acceleration of the Universe is not only allowed
for the uncoupled scenario ξ ¼ 0, but for a nonvanishing
coupling as well.

B. Generality of a de Sitter solution

Following the preceding discussion, we consider a
solution of the form (17) (with unknown H0), so that
the bumblebee field equation (6) becomes

V 0B2 ¼ 3

2

ξ

κ
H0

2B2: ð18Þ

For a nonvanishing bumblebee field, any potential V which
varies nonlinearly yields a quantity V 0 that depends on B,
and the above implicitly establishes that the bumblebee
field must be constant through V 0ðB2 � b2Þ ¼ ð3ξ=2κÞH2

0

(if B ¼ 0 this relation does not hold, but the bumblebee
remains constant nevertheless). Using B ¼ B0 ¼ const in
Eqs. (8) and (10) yields

H2
0 ¼

κV0

3ð1 − ξB2
0Þ
; _ρ ¼ −3H0ρ ¼ 0: ð19Þ

As in the previous section, this corresponds to a universe
without matter that is dominated by the bumblebee field
alone, which acts as a form of dark energy.
Given a particular potential V, Eq. (18) and the above

fully determine both H0 and the nonvanishing value of B0.
Anticipating the next study, one considers a power-law
potential of the form

VðB2 � b2Þ ¼ M4−2nðB2 � b2Þn → V 0 ¼ nV
B2 � b2

; ð20Þ
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whereM has dimensions of mass. Using Eqs. (19) and (18)
for B ≠ 0, one obtains

B2
0 ¼

2n∓ξb2

ξð1þ 2nÞ →

V0 ¼
�

2n
1þ 2n

1� ξb2

ξM2

�
n

M4 →

H2
0 ¼

2n
3

κ

ξ

�
2n

1þ 2n
1� ξb2

ξM2

�
n−1

M2: ð21Þ

If the bumblebee field vanishes, then one trivially
obtains H2

0 ¼ κV0=3.
Notice that in the above one does not simply find that

B2 ¼ ∓b2 and VðB2 � b2Þ ¼ Vð0Þ ¼ 0, as could be
naively expected if one assumed that the cosmological
dynamics should evolve the bumblebee field until it rests at
its nonvanishing VEV hB2i ¼ b2; indeed, following the
discussion of the previous section, the dynamical effect of
the coupling term ξBμBνRμν found in the action functional
(1) on the field equations can be interpreted as a friction
term that arrests the evolution of the bumblebee field, with
the dissipated energy acting to counteract the gravitational
attraction of matter and drive an accelerated expansion of
the Universe.
One can now look back to the on-shell form of the action

(1), which—with the prescription (4), BðtÞ ¼ B0, and the
de Sitter solution (19)—is reduced to

S ¼
Z

1

2κ

�
R − 6

�
1 −

ξB2
0

2

�
H0

2

� ffiffiffiffiffiffi
−g

p
d4x; ð22Þ

which, as noted in the preceding section, corresponds to the
Einstein-Hilbert action with an added constant term which
acts as a cosmological constant Λ: if the bumblebee field
vanishes, the latter is given by its usual definition Λ ¼ 3H2

0,
by comparison with the usual Lagrangian density
L ¼ ðR − 2ΛÞ=ð2κÞ; if one considers B0 ≠ 0, then it also
includes a contribution from the coupling between the
bumblebee field and the Ricci tensor, Λ�≡3H2

0ð1−ξB2
0=2Þ

(see Ref. [26] for a study of the contribution to a phase of
accelerated expansion of the Universe arising from a
nonminimal coupling between matter and the Ricci scalar).

IV. ANALYSIS OF THE DYNAMICAL SYSTEM

In order to explore the possible solutions to Eqs. (8)–(10)
and confirm the results obtained in the previous section,
one begins by defining the dimensionless variables
(see Ref. [27] for a similar treatment in the context of
quintessence)

x1 ¼
κV
3H2

; x2 ¼ ξB2; x3 ¼
ξB _B
H

; ð23Þ

together with the usual relative matter density and decel-
eration parameter,

ΩM ¼ κρ

3H2
; q ¼ −

äa
_a2

: ð24Þ

Using Eqs. (6), (8), and (10), one obtains

x01 ¼ 2ð1þ αx3 þ qÞx1;
x02 ¼ 2x3;

x03 ¼ ð1 − 2qÞð1 − x2Þ − 3x1 þ x3ðq − 3Þ; ð25Þ

where the prime denotes differentiation with respect to the
number of e-folds N ≡ log a, and one defines

αðx2Þ≡ V 0ðx2Þ
Vðx2Þ

; β≡ a
:::

aH3
: ð26Þ

We notice that the dimensionless variable x2 is directly
proportional to B2, so that no expansion is performed
around the nonvanishing VEV b2 ≠ 0arising after the LSB;
conversely, this definition appears to indicate that the vector
field is expanded around its symmetric phase B2 ¼ 0.
However, since the set of fixed points does not change
with a shift in the definition of x2, the physics of the two
forms are indistinguishable [this was checked directly by
instead using the definition x2 ¼ ξðB2 − b2Þ].
Furthermore, the calculations below reveal that no fixed

point arises with B2 ¼ b2 (i.e., x2 ¼ ξb2): the bumblebee
field never rolls to its nonvanishing VEV, due to the effect
of the coupling with the Hubble parameter (and its
derivative) in the equations of motion.
The modified Friedmann equation (8) reduces to

1 ¼ x1 þ x2 þ x3 þ ΩM; ð27Þ

while the bumblebee equation of motion becomes

ð2αx1 þ qÞx2 ¼ 0: ð28Þ

The two equations above are algebraic constraints that must
be obeyed by any solution to the dynamical system (25).
The form of Eq. (28) indicates two possible branches,

corresponding to whether x2 is vanishing or not. If the latter
is true, this equation collapses to q ¼ −2αx1, which can
then be used to further simplify the dynamical system (25).
The opposite case x2 ¼ 0 is more troublesome, as it implies
that the dynamical system is no longer autonomous [in the
sense that x0i ¼ fðxjÞ alone]: one would have to promote q
and Ωm to dynamical variables and consider the two
additional differential equations

Ω0
M ¼ ð2q − 1ÞΩM þ βx2 − 2αx1ðx2 þ x3Þ;
q0 ¼ −β þ qþ 2q2: ð29Þ
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Furthermore, it can be shown that the determination of the
nature of any fixed points would be problematic, as the
linearization of the Jacobian matrix of the system around
x2 ¼ 0 diverges.
This caveat, however, may be circumvented if one

notices that x2 ¼ 0 is not dynamically relevant if x02 ≠ 0,
as the variable just rolls out of its vanishing value and the
relation q ¼ −2αx1 becomes immediately valid, allowing
the aforementioned substitution into Eq. (25).
Furthermore, since one is not interested in modeling the

spontaneous LSB, it is natural to assume that the bumble-
bee field has had time to roll from its previous vanishing
VEV (before the LSB) towards the broken phase
hB2i ¼ b2.
Thus, one is left only with the pathological case

x2 ¼ x02 ¼ 0, which is physically hard to interpret, as it
would imply that the spontaneous LSB has no dynamical
effect on the bumblebee field, which forever rests at its pre-
LSB vanishing VEV.
Fortunately, it can be solved analytically; since the

physical implication of this is that the bumblebee field
only imprints an effect on the dynamics through the
constant value of the potential V0, one expects to recover
the usual picture found in GR for a universe composed of
matter and a cosmological constant, where the former
becomes more and more diluted and the expansion grows
exponentially at late times.
Indeed, taking Eqs. (25) and (29) and replacing x2 ¼

x02 ¼ 0 immediately yields x3 ¼ 0, so that

x01 ¼ 2ð1þ qÞx1;
3x1 ¼ 1 − 2q;

Ω0
M ¼ ð2q − 1ÞΩM: ð30Þ

Notice that the last equation is equivalent to the first, as can
be seen from the Friedmann equation (27), which reads
Ωm ¼ 1 − x1 → Ω0

m ¼ −x01. One obtains the single differ-
ential equation

x01 ¼ 3ð1 − x1Þx1; ð31Þ

with the solution

x1ðNÞ ¼ 1

1þ Ce−3N
→

ΩmðNÞ ¼ 1 − x1 ¼
C

Cþ e3N
;

qðNÞ ¼ 1 − 3x1
2

¼ −1þ 3

2

C
Cþ e3N

; ð32Þ

where C is an integration constant. As expected, one finds
that Ωm becomes vanishingly small as the Universe
expands and approaches a de Sitter phase q ¼ −1. One
concludes that, even if the bumblebee field becomes locked

in the symmetric phase hB2i ¼ 0 so that x2 ¼ x02 ¼ 0, this
does not give rise to any unphysical dynamics, and we can
proceed towards the study of the more relevant sce-
nario x2 ≠ 0.
As discussed previously, a nonvanishing bumblebee field

implies that q ¼ −2αx1; inserting this back into the
dynamical system (25) yields the closed set

x01 ¼ 2ð1þ αx3 − 2αx1Þx1;
x02 ¼ 2x3;

x03 ¼ ð1þ 4αx1Þð1 − x2Þ − 3x1 − x3ð3þ 2αx1Þ; ð33Þ
and the relation

x1 þ x2 þ x3 þΩM ¼ 1: ð34Þ
Following the results obtained in the previous section, one
adopts a power-law potential of the form (20), here
rewritten as

Vðx2Þ ¼ M4�ðx2 − ξb2Þn; ð35Þ
where the sign is fixed and ξb2 is allowed to have negative
values. It is worthy to note that, for this potential, the
variable α becomes

α ¼ n
x2 − ξb2

: ð36Þ

The presence of this multiplicative term in two of the three
dynamical equations in Eq. (33) renders its behavior very
important in understanding the evolution of the overall
system. Since Eq. (27) implies that, for the matter-domi-
nated Universe Ωm ¼ 1→ x1þx2þx3¼ 0, if x2> ξb2> 0,
x1 will be positive by definition, as seen in Eq. (35). In that
case, x3 will have to be negative, causing x2 to decrease
until it crosses the value of ξb2 and α diverges (and with it
the trajectories in phase space).
Therefore, one must enforce x2i < ξb2, where the former

is the initial value of the dimensionless variable x2: notice
that, since one is studying the cosmological dynamics after
the spontaneous LSB has occurred and the potential V has
settled into the form (35), this initial value is endowed with
physical meaning, as it is related to the value acquired by
the bumblebee field after the LSB (which is not modeled
directly).
The inequality x2i < ξb2 will imply that α is always

negative, in order to avoid the divergence of the system: as
the value of x2 gets closer to ξb2, α becomes larger and (as
will be seen numerically) the evolution in phase space
becomes more abrupt; thus, it is expected that some
distance must be allowed between the initial values of
x2 and ξb2 for sufficiently smooth trajectories in phase
space. Additionally, since the value of ξb2 is not expected
to be very large (since ξ is the constant responsible for the
Lorentz-violating curvature coupling and no evidence of
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such effects have yet been observed), the imposed restraint
on the initial values x2 < ξb2 becomes very demanding.
Under this potential, the system exhibits the fixed points

shown in Table I: in particular, fixed points xB and xC
correspond to the de Sitter solutions found in Sec. III B.
The former corresponds to either a vanishing coupling ξ or
a bumblebee field frozen at its unbroken VEV B2 ¼ 0, and
is thus an unnatural candidate for a de Sitter attractor;
conversely, xC exhibits an additional contribution due to
the coupling between the bumblebee field and the Ricci
tensor.
The fixed point xA corresponds to a matter-dominated

universe before the bumblebee-induced dark energy
becomes relevant. This transition requires that this fixed
point is repulsive, with xB and/or xC attractive.
The fourth fixed point, xD, is unphysical, as it corre-

sponds to a universe without matter and only a constant
bumblebee field, which either expands or contracts linearly
or is static (so that q ¼ 0); although it is not mandatory for
this fixed point to be repulsive (as it suffices that our
Universe undergoes a trajectory in phase space sufficiently
far from it), it is a desirable feature.
The analysis of the stability of the system can be

achieved from studying the eigenvalues of the Jacobian
matrices pertaining to the linearized system at each fixed
point, which are

DA ¼

2
6664

2 0 −3 − 4n
ξb2

4n
ξb2

0 0 −1 0

0 2 −3 0

0 0 0 −1

3
7775; ð37Þ

DB ¼

2
6666664

2þ 8n
ξb2 0 −3 − 4n

ξb2 0

4n
ξb2 0 −1þ 4nðξb2−1Þ

ξb2 0

− 2n
ξb2 2 −3þ 2n

ξb2
2n
ξb2

0 0 0 −1þ 4n
ξb2

3
7777775
; ð38Þ

DC ¼

2
66664

2 0 −1 0

1
n 0 −3 − 1

n 0

1 2 −4 −2n2þ3n−2nξb2
nξb2−n

0 0 0 −3

3
7775; ð39Þ

DD ¼

2
6664

2 0 −3 0

0 0 −1 0

0 2 −3 0

0 0 0 −1

3
7775: ð40Þ

The eigenvalues λi for matrices DA and DD do not depend
on n or ξb2,

λA ¼ ð−2;−1;−1; 2Þ; ð41Þ

λD ¼ ð−2; 2;−1;−1Þ; ð42Þ

and, since at least one of their components has a positive
real part, the two associated fixed points are unstable. For
the remaining two fixed points, the issue of stability will
vary, depending on the values taken by n or ξb2. The
specific form of the dependence is quite complex, but it can
be understood in a fairly simple way by defining the third-
degree polynomials (of the variable λ):

pBðλÞ ¼ λ3 þ ξb2ðξb2 − 10nÞλ2
þ 2ðξb2Þ2½4nþ 4n2 − 17nξb2 − 2ðξb2Þ2�λ
− 4ðξb2Þ3½8n2 − 2nξb2 − 16n2ξb2 þ ðξb2Þ3�;

ð43Þ
pCðλÞ ¼ λ3 þ 12n3ðξb2 − 1Þ3

þ 2nðξb2 − 1Þð3λþ ξb2 − 1Þλ
þ 3n2ðξb2 − 1Þ2ð5λþ 2ξb2 − 2Þ: ð44Þ

Denoting the three roots of each polynomial as rB;1, rB;2,
rB;3 and rC;1, rC;2, rC;3, respectively, the eigenvalues forDB

and DC become

λB ¼
�
4n
ξb2

− 1;
rB;1

ðξb2Þ2 ;
rB;2

ðξb2Þ2 ;
rB;3

ðξb2Þ2
�

ð45Þ

and

λC ¼
�
−3;

rC;1
nðξb2 − 1Þ ;

rC;2
nðξb2 − 1Þ ;

rC;3
nðξb2 − 1Þ

�
: ð46Þ

The constraints on n and ξb2 imposed by the stability of the
fixed points xB and xC are shown in Fig. 1.
It can be seen immediately that only the region −1=2 <

n < 0 warrants the instability of all of the system’s fixed
points, regardless of the value of ξb2. Additionally, if n and
ξb2 have the same sign, then only one stable fixed point is
to be found (xC); this fact is especially relevant since the
simpler and more readily interpretable cases are those for
which n is positive (and small).
If one allows ξb2 to assume negative values while n

remains positive, then the two possible cases of only xC
being stable or both xB and xC being stable are separated by

TABLE I. Fixed points of the model (33).

ðx1; x2; x3;Ωm; qÞ
xA ð0; 0; 0; 1; 1

2
Þ

xB ð1; 0; 0; 0;−1Þ
xC ð1þξb2

1þ2n ;
2n−ξb2
1þ2n ; 0; 0;−1Þ

xD (0,1,0,0,0)
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a line that can be roughly described by the equation
ξb2 ≈ −4.76n, with the former lying below the line and
the latter above. What this means is that to ensure the
stability of xB, n must increase with ξb2. A similar
behaviour can be noted if, on the other hand, n assumes
negative values (lower than −1=2) and ξb2 is positive,
although in this case the equation describing the dividing
line is shifted (closer to ξb2 ≈ −4.76n − 2.38) and the area
in which both fixed points are stable only asymptotically
approaches the axis at ξb2 ¼ 0. Again, this is worthy of
note since, as mentioned before, ξb2 is expected to be
small, ξb2 ≪ 1.

V. TRAJECTORY AND EVOLUTION ANALYSIS

Following the previous results, one now studies the
trajectories of the variables in the phase space, especially
x2, ΩM, and q, i.e., the bumblebee field, matter density, and
deceleration parameter, respectively; these variables pro-
vide a physical picture of the conditions of the Universe at a
given time. One thus numerically integrates the system
(33), with the initial values corresponding to the departure
from the matter-dominated era, ΩM ≈ 1 and q ≈ 0.5 (the
evolution is not affected by choosing initial conditions
sufficiently close to these values). A note should be made
concerning the initial value of x2 or x2i. The default would
be to start the numerical simulation at x2 ¼ 0, but since the
bumblebee field is in that position only before symmetry is
broken, it is reasonable to expect a deviation from the
origin, albeit small.

A. Example of system convergence

The case where n ¼ 4 is depicted in Figs. 2–4, showing
that the system collapses entirely to the single attractor, as
determined by the constraints displayed in Fig. 1.
These trajectories describe a universe that transitions from

an initial stage of matter domination (ΩM ≈ 1; q ≈ 0.5) to a
dark-energy-dominated era (ΩM ≈ 0; q ≈ −1). It is interest-
ing to note that the behavior indicates that—instead of
evolving smoothly and monotonically towards a de Sitter
phase—the system overshoots that mark and crosses below
q < −1, before asymptotically approaching q ¼ −1. Since
the current value of ΩM ≈ 0.3 is well before that overshoot
and cosmographic surveys indicate that q has been steadily
declining [28], it is reasonable to assume that the lowest
value of q still lies in the future.
Furthermore, because of the discussion surrounding

Eq. (36), it can be seen that the restrictions imposed on

FIG. 2. Projection of the phase space onto the ΩM-q plane for
n ¼ 4 (two darker plots) and n ¼ 6 (two lighter plots). Fixed
points are marked as dots in dark grey (n ¼ 4) and light grey
(n ¼ 6). For both cases ξb2 ¼ 10−2 and x2i ¼ 10−3 (darker),
10−12 (lighter).

FIG. 3. Projection of the phase space onto the x2-q plane for
n ¼ 4 (two darker plots) and n ¼ 6 (two lighter plots). Fixed
points are marked as dots in dark grey (n ¼ 4) and light grey
(n ¼ 6). For both cases ξb2 ¼ 10−2 and x2i ¼ 10−3 (darker),
10−12 (lighter).

FIG. 1. Parameter constraints assuming xB and xC are unstable
(white), only xC is stable (light grey), and both xB and xC are
stable (dark grey). The points used in the analysis of the phase-
space trajectories are highlighted.
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the initial values of x2 drive this overshoot deeply into
negative values, q ≪ −1: mathematically, this issue could
be settled by allowing x2 < 0, which allows for much
smoother trajectories (if still overshooting q ¼ −1), but
results in an added strain on the restriction (27), causing
ΩM to dip into unphysical (negative) values.
Figure 4 shows that the trajectories decrease monoton-

ically with a physically meaningful, positive matter-
density profile. Two linear phases are discernible: a very
steep phase corresponding to the initial plunge of the
deceleration parameter and consequent overshoot q < 1,
and a less pronounced decrease during the compensation
of that overshoot and evolution towards the final state
x2 ¼ ð1þ ξb2Þ=ð1þ 2nÞ.

B. Example of system divergence

The second case, for n ¼ 2, is depicted in Figs. 5, 6, and
7, and exhibits a divergence of the trajectories. In this case,

the system’s attractor is insufficient to counteract the
repulsive effect of the repulsor xA close to the system’s
initial values at the start of the simulation.
In this case the analysis is much more straightforward:

the fixed point xA is so repulsive that it causes the
trajectories to steer clear of the close vicinity of the basin
of convergence of the attractor, and therefore no physically
significant convergence towards the latter is attained, as the
trajectories lead the variables into physically meaningless
values. Even if convergent trajectories for this case indeed
exist, finding them largely constitutes a problem of fine-
tuning.

C. Overshoot variation

As mentioned before, the analyzed stable trajectories
show that the deceleration parameter q overshoots its final

FIG. 4. Projection of the phase space onto the x2-ΩM plane for
n ¼ 4 (two darker plots) and n ¼ 6 (two lighter plots). Fixed
points are marked as dots in dark grey (n ¼ 4) and light grey
(n ¼ 6). For both cases ξb2 ¼ 10−2 and x2i ¼ 10−3 (darker),
10−12 (lighter).

FIG. 5. Projection of the phase space onto the ΩM-q plane for
n ¼ 4 (two darker plots) and n ¼ 6 (two lighter plots). Fixed points
are marked as dots in dark grey (n ¼ 4) and light grey (n ¼ 6). For
both cases ξb2 ¼ 10−2 and x2i ¼ 10−3 (darker), 10−12 (lighter).

FIG. 6. Projection of the phase space onto the x2-q plane for
n ¼ 4 (two darker plots) and n ¼ 6 (two lighter plots). Fixed
points are marked as dots in dark grey (n ¼ 4) and light grey
(n ¼ 6). For both cases ξb2 ¼ 10−2 and x2i ¼ 10−3 (darker),
10−12 (lighter).

FIG. 7. Projection of the phase space onto the x2-ΩM plane for
n ¼ 4 (two darker plots) and n ¼ 6 (two lighter plots). Fixed
points are marked as dots in dark grey (n ¼ 4) and light grey
(n ¼ 6). For both cases ξb2 ¼ 10−2 and x2i ¼ 10−3 (darker),
10−12 (lighter).
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convergence value at the respective fixed point for the
chosen potential. The magnitude of this effect, though it
may appear to depend on the initial value taken for x2,
indeed flattens out after an initial phase (for approximately
−5.5 < x2i < −2) and responds linearly, eventually stabi-
lizing at a final value of qMin ≈ −15.78, for n ¼ 4, as can be
seen in Fig. 8.
This result seems to suggest two zones of effective

system evolution: the first one [−5.5 < log10ðx2iÞ <
log10ðξb2Þ] is more dynamical and vulnerable to the initial
values, and the second one [log10ðx2iÞ < −5.5] is more
stable and robust to variations of the initial conditions.
The other studied case, n ¼ 6 (presented in Fig. 9),

depicts a similar behavior, with the differences being a
faster stabilization [a linear response is seen for
log10ðx2iÞ < −4.2, leveling out at qMin ≈ −20.47] com-
pared to when n ¼ 4.

VI. CONCLUSIONS AND OUTLOOK

In this work, we considered the bumblebee model, which
is a vectorial extension of general relativity under a
spontaneous symmetry-breaking mechanism. Since the

study was made considering that the bumblebee vector
is only nontrivial in the time component, which depends
only on time, no additional breaking of Lorentz symmetry
occurs, aside from the one derived from adopting the FRW
metric, which is equivalent to a foliation of space-time into
spatial pictures labeled by a cosmological time.
It was found that the model predicts four points of

equilibrium, in agreement with the preliminary study of the
equations. Two of the points are unstable regardless of the
value of the model’s parameters, corresponding to the static
and matter-dominated cases. The remaining two yield a
universe undergoing an accelerated expansion, which can
be ascribed to the appearance of a quantity akin to a
cosmological constant: this can be caused by the effects of
the potential alone (for practically all values of the
parameters, with the exception of − 1

2
< n < 0), making

the identification Λ≡ 3H0
2, or by the effects of a concerted

evolution between the potential and the bumblebee vector’s
nonzero component, resulting in Λ� ≡ −3H0

2ð1þ VCÞ=2,
where VC ¼ ð1� ξb2Þ=ð1þ 2nÞ is the value of the poten-
tial at the fixed point xC.
It was noted that, when considering a power-law-type

potential, even within the parametrical constraints that
guarantee the existence of one attractor, a convergent
scenario is not always found; in particular, this was not
attained in the case of odd powers, which, for all tested
values, appear to cause the system’s variables to be strongly
repelled initially, thus diverging from the de Sitter attractor.
This can be explained by the fact that, for odd n, the
variable x1 will initially be negative if x2 < ξb2 and
positive if x2 > ξb2. But the discussion concerning
Eq. (36) guarantees the system will diverge in the latter
case, and in the former, the negativity of x1 disturbs the
balance of the Friedmann equation (27), disallowing
convergence.
The above does not guarantee that the system does not

allow converging trajectories, only that they are not dense
in the (continuous) set of all possible trajectories with
physically significant starting points. Even if one was to be
found, there would be no basis to justify the fine-tuning
needed for its manifestation.
Additionally, the analysis of convergent trajectories in

phase space predicts that q always overshoots the final
value of −1, but since the present-day Universe is still on
the descending slope of the trajectory, prior to that over-
shoot such behavior constitutes a prediction of the model,
rather than an experimental constraint (albeit one that will
not be verified in the foreseeable future).
Expectations concerning ξb2, x2, and the convergence of

the system may, however, be used in restricting the window
of accessible values to the dynamical system’s variables.
The major factors in this process can be categorized into
three primary groups: (1) the regularity of the solutions,
(2) the elimination of unphysical behavior, and (3) the
mathematical stability of the dynamical system.

FIG. 8. Variation of the minimum of q with the initial value of
x2 for n ¼ 4.

FIG. 9. Variation of the minimum of q with the initial value of
x2 for n ¼ 6.
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(1) n < −1=2 or n > 0: This bound is required from a
stability analysis of the fixed points of the dynamical
system, as there are no converging trajectories for
values of the exponent n outside the indicated
window. However, it can be argued that there is
no guarantee that the evolution of the Universe must
lead to stable convergence, or that (even in the
presence of suitable attractors) a region of converg-
ing trajectories can be found for a specific choice of
model parameters n and ξb2 without fine-tuning the
initial conditions.

(2) x2i < ξb2: After the spontaneous LSB has occurred
and the potential has settled into its form (35), this
upper bound for the value of the bumblebee field
must be obeyed; otherwise, the system diverges
through the action of α.

(3) x2i ≪ ξb2: The stronger restriction, not contem-
plated in the Friedmann equation, is related with
the behavior of the deceleration parameter q, and
ascertains that the minimum of the solution for this
variable (the so-called overshoot) shows a tendency
to explode if the absolute initial values of x2 and ξb2

are too close. Once more, this is due to the
dimensionless quantity α diverging and dominating
the dynamics of the system, which makes the
smooth transition (required in order to avoid an
overshoot) impossible.

Regarding the obtained interval for the exponent nwhere
at least one of the de Sitter fixed points is an attractor (first
point of the list above), the comparison with a more
complex, nonpolynomial potential could provide interest-
ing hints; indeed, if the latter can be expressed analytically
as a series of powers of B2, the two should match in the
relevant regime for B2 where the latter can be truncated.
Such a potential naturally arises from the asymptotically

free solutions of a quantized bumblebee model [15]
expressed in terms of the Kummer (confluent hypergeo-
metric) function Mðκ − 2; 2; zÞ − 1. However, the stability
analysis found there did not assess the dynamical (cosmo-
logical) evolution of the bumblebee field, but rather
concentrated on the existence of minima of the potential,
so that the former could rest on a nonvanishing VEV, with
excitations around the latter giving rise to Nambu-
Goldstone modes associated with the ensuing LSB.
Our scenario differs significantly: it is classical in nature,

has one nonvanishing minima defined by the power-law
form of the potential, and the fixed points show that the
bumblebee field does not evolve towards this nonvanishing
VEV. Furthermore, the results obtained in this study rely
extensively on the presence of a coupling with geometry,
which is absent in Ref. [15]. As such, no direct comparison
is feasible.
As a final remark, we note that the fairly rich structure of

the model prompts more focused studies. Going beyond
further inquiries into cosmological dynamics [e.g., by

selecting a different potential VðB2 � b2Þ or including a
coupling between the bumblebee field and the Ricci scalar],
one anticipates that interesting results should arise from a
spatially oriented bumblebee that breaks the homogeneity
and isotropy postulated by the cosmological principle; this
could bear a possible relation with the putative “axis of
evil” reported in the cosmological background radia-
tion [29].
A different approach could also consider several local

instances of spontaneous Lorentz symmetry breaking, in
analogy with condensed matter physics [30]: one can argue
that this is compatible with the above-mentioned possibility
of a spontaneous LSB in a spatial direction, so that the
bumblebee field acquires a particular (random) orientation
only within a region with a well-defined coherence length,
beyond which another orientation is randomly adopted
during the LSB. If the size of the observable Universe is
much larger than the coherence length, it is physically
plausible that the large-scale superposition of several
regions with different spatial orientations for the bumblebee
field gives rise to a globally homogeneous and isotropic
universe. The collision of different “bubbles” could also
produce interesting physics and hypothetically lead to
observable relics of the LSB.
The in-depth study of such a mechanism would most

probably require modeling the actual LSB (i.e., the evo-
lution of the shape of the potential, so that the VEVof the
bumblebee field becomes nonvanishing) and encompass
similar considerations of the well-known Kibble-Zurek
mechanism [30], albeit with the added complexity of
considering a vector field instead of a scalar. By the same
token, we note that the interface between regions with
different spatial LSB could give rise to topological defects,
which would physically correspond to areas where Lorentz
symmetry holds.
However mesmerizing, the above scenario clearly

requires heavy-duty numerical computations, and is thus
incompatible with the stated purpose of this work, namely,
to clearly identify the possibility of driving an accelerated
expansion of the Universe via a nonminimally coupled
bumblebee vector field.
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APPENDIX: ADDITIONAL BUMBLEBEE-
CURVATURE COUPLING

As discussed in Sec. III, the action functional (1)
considered in this study follows Ref. [9], with only a
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coupling between the bumblebee field and the Ricci tensor
considered: we argue that this captures the essential
features of the model, namely the ensuing de Sitter attractor
xC depending on the coupling strength ξ.
If one additionally considers the coupling term in the

action functional

S ¼
Z

χ

2κ
BμBμR

ffiffiffiffiffiffi
−g

p
d4x; ðA1Þ

where χ is a coupling strength (with dimension
½χ� ¼ ½ξ� ¼ M−2), the modified bumblebee equation (3)
becomes

∇μBμν ¼ 2

�
V 0Bν −

ξ

2κ
BμRμν −

χ

2κ
BνR

�
; ðA2Þ

and the rhs of the modified Einstein field equations acquires
the extra terms

− χ½BαBαGμν þ RBμBν þ gμν□ðBαBαÞ −∇μ∇νðBαBαÞ�:
ðA3Þ

Introducing the FRW metric (5), Eq. (A2) becomes

�
V 0 −

3ð2χ þ ξÞ
2κ

ä
a
−
3χ

κ
H2

�
B ¼ 0; ðA4Þ

so that, considering the additional contribution of the
curvature terms appearing on the rhs of the field equations
to the derivative of the potential,ΔV0 ≡ ðχ=2κÞR, the scalar
curvature transforms as

R → ð1 − ξB2ÞR − 3χ□ðBαBαÞ: ðA5Þ

The modified Friedmann and Raychaudhuri equations (8)
and (9) thus read

H2½1 − ðξþ χÞB2� ¼ 1

3
κðρþ VÞ þ ðξþ 2χÞHB _B;

�
H2 þ 2

ä
a

�
½1 − ðχ þ ξÞB2�

¼ κV þ 4ðξþ χÞHB _Bþ ðξþ 2χÞð _B2 þ BB̈Þ: ðA6Þ

One cannot absorb the effect of the additional coupling into
a redefined parameter, as both of the factors ξþ χ and ξþ
2χ appear; notwithstanding, the above shows that the
dynamics do not differ significantly from those obtained
with χ ¼ 0, as no additional combinations of H, B, or their
derivatives arise.
One can apply the procedure followed in Sec. III B to

ascertain the possibility of obtaining a de Sitter phase from
this more evolved scenario where there are two couplings
between the bumblebee field and geometry. The modified
bumblebee equation (A4) becomes

V0 ¼ 3ð4χ þ ξÞ
2κ

H2
0; ðA7Þ

which again provides an intrinsic relation by setting BðtÞ ¼
B0 ¼ const. Introducing this relation into Eq. (A6) yields

H2
0 ¼

κV0

3½1 − ðξþ χÞB2
0�
; ρ ¼ 0; ðA8Þ

which, as before, describes a universe with no matter
content and with the potential term acting as a dark energy
component driving its accelerated expansion. Interestingly,
the above shows that in the particular case ξ ¼ −χ the two
couplings cancel.
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