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We discuss the consistency of a recently proposed class of theories described by an arbitrary function
of the Ricci scalar, the trace of the energy-momentum tensor, and the contraction of the Ricci tensor with
the energy-momentum tensor. We briefly discuss the limitations of including the energy-momentum
tensor in the action, as it is a nonfundamental quantity but a quantity that should be derived from the
action. The fact that theories containing nonlinear contractions of the Ricci tensor usually lead to the
presence of pathologies associated with higher-order equations of motion will be shown to constrain
the stability of this class of theories. We provide a general framework and show that the conformal and
nonminimal couplings to the matter fields usually lead to higher-order equations of motion. To illustrate
such limitations, we explicitly study the cases of a canonical scalar field, a K-essence field, and a massive
vector field, whereas for the scalar field cases, it is possible to find healthy theories, and for the vector
field case, the presence of instabilities is unavoidable.
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I. INTRODUCTION

A key question in gravitational physics and possible
extensions of Einsteinian gravity resides in the coupling of
gravity and matter fields. Even assuming the correctness
of the equivalence principle—and the subsequent minimal
coupling between matter and geometry as dictated by
general relativity—strongly supported by astrophysical
and laboratory tests, violations of the minimal coupling
may still be allowed in scales and at times at which
experiments have not been performed yet. In the existing
literature, there is a whole host of proposals for nonminimal
couplings such as those provided by scalar-tensor theories
[1], vector-tensor theories [2], and different couplings
between matter and geometry [3], among others. A recently
proposed departing point consists of suggesting the cou-
pling of a function of the Ricci scalar to the matter
Lagrangian, a proposal that has produced numerous studies
for gravitational and cosmological issues on the subject
(cf. Refs. [4,5] and references therein). In this work, we
shall consider a class of extended gravity theories in which
the gravitational action is given by a general function
fðR; T; RμνTμνÞ, where R and T denote the Ricci scalar and
the trace of the energy-momentum tensor, respectively, and
RμνTμν holds for the contraction of the Ricci and energy-
momentum tensors. We shall herein address the theoretical
consistency of this class of theories with special emphasis
on couplings to either scalar or vector fields. Before
proceeding, let us point out that, as it is well known, there
are important criteria to be fulfilled by any extended
theories beyond Einsteinian gravity that would like to be

claimed as a well-founded theory able to describe the
gravitational interaction. These criteria aim to guarantee the
absence of instabilities such as the appearance of ghostlike
modes and the exponential growth of perturbations around
well-established spacetime backgrounds, among others.
For instance, an undesirable instability is the so-called
Dolgov–Kawasaki instability, which appears when at least
one extra degree of freedom of the theory behaves as a
ghost and therefore this mode would act to destabilize
the theory with no stable ground state. The avoidance of
the Dolgov–Kawasaki instability has been developed to
constrain the extensively studied fðRÞ gravity with
minimal [6–9] and nonminimal couplings of the curva-
ture with matter [10]. Authors in Refs. [11] and [12]
have recently addressed this instability issue for
fðR; T; RμνTμνÞ theories.
Another important requirement usually demanded by

extended theories consists of the avoidance of the
Ostrogradski instability, i.e., the fact that a linear instability
appears in Hamiltonians associated with Lagrangians that
depend upon more than one time derivative nondegener-
ately [13,14]. Consequently, this type of Hamiltonians
turns out not to be bounded from below, and well-defined
vacuum states are absent. Theories with higher-order
equations of motion can, however, be sensible, provided
that they are regarded within the framework of effective
field theories. In such a framework, the operators leading to
the higher-order equations of motion are simply the first
terms of some expansion of which the adequate resumma-
tion might give rise to well-behaved theories (this is the
situation for instance when one integrates heavy degrees of
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freedom out). Another possibility to make sense of theories
with higher-order equations of motion is to remove the
undesired unstable degrees of freedom from the physical
spectrum of the theory or, at the classical level, constraining
the physically allowed set of boundary conditions.
However, one needs to make sure that such a procedure
does not get spoiled by either time evolution or coupling
to other fields. This approach was followed in Ref. [15] for
the case of the degenerate Pais–Uhlenbeck field.
A widely accepted way of circumventing the

Ostrogradski instability when considering scalar-tensor
theories of gravitation consists of requiring the Euler–
Lagrange equations to be second order even if higher-order
derivatives are present in the action. Following this line of
reasoning, Horndeski’s theorem [16] provides the most
general Lagrangian density for a scalar-tensor theory that
provides second-order Euler–Lagrange equations, for in-
stance with Galileon theories [17] a remarkable example.
Nonetheless, recent proposals have ensured second-order
equations of motion and hence the absence of Ostrogradski
ghost degrees of freedom for theories that do not fall under
the form of Horndeski-like theories. Among others, let us
mention healthy theories beyond Horndeski [18], the
introduction of derivative couplings through a disformal
metric between the scalar and the matter degrees of freedom
[19], multiscalar field theories [20], nonlocal gravity
theories [21], and nonlinear combinations of purely kinetic
gravity terms [22].
With sole dependency on R, the theories under consid-

eration of course correspond to the extremely popular fðRÞ
gravity modified theories, which might be thought of as the
only local, metric-based, and generally coordinate invariant
and stable modifications of gravity [14,21]. Both viability
and stability conditions for fðRÞ theories have been widely
studied and guarantee the attractive character, the afore-
mentioned avoidance of Dolgov–Kawasaki instability,
the agreement with solar system tests, and evolution of
geodesics [23].
With regard to Lagrangians with both R and T depend-

ence, these kinds of modified gravity were originally
introduced in Ref. [24] and later on considered in
Ref. [25], and some cosmological aspects have been
already explored, such as the reconstruction of cosmologi-
cal solutions [26], in particular late-time acceleration ones
[27]. Also the energy conditions have been analyzed in
Ref. [28]. The thermodynamics of Friedmann–Lemaître–
Robertson–Walker (FLRW) spacetimes has been studied in
Ref. [29]. More recently, the possibility of irreversible
matter creation processes and the possibility of the occur-
rence of future singularities were addressed in Refs. [30]
and [31], respectively. Theories with nonstandard cou-
plings between the geometry and the matter Lagrangian
(see Ref. [32]) usually suffer from not conserving the
energy-momentum tensor, which implies a stringent short-
coming for their viability. For fðR; TÞ theories, this issue

was studied in Ref. [33], showing that gravitational
Lagrangians of the form f1ðRÞ þ f2ðTÞ can always be
constructed to be consistent with the energy-momentum
tensor standard conservation, at least for a single perfect
fluid for adequate choices of functions f1;2. Despite this
partial success, the growth rate in fðR; TÞ theories was
shown [33] to be highly compromised by the existence of
oscillations in the density contrast evolution, the occurrence
of singularities, and the fast growth of the density contrast
in the studied models.
Theories including also terms of the form RμνTμν have

attracted some attention in recent years. Authors in
Ref. [11] claimed some motivation for these theories
arguing that the Hořava-like gravity power-counting renor-
malizable covariant gravity might represent the simplest
power-law version of fðR; T; RμνTμνÞ theories [34]. One
could then expect that such theories provide some insight
between the usual approach in extended theories of gravity
and the Hořava–Lifshitz theory. Several aspects of these
theories are already available in the literature. For instance,
the energy conditions for these theories were originally
addressed in Ref. [35], in which the authors used models
presented in Refs. [11] and [12] finding constraints on
the model parameters from the Raychaudhuri equation.
Finally, some efforts have been made to try to establish the
thermodynamics for black holes embedded in a FLRW
spacetime developing the Friedmann equations for spatially
curved space-time and showing that for those theories these
equations can be transformed into the form of the Clausius
relation [36].
The paper is structured as follows. In Sec. II, we present

some generalities of the theories under consideration,
paying special attention to the theoretical limitations
imposed by the fact of considering the energy-momentum
tensor at the level of the gravitational action. There we
shall also include the multiscalar representation that will
allow us to identify the potential instabilities in a trans-
parent way. Therein, we shall specify the analysis for the
restricted cases of fðRÞ and fðR; TÞ theories. In Sec. III,
we shall focus on the case of the canonical scalar field,
the appearance of instabilities for such a choice, and the
appropriate gravitational Lagrangians capable of preserv-
ing second-order field equations either in the original
formulation or in the multiscalar representation. The same
kind of studies as in the previous section shall be performed
in Secs. IV and V for K-essence theories and vector fields,
respectively. Section VI is then devoted to illustrating the
shortcomings of classes of models for the gravitational
Lagrangian and constraints to be imposed on the param-
eters in order to guarantee viability. Finally, we shall end
with in Sec. VII with the main conclusions.
Throughout this paper, Greek indices run from 0 to 3, the

symbol∇ denotes the standard covariant derivative, and the
signatureþ;−;−;− is used. The Riemann tensor definition
is Rμ

ναβ ¼ ∂αΓ
μ
νβ − ∂βΓ

μ
να þ Γμ

σαΓσ
νβ − Γμ

σβΓσ
να.
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II. GENERALITIES AND MULTISCALAR
REPRESENTATION

The theories that we shall consider throughout this work
are based on an action of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR; T; RμνTμνÞ þ Lmðgμν;ΨÞ�; ð1Þ

where f is an arbitrary function of its arguments, Rμν is the
Ricci tensor corresponding to the Levi-Civitá connection
of the spacetime metric gμν, R≡ gμνRμν holds for the scalar
curvature, and Tμν is the energy-momentum tensor of
the matter fields Ψ described by the Lagrangian Lm and
defined as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð2Þ

Finally, T ≡ gμνTμν holds for the trace of the energy-
momentum tensor. In addition, we will further assume
that the matter fields in Lm are minimally coupled to
gravity so that all the nonminimal couplings will come
from fðR; T; RμνTμνÞ. Since the appearance of the energy-
momentum tensor in the action might be worrisome, a
few words about the construction of the theories as given
in (1) are in order here. This digression lies in the fact
that the standard lore consists of defining the energy-
momentum tensor as the variation of the action itself so
this procedure would lead to an endless loop. One could
try to construct the theory by a perturbative expansion
analogous to the Gupta problem for gravity; i.e.,
one could start with a linear coupling of the Ricci
tensor to the energy-momentum tensor of the matter
fields. This will modify the energy-momentum tensor
of the matter field, so the coupling will acquire a
correction. This process will in general generate an
infinite series that should be resummed in order to obtain
the full theory. We will not pursue this approach here
but will regard (1) as a purely procedural way of defining
the theory. In fact, theories described by (1) can be
consistent without the infinite contributions from the
nonminimal coupling to the energy-momentum tensor
provided that we assume the contributions entering as
arguments of the function f solely correspond to the
energy-momentum tensor of the matter Lagrangian alone
defined through (2). It remains doubtful that one can dub
the energy-momentum tensor to such an object within the
context of these universally nonminimally coupled the-
ories. We could mention at least two reasons for this
skepticism.
First of all, that object is obviously not conserved anddoes

not correspond to the Noether current associated with
infinitesimal translations. Second, with all fields being
nonminimally coupled to gravity, the difference of Tμν

and the canonical energy-momentum tensor is not simply

a total divergence.1 For this particular study, we shall
consider the action (1) together with (2) as an operational
approach to describe the theory. Thus, keeping in mind the
aforementioned objections, Tμν will be denoted in the
following as energy-momentum tensor.
An even more worrisome aspect of theories described

by (1) is the coupling of the Ricci tensor to the energy-
momentum tensor: since Rμν contains second derivatives of
the metric tensor, and Tμν will typically have first deriv-
atives of the matter fields, the equations of motion are
expected to be higher than second order, and the
Ostrogradski instability [13] is likely to be present. It is
worth stressing that it is precisely the coupling to the Ricci
tensor that will generically render the theory unstable. As it
is well known, despite containing second derivatives in the
Lagrangian, fðRÞ theories avoid the Ostrogradski insta-
bility because they are constructed out of the Ricci scalar
solely [14]. However, for arbitrary functions explicitly
containing the Ricci tensor, e.g., RμνRμν, a ghost associated
with the higher-order derivatives arises. In fact, in the
following three sections, Secs, III, IV, and V, we shall study
this feature for cases in which the matter fields are
described either by scalar or by vector fields. We shall
thus show that ghost modes are generally present in these
theories due to the coupling RμνTμν and that its avoidance
considerably restricts the allowed form for the function f as
will then be illustrated in Sec. VI.

A. Multiscalar representation

Before considering the presence of the Ostrogradski
instabilities in these theories, we will present a general
framework in which this instability (and its origin) can be
more easily identified. To that end, we will rewrite the
theory presented in (1) using the multiscalar-tensor repre-
sentation. This way we intend to illustrate the generality
with which the Ostrogradski instability will show up within
these theories due to the aforementioned coupling RμνTμν.
Lets start by rewriting action (1) as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
fðχ1; χ2; χ3Þ þ

X3
i¼1

fχiðPi − χiÞ þ Lm

�
;

ð3Þ
where χi¼1;2;3 are auxiliary fields, P1 ≡ R, P2 ≡ T,
P3 ≡ RμνTμν, and fχj ≡ ∂f=∂χj, j ¼ 1; 2; 3. The corre-
sponding field equations for those auxiliary fields are
given by

∂2f
∂χi∂χj ðPi − χiÞ ¼ 0: ð4Þ

1This is actually a feature present in all nonminimally coupled
theories. These nonminimal couplings can be understood as
arising from couplings of the graviton to surface terms [37].
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Thus, provided that det ∂2f
∂χi∂χj ≠ 0, the only solution of (4)

turns out to be χ1 ¼ R, χ2 ¼ T, χ3 ¼ RμνTμν, and con-
sequently the action (3) is dynamically equivalent to the
original action (1). Let us stress that a necessary condition
for the transformation to the multiscalar-tensor representa-
tion (3) to be valid lies in the nondegeneracy, i.e., non-

vanishing determinant, of the matrix ∂2f
∂χi∂χj. This element

will play an important role later on. At this stage, we will
introduce a field redefinition as follows: φi ¼ −fχi .
Assuming that this redefinition is invertible, so that
χi can be expressed as a function of fφ1;φ2;φ3g, the
action (3) can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Uðφ1;φ2;φ3Þ − φ1R − φ2T

− φ3RμνTμν þ Lm�; ð5Þ

where we have introduced the definition Uðφ1;φ2;φ3Þ≡
fðφ1;φ2;φ3Þ þ

P
3
i¼1 φiχiðφ1;φ2;φ3Þ.

Now, we can follow the usual approach to disentangle
the nonminimal coupling φ1R by means of a conformal
transformation of the form gμν ¼ e2Ω ~gμν, with Ω ¼
log 1ffiffiffiffiffiffiffiffiffiffiffiffi

16πGφ1

p , so the action (5) becomes2

S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
e4ΩUðΩ;φ2;φ3Þ

−
1

16πG
ð ~R − 6~gαβ∂αΩ∂βΩÞ − φ2

~T

− e−2Ωφ3½ ~Rμν − 2 ~∇μ
~∇νΩþ 2 ~∇μΩ ~∇νΩ

− ð2~gαβ∂αΩ∂βΩþ ~□ΩÞ~gμν� ~Tμν

þ e4ΩLmðe2Ω ~gμν;ΨÞ
�
; ð6Þ

where we have have dropped a total divergence and used
the transformation properties of the Ricci tensor and scalar
curvature under conformal rescaling given by

Rμν ¼ ~Rμν − 2 ~∇μ
~∇νΩþ 2 ~∇μΩ ~∇νΩ

− ð2~gαβ∂αΩ∂βΩþ ~□ΩÞ~gμν; ð7Þ

R ¼ e−2Ωð ~R − 6~gαβ∂αΩ∂βΩ − 6 ~□ΩÞ: ð8Þ

We have also defined the energy-momentum tensor in the
conformally transformed frame as3

~Tμν ¼ e2ΩTμν ð9Þ

and its trace with respect to ~gμν as ~T ≡ ~gμν ~Tμν ¼ e4ΩT.
After the conformal transformation, we see that the degree
of freedom contained in φ1 has been transferred to the
conformal mode Ω. We will see later that, in some cases,
the conformal transformation needs to be more general
(depending also on the matter field and φ3).
At this stage, let us further clarify the procedure sketched

above when specified by several paradigmatic and simpler
scenarios of extended gravity theories, such as Lagrangians
of the forms fðRÞ and fðR; TÞ [immediately afterward,
we will go back to the general fðR; T; RμνTμνÞ case under
study in this paper]:

(i) fðRÞ case: In the extensively studied scenario of
pure fðRÞ fourth-order gravity theories [38], the
previous derivation is nothing but the usual approach
that clearly shows how the conformal degree of
freedom behaves as a standard scalar field coupled to
matter. Thus, these theories avoid the Ostrogradski
instability. The nondegeneracy condition reduces in
that case to fRR ≠ 0. Whenever the latter condition
does not hold, it simply means that the theory is
linear in R; i.e., we are dealing with the usual
Einstein–Hilbert action.

(ii) fðR; TÞ case: For Lagrangians with an arbitrary
function depending only upon both R and T, i.e.,
for the so-called fðR; TÞ theories, the auxiliary field
φ2 in (6) can be integrated out by using its own
equation of motion, which is given by

∂U
∂φ2

− T ¼ 0 ⇒ φ2 ¼ φ2ðφ1; TÞ: ð10Þ

If the previous equation is rewritten after having
performed the conformal transformation, we would
obtain φ2 ¼ φ2ðΩ; ~TÞ instead. To proceed with our
analysis, we need to assume that this algebraic
equation is in fact solvable with respect to φ2. In
some cases, this does not need to be the case, and
in addition, when solving Eq. (10), one might find
several branches corresponding to different solutions
of this equation. Moreover, there is a special case
when the function U is linear in φ2 since, for such
case, φ2 acts as a Lagrange multiplier imposing a
constraint equation rather than being an auxiliary
field. These cases are usually related to those models

2Notice that the scalarΩ is dimensionless. To restore its natural
dimension and have a canonically normalized scalar field, it

should be rescaled as Ω →
ffiffiffiffiffiffi
8πG
3

q
Ω.

3Notice that this is not the energy-momentum tensor one
would obtain from (2) in the Einstein frame, but it is defined as
~Tμν ¼ − 2ffiffiffiffi

−~g
p δð ffiffiffiffi−gp

LmÞ
δ~gμν

.
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for which the auxiliary field χ2 cannot be introduced.
Leaving pathological cases aside and assuming the
solvability of the above equation (10), the action
(6) for fðR; TÞ theories after integrating out the
auxiliary field φ2 reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
e4ΩUðΩ; ~TÞ þ e4ΩLmðe2Ω ~gμν;ΨÞ

−
1

16πG
ð ~R − 6~gαβ∂αΩ∂βΩÞ − φ2ðΩ; ~TÞ ~T

�

¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
−

1

16πG
ð ~R − 6~gαβ∂αΩ∂βΩÞ

þ PðΩ;ΨÞ
�
; ð11Þ

where we have defined

PðΩ;ΨÞ≡ e4ΩUðΩ; ~TÞ − φ2ðΩ; ~TÞ ~T
þ e4ΩLmðe2Ω ~gμν;ΨÞ: ð12Þ

This function comprises all the matter sector terms
including couplings to the conformal mode Ω.
Notice that the conformal mode appears with no
derivatives and only the matter fields Ψ will enter
with derivatives in P. In the standard case, the
energy-momentum tensor will depend upon both
the matter fields and their first derivatives.4 Hence,
the above action with these kinds of functions
fðR; TÞ will generically avoid the Ostrogradski
instability except for some pathological cases such
as scenarios in which, for instance, expression (4) is
not invertible or equation (10) cannot be solved for
φ2 and therefore this construction fails. The ex-
pression (11) also tells us that, for the case of scalar
fields, the resulting Lagrangian term P in (11) will
resemble that of K-essence models, and the stability
conditions can then be obtained in an analogous
manner to fðR;LmÞ theories as is done in Ref. [4].
It is important to keep in mind that, even though
these theories can generically avoid the Ostrogradski
instability, they can still have instabilities of a
different nature around specific backgrounds.

(iii) General fðR; T; RμνTμνÞ case: Let us now return
to the general case of universally nonminimally
coupled Lagrangians of the form fðR; T; RμνTμνÞ
as given in (6). In this case, we can see the
appearance of two types of problematic terms. They
can be more easily identified by rewriting the action
(6) as

S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
ÛðΩ; ~T;φ3Þ

−
1

16πG
ð ~R − 6~gαβ∂αΩ∂βΩÞ

− e−2Ωφ3½ ~Rμν
~Tμν − ð2 ~Tμν þ ~T ~gμνÞ ~∇μ

~∇νΩ

þ 2ð ~Tμν − ~T ~gμνÞ ~∇μΩ ~∇νΩ�

þe4ΩLmðe2Ω ~gμν;ΨÞ
�
; ð13Þ

where, in the very same manner as for the fðR; TÞ
case, we have integrated out the auxiliary field φ2 by
using its own equation of motion and we have
rearranged terms including φ2 in ÛðΩ; ~T;φ3Þ≡
e4ΩU − φ2ðΩ; ~T;φ3Þ ~T. With the action expressed
in this form, we can clearly identify therein two
potential stability problems that we describe in the
following:
(1) On the one hand, there are terms with second-

order derivatives of the conformal mode of the
form Kμν ~∇μ

~∇νΩ where Kμν contains first deriv-
atives of the matter fields. Therefore, this term
will lead to higher-order equations of motion
and, thus, the propagation of additional degrees
of freedom which will correspond to unstable
Ostrogadski modes. As we will discuss below in
more detail, there are cases in which the
structure of Kμν makes it possible to avoid
higher-order equations of motion. This opens
the possibility of having consistent theories of
the discussed type, but the universal validity of
theories with nonminimal couplings must be
abandoned, as we will see later. For instance, we
shall show how standard vector field theories do
lead to Ostrogradski modes.

(2) On the other hand, there is also a nonminimal
coupling of the Ricci tensor to the energy-
momentum tensor which might be the origin
of additional instability problems. In particular:
(a) For a fixed curved background, this coupling

will modify the kinetic term of the matter
field and could turn it into a ghost (and/or
other type of instabilities) due to the non-
definite signature of the Ricci tensor.

(b) For dynamical gravitational fields, these
nonminimal couplings will generally intro-
duce additional propagating degrees of free-
dom associated with higher-order equations
of motion with the corresponding Ostrog-
radski instability. Again in this case, for
specific types of matter and particular
choices of the function f, these nonminimal
couplings might actually be stable.

4This is so because we are considering matter fields of which
the Lagrangian only depends upon first-order derivatives.
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The two points above are general features of these
theories, but there can be ways of avoiding the
Ostrogradski instabilities. In the general case, we also have
the auxiliary field φ3 that can be integrated out after having
used its equation of motion, given by

e4Ω
∂UðΩ;φ2;φ3Þ

∂φ3

− e−2Ω½ ~Rμν−2 ~∇μ
~∇νΩ

þ2 ~∇μΩ ~∇νΩ− ð2~gαβ∂αΩ∂βΩþ ~□ΩÞ~gμν� ~Tμν ¼ 0.

ð14Þ

Here, one should bear in mind the same subtleties as
discussed after Eq. (10) for the case of φ2. Assuming
again that the above equation can be algebraically solved
for φ3, the solution can be plugged back into the action
(13) to remove the dependence on φ3. To be more
precise, when both φ2 and φ3 are present, the condition
for the solvability of φ2 and φ3 in terms of their own
equations of motion is given by the nondegeneracy of the
matrix ∂2U=∂φi∂φj with i; j ¼ 2; 3. In other words, this
will be the condition for such fields to be actual auxiliary
fields and not Lagrange multipliers. This condition is
actually linked to the condition for the validity of the
Legendre transformation of the original action because
one can easily show that

∂2U
∂φi∂φj

¼ −
� ∂2f
∂χi∂χj

�−1
ð15Þ

again, for i; j ¼ 2; 3. The fact that φ3 is an auxiliary field
will be a crucial obstruction for the stability of the theory
as we shall exemplify below in the subsequent sections.
In fact, this shortcoming will motivate the use of
gravitational Lagrangians that are linear in RμνTμν so
that the system (4) is degenerate and φ3 cannot be
defined as an auxiliary field. This will make contact with
Horndeski-type interactions because, provided that φ3 is
not really an auxiliary field that needs to be integrated
out, we see from (14) that the potentially dangerous term
for the conformal factor is linear in the second derivatives
of the conformal mode Ω; i.e., it is of the form
Kμν ~∇μ

~∇νΩ where Kμν only depends on derivatives of
the matter fields. Thus, it is a general result that, provided
Kμν does not contain time derivatives,5 the field equations
are actually second order. Consequently, the Ostrogradski
instability is avoided. For this purpose, it is crucial that
φ3 is not an auxiliary field since, otherwise, even if the
structure of Kμν ~∇μ

~∇νΩ is correct, after integrating out

φ3, the avoidance of the Ostrogradski instability will be
compromised.
Upcoming sections shall in fact be devoted to better

explaining and illustrating the aforementioned general
statements when applied to specific choices of the matter
Lagrangian, in particular to scalar and vector fields.

III. CANONICAL SCALAR FIELD

To clarify the general discussion performed in the
previous section, we shall focus here on a setup where
the matter sector is given by a scalar field. Thence, we start
by considering the simplest case of a canonical scalar field,
and we will make contact with Horndeski-type interactions
to guarantee the avoidance of the Ostrogradski instability.
Thus, the matter Lagrangian will be given by

Lm ¼ Lϕ ¼ 1

2
∂μϕ∂μϕ − VðϕÞ; ð16Þ

with VðϕÞ the potential of the scalar field. The correspond-
ing energy-momentum tensor for the scalar field is

Tμν ¼ ∂μϕ∂νϕ − gμνLϕ; ð17Þ
and the trace of the energy-momentum tensor and the
contraction RμνTμν provide

T ¼ −ð∂ϕÞ2 þ 4VðϕÞ;
RμνTμν ¼ Gμν∂μϕ∂νϕþ RVðϕÞ; ð18Þ

with the usual definition for the Einstein tensor Gμν ≡
Rμν − 1=2gμνR and where we have used the notation
ð∂ϕÞ2 ≡ ∂μϕ∂μϕ. Once the arguments of the gravitational
Lagrangian have been expressed in terms of the scalar field,
action (1) will take the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR;−ð∂ϕÞ2 þ 4VðϕÞ; Gμν∂μϕ∂νϕ

þ RVðϕÞÞ þ Lϕðgμν;ϕÞ� ð19Þ

so that we obtain a nonminimally coupled theory with
derivative couplings of the scalar field to the Ricci
curvature. As it is well known, this type of couplings leads
to higher-order equations of motion, and consequently they
generally suffer from the Ostrogradski instability [13]. This
instability is actually present in general theories containing
arbitrary contractions of the Riemann tensor, the fðRÞ
theories being an exceptional case in which the presence of
constraints removes the unstable dynamical degree of
freedom6 as explained in the previous section.

5Actually, if Kμν only depends on Ω, even if it contains time
derivatives, the equations of motion are second order. See the
Supplemental Material [39] for more details.

6This fact is a consequence of the degeneracy of the trans-
formation to canonical variables, which is a crucial step in the
Ostrogradski construction [13].
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The usual approach to avoid this instability a priori
consists of building actions leading to second-order equa-
tions of motion. For instance, in a purely gravitational
context, such actions are given by the Lovelock invariants,
which in four dimensions reduce to a cosmological
constant, the Ricci scalar, and the Gauss–Bonnet
term, the latter being a topological invariant. In this realm,
in the context of scalar-tensor theories, the analogous
Lagrangians with second-order equations of motion were
obtained by Horndeski [16]. The appropriate gravitational
Lagrangian can be written as a sum of the four terms

L2 ¼ Kðϕ; XÞ; ð20Þ

L3 ¼ G3ðϕ; XÞ□ϕ; ð21Þ

L4 ¼ G4ðϕ; XÞR
−G4;Xðϕ; XÞ½ð□ϕÞ2 − ð∇μ∇νϕÞ2�; ð22Þ

L5 ¼ G5ðϕ; XÞGμν∇μ∇νϕþ 1

6
G5;Xðϕ; XÞ½ð□ϕÞ3

− 3ð□ϕÞð∇μ∇νϕÞ2 þ 2ð∇μ∇νϕÞ3�; ð23Þ

where X ≡ 1
2
∂μϕ∂μϕ, K, and G3;4;5 are arbitrary functions

of ϕ and X and the subindex ; X refers to the derivative with
respect to X. Therefore, to avoid the Ostrogradski insta-
bility for the theories considered in (1), it is sufficient to
guarantee that the action lies within the aforementioned
Horndeski theories either for the original form of the action
or in the multiscalar representation. Notice that in the
multiscalar representation we will eventually have two
scalar fields (the matter scalar field plus the conformal
mode), so the considered actions will actually be more
general than the above Horndeski terms. We clearly see that
this requirement will extremely constrain the permitted
form of the gravitational Lagrangians fðR; T; RμνTμνÞ. We
should stress here that, while the Horndeski terms are the
most general ones explicitly leading to second-order
equations of motion, they are not the most general theories
that propagate one spin-2 plus one spin-1 fields. A more
general class of theories has been shown to propagate
exactly the same degrees of freedom as the Horndeski terms
even though the equations are of a higher order [18]. The
reason can be traced to the existence of hidden constraints
that reduce the required number of boundary conditions.
Some terms within that class of theories can actually be
related to some Horndeski terms by means of a general
disformal transformation [19].

A. Preservation of second-order field equations

Wewill first look for conditions on the function f so that
the theory contains no higher than second-order equations
of motion in its original form. This will guarantee that
neither the gravitational sector nor the matter sector will

propagate more degrees of freedom than it corresponds to a
massless graviton plus one scalar field (or, in other words,
the conformal mode is not excited). In the next subsection,
we will drop this condition to let the conformal mode
propagate as well, and we will find conditions for the
absence of the Ostrogradski instabilities also in that case.
From the form of the Horndeski Lagrangians, one can a

priori infer that curvature-scalar field couplings need to be
linear in the curvature according to L4;5 to maintain the
second-order nature of the field equations. This linearity in
the curvature implies a first stringent constraint on the
function f, which consequently needs to be of the form

fðR; T; RμνTμνÞ ¼ f1ðTÞRþ f2ðTÞRμνTμν þ f3ðTÞ; ð24Þ

for arbitrary functions f1;2;3ðTÞ. Of course this is not the
most general case free from the Ostrogradski instability
because it is well known that higher-order terms in
derivatives can lead to stable field equations provided
they correspond to the special class of degenerate theories.
For instance, we could have added an arbitrary function of
the Ricci scalar in (24) or considered more general scalar-
tensor interactions as commented above, without introduc-
ing this instability. Let us also remember that f3ðTÞ is in
fact a function of X and ϕ and therefore lies in L2.
For our scalar field scenario with the result in (18) and

the form for the function f given in (24), the corresponding
action becomes

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½ðf1ðTÞ þ f2ðTÞVÞR

þ f2ðTÞGμν∂μϕ∂νϕþ f3ðTÞ þ Lϕ�; ð25Þ

with f1;2;3 functions only of T ¼ −2X þ 4VðϕÞ. Now, we
want to obtain further constraints on f1;2 so that the action
can be mapped into Horndeski-like terms. The absence of
terms of the type ð∇∇ϕÞ3 in (25) suggests that f2 should be
a function of ϕ only and not of X. However, f2 is a function
of the energy-momentum tensor trace T ¼ −2X þ 4VðϕÞ
so that it also explicitly depends upon X. Consequently, the
only possibility left is that f2 is simply a constant. Thus, the
only remaining arbitrary function would be f1ðTÞ.
Nonetheless, this function is not arbitrary either since, if
(25) is required to be Horndeski-like, the only way the first
term in (25) can be mapped to G4 is for f1 þ f2V being
solely a function of ϕ, which, analogously to the reasoning
used for f2, leads one to conclude that f1 also needs to be a
constant. Therefore, the requirement explicitly guarantee-
ing second-order field equations in fðR; T; RμνTμνÞ theo-
ries with a standard scalar field as the matter sector leads to
actions of the form
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ðc1 þ c2VðϕÞÞR

þ 1

2
ðgμν þ c2GμνÞ∂μϕ∂νϕ − VðϕÞ þ f3ð−2X þ 4VÞ

�

ð26Þ

with c1;2 some constants,7 One can now immediately
identify the different terms in the above action with the
corresponding Horndeski Lagrangians with

G2 ¼
1

2
gμν∂μϕ∂νϕ − VðϕÞ þ f3ð2X þ 4VðϕÞÞ;

G3 ¼ 0;

G4 ¼ c1 þ c2VðϕÞ;
G5 ¼ −c2ϕ; ð27Þ

where we have used that, via integration by parts,
Gαβ∂αϕ∂βϕ → −ϕGαβ∇α∇βϕ. For a scalar field without
potential, i.e., with a shift symmetry ϕ → ϕþ c with c a
constant, the first term in (26) simply renders the Einstein–
Hilbert term (and we should identify c1 ≡ −ð16πGÞ−1),
whereas the last term gives a contribution in the form of a
K-essence term. If we further set f3 ¼ 0, then we end up
with a nonminimally derivatively coupled scalar field of
which the nonminimal coupling is to the Einstein tensor.
This simplified case was explored in Ref. [40] as a model of
inflation, and in Ref. [41] black-hole solutions were
obtained. The nonminimal derivative coupling to the
Einstein tensor also arises in the covariantization of the
decoupling limit of massive gravity [42]. Thus, these
models can be regarded as specific cases of the general
fðR; T; RμνTμνÞ theories where the function is subject to be
simply f ¼ RμνTμν or, in other words, the derivative
coupling to the Einstein tensor can be alternatively seen
as a coupling of the Ricci tensor to the energy-momentum
tensor of the scalar field.

B. Multiscalar-tensor representation analysis

Let us now consider more general actions by using the
multiscalar representation for the canonical scalar field
studied above; i.e., we will now let the conformal mode be
excited. This approach will enable us to detect and identify
the instabilities that fðR; T; RμνTμνÞ Lagrangians may
suffer for more general models with field equations beyond
second order. Equivalently, this procedure will allow us to
find general actions with higher-order field equations that
are actually healthy in a similar manner to fðRÞ theories.
Before proceeding, a subtlety should be remarked upon at

this stage: as we can see from (18), the couplingRμνTμν will
also generate a coupling between the scalar field potential
and the Ricci scalar VðϕÞR. Therefore, after performing the
conformal transformation, the definition of the conformal
mode needs to be modified to Ω≡ log 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16πGðφ1þVðϕÞφ3Þ
p .

After taking this into account, the action becomes8

S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
ÛðΩ; ~T;φ3Þ −

1

16πG
½ ~R − 6ð∂ΩÞ2�

− φ3½ ~Gμν∂μϕ∂νϕþ 2ð∂μΩ∂μϕÞ2 þ ð∂ΩÞ2ð∂ϕÞ2

þ 2ð~gμνð∂ϕÞ2 − ∂μϕ∂νϕÞ ~∇μ
~∇νΩ�

�
: ð28Þ

In this case, the last expression explicitly shows why the
fact that φ3 is an auxiliary field will be problematic.
Although the terms in brackets in the second line of the
above expression provide the appropriate structure in order
to guarantee second-order equations of motion, one will in
general generate potentially dangerous terms again after
integrating φ3 out. For instance, for a theory with second
derivatives of a scalar field (the conformal mode in our
case), one typically needs the second derivatives to appear
linearly, as it happens in (28). However, after integrating φ3

out, such second derivatives will enter nonlinearly in the
action, thus spoiling the required structure. A loophole in
this conclusion occurs for a Lagrangian f with a linear
dependence on the argument RμνTμν. In such a case, the
auxiliary field φ3 cannot be defined, and the resulting
action would read

S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
ÛðΩ; ~T;φ3Þ −

1

16πG
½ ~R − 6ð∂ΩÞ2�

− α½ ~Gμν∂μϕ∂νϕþ 2ð∂μΩ∂μϕÞ2 þ ð∂ΩÞ2ð∂ϕÞ2

þ 2ð~gμνð∂ϕÞ2 − ∂μϕ∂νϕÞ ~∇μ
~∇νΩ�

�
ð29Þ

with α a constant parameter. The potentially dangerous
terms are in the second line of the above expression. The
nonminimal coupling of the field ϕ is to the Einstein tensor
and multiplied by a function of only Ω and not its
derivatives. Therefore, this coupling will be of the
Horndeski form. The other term that can potentially lead
to higher-order equations of motion is the coupling of ϕ to
the second derivatives of Ω. However, this is also a safe
interaction because the tensor structure of Kμν ≡
~gμνð∂ϕÞ2 − ∂μϕ∂νϕ is such that K00 does not contain
any time derivatives and this guarantees that the field

7The curly brackets after f3 must be understood as the
argument of f3 since T ¼ −2X þ 4V in this case according to
(18).

8In the expression (28), it must be understood that indices are
now raised and lowered with the metric ~gμν. For instance,
ð∂ΩÞ2 ≡ ~gαβ∂αΩ∂βΩ.
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equations will be second order (see the Supplemental
Material [39] for more details).

IV. K-ESSENCE THEORIES

After studying in detail the case of a canonical scalar
field, let us move on to a more general case in which the
action for the scalar field is given by a K-essence model,
i.e., the matter Lagrangian now reads

Lm ¼ LK ¼ Kðϕ; XÞ; ð30Þ

where Kðϕ; XÞ is an arbitrary function of its arguments.
The previous case for a canonical scalar field corresponds
to the particular case Kðϕ; XÞ ¼ X − VðϕÞ. We will pro-
ceed in a similar manner as the preceding section, and, in
addition, to obtain constraints on the gravitational action f,
we will obtain conditions on K. However, here we will aim
to show that the freedom in the choice for the function
Kðϕ; XÞ allows us more general functions fðR; T; RμνTμνÞ.
The relevant quantities in this case are given by

Tμν ¼ K;X∂μϕ∂νϕ − gμνK; ð31Þ

T ¼ 2K;XX − 4K; ð32Þ

RμνTμν ¼ K;XGαβ∂αϕ∂βϕþ RðK;XX − KÞ; ð33Þ

where we can start to see the role that the form of the
K-function and its dependence on X might play in the
coupling terms. In particular, we see that the coupling
RμνTμν generates a derivative interaction with the Ricci
scalar in addition to the nonminimal coupling to the
Einstein tensor that we obtained in the canonical scalar
field case. In fact, this might be the origin of pathologies for
general K-essence models. The general action will take the
form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ffðR; 2K;Xgμν∂μϕ∂νϕ − 4KðX;ϕÞ;

2K;XGαβ∂αϕ∂βϕþ R½K;XX − Kðϕ; XÞ�Þ þ Kðϕ; XÞg:
ð34Þ

Analogously to the scheme in the previous section, we
will look for conditions to be imposed on the function f so
that the theory does not lead to higher than second-order
equations of motion in its original form. Again, for the
action to be of the Horndeski type, the nonminimal
coupling must be linear in the curvature, and therefore
the function f should also be linear in R and RμνTμν. After
imposing such restrictions, the action (34) simply reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½f1ðTÞRþ f2ðTÞ þ f3ðTÞRμνTμν

þ Kðϕ; XÞ�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p f½f1ðTÞ þ f3ðTÞðK;XX − KÞ�R

þ f2ðTÞ þ f3ðTÞK;XGμν∂μϕ∂νϕþ Kðϕ; XÞg; ð35Þ

with T given by (32). A reasoning similar to the one below
(25) allows us to establish that f3K;X should be a function
of ϕ only and not of X, i.e.,

∂Xðf3K;XÞ ¼ 0; ð36Þ
so that f3K;X ¼ g1ðϕÞ. Again, proceeding analogously to
the reasoning below (25), we can also conclude that
f1ðTÞ þ f3ðTÞðK;XX − KÞ should also be a function of
only ϕ. Now, if we combine these two conditions, we
finally obtain that the equation

∂X½f1ðTÞ þ g1ðϕÞX − f3K� ¼ 0 ð37Þ
must be filled, which, by using that ∂Xfi ¼ 2f0iðK;XXX −
K;XÞ for i ¼ 1; 3, can be expressed as

2ðf01 − f03KÞXK;XX − 2ðf01 þ f3ÞK;X þ f03ðK2Þ;X ¼ −g1;

ð38Þ

where primes denote a derivative with respect to the
argument (T in this case). We see that for the canonical
scalar field, for which K ¼ X − VðϕÞ, the above conditions
imply that f1 and f3 can only depend on ϕ so that, being
functions of T, this is only possible if they are indeed
constant functions, in agreement with our previous result.
In the present case, however, the freedom in the choice of
the function Kðϕ; XÞ allows for more general cases,
provided Eq. (36) together with (38). For instance, a
straightforward generalization of the canonical scalar field
is to impose K;XX ¼ 0 or, more explicitly, a model with

Kðϕ; XÞ ¼ hðϕÞX − VðϕÞ; ð39Þ

where hðϕÞ and VðϕÞ are arbitrary functions of the scalar
field. According to (36), this condition also implies that f3
must be a constant, and, additionally, Eq. (38) further
imposes that f1 also needs to be a constant. Notice that for
this particular case we have that K;XX − K ¼ VðϕÞ, and
therefore all the nonminimal derivative couplings in the
action are through the functions f1ðTÞ and f3ðTÞ, as in the
canonical scalar field case. Thus, our action for (39) with f1
and f3 constants will adopt the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fĝðϕÞRþ ĥðϕÞGμν∂μϕ∂νϕþ K̂ðϕ; XÞg;

ð40Þ
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where ĝðϕÞ ¼ f1 þ f3gðϕÞ, ĥðϕÞ ¼ f3hðϕÞ and
K̂ðϕ; XÞ≡ f2ðTÞ þ Kðϕ; XÞ. One can now easily verify
that this action is of the Horndeski type with

G2 ¼ K̂ðϕ; XÞ;
G3 ¼ 0;

G4 ¼ ĝðϕÞ;
G5 ¼ −ĥðϕÞϕ: ð41Þ

We will not explore more general models here, but we will
stress that for any choice of nonminimal couplings, i.e.,
given f1ðTÞ and f3ðTÞ, the conditions expressed in (36)
and (38) will impose tight constraints on the possible form
of Kðϕ; XÞ. Analogously, inverting the argument, given a
function Kðϕ; XÞ, said conditions will strongly limit the
allowed functions f1ðTÞ and f3ðTÞ. As a final comment, let
us remember that our aim here was to obtain theories with
second-order equations of motion, so our conditions will be
sufficient to avoid the Ostrogradski instability, but models
free from such instabilities might also exist. Finally, one
could also allow for models where the conformal mode can
be excited in a healthy way within the context of K-essence
models by going to the multiscalar representation of the
theory. In such a formulation, analogous equations might
be obtained relating the possible forms of the functions
f and K to avoid the Ostrogradski instability for the
conformal mode.

V. VECTOR FIELDS

In the preceding sections, we have considered a scalar
field as our matter Lagrangian. Let us now consider the
case of a massive vector field of which the Lagrangian is
given by

Lm ¼ −
1

4
FμνFμν þ 1

2
M2A2; ð42Þ

with Fμν ≡ ∂μAν − ∂νAμ and M the mass of the field.
Consequently, the energy-momentum tensor reads

Tμν ¼ −FμαFν
α þ 1

4
gμνF2 −

M2

2
gμνA2 þM2AμAν; ð43Þ

of which the trace and contraction with the Ricci scalar
become, respectively,

T ¼ −M2A2; ð44Þ

RμνTμν ¼ 1

4
ðRFμνFμν − 4RμνFμαFν

αÞ þ
1

4
RF2

þM2GμνAμAν: ð45Þ

As expected, the trace T vanishes for the case of a massless
vector field as it corresponds to a conformally invariant
theory. Along the very same line of reasoning as discussed
in the previous section for the scalar field case, these
theories will typically contain the Ostrogradski instability
arising from the nonminimal coupling of the vector field
with the scalar curvature.
In principle, one could also attempt to obtain the corre-

sponding Hordenski vector-tensor interaction. In this case,
however, the allowed interaction between the Faraday tensor
Fμν and the Ricci curvature are much more restricted, and in
fact there is a unique coupling between them that leads to
second-order equations of motion. Such a coupling was
already computed by Horndeski [43], and it is given by

LαβγδFαβFγδ ¼ RFμνFμν − 4RμνFμσFν
σ

þ RμναβFμνFαβ; ð46Þ

whereLαβγδ ¼ − 1
2
ϵαβμνϵγδρσRμν ρδ stands for the double dual

Riemann tensor. The cosmology of this type of interaction
was studied in Ref. [44], and its stability was thoroughly
analyzed in Ref. [45]. A careful comparison between (45)
and (46) shows that only the first two terms in the right-hand
side of (46) appear in (45), but the last one in (46) is absent.
Thus, one is led to infer that for both massive and massless
vector fields actions of the form (1) cannot lead to second-
order equations of motion. It should be noticed that kinetic
interactions involving second derivatives of the vector field
as those considered in Ref. [46] cannot appear because of the
gauge invariance of the kinetic term in the Proca action.
Let us also show for completeness the multiscalar

representation for the vector field just studied. After
performing the redefinitions introduced in Sec. II, the
action (6) becomes

S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
e4ΩÛ −

1

16πG
½ ~R − 6ð∂ΩÞ2� − φ3M2 ~GμνAμAν − φ3e−2Ω

�
1

4
~F2 ~R − ~Rμν

~Fμα ~Fν
α

�

þ 2φ3

�
e−2Ω

�
1

4
~F2 ~gμν − ~Fμα ~Fν

α

�
−M2ð ~A2 ~gμν − ~Aμ ~AνÞ

�
~∇μ

~∇νΩ

− 2φ3

�
e−2Ω

�
1

4
~F2 ~gμν − ~Fμα ~Fν

α

�
þM2ð ~A2 ~gμν þ ~Aμ ~AνÞ

�
~∇μΩ ~∇νΩþ e4ΩLmðe2Ω ~gμν; ~AÞ

�
; ð47Þ
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where ~F2 ≡ ~FμνFμν, ~Fμν ≡ ~gμα ~gνβFαβ, and ~Fμ
ν ≡ ~gμαFαν.

Here again, one can identify the instability problems
discussed above. Again, as it happened for the scalar field
case, the fact that φ3 is an auxiliary field will typically lead
to undesired terms even if the structure of the couplings of
the vector field, curvature, and the conformal mode are
appropriate. However, for theories linear in RμνTμν, φ3

appearing in (47) will not be an auxiliary field but a simple
constant parameter. We will assume this in the following
discussion.
The first problem with the vector field could have arisen

from the direct coupling of Aμ to the scalar curvature since
such couplings usually introduce additional modes asso-
ciated with an extra propagating degree of freedom for the
vector field. However, for the simple case of a Proca field,
the direct coupling to the curvature happens through the
Einstein tensor, which guarantees the absence of such an
extra mode. This can easily be seen by resorting to the
Stueckelberg trick, i.e., if we consider the purely longi-
tudinal mode Aμ ¼ ∂μθ. Such a mode will couple to the
Einstein tensor precisely in the form required to be of the
Horndeski form, and therefore it will not introduce any
additional modes. This kind of interaction was studied in
Ref. [47] as a nonminimal coupling to the electromagnetic
field that could serve as a mechanism to generate magnetic
fields from neutral but rotating bodies. It also arises in a
natural manner within the context of Weyl geometries [48].
Another problem with the above action is the derivative

nonminimal coupling, i.e., the coupling between Fμν and
the curvature. Again, this is not of the Horndeski vector-
tensor type of interaction, and thus it will lead to higher-
order equations of motion with the Ostrogradski instability.
This would be enough to prove the instability of these
theories in curved backgrounds. However, also the
coupling of the conformal mode to Fμν is pathological.
Such a coupling possesses a structure of the form
e2ΩðFμαFν

α − 1
4
F2 ~gμνÞ ~∇μ

~∇νΩ. If we focus on second time

derivatives, we find ð1=2F0iF0i − 1=4FijFijÞ ~∇0 ~∇0Ω that
will lead to higher-order equations of motion due to the
presence of the F0iF0i term.
We can conclude that gravitational theories described by

fðR; T; RμνTμνÞ lead to Ostrogradski instabilities in a very
general manner when coupled to vector fields. We therefore
find it reasonable to abandon the universality of the
nonminimal couplings of these theories and consider them
only for specific forms of the matter sector, e.g., a certain
class of scalar fields, for which the instabilities can be
avoided.

VI. PARTICULAR MODELS

In this section, we shall illustrate our general discussions
with specific examples of the gravitational theories under
study. We will choose the models so we can explicitly see
some of the points raised above. For simplicity, in the

following, we will consider a canonical scalar field as
corresponding to the matter Lagrangian.

A. Model I: f ðR;T;RμνTμνÞ ¼ αRn þ βðRμνTμνÞm
We start by considering a superposition of two power

laws so that the action takes the form

SI ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
αRn þ βðGμν∂μϕ∂νϕþ RVðϕÞÞm

−
1

2
ð∂ϕÞ2 − VðϕÞ

�
: ð48Þ

The definitions for the auxiliary fields φi ¼ − ∂f
∂χi in this

case yield φ1 ¼ −nαχn−11 and φ3 ¼ −mβχm−1
3 . We see that

the condition for the invertibility of these relations is thatm
and n are different from 1, i.e., whenever the dependence
on R and RμνTμν is not linear. In the case of n ¼ m ¼ 1, the
theory is stable because we simply have the Einstein–
Hilbert term plus a canonical scalar field with a nonminimal
derivative coupling to the Einstein tensor, which, as
discussed several times throughout this work, corresponds
to a healthy coupling. Moreover, even for n ≠ 1, the theory
will be free of Ostrogradski instabilities. To see this more
clearly, it is convenient to go to the multiscalar representa-
tion. After the appropriate conformal transformation, our
action for arbitrary n and m ¼ 1 reads

SI ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
e4ΩUðΩÞ − 1

16πG
½ ~R − 6ð∂ΩÞ2�

− β½ ~Gμν∂μϕ∂νϕþ 2ð∂αΩ∂αΩÞ2 þ ð∂ΩÞ2ð∂ϕÞ2
þ 2ð~gμνð∂ϕÞ2 − ð∂μϕ∂νϕÞÞ ~∇μ

~∇νΩ�

þ e4ΩLmðϕ; e2Ω ~gμνÞ
�
: ð49Þ

Here again, we see that the conformal mode couples to the
scalar field in the appropriate way not to lead to higher-
order equations of motion, and the derivative nonminimal
coupling of the scalar field ϕ belongs to the Horndeski
type. Therefore, for this case, the theory avoids the
Ostrogradski instability. However, for arbitrary m, the
coupling RμνTμν will spoil the nice structure of the above
equation, and therefore the Ostrogradski instability will
reappear. A particular case with n ¼ 1 and arbitrary m is a
special case that we treat in more detail in the next
subsection.

B. Model II: f ðR;T;RμνTμνÞ ¼ − R
16πG þ βðRμνTμνÞm

This is a particular case of the class of models above with
n ¼ 1. This case is special because the auxiliary field φ1

that is usually mapped into the conformal mode cannot be
defined due to the noninvertibility of the Legendre trans-
formation for χ1. Thus, we can only introduce the field χ3,
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and it is related to φ3 by −φ3 ¼ −mβχm−1
3 . Again, for

m ¼ 1, this transformation is not invertible and must be
treated separately (see the end of this section). The action in
terms of the auxiliary fields now yields

SII ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Uðφ3Þ −

�
1

16πG
þ φ3VðϕÞ

�
R

− φ3Gμν∂μϕ∂νϕþ Lmðϕ; gμνÞ
�
; ð50Þ

with Uðφ3Þ ¼ βð1 −mÞð−φ3

mβ Þ
m

m−1. Accordingly, we can see
that the conformal mode will still be excited, but now it will
be originated from the auxiliary field φ3. Therefore, the
auxiliary field φ3 will disappear from the action after
performing the conformal transformation. In fact, the
required conformal factor is now given by φ3 ¼ e−2Ω−1

16πGVðϕÞ,
and the resulting action reads

SII ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
e4ΩUðΩ;ϕÞ − 1

16πG
ð ~Rþ 6ð∂ΩÞ2Þ

þ 1 − e−2Ω

16πGVðϕÞ ½
~Gμν∂μϕ∂νϕþ 2ð∂αΩ∂αϕÞ2

þ ð∂ΩÞ2ð∂ϕÞ2 þ 2ð~gμνð∂ϕÞ2 − ∂μϕ∂νϕÞ ~∇μ
~∇νΩ�

þ e4ΩLmðϕ; e2Ω ~gμνÞ
�
; ð51Þ

where we can see that all the interactions containing
second-order derivatives have the appropriate form to avoid
higher-order equations of motion. Thus, even though the
starting action is not linear in RμνTμν, the fact that it is linear
in the scalar curvature makes the theory free from
Ostrogradski instabilities. The underlying reason, as we
have shown, is that one cannot define the auxiliary field φ1,
and this actually ensures that it is the auxiliary field φ3 that
is the one that will be mapped into the conformal mode, and
therefore it will not be present in the final action after the
conformal transformation.
The case with m ¼ 1 was studied in Ref. [12] and

corresponds to the particular model described by the action

SII ¼
Z

d4x
ffiffiffiffiffiffi
−g

p f½1þ αVðϕÞ�Rþ αGμν∂μϕ∂νϕ

þ Lmðϕ; gμνÞg; ð52Þ

where we see that the theory belongs to the Horndeski class
for the scalar field ϕ and the conformal mode is not excited.

C. Model III: f ðR;T;RμνTμνÞ ¼ αRð1þ βRμνTμνÞ case
Now, we will consider a slightly more involved model in

which the different arguments of the function f appear
mixed. The field redefinition from the fields χi to the fields
φi is given (notice that we only have χ1 and χ3 but not χ2

because there is no dependence on T in the action): φ1 ¼
−αð1þ βχ3Þ and φ3 ¼ −αβχ1. This field redefinition is
actually an injective transformation for α ≠ 0 and β ≠ 0 so
that it is perfectly valid. Moreover, notice that the matrix
∂2f=∂χi∂χj has determinant detð∂2f=∂χi∂χjÞ ¼ −ðαβÞ2,
which is nonvanishing, and therefore the Legendre trans-
formation is legitimate. After introducing the auxiliary
fields φi, the action reads

SIII ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Uðφ1;φ3Þ − ðφ1 þ φ3VðϕÞÞR

− φ3Gμν∂μϕ∂νϕ� ð53Þ

with Uðφ1;φ3Þ ¼ φ3χ3 ¼ − 1
β φ3ð1þ 1

α φ1Þ. We see in this
case that both φ1 and φ3 appear linearly, so they could be
seen as Lagrange multiplier fields. However, since
∂2U=∂φi∂φj is a nondegenerate matrix (which coincides
with the inverse of −∂2f=∂χi∂χj, as we explained above),
the equations of motion for φ1 and φ3 actually allow us to
algebraically solve them, so they are indeed auxiliary fields.
This will be the main obstruction for the stability of this
theory because that will make the term Gμν∂μϕ∂νϕ appear
nonlinearly in the action, and therefore the Ostrogradski
instability will be present. Notice also that the conformal
mode will be excited and can be associated with φ1 so that
we do not encounter the situation that allowed us to assure
the stability of model II in which the field φ3 could be used
to excite the conformal mode and therefore disappeared
from the transformed action.

VII. CONCLUSIONS

In this work, we have considered a class of universal
nonminimally coupled theories of gravity in which
the nonminimal coupling is achieved through couplings
of the energy-momentum tensor of the matter sector to the
curvature; i.e., the gravitational Lagrangian is of the form
fðR; T; RμνTμνÞ. These theories have received some atten-
tion in recent literature and might offer interesting cosmo-
logical applications. The aim of this work has been to
clarify some issues concerning the consistency and stability
of such theories. First of all, we discussed the fact that the
energy-momentum tensor appears at the level of the action,
and this might pose consistency problems since the energy-
momentum tensor is a quantity to be derived from the
action. Another way of expressing the potential incon-
sistency is that the energy-momentum tensor is the con-
served current associated with infinitesimal translations.
However, if plugged back in the action, this statement is no
longer true, and, in fact, such a quantity will not be
conserved anymore. As we argued in Sec. II, for the
considered theories, the object entering the action is not
really the conserved energy-momentum tensor and should
be regarded simply as an operational manner to define the
theory.
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Second, another potential problem with these theories is
the presence of second-order derivatives in the Lagrangian
that will typically lead to higher-order equations of motion
with the associated Ostrogradski instability. The study of
this issue has comprised the majority of this work. We have
first shown the problem for a general matter Lagrangian.
Moreover, we have also allowed for cases in which the
conformal mode can also be excited. We have found two
sources from which the Ostrogradski might appear. The
first one is the generation of derivative nonminimal
couplings of the matter fields to curvature, while the
second one corresponds to the conformal mode entering
with second derivatives in the action. After presenting the
general framework to analyze the presence of Ostrogradski
instabilities for these types of theories, we considered
specific cases for the matter sector, namely, a canonical
scalar field, a K-essence field, and, finally, a vector field.
For the canonical scalar field, we have found conditions
under which both the scalar field and the conformal mode
lead to second-order equations of motion. For that, we have
imposed that the corresponding terms in the action are of
the Horndeski form, as those are the most general terms for
scalar-tensor theories yielding second-order equations of
motion. However, as we have already commented, those do
not correspond to the most general scalar-tensor theory free
from the Ostrogradski instability so that our results can be
viewed as sufficient conditions, although more general
theories might still be possible. Subsequently to the detailed
analysis for the canonical scalar field case, we have
considered general K-essence models. In these theories,
the presence of one extra free function opens new possibil-
ities. Thus, we have obtained the conditions to avoid higher-
order equations of motion for general K-essence models.
Finally, after studying the case of scalar fields, we

have considered the case of a Proca vector field. Unlike

the scalar field case, we have found that it is not possible
to obtain viable models free from the Ostrogradski
instability. This led us to conclude that the universal
nature of the nonminimal coupling should be abandoned
because, although it is possible to obtain stable models
for scalar fields, it is troublesome to have couplings to
vector fields.
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