PHYSICAL REVIEW D 91, 103537 (2015)
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We consider an infrared truncated massless minimally coupled scalar field with a quartic self-interaction
in the locally de Sitter background of an inflating universe. We compute the two-point correlation function
of the scalar at one- and two-loop order applying quantum field theory. The tree-order correlator at a fixed
comoving separation (that is at an increasing physical distance) freezes into a nonzero value. At a fixed
physical distance, it grows linearly with the comoving time. The one-loop correlator, which is the dominant
quantum correction, implies a negative temporal growth in the correlation function, at this order, at a fixed
comoving separation and at a fixed physical distance. We also obtain quantitative results for variance in
space and time of one- and two-loop correlators and infer that the contrast between the vacuum expectation
value and the variance becomes less pronounced when the loop corrections are included. Finally, we repeat

the analysis of the model applying a stochastic field theory and reach the same conclusions.
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I. INTRODUCTION

Quantum field theory (QFT) of the massless, minimally
coupled (MMC) scalar with a quartic self-interaction on a
locally de Sitter background predicts [1-6] several in-
triguing enhanced quantum effects of cosmological inter-
est. A locally de Sitter background provides the simplest
framework for an inflating spacetime. The cosmological
constant A drives inflation in this framework, and the scalar
is just a spectator field. The operation of inflation on the
fluctuating quantum vacuum is to rip virtual particle pairs
out of the vacuum by the Hubble flow before they find time
to annihilate each other. After they emerge from the
vacuum, they become real. As in flat spacetime, particles
with smaller masses persist longer. Any massless particle
which happens to emerge from the vacuum with a suffi-
ciently small wave number k < Ha(t), where H is the
expansion rate, a(f) is the cosmic scale factor, and 7 is
the comoving time, can persist forever [7-9]. However,
the particle production rate is suppressed for conformally
invariant particles. Hence, this quantum effect during
inflation is enhanced for the particles that are classically
conformally noninvariant and effectively massless. The
MMC scalars that we consider in this paper are an example
of such particles.

We computed [1-3] the renormalized vacuum expect-
ation value (VEV) of the stress-energy tensor for the MMC
scalars endowed with a quartic self-interaction during
inflation, at one- and two-loop order. We showed that
the renormalized energy density p,,, and pressure p., of
the scalar violate the classical weak energy condition
p + p >0 on cosmological scales at two-loop order. The
equation of state parameter w = pn/Pren < —1. As a
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result, a phase of superacceleration is induced. This effect,
however, is temporary since the field develops [4] a
growing self-mass squared due to quantum processes
and the particle production is cut off. The induced mass
remains perturbatively small and does not go tachyonic
which ensures the stability of the model [5]. We studied
[10] how such a spectator scalar field might affect the
measured curvature power spectrum A% (k, ) defined in
terms of the Fourier transform of the equal time two-
point correlation function of the derivative stripped three-
curvature scalar field R(z, )

3
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More recently, we computed [6] the one- and two-loop

corrected power spectrum

3
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of the spectator scalar in our model. Correlations in various
scalar potential models during inflation have been studied
[11]. In this paper, we compute the one- and two-loop
corrected two-point correlation function of the spectator
scalar

(Qlp(t.x)p(r. X)), 3)

for # <t and X’ # X, in our model. The bar on top of the
scalar indicates that the ultraviolet modes with comoving
wave number k > Ha are cut off the field. Hence, the IR
modes with H < k < Ha(t) are retained. The IR truncated
field is guaranteed to reproduce the leading IR logarithms
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of scalar potential models in QFT. The advantage of using
@(1,X) is that it is a simple way of recovering the most
important contributions; the disadvantage is that it leaves
out subleading contributions.

Physical wavelengths 4, of the IR modes range from
2z/H to 2za(t)/H. Had the lower limit of the k for the
retained modes been taken to be zero rather than H, the
model would have suffered from IR divergences. To
regulate these divergences we take the spacetime topology
as TP~! x R where the coordinate toroidal radii r' = 27 /H.
Here, the spatial index i = 1,2, ..., (D —1). The VEV of
the field ¢(,x) is zero at any event; hence the VEV of
variation Ap(r,7;x,X') = @(1,X) — (', X') vanishes. We
calculate the nonvanishing variance

(Ql[Ag - (Q|Ap|Q)?|)
= (Ql(49)°|Q). (4)

62A¢(t, 7%, %)

at one- and two-loop order, using the two-point correlation
function we compute in this paper. We also examine the
stochastic properties of the IR truncated scalar in the same
model repeating the computations in the context of sto-
chastic field theory (SFT) which is known to be successful
in recovering the most important secular effects [12] in
inflationary QFT. Stochastic formulations of inflation have
also proven useful in studying initial conditions [13], global
structure [14], non-Gaussianity [15], power spectrum of
a spectator scalar [16], and conditions for eternal infla-
tion [17]. Starobinsky developed [18] a stochastic
formalism which reproduces the leading IR logs at each
order in perturbation theory in scalar potential models.
Starobinsky’s formalism has recently been extended
[19-21] to include scalars which interact with fermions
[22] and with gauge particles [23], but the inclusion of
derivative interactions such as those of quantum gravity
[24] and the nonlinear sigma model [25,26] is a major
unsolved problem. In this paper, we use the SFT approach
of Ref. [27] where the annihilation and creation operators in
a quantum field are regarded as two complex conjugate
random variables whose real and imaginary parts follow the
Gaussian probability distribution with mean 0 and standard
deviation 1. Results we achieved by applying the SFT are in
perfect agreement with the ones we obtained applying the
QFT. See also Refs [28,29] comparing different aspects of
quantum and stochastic formalisms.

A technique [30-33] to compute expectation values of
functionals of a stochastic field is to integrate the functional
weighted with a probability density function which obeys a
Fokker-Planck equation. Employing this technique, we
finally note a stochastic check of our two-point correlation
function in the equal spacetime limit.

This introduction is the first of five sections. The
outline of the remainder is as follows. In Sec. II we
specify the background spacetime geometry and present
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the Lagrangian of the model. In Sec. IIl we analyze the
model applying the QFT: We compute the two-point
correlation function and the variance of the IR truncated
scalar field with a quartic self-interaction at one- and two-
loop order during inflation. In Sec. IV we analyze the
model applying the SFT. We summarize our conclusions in
Sec. V. The Appendixes comprise the details of some
computations in the paper.

II. THE MODEL

We consider a MMC scalar with a self-interaction
potential V(¢). The Lagrangian density of the model is

L= 101+ 32000085~ V)73, (5

where 6Z is the field strength counterterm and g, is the
background metric of locally de Sitter spacetime. The
invariant line element can be expressed in comoving
coordinates as

ds* = g, dx'dx’ = —dr* + a*(t)dx - dx, (6)
where the scale factor
a(r) = e (7)

is normalized to unity at the initial time #; = 0. We work
in a D-dimensional spacetime; hence the indices
u,v="0,1,2,...,(D—=1). Thus, x* = (x°,%), x* =1, and

-

0, = (9. V) in our notation. We use the open conformal
coordinate patch of the full de Sitter manifold where each
of the (D — 1) spatial comoving coordinates x' lies in the
range 0 < x' < H~!.

The equation of motion for the scalar field

vioooo L Vie)(tE)

(1, X D —1)Hp(t,x) — — olt, =0,
D(1.3)+ (D= DHG(1.5) = p(1.5) + 2

(8)

where a dot denotes the derivative with respect to comoving
time ¢, has the solution

t
MQFWW@—/WWWQ
0

. . / iy
x/dD‘lx’G(t,x;t/,x/)%. 9)

The free field ¢y(z,X) in Eq. (9) obeys the linearized
equations of motion and agrees with the full field at
t=1t; = 0. Green’s function G(t,X;¢,X'), on the other
hand, is any solution of the equation
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. N V.2 ., -
G(t,x;t’,x’)+(D—l)HG(t,x;t’,x’)—yG(t,x;t',x’)

=8(t=1)oP 1 (x =X, (10)

which obeys the retarded boundary conditions. We con-
tinue studying the model applying the QFT in the next
section. We study it applying the SFT in Sec. IV.

III. QUANTUM FIELD THEORETICAL ANALYSIS

In this section, we analyze the model described in Sec. II
in the QFT point of view. Section III A is reserved for the
noninteracting limit of the model. Section III B considers
the model with a quartic self-interaction potential.

A. Free theory

Recall that the background is homogeneous and iso-
tropic with a topology TP~! x R and we work on a
comoving coordinate patch where the D — 1 spatial coor-
dinates x' lie in the finite range 0 < x' < H~!'. The modes
of fields are, therefore, discrete as they are for any finite
spatial manifold. Hence, we expand the free scalar field in a
spatial Fourier series [27],

P
(D —1)HaP~'(¢)

o(t, %) —H%{Q—

+ 3 [u(r k) Ay + (. k)e—i%f;x;]},
n#0
(11)

where the comoving wave vector k = 2zHn and the

comoving wave number k = ||7<||. The mode with physical
wave number Kk (f) = k/a(t) crosses the horizon for
the first time at t = #;. Hence, its physical wavelength
Aphys (i) = 2xkyl (1) = H™'(1;). The expansion rate H,
however, is constant during de Sitter inflation, H(t;) = H.
Therefore, this mode has k = 2zHa(t;) = 2xHe". The
Bunch-Davies mode function u(¢,k) in Eq. (11) is a
solution of the spatial Fourier transform of the linearized
field equation,

GoltF) + (D= DHG(D) + (e =0, (12

for the modes with k # 0. It can be given in terms of the
Hankel function of the first kind as

. T 1 k
I/i(l‘, k) =1 W_I(Z‘)H¥<H(l(t>> (13)

For the k = 0 mode, the two solutions of Eq. (12) are a

constant and %. Hence, the first two terms in Eq. (11)
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represent the zero mode of the quantum field ¢, (¢, x). The
operators Q and P satisfy the commutation relation

0.7 =i (14)

They can be expressed in terms of the Fourier transforms
of the field and its first time derivative for k = 0, evaluated
at t =0,

_ 90(0.0) + (D~ 1)H,(0,0)

0 (D-1)H= ' (15)

The annihilation and creation operators, A,; and A; in
Eq. (11), may change as different Green’s functions are
used in Eq. (9), but their nonzero commutation relation

A ALl = 85 (17)
remains fixed. They can also be expressed in terms of

(0, 7() and /0, 7() Recall that Eq. (17) and the canonical
commutator

> i

Polt: ) 901 K)] = 515

HP15; 5 (18)

fix the Wronskian

w(t, k)ir (1, k) — w (1, k)it(z, k) = a[,_;l(t) (19)
Using Eqgs. (11) and (19) we obtain
Ay = s (0. K)o 0. %) — u* (0. K)o (0. )
AL = [0 K)o 0.=K) = u(0. K)o (0. ~R)].  (20)

The state |Q) annihilated by all A; is known as the Bunch-
Davies vacuum. What we assume about the dependence of
vacuum state |Q) on the zero mode operators Q and P does
not matter much because there is only one zero mode as
opposed to an ever-increasing number of nonzero modes.
Thus, we neglect them in free field expansion (11).

Free field expansion (11) also includes arbitrarily large
wave numbers which cause ultraviolet divergences.
Therefore, we may consider the expansion obtained by
cutting out the subhorizon (ultraviolet) modes and retaining
only the superhorizon (infrared) ones,

po(t.X) = H'T Y O(Ha(t) - k)
1#0

x [u(t, k)e® Az + u (1, ke *¥AT).  (21)

103537-3



V. K. ONEMLI

In the above expansion, we may further take the IR limit
of the mode function (13) given in terms of the Hankel
function separation dependent function

= Jpa(2) + iY2a(2). (22)

Here 7 = X

= gap Jozt is the Bessel function of order 251 and
2

You(z) = Joa(z )cot<<D‘21)”>
—J_(p1(z) esc <(D_2l)ﬂ) (23)

2
is the Neumann function of order DT_I. Using the series
expansion of the Bessel function

0= (5) [

the reflection formula for the Gamma function

(’)(zz)] , (24)

prese(pr) =T(1 = p)L(1+p), (25)
with p = 251 and the identity
D-1 vz T(D=1)
r = , 26
( )= 20

one gets [22,23,31] the leading IR limit of the mode
function

(%ﬁiw/z {1 * O(%) }

(27)

r(D-1)
r(3)

u(t,k)—

Then, substituting u(¢,k) in Eq. (27) into Eq. (21) we
obtain the IR truncated free field in D dimensions,

Po(t,X) = ZF(I?; D

1n#0 (2)

HD-3/2
(zk)(D—l)/Z

O(Ha(t) — k)
x [e®FA; + e~ FAT]. (28)
Let us define the first time derivative of the field @ (7, X) as

e r(p-1)  HP>
Tan(t3) =063 = > _—rm s mmmmn

1n#0 2
X Spa, ke ® Az + e FEAT], (29)
where ¢, :@ and n=||n||. Its stochastic analog

represents stochastic noise in Sec. IV C.
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We now want to calculate the two-point correlation
function of the IR truncated free field

(Ql@o (1, X) o (7', X)|Q). (30)

for ¢ <t and X’ # X. It will be needed in Sec. III B where
we compute the correlation function of the IR truncated full
field. Using Eqgs. (17) and (28), we obtain

(Ql@o (1. %) (1, X')|Q)
- 1"2( _ 1)H2D—3
(2

O(Ha(r) - k)
(D12

D-1
2 n#0

x e"%'ffZ—@(H“(’/) —K) itws L 31)

/1(D-1)/2
s K (D-1)/

Here k' = 2zHin. When i1 = 7 we have k' = %; therefore,

(@0 (1, X)@o (¢, ¥) 1)
_r*(b-1) HZ

T2(D) 22021
— / — - - -
8 Z@(Ha(t) H27mD®l(Ha(t ) — H27n) o 2RH ()
< n--
n#0

(32)

The discrete sum over 7 in Eq. (32) can be approximated as
a (D — 1)-dimensional integral

Z@(Ha(t) — H2zn)®(Ha(f') — H27n) o i v
] e

D-
n#0

/dQD 1/ K o(Ha(r) - H)O(Ha(t) - k)

X etkAxcos (33)
where Ax = ||AX|| = ||x — X'|| and @ is the angle between

the vectors 7 and AX. Evaluating the angular integrations on
the right side of Eq. (33) yields

2D-1z3-1 %Am%G(Ha(I) —k)O(Ha(t') — k)
sin(kAx)
X— (34)

Because 0 < ¢ < ¢, we have Ha(?') < Ha(t), and hence,

O(Ha(t) — K)O(Ha(?') — k) = ©(Ha(?) — k).  (35)

Therefore, the integral over k in Eq. (34),
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dk sin(kAx)  [Ha(®) dk sin(kAx)
|7 etttatr) T = [T
0 k kAx H k kAx
B /Ha(f’)Ax dy sin(y)
HAx y y
o _sin(a(/)HAx)
= ci(a(f)HAx) “a(/HAx Ci(HAx)
sin(HAx)
HAx (36)

where the cosine integral

Ci(a)E_Lmdf@—y—kln(a)-kladtm

t
=7+ n(a +i2n

n=1

)n 2n (37)

is an entire function. The Euler’s constant y =~ 0.577.
Employing Egs. (35) and (36) in Eq. (34) we obtain

Z O(Ha(r) — H27mD®1(Ha(t’) — H2zn) o2 (i)
0
ADo1 b F(g) o sin (a(?')HAx)
=2D-1z3 NOE) {m(a(r JHAX) — Ta()HAr
_Ci(HAY) + %} (38)

We can power expand the time dependent terms in Eq. (38),

n (X) 2n

n(2n+1

ci(a)—Sin()E)—y—l—l—ln i

. (39)

with a = a(f)HAx. Substituting Eq. (39) into Eq. (38)
yields

Z O(Ha(t) — H27mD®1(Ha(t’) — H2zn) Si20H (=)
ii0
~ »D-1_2-1 F(%) /
= 2Dz ﬁ {C(Ax) +1In(a(?))
- (f')HAx)?
, 40
+; 2n(2n+ 1)! } (40)

where we define the comoving spatial separation dependent
function

sin(HAx)

C(Ax) =y — 1 +1In(HAx) — ci(HAx) + Az

i HAX)Zn
2n(2n+1)! °

n=1

(41)

(42)
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Combining Eq. (32) and the analytic form of the sum
given in Eq. (38) gives the two-point correlation function of
the IR truncated free field as

(Ql@o(1. %) (1. X))

_ HPZ TD-1)[., , sin (a(?')HAx)

T 201D (D) [Cl(a(t JHA) == i i
— ci(HAx) + %} . (43)

We can use this analytic form of the correlator to infer
its behavior for a fixed comoving separation (increasing
physical distance) at late # when a(#') becomes large.
Equation (43) and the asymptotic form of the function ci(«)
for large argument

cita) — (@) <1_2_;+4_i...>

a o o
cos(a) (1 3! 5!
— ___J’__... —_
a \a & &

imply that the correlator at a fixed comoving separation
freezes into a nonzero constant value at late times. The
usual result in QFT is for it to go to zero as the physical
separation increases.

Combining Egs. (40) and (42) in Eq. (32) gives the
correlation function as a series expansion

sin(a)

(44)

(@0 (1. X)o7, X)|Q)

_ HP2 T(D-1)
- 2D—1ﬂ.D/2 F(%)
s o (et o S (D (@) HAY?
{C(A ) 4 In( (t))—l—; 2nn T 1)1 ] (45)
HP2 (D -1)
T oD-1,D/2 (@)
it 4 S CD HAP
) + Y- GEEE @) =) 49

Equation (43) [or Eq. (46)] can be used to interpret the
correlator at a fixed physical distance. As in Ref. [27], we
may choose Ax so as to keep the physical distance a(¢')Ax
a constant fraction K of the Hubble length,

K
Ax = m, (47)

and use Eq. (39) in Eq. (43) to obtain
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(Ql@o (1. %) (1. X')|Q)
_ HP?2 I(D-1)
2D_171'D/2 F(%)

x |In(a(#")) —In(K) + ci(K) —w

[

n=1

-r+1

_ HP?2 I(D-1)
_20—1 D/2 F(%)
1 nKZn ot
[ +Z21(12n—|—1 - (t))}
(49)

Notice that the time dependent part in the infinite sum of
Eq. (48) [or Eq. (49)] decays rapidly as O(a=2(#')). Since
In(a(')) = HY, we infer that the correlator at a fixed
physical distance grows linearly with comoving time. This
is because more and more particles are created, which
increases the local field strength. At this point, let us note
that the equal space limit of Eq. (46) yields

(1o (1. X)@0(¢'. X)|2) = Hm Qo (1, X)@o (', ) 1)

rp-1),
r(%)

HD—2
= oD-1,D/2

n(a(r)),
(50)
and taking the equal time limit of Eq. (50) gives

(@A DIQ) = im( Qo (r. )n(r, D)

_ HP?2 T(D-1)
2D-1,D/2 F(%)

In(a(t)). (51

The stochastic analog of the two-point correlation
function for the f; (z,x) will be needed in Sec. IV C.
For the sake of completeness, let us compute it here, in the
context of QFT, as well. Equations (17) and (29) imply that

(Q|f5,(1.%)f5,(1. X))
(D —1 H?P-! SHa(1

5 / /

a( Ha(1),).k

= F2 ZDIZZ D3/2k/D3/2
n#0 m

lkx —zk b 57”;“ (52)

- -

where ¥ <t, ¥ #% and k' = 2zHin. When in = i, we
have kK = k; therefore,
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(D -1)
@)

XE 5Hat) “n zthanx)
D
n#0

HD+2

(Q|f 5, (1.%) f5,(f . X)|Q) =

22D—4 D-3

(53)

We make the integral approximation to the discrete mode
sum in Eq. (53) to obtain

6 a a
Zweﬂﬂﬂn (¥=X)

n#0

dkk
/ o /

1I<Ax cos(6 (54)

8(Ha(t) — K)8(Ha(t') — k)

Evaluating the angular integrations on the right side of
Eq. (54) yields
2D, D/2
(27)*H?T(D
" sin(kAx) '
Ax

1)/ dk&(Ha(r) — k)5(Ha(?') — k)
(55)

Then we perform the remaining integral over & in Eq. (55),

/ * aks(Ha(t) — k)5(Ha(r') - k) Sm(fim)
A X
_ %}f’ma(ﬂa(z) ~ Ha(1"))

_sin(a(')HAx) 5(t — 1)
- a(!)HAx H ~

(56)

where we used 8(Ha(1) — Ha(1')) = %= fj; = Z(JT_{;,)). Using
Egs. (55) and (56) in Eq. (54), we ﬁnd

Z5Ha(t )H3a( ) pi2nH- (=¥
7£0
. 2DzD/2 F(%)
(2zH)’T(D - 1)

sin(@(t)HAY) 5y (s7)

a(f)HAx

Finally, inserting Eq. (57) into Eq. (53) gives the correlation
function we wanted to compute,

(QUf 5, (1. 3) f5, (. X))
HP=! (D —1)sin(a(

_ '\HAx)
20D T(R) at

t
)VHAX

8(t—1). (58)

The equal space limit of Eq. (58) yields
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HP-' T(D-1)

(Q|f 5, (2. %) f 5, (1, %)|Q) = 2D=17D12" T(D)

S8(t—17).
(59)

This brings our discussion on the free theory to an end.
In the next section, we study the interacting theory with a
quartic self-interaction potential.

B. Interacting theory

The solution of the equation of motion for a MMC scalar
with a self-interaction potential V(¢) is given in Eq. (9) as

(p(t,?c)—(po(t,?c)—/ dt'aP=1 (¢ )/dD YG(t, %1, %)
0

V@) F)
1+6Z °

where Green’s function, defined in Eq. (10), is [19]
i0(t = 1) [go (1. %), o (7' X')]

: dD_lk ik (=%

x {u(t, k)u*(¢', k) —u (¢, k)u(t, k)}.
To get the IR truncated full field @(#,x), we need the

leading order IR limit of the G(z,X;7,x’). Combining
Egs. (13), (22), and (23) we find

G(t,x; 1, X) =

(60)

u(t, k)u*(¢', k) — u*(t, k)u(t', k)

. m csc( D_21 =)

= S R g e Ve (@) = oL (6D
i 1 k2 K2
_)E {—1 * O<H2a2(z) ’Hzaz(t’)> }
1 1
. [aD‘l(t) - aD‘l(t’)]' (62)

Equations (24) and (25) have been used in obtaining the
limit in the last line. Hence, plugging Eq. (62) into Eq. (60),
retaining only the leading terms, gives [22,23,31]

1
A ] _ JN\NSD-1(7. _ 2/
G(t,x,t,x)—>7( my O(t—1)s" 1 (x-X)
1 1
- . 63
x aD—l(t/) aD_l(l‘) ( )

When this limit is inserted into Eq. (9), it is multiplied by
the integration measure a”~!(#'). Then, the first term in the
square brackets, a”~!(#)/aP~1(¢) =1, contributes over
the whole range of the integration. The second term
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proportional to aP~!(#)/aP~(¢), on the other hand,
contributes significantly only for # ~ 7 and hence, is
negligible in the leading logarithm approximation we
consider. Thus, Eq. (9) yields the IR truncated full field as

V(@ 3)
—lH/ 1+5z (64)

We consider a scalar field with quartic self-interaction, and
hence

P(1,%) = @o(1. %)

1
Vip) =50m*¢* +

5 (,1 + 1)t

(65)
where 1 is the coupling constant, and 61 and ém? are the
coupling constant and the mass squared counterterms,
respectively. Counterterms cannot contribute in leading
logarithm order. To see this, let us first note that
6Z ~ (’)(/12) om?* ~ O(2), and 64~ O(4%) in the model
[4]. In the J; (4 + 64)¢* term, A and 52 multlply the same

¢ Therefore contr1but10ns 1nV01V1ng (p and contribu-
trons 1nv01v1ng % »* must have the same IR logarithm
structure. Because the latter are suppressed by at least one
extra factor of 4, with no more IR logarithm, they cannot be
in leading order. Next, let us compare the 5’" ¢* and
terms. Although sm? ~ 1, it multiplies ¢?. Therefore, at a
given order in 4, contributions involving the former cannot
produce as high order IR logarithms as contributions
involving the latter. Finally, the field strength counterterm
8Z appears in the field equations in the form V'(¢)/(1 +
6Z) = V'(@)[1 —6Z + (6Z)*> —---] where 6Z ~ O(?).
Consequently, exactly the same leading logarithm contri-
butions are obtained from the simplified field equation
without the counterterms,

P(1,x) = (66)

Po(t,X) =

d[// 3 // _'
- l)H / %)

Iterating Eq. (66) twice, we find the IR truncated full field
in terms of @ (z,x) as

@(t.%) = po(t.X) — m/ dt' gy (7', %)
’12 1220 7. : /=3 >
‘I—m o dl ¢O([ ,x) A dt (ﬂo(l x)

13 t 4
s dt/—2 l‘/,_) dl‘" 2 f by
24(D _ 1)3H3 {A (pO( X)A (p()( x)

+;Aldt’¢o(t’5c) Ml dt" (" ?c)]z} +OY).
(67)
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Using Eq. (67), we can compute the two-point correlation function of the IR truncated full field. Up to O(4?) we have

(Qlap (1. X)p(7', X)1Q) = (Qlo (1. X)o7, X)|Q)

—/1 7 X YO Ay
T (D= 1) [<9¢o(nx% digy (1.X)|Q) + sz|/ dr"p3(1" . %) o (1, x)|£2>]

A2 _ . PN N~
+12(D—1)2Hz[<9|(p0(t’x)/0 dlé”%(f’xl)/ di(1.X')|Q)
Q|/ ar'gi(t" }/0 a3 (1", X)po (1, ¥)|Q) + Q|/ ar' @i (t" ?c/o digi (i, *’)|Q)]
(68)

where 0 <" <" <t,0<7 <7< and ¢ <t The perturbation theory breaks down when In(a(t)) = Ht ~ 1/+/A [1,5].
So, for 4 <« 1, one can have a long period of time during which the perturbation theory and hence Eq. (68) are valid.
The computation is universal in D, and in H, the only scale in the model. In the next three sections, we compute the tree,
one- and two-loop contributions in correlation function (68).

1. Tree-order contribution

The tree-order contribution in the two-point correlation function of the IR truncated full field is just the two-point
correlation function of the IR truncated free field which is obtained in Eqgs. (43) and (46) as

(QIp(1. X)p (1, X)|Q) e = (Qldo (1, X)Po(7', X)|Q)

= 2151 ;D/z F(?@—) 3, [Ci(a(t’)HAx) - W —ci(HAx) + sm;IHAix)] (69)
_ HP-2 '(D-1) , & (—1)"(HAx)2" )
T 2P0 (D) [In(a(t ) + ;m(az () - 1)} ) (70)

Quantum correcting this classical result, however, requires some work. In the following two sections we carry out the
calculations for the one- and two-loop contributions, respectively.

2. One-loop contribution

Computing the one-loop contribution to the tree-order two-point correlation function in Eq. (68) involves evaluations of
two VEVs. The first one is

(QUgo(1.7) / "7 7)Q) = / Q10 (1. ) FET) ). (71)

It can be calculated either by directly inserting free field (28) for each power of ¢, in Eq. (71) and using the commutator
algebra (17) or, equivalently, by topologically inequivalent field pairings which yield

A " Q0 (1 DT T)IQ) = / 473 - 1{Q1g0(1. )51, 7)) QR (1. 7))

H2D —4 FZ(

-1 ro - t)HAx -
s )3 A dt[C(Ax ) +In(a +; 2n+1 " ina@iy. (72)

where we used Eq. (45), the fact that 7 < ¢, and Eq. (51). Evaluating the integral in Eq. (72) we obtain
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/ 2D-5 T2/ DBlalf
/ di<sz|¢o<r,fc>¢3<afc/>|ﬂ>—2Z_IHDF§?(Q)” {2 canmetac)
1 ( HAx) i (1t — LY o L

+§; n*(2n + 1 [a (t)<l (a(t)) 2n> +2n}}' (73)

The second VEV which contributes at one-loop order in Eq. (68) can be calculated similarly,

t
© / 4G (" F)po(¢ 7)) = / di"3 - QI (1" 5o (7. 7)1Q) (IR 7)|2)
0

HP? T(D-1 d SN= g 2 "
= g3 | @ Dt TR ). (79

where we used Eq. (51) in the last equality. We have 0 < ¢’ < t and ¢ < r. Therefore, in order to evaluate the remaining
VEV in the integrand we break up the integral into two as [J d?’ = [ dt" + J# dr”. In the first integral 7 < 7', whereas in
the second # < #”. Hence, appropriate use of Eq. (45) in Eq. (74) gives

@ [ ar g Do 3)9)

H2D4F2( _1) ! " " ! 112 1" nlalt ! "ala(t”
o 3{C(Ax)A dr" in(a(r ))+A d"n?(a(1")) + In( (r))/ dr" n(a(1")

22D-2,D " 12(D ,

%f‘: - 2n’i“ ) [ A " dta (1) In(a(t")) + a?(¢) / tdt”ln(a(t”))]}. (75)

t/

n=

We evaluate the integrals and find

2D-5 T2(71) _ n3(alt
@ [ a3 Bn(r. )90 = ey i 3] €80 + el (el - 5D

1 S (—1)"(HAx)?" .y 5 5 In(a(f)) 1 1

+§; n(2n 1)1 [a (t)<ln (a(r)) = In (a(t))jLT_W)—i_W}}'
(76)
Combining Egs. (42), (73), and (76) in Eq. (68) yields the following total O(4)-correction:
I A HPST(D 1) (Ind(a(t)) ,
(00312 sep = = (705 ()l
® (_1)\n X 2n nla(t
— In%(a(t)) = In(a()) + %} } (77)

Asin Eq. (43), to infer the result at a fixed comoving separation at late times during inflation we must fix Ax and then take 7
large. (Recall 7 > ¢'.) The asymptotic form of the one-loop correlator is obtained as
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N 1 HPOT(D - 1) (4Ind(a(r))
Qlo(t, x)p(t,X")|Q), ... = —
I
in (HA
- {ci(HAx) - %} [In?(a(t)) + In*(a(?))] + 2[In (HAx) + y — 1]In?(a(?'))
X
a? 5 o , a? 5 a2
—€3f4<1,1,1,2,2,2,§,—z) ln(a(t))+E4}"5<1,1,1,1,2,2,2,2,5,—Z>
H2 A2 5 H2AR
—Tx4f5<1,1,1,1;2,2,2,2,5;—7)6)}, (78)

where we used the large argument expansion (44) of the ci(a) function with & = a(¢')HAx. The ,,F,’s are generalized
hypergeometric functions. Equation (78) implies that the one-loop correlator grows negatively for a fixed comoving
separation during inflation.

To obtain the one-loop correlator for a fixed physical distance, we choose a(#')Ax a constant fraction K of the Hubble
length as in Eq. (47),

D612y _ W alt
Q1. )¢, ¥)|R)1100p = = (D/i 1) ;D”D - gz)(é)l) {_21 (3 )
2

in in(Ka='(¢
+ Lei(k) - KD [ci(Ka—l(ﬂ)) - %,(f;))} }lnz(a(t))

—21In(K) + {ci(Ka‘l () - %} +2- Zy}lnz(a(t’))

{
- {Ci(K) —y

K2 5 K? K2 5 K2
——F,(1,1,1;2,2,2,—;—— ] 1 Y — 1,1,1,1;2,2,2,2,—; ——
6 3 4( 2 4) n(a( )>+124FS< 2 4)
K2 5 K?
Fl1,1,1,1:2,2,2,2, 2. ———— | &, 79
T 12a2(0) 5( 2’ 4a2(t’)>} (79)

We employ Eq. (39) in this analytic form of the one-loop correlator and get

2D-6T2(1) _ 3alf
(QUp (1 D)P (. 7| 10p = - (Df 1);D,,DF ;(Q)” {ln (3(f>) + In(a(r))In*(a(r))
nKZn 0 ( nKZn 00 (_1 )nK2n
+ [in(a(r)) = In*( 2n (2n+1 2112 2n+1 £~ 2n°(2n +1)!
n 2n —2n o 2n ,—2n
— [In(a(z)) + In%( Z( ;nfﬁ +Z 21) IZH (t)}, (80)
n=1

where the terms in the last line decay exponentially during inflation. Equation (80) tells us that the one-loop correlator at a
fixed physical distance grows negatively during inflation.
In the next section, we compute the two-loop contribution to the correlation function of the IR truncated scalar field.

3. Two-loop contribution

Computing the two-loop contribution in two-point correlation function (68) involves evaluations of three VEVs, of which
the first is
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X3+ 1+ Qo (1, %)0 (1, ¥)|2 ><QI¢%(Z3’)IQ><QI¢0(?,X’>IQ>
+ 32 Qo (1. X)@o (7. 7)) (@0 7. )0 (7. 7)1 )]}, (81)

where we have 0 <t <7< ¢ and ¢ <t. This time ordering makes it easy to read off the VEVs in the integrand from
Egs. (45), (50), and (51). Substituting the outcomes yields

I o~ o 1 PN
(©@go(r.%) / digd(i. %) / G 7))
B H3D—6 1"3(D_

! [ © (=1)"(a(f)HAx)*" x
~ 33D=3;3D/2 1“3(%1) {A df/) dr-3-1 [C(Ax) +In(a(?)) + ;( lz)ngz,(;)_flA)!) ]1n2(a(t))

/ i / 31 1[ c(ax) + n(a(®) + 30 1)"5“(;)“’_‘)2"] In(a(?)) In(a(?)
(
(

/ dt/ a3 -2 1[ (Ax) + In(a ())+f:( b “@HAx)zn]an(a(?))}.

£ 2n(2n+1)!

(82)

The results of the integrals in Eq. (82) are given in Appendix A 1. Using Egs. (A1), (A2), and (A3) in Eq. (82) we obtain

I4 T~ ~
(@01, F) / digd(i.7) / i (. 7)|Q)
0 0

__HP (D) [oa(r)) | 1C(AY) = (~1) HAx)Zn
T 93D-2,3D/2 3 (%) { 5 + 2 —|— ; 2}’1 1
n n(a n?(a(t) n(a(?
« {a%(ﬂ) [1n3(a(t’)) )| fm( ) _21in( 3] EL nt ek §n§f>>_lzi3}}, (83)

The second VEV which contributes at two-loop order in correlation function (68) is evaluated similarly,
@ [(argies) [" ar g Dol i)

- / ar" / di' {23 - 11" 3)olt'. 7)) Qo (", 2)o((". Q) (U (1. 5)|)
13 QI D) QNG D)pe (1. ) QG ) Q)
322 1[I0 D)o DI Qo (¢ - Dpo(¢. 7)),

where 0 <t <" <rand ¢ <t Employing Egs. (50) and (51) in Eq. (84) we get

_) . o . HZD—4 F2(D _ 1)
Q|/ dr' (1", x / dt (PS(Z LX) ot X)|Q) = 220-2;D " 2(D)
2

t"
x { / Car / dr'2 -3 - 1{Qpy (", %)@y (¢, X)|Q)In?(a(f"))
0 0
t ’ "
+ / dar’ / di'1-3 - 1{Qpg (1", X)po (£, ¥)|Q) In(a(t")) In(a(f"))
0 0
f t!l
+ / dr’ / dt"'3-2-1<Q|g‘oo(t'",?c)@o(t’,}’)|Q>ln2(a(t'”))}. (85)
0 0
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Because the ordering between ¢ and 7’ and between # and ¢ are unknown in the double integrals, we cannot just read off the
VEVs from Eq. (45). We can, however, decompose the double integrals so that a definite ordering between the time
parameters exists. That makes the evaluation of the integrals, using Eq. (45), possible; see Appendix A 2. Substituting
Egs. (A6), (Al1), and (A13) into Eq. (85), we find

@ [(argie.s) [ ar g Do i0)

3-8 3(p — S(alt
= 2351—2”31)/2 L l(“3(§)1) {111n2(0 () —In*(a(?))In(a(z)) -

11[In(a(?)) + C(Ax)] It
4

I (1) + o (a())

X 1\ x2n n# alt n* a
+;—( nl()zﬁAU)! {cﬂ"(ﬂ) [2ln5(a(t’)) - 2 (a(r) n(a(r)) - ) THortald)
n?(a n(a(? n(a(?
_ wlnz(a@)) _% <1Hi(t>) —3In(a(?)) In(a(r)) - 31(40))ln2(a(1))>
n?(a(? n?(a n(a n(a
L (P - D) L (a)_ 30t 2
3In3(a 3In(a 33

Finally, the third VEV which contributes at two-loop order in correlation function (68) is

m/m”ﬂzld%?WQ /W]d@llﬁmwwa>@mmwv@mMCmm
123 HQIRE. D)IQ) Qe %501, 7)) QARG 7))
3.2 1@, Do (7. T)QT. (87)

where 0 <" <t,0<7<¢,and ¢ < t. The integrand on the right side of Eq. (87) consists of three terms that are added
together. Notice that the second term is twice the first term. Using Eq. (51) in Eq. (87) we get

HZD—4 1"2 (D

Q| / A (1", 5) [) digy (1. 3)|Q) = / dr’ / dt{ (ot ¥)70 (7. ¥)/9) 33555 FZ(Q_)I)ln(a(t”))ln(a(f))
2

+WM%wﬁWWﬁmmﬂ. (88)

As in the evaluation of the second VEV given in Eq. (84), we need an ordering of the time parameters #’ and 7 to evaluate
the expectation values in the integrand on the right of Eq. (88). Therefore, we similarly break up the double integral into

two parts: [{dt" [ df = [Tdt" [ df + Jiar" [§ di where in the first part on the right // < 7, whereas 7 < ¢ in the second.

Hence, employing Eq. (45) appropriately, we obtain

Q|/ dr" (" %) / digy(1.%)|Q)
H3D B " /I ”)HAX) " 7
:23])_37[”/2 r*(D {/ dt / dt{ [ (Ax) +1In(a )+Z 2n 2n+1) In(a(")) In(a(7))

+ 6[C(Ax) +In(a(t")) + f: )" (a(t") HAx)zn]%}

2 2n(2n+ 1)1
+ [ “ar /0 ' di{9{C(A Z Z)HEZ HAX) } n(a(")) In(a(?))
+6[C(Ax ) + In(a(7)) +i o fo znr}} (89)
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Now, we need to evaluate the four double integrals in Eq. (89) to get the VEV. Results of the integrals are given in
Appendix A 3. Adding up Egs. (A14), (A15), (A17), and (A18) and substituting the sum into Eq. (89), we find

[ .
Q| / AP 7) / G (1.7)|Q)
0

3D-8 _
:23151—2”31)/2 1(~3( )1) {_51 (a(?)) + In*(a(?)) In(a(z))

+ I’ (a(f))In?(a(t)) — 2C(Ax) {ln“(a(t’)) —2In*(a(?)) In(a(r)) - —— "2

—2C*(Ax)[In?(a(?)) = 3In?(a(?)) In(a(t))] + 4C*(Ax) In(a(?')) In(a(t)
"(HAx)™ *(a(?))

+3i(n522n+1), {az"( ){[ln(a(t))—ln(a(t’))][ - 1 +<ZC(Ax)—§) In(a(f))

ln(a(t’)) In(a(t)) 3In*(a(t'))
—g ) -—g }“L 2

+ E(Ax,n)In(a(r)) — F(Ax, n)In(a(t')) + G(Ax, n)}

n 8n

— &(Ax. n)[In(a(t)) + In(a(r))] + 1“2(8‘1“ ) | Wa(r) _ gony n)}

39K —1)P(HAx)? o(r : : !
432 S A B AT {@r){ mtatn) - et [mtatey + clan) - |

In(a(f)) C(Ax) 1 1 ny CAx) 1

- + P ?} - {C(Ax) - 5] n(a(t)) + In(a(?))] » + pz}

1 & L (D) (HAX)Y[a?(¢) (In(a(t)) = In(a(?)) + ) = In(a(t)) = In(a(?)) =

FaX 2 g p)alg—p) + 1ln(p —man + R —m) ¢ 1] J &0
where we defined new functions of comoving spatial separation Ax and index n
F(Ax,n) =C*(Ax) — 3C(Ax) + % and G(Ax,n) = Cz(nAx) - ZCEl?x) + 81% (91)

Recall that the function C(Ax) is expressed as a power series in Eq. (42). The square and the cube of C(Ax) that appear in
Eq. (90) can also be expressed as series expansions

Rele (=1)(HAx)
C2(Ax)—z —4n(p —n)(2n + 1)![2(p —n) + 1]V’ 92)

YRSt ete (=1)9(HAx)*
CO) =22 ) 8 patg—p) + nlp—m)@n + IR —m) 4 1 3

We have completed evaluating each of the three VEVs that yields an (%) correction to tree-order two-point correlation
function (70) of the IR truncated scalar full field. Substitution of those VEVs given in Egs. (83), (86), and (90) into Eq. (68)
yields the total two-loop correction as
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QI (1. %)@ (1. X)RQ)2100p

2 HP-10 13D — 1) (31n(a(r))  InP(a(r))
(D — 122002 3 (D) { 50 t—%¢ In?(a(?))

+ %;(ﬂ))ln“(a(t)) +C(Ax) an 1(2“(”) LI (Z(ﬂ” M (30 Do (a(r))

+ mz(“#w(a(;))} — C2(Ax) [w —2In*(a(t) ln(a(t))] 3 (an) @) )

+ 3 CREES {ame) {2tintat) - a5 )

(A0 =2 e+ G i al) = ()] +  Ila() - ()]

x {1112 W—%] +21n3§?1([/)) +21n21(;(ﬂ)) + (2655)6) —%) In(a(?)) +P(C n)}

izgt 2 g ) _ N(c.m)lin(ae)) + na(r))] - P(C, n)}
+;izp e e 2P<t>{[1n<a<t>>—1n<a<z’>>] n(a(r) + C(an) - 5|
R
o g1 p=1( x)24{a%(t a 1 —1n(a(r)) — In(a(?)) — 1
%2 e BB i[)l)wn(m(—( >)<)2:ﬂ e oY
where we defined

N(Con)= Cz(nA") - C(HA;‘) Fand PCn) = ngﬁx) - zci?") tor (95)

To get the result for a fixed physical distance, one can choose the comoving separation Ax = K/Ha(t') so that the physical
distance a(#')Ax remains as a constant fraction K of the Hubble length, as in Eq. (47).

Adding up tree, one- and two-loop correlators (70), (77), and (94) yields the two-point correlation function of the IR
truncated full field at one- and two-loop order,

<Q|@(I, x) (/ _'l)|Q> <Q|@(t x)@( ,)|Q>u’ee <Q|¢(t’ })(p(l‘/7;€/)|g>l-loop
+(Qp (1. ) P(1'. X)) 2.100p- (96)

To save space we do not write the result of addition explicitly. The equal spacetime limit of Eq. (96), however, does not
occupy much space. At O(4?), we have

L L HP=2 T(D-1)
(Qlp*(1,%)|Q) = (Q|§*(1.%)|Q) = 201,072 [(D)
A H2D—6 FZ(D —

1
- (D _ 1) 22D—23ﬂD 1—*2(%) )ln3(a(t)) +

In(a(7))

12 H3D—]0 F3 D—-1
(D — 1)2230-35,3D)2 1(~3(%) )lnS(a(t))- (97)

Note that the renormalized (Q|@?*(t,X)|Q) for the untruncated full field ¢(t, X) was computed in Ref. [5] (using the results
of Ref. [4]), in the same model, applying closed time path (Schwinger-Keldish) formalism. The result is
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2 2
(Qle* (1 3)|Q) = 1 71 (a(f))+§f4{—gl (a(e)) + 102 (a(0) + [m(%) +§—y—§7z2] In(a(1)) = 20 + £ 2
4 a? K (n+5 a~(m+2) o ,~(nt3)
+3¢0) +§_;(( - 1))3a (n+1) +42(n+2)3+4;m} +OMR). (98)

See Egs. (62) and (64) of Ref. [5]. Equation (98) agrees
with Eq. (97), as it should, in the leading logarithm order
when D = 4. This agreement provides a check of our
computation (96) in the equal spacetime limit at O(2).
Another check, in this limit, is provided in Sec. IV C at
O(2%) in the context of SFT via the Fokker-Planck
equation.

Computation of correlation function (96) was one of the
goals of this paper. We use it, in the next section, to obtain
the variance of the IR truncated scalar at one- and two-
loop order.

C. Fluctuations in spacetime

The variation A{ of the IR truncated scalar ¢ is defined
as the difference of fields at two events

Ap(r,1;x,X) = - p(t,X). (99)

Because the VEV of field ¢ is zero at any event, the
VEV of variation A@ also vanishes. However, the

P(1.%)

(L1555 = (Ql[Ag - (QAGIQ)?|Q) = (Q|(A9)*|Q)
= (Qp*(1.%)Q) - (Qlp(1. %) (1. ¥)|Q)

— (Qla(r. X)p(1.X)|1Q) +(Ql@* (1. ¥)|Q)

(100)

(Ql[ag(tx¥) -
HP=2 T(D-1)&

03 (1, %, X) =

(_1)n+1 (HAX)Zn

(QlAp(r.x. X)|Q)11Q) = (Ql(a(r,

is not necessarily zero. The VEVs in the middle of the
second line in Eq. (100) are just the two-point correlation
function of the IR truncated scalar obtained in Eq. (96). The
VEV (Q|@*(1,X)|Q) is obtained from this function in
Eq. (97). The remaining VEV,

(Qla (7,

(Qlg*(.¥)|Q) = X)) = lim(Qp? (1, %)[2).

(101)

can be read off from Eq. (97) as well. Thus, using Egs. (96),
(97), and (101) in Eq. (100), one obtains the variance
GZA[Z}(I, 7;%,X'). In the next two sections, we consider its
equal time and equal space limits, respectively.

1. Fluctuations in space

The spatial variation of the IR truncated scalar is the
difference of fields at equal time events Ap(f,x,X') =
(1,X) — @(t,x'). 1t derives from the fact that inflationary
particle production is arandom process, like everything else in
quantum mechanics. At some places the field strength is
positive, at others it is negative; at some places the magnitude
of the field strength increases, and at others it decreases.
Although the expectation value of the spatial variation
Ap(t, X, X') vanishes, the spatial variance 63 S X, ¥'), which
can be obtained by taking the equal time limit of Eq. (100),
does not. We employ Egs. (96) and (97) in Eq. (100) to obtain

%) = (1. X))
A H®P®T%D-1)

- 2D-1,D/2 F(%) — n(2n+1)! (a®(1) = 1) + (D —1)22P=1gD FZ(%)
S <_l>n(HAx>2n a2n(t) (aZn(t) _ 1) /12 H3D—10
. {2_:1 n(2n+ 1)! [ , nla(n) = In*(a() = =5 ” T (D - 1220200

I = 1) (& (~)"(HA)? [, [in?
T {Z n(2n+ 1)1 {“2 (t)[

n=1

_3In(a(7) , In

N

4n? 2

g—1 p-1

(=1)?(HAx)*[a*(1)

(a(f)) (C
+
Haln) — N n(a(z)) ——} +

x {"zp@ [In(a(t)) +C(Ax) — ﬂ + %Pm%a(z)) - [2C(Ax) - ﬂ In(a(r))

—2¢*In%(a(t))

) nta) +5
1)? (HAx)?

(=
= pn(p—n)2n+ D!2(p —n) +1]!

=

—2g1In(a(r)) — 1]

=3 p=2 n=1 q2(q - p)[z(q - P) + 1}!]’1(]? -

} +O(2). (102)

n)2n+ D!2(p —n) + 1]!
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Tree-order spatial variance in Eq. (102),
. HP=2 T(D-1)

GA(plree - 2D—2].[D/2 F(%)

sin (a(t)HAx) sin(HAx)
x{ln(a(t))—l— a(t)HAx ~ HAx

—ci(a(t)HAx) +ci(HAx)}, (103)

agrees with the tree-order result obtained in Ref. [27] when
D = 4. For a fixed comoving separation (increasing physi-
cal distance) it asymptotes to

5 HP=2 T(D-1)
O8puwe ~ 2D-2,D2 r(®)

(104)

x {ln(a(t)) + ci(HAx) — Si““mx)}.

HAx

[We used Eq. (44) in Eq. (103) to get Eq. (104).] Time
dependence of tree-order spatial variance (104) implies that
the magnitude of spatial variation increases with time. This
fact is a crucial argument of some cosmologists against
putting any trust in results for expectation values. They
argue that an expectation value, which is a measure of
average effect, is misleading since the actual effect that
would be perceived by any local observer is either an
increase or a decrease in the field strength as fluctuations
happen. Reference [27], on the other hand, argues that,
while there is certainly spatial and temporal variation in
the actual effects, one can, under certain circumstances,
roughly trust what expectation values are telling us. See
also Ref. [34] which mentions the problems some cosmol-
ogists have with using expectation values and gives con-
ditions under which we can trust them.

To infer our result (102) for a fixed physical distance
we take comoving spatial separation Ax = K/Ha(t) as in
Eq. (47). Then, the function in the curly brackets of tree-
order variance (103) becomes

f(K,a(t)) =In(a(t)) + ci(Ka~'(1))

sin(Ka='(1)) sin(K) |
R 0 T ci(K), (105)
so that
D-2 _
02A(7}(ree = 2DI_—IZED/2 F(?(%)l)f(K,a(l»’ (106)

for a fixed physical distance. Plots of the function
f(K,a(t)) versus the scale factor a(¢) for K = 1/2 and
K = 1 are given in Fig. 1. (K = 1/2) K = 1 corresponds to
the case where the physical distance taken as (half) the
Hubble length. We see from the plots that tree-order

PHYSICAL REVIEW D 91, 103537 (2015)
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FIG. 1. Plots of the function f(K, a(t)), defined in Eq. (105),

versus a(t). Solid (dashed) curve is for K = 1/2 (K = 1). The
scale factor a(t) runs from 1 to 50. Extending it to ¢ does not
alter the plots any significantly; see the discussion in the text.

variance (106) rapidly freezes into a not especially large
value during inflation. Numerically, for K = 1/2, we
have f(1/2,50)=0.020695 and f(1/2,¢%°) = 0.020704,
whereas for K =1, we have f(1,50)=0.081249 and
f(1, %) =0.081283. One can also see this freezing using
Eq. (39) in Eq. (103) which yields

P - sin
02A¢[ree = 2[52”D/2 F(?(LZ)) 1) {hl(K) I((K) — Cl(K)
® (=1 nKZna—Zn

The infinite sum in Eq. (107) decays exponentially during
inflation and, therefore, can safely be neglected after a few
e-foldings. The remaining terms in the curly brackets are
just constants that add up to 0.020704 for K = 1/2 and to
0.081283 for K = 1.

The one-loop variance in Eq. (102) is

2

0A¢l—]oop

A H®™*T1%D-1)
(D—1)22P2zP 12(2)

g -2

—In(HAx)+ 1 —y] In?(a(?))

a? 5 &
— 1,1,1;2,2,2, - —— | 1
+ 123f4< s Ly Ly &y &y ’2’ 4> l’l(a(l))

o’ 5 &
- 1,1,1,1;2,2,2,2,—; ——
244f5( 3 Ly Ly Ly by Ly Ly ’25 4)

H?Ax? 5 H*AxX?
+x4f5(1’]’1»];292721272;_ x>},

S}

24 4
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FIG. 2. Plots of the function g(K, a(r)), defined in Eq. (109),
versus a(t). Solid (dashed) curve is for K = 1/2 (K = 1). The
scale factor a(z) runs from 1 to €. g(K, a(t)) grows logarithmi-
cally during inflation; see the discussion in the text.

where a = a(t)HAx. For a fixed physical distance
a(t)Ax = K/H, the function in the curly brackets of
one-loop variance (108) becomes

sin(Ka=!(1))
Ka™'(1)

g(K.a(1)) = [ei(Ka-l (1) -

—In(Ka™'())+1 —y] In?(a(t))

K? 5 K2
+E3~7:4 (17 L, 1;2,2,2,5;—T> In(a(r))

K? 5 K?
- 1,1,1,1;2,2,2,2,—; ———
244f5( s Lo by Ly by &y &y 723 4)

K? 5 K2
F(1,1,1,1;2,2,2,2,—
2 ( 2 Taa <>)

(109)
so that

A HPOTYD-1)
2 —
UA(DI—]oop - (D _ 1)22D—2”D FZ(%> g(K, a(t)).

(110)

Plots of the function g(K, a(t)) versus the scale factor a(r)
for K=1/2 and K =1 are given in Fig. 2. (K =1/2)
K =1 corresponds to the case where the physical distance
taken as (half) the Hubble length. We infer from Fig. 2 that
g(K,a(t)) grows monotonically—in fact logarithmically,
as is shown below—during inflation. Numerically, after 50
e-foldings, ¢(1/2,¢%°) =1.02802 for K = 1/2, whereas
g(1, ) = 4.07372 for K = 1. This implies that, due to the
overall minus sign, one-loop variance (110) grows neg-
atively during inflation. One can see that this negative

PHYSICAL REVIEW D 91, 103537 (2015)

growth is logarithmic using Eq. (39) in Eq. (109) which
yields

A HP% T%(D-1)
UM,I,,OOP - (D _ 1) 22D-2,D T2 (g)

K? 5 K?
— 1,1,1;2,2,2, -, —— | 1
X {12 3F4< 9 Ly Loy &y &y 727 4> n(a(t))

K? 5 K
— 1,1,1,1;2,2,2,2, -5 ——
44F5< 9 Ly Ly Ly Ly Ly Ly 727 4>

S -4}

(111)

2 ~

The infinite sum in Eq. (111) decays exponentially during
inflation and, therefore, can safely be neglected after a few
e-foldings. The first term in the curly brackets has the
coefficient function,

K? 5 K?
= Al 2,222, -2 ) =
123 4<5 9 Ly Ly & 72’ 4>

o (_l)nJrlKZn
—2n*(2n+ 1)1

(112)

which gives 0.020768 (0.082303) for K = 1/2 (K = 1).
The second term in the curly brackets, on the other
hand,

K? 5. K
__4f5(19191’ 1;2’2’2’2’_;__)

2 4
0 ( 1n+1K2n
Z4n3(Zn +1

n=1

(113)

gives —0.010400 (—0.041408) for K =1/2 (K =1).
Hence, one-loop variance (111) grows logarithmically
and negatively. Therefore, the spatial variation does not
grow as large as tree-order variance (107) implies. Thus, the
VEV describes the behavior of the field better when the
loop corrections are included. Next, we study the temporal
fluctuations of the scalar field in our model, considering the
difference of fields at equal space events.

2. Fluctuations in time

The temporal variation is the difference of fields at equal
space events A@(t, 7, X) = p(t,x) — p(',X) whose VEV
vanishes. The temporal variance can be obtained by taking
the equal space limit of Eq. (100). Using Egs. (96) and (97),
we find
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ok (1. 1.X) = (Ql[ag(r. 1. X) — (Q|Ap(r. /. )Q)PIQ) = (Ql[p(1. %) - ¢(7. X)]*|Q)
:yf:;mﬁé”mww»—mqon—w_néf:fﬁzé”memWﬁﬁﬁw”
— In(a(7))n2(a(t)) | + (D/1—21)2213LID3:3_;(/)2 r3(D(Q—)1) [SInS(Sa(t)) N 17ln53((§t(t/))
) 1 )~ L) ln4(a(t))] +O), (114)

The one-loop correction tells us that the temporal variation
does not grow as fast as the tree-order result implies. [A
way to see this is to use the fact that In(a(r)) = Ht. Since
¢ <t, let ¥ =1t/c where the real number ¢ > 1. Then,
the sum of the three terms inside the square brackets in the
one-loop correction (Ht)? [M]
Because of the overall minus sign, however, the one-loop
correction is negative as opposed to the positive tree-order
result.] Thus, the VEV describes the behavior of the field
better, when the quantum corrections are included. In the
next section, we study the IR truncated scalar in the same

> 0, for any ¢ > 1.

[0(2.X). o (1. X')]
n#0

inD/2 NG

= HP~' " ©(Ha(r) — Haan)[u(r. k)i (1, k) — u* (1, K)ie(1, k)| e )

model applying the SFT instead of the QFT. We will see
that it yields the same two-point correlation function and
hence the same statistical properties we infer from it.

IV. STOCHASTIC FIELD THEORETICAL
ANALYSIS

Although the free field in Eq. (21) involves only the IR
modes, it is still a quantum field in the sense that the
commutator of the field and its first time derivative does not
vanish:

_ ) ){(D—3)( a(1)HAX)P~4 sin (a(1)HAx) + (HAx)P=3 cos (HAX)

(a(t)Ax)P'T(D -1
— (a(t)HAx)P~3 cos (a(t)HAx) — (D

~(0-30-4 [

HAx

Ha(t)Ax

See Appendix B for the derivation of Eq. (116). Recall that
we replaced the mode function in Eq. (21) with its constant
leading IR limit (27) to obtain the IR truncated free field
o(t,X) in Eq. (28). Thus, Eq. (115) implies that the
commutator [@,(t, X), ¢, (t, X')] vanishes when the replace-
ment is made. That means that @,(z,X) behaves like a
classical variable ¢(¢,X) in which the associated annihi-
lation and creation operators are just random variables.
Such a field is called stochastic. The full stochastic field
¢(1,X) in our model obeys

P(1.X) = ¢o(t.%) —

/
_1H/dtV o(,x)), (117)

first obtained by Starobinsky in Ref. [18]. Note that
Eq. (117) has the same form as Eq. (64), up to the field
strength renormalization factor (1 + 6Z)~!

dyyP™ Sin(y)}-

(115)
—3)(HAx)P~*sin (HAx)
(116)

A. Free theory

As discussed earlier, we take the IR limit of the mode
function and retain only the superhorizon modes—
except the zero mode, to obtain IR truncated stochastic
free field

70
x [cos(k - ¥)a; — sin(k - X)), (118)
where k = 2zH7 as in Eq. (28). The annihilation and

creation operators A;, and A; in Eq. (28) are considered [27]
to be two complex conjugate stochastic random variables

1 1

A; = i(a;, + lﬁﬁ) and A;z = f(a;, - lﬁﬁ) (119)

[\
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The real random variables «; and f; are governed by a Gaussian probability distribution function
(120)

with mean 0 and standard deviation 1. Note that the factors of v/27 in the denominators exist for each mode 7.
Now, let us apply the stochastic formalism to compute the two-point correlation function of the IR truncated stochastic
free field

/+oo da _l +00 dﬂq
w Vor

_r -1 H2D *ZZ (Ha(t) — k) ©(Ha(t') — k)
I s

(o (1. X) o (1. X') e ;"fﬁo(f X)ho(1' . X')

n#0 m#0
x 5,h,ﬁ(cos(% %) cos(k' - ¥) + sin(k - ¥) sin(k - ¥)), (121)

-

where k' = 2zHin. When i = 1, we have K=k Therefore, we obtain

r’(p-1) HP? O(Ha(r) — k)O(Ha(r') — k)

2 (D 2D-2_D-1 —
I (7) 2 T 720 n

(bo(t.3)o(1, X)) = cos (k- (3 = ¥)). (122)

Using the fact that

cos (7(' . (;C _ ;C/)) _ (eikAxcos(e) + e—ikAxcos(H)), (123)

N[ =

where 6 is the angle between k = 27Hi and AX = X — ¥, and making the integral approximation to the discrete mode sum
over n as in Egs. (33)—(36) we find

> O(Ha(t) — k @fHa(t’) K os (- G- 7)

720 n>
~ 2Dl (1;(7_) 3 {ci(a(t’)HAx) - —Sincfg,(tglﬁx) — ci(HAx) + %} (124)
— ot (‘;7_) - { (&%) + In(a(¥)) + i s (2,1’/ f?") ] | (125)

where we used Eqs. (39) and (41) in the last equality. Let us note here that the equal space and equal spacetime limits of
Eq. (125) yield

5 Oaly) = HO(a) ~k) _ 5~ O(Halt) =) _ 51, r(g(%_>l) in(a(e), (126)
70 70
where ¢ < t. Using Eqgs. (124) and (125) in Eq. (122), we find
(Bolt. D)o, 7)) = 2DH — (f (2—)1) {ci(a(r’)HAx) - Sin;é,(t;)fi ix) —Gi(HAX) + Smgiix)], (127)
2
HP2 T(D-1 = (=1)"(a(f)HAx)>"
T oD-1,D/2 <F(%) ) [C(Ax) +In(a(f)) + ;< in((Zrzt—)&— ol ) } (128)
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respectively. Results (127) and (128) are the same as results (43)—(45) obtained in the context of QFT. Hence,

{bo(t.%)po(r.53')) =

(Ql@o (1. X)@o (1. X)|Q).

(129)

Because it will be needed in Sec. IV C, let us compute the two-point correlation function for the first time derivative of the

IR truncated stochastic free field,

D-1) HP—

- = r
T, (8.%) = ¢po(2,X) = Z (F(Q) 2(D-1)/2}(D=3)/2 OHal, )k[cos(k %)z — sin(k - %)B;],
2

710
which is

l 2 +o0 dﬂq

(f3,(t.%)f 5, (. X) \/_

!\\

H/+oo da
740 \/27:

(130)

122 N N
e Vi f 4, (1.3)f 4, (1. F)

F2 —1H2Dl OHa(1,)k OHal(,) k' 7 P TP an(
= (Z) 2p- ZZ (D- 3 /2 &/ (D= 3 /25,;1.;,(cos(k'x) cos(k - X') + sin(k - x) sin(k - x')).

n#0 m;EO

- - el g .
When m = n we have k = k, and hence we obtain

(F3,(.X)f5, (1. X))
FZ(D _ 1) HD+2
FZ (Q) 22D—4ﬂ.D—3

o a a >
XZ%COS (2zHi - (3 — ¥)).
n#0

(131)

Employing Eq. (123), making the integral approximation to
the sum as in Eqs. (54)-(56), we find

ZéHa t,),Ha(t),)
D-3
iz
2D”D/2

~ (2zH)?

cos (2zHn - (x = X))

")HAx)
JHAX

r(®) sin(af

r(D-1) alr ot =1).

(132)

This result is the same as the one in Eq. (57). Thus,
substituting Eq. (132) into Eq. (131) we obtain

p(1.3) = o(1. %)

_IH/dtgbo

(F, (1. 5)f 3, (1. X))
HP-!' T(D -

_ 1) sin(a(?)HAx)
- 2D—1,D/2 F(%)

a(t')HAx

S(r—1), (133)

which is the same result obtained in Eq. (58) applying QFT.
The equal space limit of correlation (133) is the limit given
in Eq. (59); hence f, is a stochastic white noise. The limit
enters the Fokker-Planck equation as a source term in the last
section. In the next section, we study the self-interacting
theory in the context of SFT.

B. Interacting theory

Here also we consider the V(¢) = £¢* theory in D
spacetime dimensions. Equation (117) implies for the
stochastic scalar

#03) = do(1.5) =g [Narw s, a9

Iterating this equation twice for the IR truncated field ¢
yields

12 i - 1 // b
3 ) e [ araes)

~ 7 a 1" "3
‘m{ / di g5 (t'. %) % di"B(1". %) [) dr" (1", %)

+% A Aol %) [ /O dr" (1" ”)r} +OGY.

(135)

Analogous to Eq. (68), the two-point correlation function of the IR truncated stochastic full field is
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(1. X)p(r. X)) = (o(t.X)bo (1", X))

_ﬁ [<$0(z,})£ d;a)g(i,?c’)> + <Atdt”$3( 1. 3)gho (7', x)>}
e (B [ dmcs) [NaRi)

" // - " " /// by 1 ! "7 Y/ ! 2 13(7 o
([Lawmws ["arge i) ([Lanes [ awen)| o)

(136)

where 0 <" <" <t1,0< i <1< t,and? <t The first term is the tree-order contribution calculated in Eq. (128). The
O(4) contribution involves two expectation values each of which has four free fields multiplied together. Recall that, in the
quantum field theoretical analysis of Sec. III, we reduced the computation to that of the topologically inequivalent pairings

of free fields. These pairings originated directly from the commutator algebra [A;, AL »] = 65 of the annihilation and the

creation operators and the fact that Aﬁ |©2) = 0 which exclude any higher order groupings of the free fields. In the stochastic
analysis, on the other hand, the Gaussian integrals over the random variables a; and f; do not vanish when an even power of
the variables a; and f3; is considered. Thus, one needs to exclude those combinations to allow only the pairings of the a;’s
and of the f3;;’s. This can be achieved by a projection operator P. Let us now compute the O(4) contribution in Eq. (136).

1. O(A) contribution
The first of two expectation values which contribute at O(4) in Eq. (136) is

(aoe.3) [ i) = [ it 0. 2)

o +oo e
- / dﬂ’H/ 2 f«ﬂ Lol DB, (137)
q#0
Inserting free field expansion (118), for each ¢, into Eq. (137), evaluating the Gaussian integrals using ol %e—"z/ 2 =
= j"—x /2 =1 and projecting out quartic combinations of the random variables yields

_ . / I 2D-4 14 -1
<¢0(t,x)A dt¢b(t,x)> :24£4ﬂ2D_2 ;D(%) )3
x/ iy QA = HOWHAW) = 8) 7 -5y QAN ZK) 3

720 n 20

where 7 < ¢ < t. At this point, we employ sums (125) and (126) in Eq. (138) and find

(a3 [ dimi )

_ H®* TY(D-1) - (1)HAx)*" -
= w0 ) 3 /0 dt[C(Ax ) +1In(a +Z 2n+ D1 In(a(7)). (139)

n=1

This result is the same as the one obtained in Eq. (72). Performing the remaining temporal integration yields the result given
in Eq. (73) in the context of QFT. Thus,

<<zso<r, %) / e >> — (Q0(1.7) / " a7, (140)
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The remaining expectation value which contributes at O(4) in Eq. (136),

! 143 // b d " oo da71 —%ag Foo dﬂq —iq "
([t i) = [ Pg/_w ALt [T I g (e, (4

can be computed similarly. For each free field in Eq. (141) we insert expansion (118) and evaluate the Gaussian integrals
projecting out quartic combinations of the random variables, to obtain

. ) D4 F4 _1 y O(Ha(t") — k
<A dr" (1", %) o (7, X)> 24D—4 2D-2 /d Z Z(D :

n#0

8 Z®(H“” ) - ZZ‘?I(H“(” ) cos (i (2~ )). (142

m#0

We then substitute the sum computed in Eq (126) into Eq. (142),

ro . H?P=% T3(D-1)_ [t
3 b > —
<A dt”¢0(t”,x)¢0(t’,x’)> = ST 3A dr" In(a(t"))

(3)
§ Z@(Ha(t//) _Z)D?I(Ha(t’) — k) cos (7('/ S(F-7)). (143)

20
Because we have 0 < 7 < rand ' < 1, we decompose the integral into two parts: [¢ di” = [ di” + [! di" to evaluate the

remaining sum in the integrand. In the first integral on the right // < 7, whereas in the second # < . Employing Eq. (123)
in Eq. (143) appropriately, we get

([ e ipe.m)

= zi—z_DF 1812)(2—)1) 3{C(Ax) Ardt” In(a(?")) + At’ d"In?(a(t")) + In(a(?)) [tdt” In(a(?"))
1 > n HAx)Zn / 1 n // /! n / ! /! 1!
52 2n+ M '@ (") In(a(")) + @ (r)[ dr" in(a(r ))] } (144)

This result is the same as the one obtained in Eq. (75). We then perform the remaining temporal integrations and find the
result given in Eq. (76) in the context of QFT. Thus,

([ g sie)) =@ [ e o0, (145)
Equations (140) and (145) imply the equivalence of the O(4)-stochastic and the one-loop QFT correlators

(D(t.X)p(r. X))o = (Qp(. 1)1 5)|Q) 100p: (1406)

where the latter was obtained in Eq. (77). In the next section, we show that the same equivalence also holds for the
O(2%)-stochastic and the two-loop QFT correlators.

2. O(A*) contribution

Three expectation values contribute at O(4?) in the two-point correlation function of the stochastic scalar full field in
Eq. (136). Each will be computed in this section. Let us start evaluating the first one:
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_ ro d~_12 o dfiz _ip_ -
<¢o(t,?c)/0 dtqb%(t,?c’)/ digi (L. %) > / dr/ dﬂ?H/ WX /_:o \/ﬁziﬂ iho (1, %) 3 (1, X') 3 (1, X'),

(147)

where the ordering of the time parameters is 0 < 7 <1<t <t Wefollow the same steps as in the evaluation of Eq. (137) or
Eq. (141). For each free field we insert expansion (118) into Eq. (147) and evaluate the Gaussian integrals over the random
variables projecting out quartic and hexic combinations. We find

(o3 [ aig) [ dia)

H3P=6 T9(D-1) (Ha(t) — k)®(Ha(t)—k) - _ .
~ 26D=6,3D-3 Fﬁ /df/ dl{6§ D=1 cos (k- (x —=X'))

O(Ha(t) — K)O(Ha(t O(Ha(t) — k'
XZ m 1( () ); ( FEQI )

N 32 O(Ha(t) — k)O(Ha(t ) k) cos (i - (3 _;C/))Z O(Ha(t) — k') Z@(Ha(t) — K

D 1 D-1 -1

m#0

70 m#0 70
62 O(Ha(t kl))®l(Ha( ) k) cos (% S(Xx=X))
n#0
§ Z ©(Ha(i km )6(Ha(: f- >Z®(Ha<t> - k;’])fl(Ha(t) - k”>}, (148)
im0 7#0

where k" = 2zHr. The sums in Eq. (148) are evaluated in Egs. (125) and (126). When their outcomes are substituted, the
expectation value becomes

(o3 [ digi) / )

H3P—6 2 (=1)"(a(t)HAx)> =
:23D—3ﬂ.3D/2 F3 / dt/ { [ (Ax) +In(a ())+Z< 2>nE2r(zt)+ 1)!) ]lnz(a(t))

n=1

+3[C(Ax ) +In(a +nf; o f“) }[ln(a(f))ln(a(?))+21n2(a(§))]}. (149)

This result is the same as the one in Eq. (82). We, after integration, obtain the result given in Eq. (83). Thus, we conclude
that

(w3 [ diga) [ i) = @loies) [ din) [ din 2. (150)
Next, we consider the second expectation value which contributes at O(4?) in Eq. (136),
</ dr" i (" q)/ot” dt”’@%(l’”,f)@o(ﬂ,76’)>
= [ar [ areT] [T [T R e D), (151)

Proceeding as before, we perform the Gaussian integrals projecting out quartic and hexic combinations of the random
variables to obtain
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< / dt" (1" %) A dr" i (1" %) po (1. X’)>

3D-6 a —K)O(Ha(") —
:26DI—{6”3D . / / ///{6%; (H 2 1(H (") = k)
©(Ha(1") k’) ( a(t') = k') 5 = ©(Ha(1") — k")
X cos (K - (3 = ¥)) — b1
N 32 <Hi(;_3 —k) Z@(Ha(t ) — k) Z@(Ha(t ) — krD)_(?(Ha(t) —k )cos @ G—¥))
10 0 70
N 62 O(Ha(t") — k)O(Ha(t") — k) <~ O(Ha(t") — K )O(Ha({") — k')
- D1 = D]
x ZG(H“(W) - Ii;)_?(Ha(ﬂ) =) cos (- (G - 7)) (152)
70

Now, we use Eqgs. (122) and (126) to rewrite Eq. (152) as

¢ 2D-4 12 _ t I _ -
<A dt//¢2( Z *)/0 dt///¢3( 7 -')¢ (t b )> _ 2§ID_2 DF IE?(Q)U/) dl///) dt’”{6<¢0(t”,7c)¢0(t’,?c’)>ln2(a(t”’))
+3{o(1"", X)ho (¢, X)) In(a(t")) In(a(t"))
+ 6<(iﬁo(t’“,Fc)c?ﬁo(t’,76’)>1n2(a(t’“>)}- (153)

Recall that the stochastic and quantum formalisms are equivalent at tree order; see Eq. (129). Thus, Eq. (153) is identical to
Eq‘ (85)9

¢ _ " B
<A dt”(ﬁ(z)(t”,?c)/) dt”/(ﬁg( o *>¢0 ¢, ¥ > Q|/ dl‘" 2 t” * / t’”(ag(t’”,fc)(foo(t’,fc’)|§2>. (154)
The final expectation value that contributes at O(4?) in Eq. (136) is

</ a1, *)/0 B tx’)> /dt”/ dﬂal‘[f j“_e de? +°°jﬂie VR HREGE).  (155)

We carry on evaluating the Gaussian integrals projecting out quartic and hexic combinations of the random variables and get

t _ [ .
([ ardes) [ dimas)
0
H®6 (D -1) (Ha(?") - k)
= 26D—6ﬂ.3D -3 F6 / dt”/ dt{6z I’lD 1
n#0
7 _k//)

3 8Hal?) ~ K)O(Ha (t)_k/>005(%/'(3—}/))2%

D 1
m#0 7#0

32 Ha k)@(Ha(f) — k) cos (ié ) (} _ ;C/))Z @(Ha(t”)l_ k/) Z @(Ha(;) _ k")

n#0 P m#0 mD_ 7#0 }"D_l
+6 [Z O(Ha(r") _nkg_?(H“(t) =K cos (k- (3 }/))} 3}. (156)
n#0
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At this stage we employ Eqgs. (122) and (126) in Eq. (156),

([faraies) [ amz)) = [a [ {90 9060 fpmrmy s Ifale) n(a()

+6[<¢‘so<r”,fc)&soa,z’»P}. (157)

The final step is to make use of the identity (129) which implies that Eq. (157) is identical to Eq. (88),

<A ArH (", *)A digy (1. % > Q|/ AP (¢, 7) A’ dig (1. 3)|9). (158)

Equivalence of the individual stochastic expectation values to their corresponding quantum analogs, Egs. (150), (154),
and (158), yields

(1. X)p(1, X)) o) = (QUp(1.1)P(1' . X)]Q)2100p- (159)

Thus, Egs. (129), (146), and (159) show that the stochastic field theory gives the same two-point correlation function (96) of
the IR truncated scalar obtained applying QFT

(bt D)1 X)) = (Qp(r. X)p(1 . ¥)|Q). (160)

The variance of the stochastic field ¢(z, x) defined analogously to Eq. (100) also yields the same quantum field theoretical
result whose equal time and equal space limits are given in Eqs. (102) and (114), respectively. In the next section, we give a
stochastic check of the two-point correlation function of the IR truncated scalar in the equal spacetime limit.

C. A check of the lim,_, (Q|@(¢.x)@(f X')|Q) via the Fokker-Planck equation

Recall that we computed the two-point correlation function (Q|@(, %)@ (7', x')|Q) in Sec. Il using QFT in D dimensions.
We have just shown in Sec. IV that the same result is obtained when SFT is used. In this section, we want to give another
stochastic check of our result for the correlation function.

Recall that the equal spacetime limits of Eqgs. (96) and (160) imply Eq. (97) which we copy here,

D2 _ 2D-6 T2y _
QU119 = (P0.5) = 35t s (60 = 5 v D

22 H3D-10  [3(D_1
(D —1)223D-35,3D/2 133(%) )1n5(a(t)) + 0. 161)

In*(a(t))

+

One can also calculate the expectation values of functionals of a stochastic field ¢ as
. +oo
(Flae ) = [ doetr.o)F(@). (162)
where the probability density ¢(t,¢) is a solution of the Fokker-Planck equation
0 [ V'(¢)
o |(D-1)H

The expectation value we want to check in Eq. (161) is of the form

10

o(t, ¢)} + 208

9 o1.9) = (F3 (03) . (1. ))elt, &) (163)

+o0

(™ (1,%)) :/ dwo(t, )™, (164)

—0o0

in D dimensions with n = 1. The computation of Eq. (164) was done in Ref. [31] for D = 4. Here, we need to do the
computation for an arbitrary D. Taking the derivative of both sides of Eq. (164) with respect to ¢, using Eqs. (133) and (163),
and then integrating the result by parts, we find
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0 = -
o (#(1.5)

_ teo 2n Q
= /_ dow atg(t, )

_ [ A C)
- [l
(D-1) HP-!

HD—I _
2n—2 >
2D_1”D/2 <¢ (t’ X>>

+n(2n —1)0*"?

r(D-1)
NG

- o V@)

=n(2n-1)
(165)

Defining new variables

1 T(-1)
T oD-1,.D/2 F(%)

In(a(1)),
r'®)

5 HD—4
T(D-1)3(D-1)

a

(166)

/_1 = 2D—1ﬂD/2 A7

and choosing V(¢) = £ ¢* in Eq. (165), we obtain

G -e ()
(")

This equation has the same form obtained in Ref. [31]. So
does its solution

T —
+ P
+O(Z3)},

(167)

(3513 + 17012 +225n + 74)a*

which yields

<<€7’2W>)> a4 P ed +OF)  (168)

HD—2

for n = 1. Employing Eq. (166) in Eq. (168) reproduces
Eq. (161). The equal spacetime limit of our result (96) is
indeed correct.

V. CONCLUSIONS

We considered infrared truncated massless minimally
coupled scalar field @(z, x) with a quartic self-interaction on
a D-dimensional locally de Sitter background of an inflat-
ing spacetime. In Sec. III, we computed the two-point
correlation function (Q|p(z,X)p(¢',X')|Q) of the scalar at

PHYSICAL REVIEW D 91, 103537 (2015)

one- and two-loop order applying quantum field theory.
The tree-order correlator at a fixed comoving separation
that is at increasing physical distance approaches a constant
nonzero value. It grows linearly with comoving time at a
fixed physical distance. This is because more and more
particles are created out of vacuum during inflation which
increases local field strength. The dominant (one-loop)
quantum correction, however, grows negatively at a fixed
comoving separation and at a fixed physical distance.
We used our correlation function to compute the variance

035 (1.1:%.%) = (Q|[Ap - (QAgIQ)P|Q) = (@] (49)°|Q)
= (Q1@*(1.9)|Q) - (Qla(.X)p (. ¥)|Q)
—(Qlp(r, ¥ (1.5)|Q) + (Q7* (7. X)|Q).

and obtained corrections for the variance, in space and time, of
one- and two-loop correlators. Time dependence of the tree-
order variance implies that the magnitude of spatial variation
Ap(t,x,X') = @(t,x) — p(t,X’) increases with time and
freezes into, for a fixed physical distance, a not especially
large value. This spatial variation is the main reason for some
cosmologists to argue that using expectation values gives a
misleading description of physical processes because fluctu-
ations about the mean value change the entire picture. A local
observer detects either an increase or a decrease in the field
strength as the fluctuations take place. The expectation value
measures merely the average effect. The authors of Ref. [27],
on the other hand, argue that one can roughly trust implica-
tions of expectation values under certain circumstances,
despite the spatial and temporal variation in the real effects.
The key issue in this paper is that whether the tree-order
comparisons between expectation values and variances found
in Ref. [27] become better or worse when loop corrections are
included. We found out that the one-loop variance grows
negatively for fixed physical distance in our self-interacting
model. This means that the spatial variance does not grow as
large as the tree-order variance indicates. Thus, the contrast
between the expectation value and variance decreases when
we include the loop corrections.

In Sec. IV, we examined the model by repeating the
computations of Sec. III applying a stochastic field theory
where the annihilation and creation operators of the free
quantum field are considered to be two complex conjugate
stochastic random variables. The real and imaginary parts
of the random variables are governed by a Gaussian
probability distribution function. We computed the two-
point correlation function of the IR truncated stochastic
field in our model. The result we found is the same as the
one in Sec. III. Thus, the analogously defined variance in
the context of stochastic field theory is in perfect agreement
with the variance obtained using quantum field theory.
Finally, we presented a check of our computation for the
correlation function. Expectation values of functionals of a
stochastic field can be calculated by integrating the func-
tional weighted with a probability density function which
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satisfies a Fokker-Planck equation. Employing this tech-
nique, we computed the expectation value of the stochastic
field squared (¢*(z,X)) in D dimensions. The result is what
our two-point correlation function yields in the equal
spacetime limit.
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APPENDIX A: COMPUTING THE TWO-LOOP
CONTRIBUTION TO THE TWO-POINT
CORRELATION FUNCTION (Q|¢(t%)¢(¢ ¥')|Q)

Two-loop contribution to the two-point correlation
function of the IR truncated scalar full field consists of
three terms each of which is proportional to a VEV; see
Eq. (68). The VEVs are computed in Sec. III B 3. In this
appendix, we give the details of the computation for each of
the VEVs in Secs. A1, A2, and A 3, respectively.

fo dtq’o N )|Q>

In Eq. (82) computation of this VEV is reduced to the evaluations of three double integrals. The first double integral is

/dt/dlZ 3- 1[ (Ax) + In(a

2H2{51 w5 (a(#)) + C(Ax)in(

X {a2"(t') {ln3(a(t')) - Zi <1H2(a(f'))

n

The second double integral in Eq. (82) is

/dt/dt3 1- 1[ (Ax) +1In(a

2In°(a(?'))  3C(Ax)
2H2{ 5 Ty

x {a%(ﬂ) {1112(@(;')) - dntalr)

The third double integral in Eq. (82) is

0 )n
+Z 2n 2n+

Y5

n=1

int(a(#) + 230

HH Ax)

et

n=1

o+ SR

n=1

HAx)Z”
n*(2n + 1)!

)32}

v ;‘fj LI nfa(@) el

—1)"(HAx)*"
n*(2n +1)!

n=1

(A2)

/ dt/ di3-2. 1[ (Ax) + In(a(?)) + Z<_12);EZSTIA>T) n]hﬁ(a(?))

_ L {—31“5“‘“’)) (At

21In(a(?))

"(H Ax)

3 (5]
EZ:: 32n+1

x{az”(t’) In*(a(r)) - = +232}—m(“n(’))—;12}}

2. Computing the VEV (Q| [tdt'@3(¢" %) [ dt"@3(t" X)Po(t X')|Q)

In Eq. (85) computation of this VEV is reduced to the evaluations of three double integrals. Let us evaluate the first one.
Because 7' < t, we can break up the double integral into two [to be able to use Eq. (45)]:

t t// t/ t// t f”
/ dr’ / dr" = / dr’ / dr'" + / dr’ / dar".
0 0 0 0 v 0

In the first double integral on the right side we have 0 < ¢’ < ¢/, whereas ¢/ < " <t in the second double integral. Thus,
using Egs. (45) and (A4) we can write the first double integral in Eq. (85) as

(A4)
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¢ HA 2n
x) :|1n2 (a(t”’))

X

V. K. ONEMLI
6HD 2 F _1 /" " //
2D=1,D/2 {/ dt/ dt [ (Ax) +In(a +Z 2n 2n+1)‘
+ / dr’ A Car [C(Ax)+ln(a(t’))+z( lgnggfls,x) }lnz(a(t’”))} (AS)
n=1 :
D=4 I(D—-1) [ In(a(f 3% Ax)*
_2217;0/2”?(0) >{_ (s(t))+[ln( (£)) +C(a]in’( +§Zl n( 2nﬁ1)v
n*(a(t)) —In*(a(? n’(a(? n?(a(? !
{h(t,)(l (a(1)) 31 ( (l))+21 én(f))_l (nz(f))Jr (ng ) ﬁ) +#” (A6)
and

1) 0L/ << <, () 0L <r¥<"<u,

Let us now evaluate the second double integral in Eq. (85). To break up the double integral appropriately, consider
(i) 0 < " <" <t <t In cases (i) and (ii) we have ' < ¢’; therefore, the second double integral in Eq. (A4) can be

the three cases that we may have depending on ¢
(A7)

written as
t v t I3 t I
/dt/// dt/”:/ dt/// dt///+/ dt”/ dt"/.
0 4 0 4 4

In case (iii), on the other hand, we have t” < ¢'. Thus, in this case, the second double integral in Eq. (A4) can be written as
t//
(A8)

; ! t /4 t 4 t t
/ dt/[ / dt/// — / dl,// / dt”/ _ / dt” / dt”l — / dt” / dt/” _"_ / dt// / dt///
' 0 / 4 ! 0 ! /

v 0
Note that the last equality in Eq. (A8) is the same as the one in Eq. (A7). Combining Eqs. (A4)—(A8), we conclude that we
(A9)

can break up the double integral in Eq. (A4), in all possible cases, as

/t dr’ /t” dr" = /t/ dr" /t” dr" + /,dt” /t’ dr" + /td[/// .
0 0 0 I3 0 I3 I3

Thus, using Egs. (45) and (A9) the second double integral in Eq. (85) becomes

{ /0 ﬂa’t”ln(a(t”)) /0 t”dt”’{C(Ax)+1n " +Z

2n 2n”/+H )Ax) n] In(a(#"))

3HP2 T(D - 1)
2012072 (D)
! /" 1" " /// = ) ( ( /”)HAX) "
+% dt" In(a(r ))/O dt [C(Ax)—i—ln( +Z 2n(2n+ ol }ln(a(t )
+ [ "4 In(a(i")) / " [C(Ax )+ 1In(a +ni 2n g fmx) }ln(a(t”’))} (A10)
D-4 _ nS(alt 3 (alt
= 21; D/zr(l?(g)l) {31 éo<t)) ! (Z(t))lnz(a(t)) +§[ln(a(t’)) + C(Ax)]In*(a(t))
2
© n X 2n n
#32 C {) |n2(at0) - a7+ 2 () - (et
a 2(a(? a(t 2(a
) el S ) +237(a2,,<t,) o) Al
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The third double integral in Eq. (85) is obtained similarly. Using Egs. (45) and (A9) we obtain

6HP [(D—1) {/ dt”/ dt”’{ (Ax) + In(a(s") +Z S(a()HA)? ] n’(a(r"))

2D=1072 (D g 2n (2n+1)!
/ dt// / dt/// |: Ax _|_ ln /// _|_ zo.j 2na2F:l";_H)AX) :| 1n2(a(t///))
n=1
/ dr’ / dt’”[ (Ax) +In(a +f: 2n - :’?x) }lnz(a(t’”))} (A12)
n=1
s e ) (1)) o) + el + (a0 a)
2
n X 2n n4 alt 1,14 a _ 1’14 a
P AP ) ) 1) iy L))
n?(a(? n(a(? n(a(t n(a n(a(t
+ D ) -y + D) (D ey ) 4 e 2] 3
o2

3. Computing the VEV (Q| [tdf'g3(t" %) [¢ digy(t.xX)|Q)

In Eq. (89) computation of this VEV is reduced to the evaluatlons of four double integrals.
The first double integral in Eq. (89) yields

/dt"/ dt9{C(Ax ) + In(a(") +n§; zn(zn”—’_HAx) } n(a(t")) In(a(z))
:8H2{81“ 55( D 4 e(ax)in®(a())

The second double integral in Eq. (89) yields

o) // HAX)Z"
dt" | dt6|C(Ax) + In(a(?")
/ / { %) + In(a(e)) + nz; 2n 2n—|— )! }

- {IHS(Q(Z/)) + S8 14 ar)) + (Ax) I (a(1)) + C(A0)n(a(r))

H? 10 2
+;§; nl)Zan’C), {aZ"(ﬂ) Intalr)) (‘2‘(’/))+ <C(Ax)—rll> ln(a(t’))—i-D(Azx’n)}
— n&(Ax,n) In(a(?)) - D(Azx’ ”)}
3 —1)P(HAx)? N a4 3 — nlale
+8;;pzn(p_n)(2n+l ![2(1,_”)“],{& <r>[1 (a(r)) +C(Ax) p} 2pC(Ax) = 1]In(a(r))

(A15)

_ 1N, 188 (=1)4(HAx)2[a?(¢') = 2qIn(a(r)) — 1]
clas) + }+16;;;q2(q—p)[2(q—p)+1}!n(p—n)(2n+1)1[2(p—n)+1]!}’
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where
D(Ax, n) = C*(Ax) — 2(Ax) —+ % and &(Ax,n) =C*(Ax) — C(ix) + # (A16)
The third double integral in Eq. (89) yields
- x)?" .
/ dt”/ dt9|: Ax + 111 t) + ; 2n _:IA ) :| ln(a(t"))ln(a(t))
= g { - ) A | ) e i) - )
+ Y S e [1n<a<ﬂ>><ln2<a<t>> i (a(r)) + 2D _3nalr)
In?(a 3 In?(a 3
_elato) +m}  Ptate) _F}} A1
The fourth double integral in Eq. (89) yields
y (=1)"(a(t)HAx)*™)?
/ dr / dt6{ (Ax) +In(a(7)) + Z on(an 1) }
-2 { 2o’ (5< ) o (;‘(”) In(a(t)) + C(Ax) [21n3(a( ) In(ar)) — 2ot ]
+C*(Ax)3In*(a(¢')) In(a(1)) = 2In(a())] + C*(Ax) 2In(a(t')) In(a(1)) — In*(a(r'))
X 2n
22 1)2nP:_A )' {az"(t’) [(ln(a(t)) —In(a(?))) (lnz(a(t’)) + [2C(Ax) —’11] ln(a(t’))>
n*(a(? X, n X, n
+ w —D(Ax,n)In(a(?)) + E(Ax,n) In(a(t)) + D<gn’ )} —&(Ax,n)In(a(r)) — %}
E S (_l)p(HAx)zp a _ alt alt X _i
1 S T = L) 000 (e (m(a(1) + 89 -3
In(a(r))  ClAx) 17 o) — 1 20 — ClAx) 1
T T 2p2} {C(A ) 217] nal) ==, 2p2}
| & 4L 2 (=D I(H A [a() (In(a(1)) — In(a()) + ) - In(a(r)) - ]
Y8222l piBla—p) + 1np —m@n - DIE(—m) £ 1] i (A1)
APPENDIX B: COMPUTING THE COMMUTATOR @ (¢.x).@(t.x")]
Here, we compute the commutator of the free scalar field given in Eq. (21) and its first time derivative
[00(2,X), @o(2,X)] = HD‘lz(E)(Ha(t) — H2zn)[u(t, k)i (1, k) — u*(t, k)u(t, k)]eiz'(;“;‘/>
n#0
lHD ! e -
= Z@ (Ha(t) — H2zn)e2HmG-¥) (B1)
n;éO

Making the integral approximation to the discrete mode sum in Eq. (B1) we obtain
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( H27m) i2zHn-(x—x') /dQD 1/
n#0

Z@(Ha

T 2

" HPIT(D -
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Making a change of variable kAx =y in the integral of Eq. (B2) we obtain

/Hu(f) JhkD-2 sin(kAx)
H

kAx  (Ax)P-!

where

/ dyy>=3sin(y) = (D - 3)yP*sin(y) — y°=3 cos(y) — (D - 3)(D -

dkkP2 )
5 H o Ha(t) _ k)etkAxcos(B)
D) Ha(r) sin(kAx)
— kkP—2——"~ B2
I)L d kAx (B2)
Ha(t)Ax D3
[ ot sing), (83)
4 [y siniy). (B4)

Finally, using Eqgs. (B2), (B3), and (B4) in Eq. (B1) we get the commutator as

ir??  T(5)

(a()Ax)P-TT(D - 1)

[po(2.X), oo (1.X')] =

+ (HAx)P=3 cos (HAx) — (a(t)HAx)P~

dyyP= sin(y) } :

Ha(t)Ax

—(D—3)(D—4)/

HAx

{(D —3)(a(t)HAx)P=*sin (a(t)HAx)

3cos (a(t)HAx) — (D — 3)(HAx)P~*sin (HAx)
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