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We develop a new approach to building cosmological models, in which small pieces of perturbed
Minkowski space are joined together at reflection-symmetric boundaries in order to form a global,
dynamical space-time. Each piece of this patchwork universe is described using post-Newtonian
gravitational physics, with the large-scale expansion of the Universe being an emergent phenomenon.
This approach to cosmology does not require any assumptions about nonlocal averaging processes. Our
framework clarifies the relation between the weak-field limit of general relativity, and the cosmological
solutions that result from solving Einstein’s equations with a set of symmetry assumptions. It also allows
the effects of structure formation on the large-scale expansion of the Universe to be investigated without
averaging anything. As an explicit example, we use this formalism to investigate the cosmological behavior
of a large number of regularly arranged pointlike masses. In this case we find that the large-scale expansion
is well modelled by a Friedmann-like equation that contains terms that take the form of dust, radiation, and
spatial curvature. The radiation term, while small compared to the dust term, is purely a result of the
nonlinearity of Einstein’s equations.
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I. INTRODUCTION

The standard approach to cosmological modelling is a
top-down one in which the first step is to solve for the
homogeneous-and-isotropic large-scale expansion. Small
fluctuations on large scales are then included using first-
order perturbation theory [1], and large fluctuations on
small scales are included by appealing to Newtonian theory
[2]. This approach has many features that commend it as a
good way to build cosmological models. Among the
foremost of these is the mathematical simplicity involved
at every step, as well as the fact that the resulting model has
been found to be consistent with a wide array of cosmo-
logical observations (as long as dark matter and dark energy
are allowed to be included).
Nevertheless, while the top-down approach is simple and

functional, it is not necessarily self-consistent or well
defined. This is because the standard approach assumes,
from the outset, that the large-scale expansion of a
statistically homogeneous-and-isotropic universe can be
accurately modelled using a single homogeneous-and-
isotropic solution of Einstein’s equations. It is far from
obvious that such an assumption should be valid, as
Einstein’s equations are nonlinear, and because it has not
yet been possible to find a unique and mathematically well-
defined way of averaging tensors. This makes it extremely
difficult to assess the effect that the formation of structure
has on the large-scale expansion of the Universe, without
assuming that it is small from the outset. This is known as

the “backreaction” problem, which, despite much study,
has uncertain consequences for the actual Universe [3].
Part of the difficulty with the investigation of the back-

reaction problem is that it is hard to do cosmology without
first assuming that the geometry of the Universe can be
treated (to at least a first approximation) as being a
homogeneous-and-isotropic solution of Einstein’s equations.
This is, unfortunately, assuming the thing that one wants to
question in the first place, which is obviously not ideal.
The problems with studying backreaction in the standard
top-down approach to cosmological modelling become
increasingly apparent if one allows small-scale perturbations
to the homogeneous-and-isotropic background. On small
scales density contrasts must become highly nonlinear, and
extrapolation from the linear regime (which is assumed to be
valid on large scales) can result in divergences [4]. On the
other hand, appealing to the Newtonian theory results in a
situation where the perturbations to the metric contribute
terms to the field equations that are at least as large as the
terms that come from the dynamical background, making the
perturbative expansion itself poorly defined [5].
In this paper we report on an approach that sidesteps all

of these difficulties. We construct cosmological models
from the bottom up, by taking regions of perturbed
Minkowski space, and patching them together using the
appropriate junction conditions. We take the boundaries
between these regions to be reflection symmetric, in order
to make the problem tractable. The model that results is a
space-time that is periodic, and statistically homogeneous-
and-isotropic on large scales, while being highly
inhomogeneous-and-anisotropic on small scales. The equa-
tions that govern the large-scale expansion of the space are
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determined up to post-Newtonian accuracy. The
Newtonian-order equations reproduce the expected behav-
ior of a Friedmann-Lemaître-Robertson-Walker (FLRW)
model filled with pressureless dust, while to post-
Newtonian order we find new terms that appear in the
effective Friedmann equations. For the case of a single
mass at the center of each region, these terms all take the
form of either dust or radiation.
With a new generation of galaxy surveys on the horizon,

that have the promise to map the structure in the Universe to
unprecedented levels [6,7], it becomes increasingly impor-
tant to understand the relativistic corrections that could be
required in order to accurately interpret the data that results.
To this end, higher-order corrections in perturbation theory
are already being calculated (see, e.g., [8]). Our framework
provides a way of consistently and simultaneously tracking
the effects of relativistic gravity in both the regime of
nonlinear density contrasts, and in the large-scale cosmo-
logical expansion. A proper understanding of these effects
is required to ensure we understand all possible sources of
error that could arise in the interpretation of the data, and
also if we are to use the data to test and understand
Einstein’s theory, and the dark components of the Universe.
Our models do not rely on any assumptions about

the large-scale expansion being well modelled by any
homogeneous-and-isotropic solutions of Einstein’s equa-
tions. They are also well defined on small scales, as they are
explicitly constructed from the post-Newtonian expansions
that are routinely used to study the weak-field and slow-
motion limit of general relativity. We are therefore able to
model nonlinear structure within the context of a cosmo-
logical model without falling foul of any of the problems
outlined above (and that appear to be inherent in any
top-down approach to cosmological modelling). The
large-scale expansion of our model simply emerges, as a
consequence of the junction conditions. We do not have to
make any assumptions about the averaging of tensors, and
do not have to assume anything about the existence of any
background cosmology.
Other recent approaches to bottom-up cosmological

modelling include the application of geometrostatics to
cosmology [9], as well as numerical relativity techniques
[10,11], perturbative approximation schemes [12,13], and
the rediscovery of the Lindquist-Wheeler models [14].
These studies have allowed the evolution of subspaces to
be calculated [15,16], numerical approximations to both the
space-time and the optical properties of the space-time to be
determined [17–19], and the proof of interesting results such
as the limit of many particles approaching a fluid [20], and
the nonperturbative nature of some structures [21,22]. Our
study extends these previous ones, we believe, by allowing
increased flexibility for the distribution of matter, while
maintaining a high degree of mathematical simplicity.
In Sec. II we introduce the post-Newtonian formalism

that we will use throughout the rest of the paper. In Sec. III

we then explain how we will apply the junction conditions,
in order to build a cosmological model from regions
described using the post-Newtonian approximation to
gravity. Section IV contains a detailed presentation of the
field equations and the junction conditions, both expanded
to post-Newtonian levels of accuracy. In Sec. V we then
manipulate these equations into a form that can be used to
determine the motion of the boundaries of each of our
regions, and hence the expansion of the global space-time.
We then proceed, in Sec. VI, to explain how the general
solution to the global expansion can be calculated, for
arbitrary distributions of matter, as well as for the special
case of a single mass at the centerof each region. In both
cases the lowest-order Newtonian-level solution to the
equations of motion give a large-scale expansion that is
similar to the dust-dominated homogeneous-and-isotropic
solutions of Einstein’s equations. To post-Newtonian order
we find that, for the case of isolated masses, the only new
terms that appear in the effective Friedmann equation look
like dust and radiation. After that, in Sec. VII, we transform
our solutions so that they are written as the evolution of
proper distances in proper time, and on time-dependent
backgrounds. We also consider the calculation of observ-
ables in these models. Finally, in Sec. VIII, we conclude.
We will use greek letters (μ; ν; ρ;…) to denote spatial

indices, and latin letters (a; b; c;…) to denote space-time
indices. We reserve the latter part of the latin alphabet
(i; j; k;…) for the indices on the 2þ 1-dimensional hyper-
surfaces that will form the boundaries of each of our regions
of space. Capital latin letters (A; B;C;…) denote the spatial
components of tensors on these boundaries. As usual, a
comma will be used to denote a partial derivative, such that

φ;t ¼
∂
∂x0 φ and φ;γ ¼

∂
∂xγ φ; ð1Þ

where x0 ¼ t here is a time coordinate, and φ denotes any
arbitrary function on space-time. Covariant derivatives will
be represented by semicolons.

II. POST-NEWTONIAN FORMALISM

The equations of general relativity are known to reduce to
those of Newtonian gravity in the limit of slow motions
(v ≪ c) and weak gravitational fields (Φ ≪ 1). In the Solar
System, for example, gravity is weak enough for Newton’s
theory to adequately explain almost all phenomena.
However, there are certain effects that can only be explained
using relativistic gravity. These include, for example, the
shift in the perihelion of Mercury, which requires the use of
relativistic gravity. To describe such situations it is useful to
consider post-Newtonian gravitational physics.
The post-Newtonian formalism is essentially based on

small fluctuations around Minkowski space. Both the
geometry of space-time, and the components of the
energy-momentum tensor, are then treated perturbatively,
with an expansion parameter
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ϵ≡ jvj
c

≪ 1; ð2Þ

where v ¼ vα is the 3-velocity associated with the matter
fields, and c is the speed of light. The first step in the post-
Newtonian formalism is to associate all quantities with an
“order of smallness” in ϵ. This is done for Newtonian and
post-Newtonian gravitational potentials, as well as for
every component of the energy-momentum tensor.
In the remainder of this section we will outline the post-

Newtonian expansion, and the quantities that are useful for
solving the equations that result. Much of our discussion
closely follows that of Will [23]. From this point on we will
work in units where c ¼ 1, unless explicitly stated
otherwise.

A. Post-Newtonian bookkeeping

General relativity tells us that the curvature of space-time
is directly related to its energy-momentum content by
Einstein’s equations:

Rab ¼ 8πG

�
Tab −

1

2
Tgab

�
; ð3Þ

where Rab is the Ricci tensor, gab is the metric of space-
time, G is Newton’s constant, Tab is the energy-momentum
tensor (dependent on the matter content of the Universe),
and T ¼ gabTab is the trace of the energy-momentum
tensor. These are a set of ten nonlinear partial differential
equations in four variables.
In the vicinity of weakly gravitating systems we take the

metric to be given by

gab ¼ ηab þ hab; ð4Þ

where ηab ¼ diagð−1; 1; 1; 1Þ is the metric of Minkowski
space, and hab are perturbations to that metric. We also take
the energy-momentum tensor to be given by

Tab ¼ μuaub þ pðgab þ uaubÞ ð5Þ

where μ is the energy density of the matter fields measured
by an observer following ua, p is the isotropic pressure, and
ua is a timelike unit 4-vector, given by ua ¼ dxa

dτ , where τ is
the proper time along the integral curves of ua, and where
ua is normalized such that uaua ¼ −1. Anisotropic pres-
sure could have been included in Eq. (5), but would only
appear at Oðϵ4Þ in gαβ, andOðϵ6Þ in the equation of motion
of timelike particles. This is beyond the level of accuracy
used in this paper, and so we do not include it here. We can
now expand hab, μ, p and ua in orders of ϵ, and relate the
resultant quantities to each other via Eq. (3).
To begin this we first note that, in the post-Newtonian

formalism, time derivatives add an extra degree of small-
ness to the object they operate on, as compared to spatial

derivatives. This follows because the time variations of the
metric and energy-momentum tensors are taken to be a
result of the motion of the matter in the space-time, such
that

φ;t ∼ jvjφ;γ; ð6Þ

where v is the 3-velocity of the matter fields, and φ is any
space and time-dependent function in the system (such as
one of the components of hab or Tab).
To find the lowest-order part of htt we note that the

leading-order part of the equation of motion for a timelike
particle takes the same form as in Newtonian theory. That
is, uγ ;t ¼ 1

2
htt;γ . As uγ ∼ ϵ, we therefore have that the

leading-order part of htt is

htt ∼ ϵ2: ð7Þ

Similar considerations lead to the conclusion that the
leading-order part of the spatial components of the metric
are given by

hαβ ∼ ϵ2; ð8Þ

while those of the tα-components are given by

htα ∼ ϵ3: ð9Þ

The next-to-leading-order parts of each of these compo-
nents is Oðϵ2Þ smaller than the leading-order part, in
every case.
Similarly, the lowest-order part of μ can be determined

from the leading-order part of the tt-component of Eq. (3).
This takes the form of the Newton-Poisson equation,
htt;γγ ¼ −8πGμ, so that the lowest-order part of μ can be
seen to be

μ ∼ ϵ2: ð10Þ

Here, and throughout, we have chosen units such that
spatial derivatives do not change the order of smallness of
the object on which they operate. To find the lowest-order
contribution to the pressure we can consider the conserva-
tion of energy-momentum, Tab

;b ¼ 0. The lowest-order
part of the spatial component of these equations is
μðuαÞ;t þ μuβðuαÞ;β ¼ 1

2
μhtt;α − p;α, from which it can be

seen that

p ∼ ϵ4: ð11Þ

Again, the next-to-leading-order part of the energy density
is Oðϵ2Þ smaller than the leading-order part, while the
higher-order corrections to the pressure will not be required
for what follows.
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B. Post-Newtonian potentials

In order to solve the equations of both Newtonian and
post-Newtonian gravitational physics it is useful to define
some potentials, as well as make some identifications for
the components of the energy-momentum tensor. The first
of these involves the leading-order part of the energy
density, which we write as

μð2Þ ¼ ρ; ð12Þ
where ρ is the density of mass. Here, and throughout, a
superscript in brackets denotes a quantity’s order of small-
ness in ϵ. The next-to-leading-order part of the energy
density is then written as

μð4Þ ¼ ρΠ; ð13Þ
where Π is known as the specific energy density. In what
follows, we will also use vα to denote the spatial compo-
nents of ua at lowest order.
Using ρ we can define the first of our potentials, which is

simply the Newtonian gravitational potential, defined
implicitly as the solution to

∇2Φ≡ −4πGρ; ð14Þ
where ∇2 ¼ ∂α∂α is the 3-dimensional Laplacian operator
of flat space. The reason for defining the potential in this
way is very simple: it allows us to write the solution to
hð2Þtt;γγ ¼ −8πGμ as hð2Þtt ¼ 2Φ. At this point the “solution”
for htt is little more than a change of notation (with obvious
historical significance). When it comes to post-Newtonian
potentials, however, the equations become much more
complicated. This change of notation is then much more
useful, especially if the potentials that we define are simply
solutions to Poisson’s equations.
With this in mind, it is useful to make the following

implicit definitions for new gravitational potentials:

∇2χ ≡ −2Φ;

∇2Vμ ≡ −4πGρvμ;

∇2Φ1 ≡ −4πGρv2;

∇2Φ2 ≡ −4πGρΦ;

∇2Φ3 ≡ −4πGρΠ;

∇2Φ4 ≡ −4πGp;

where v2 ¼ vαvα, χ ∼ ϵ2, Vμ ∼ ϵ3 and Φ1 ∼ Φ2 ∼ Φ3∼
Φ4 ∼ ϵ4. In what follows, we will not require any potentials
of order higher than ϵ4.

C. Green’s functions

When applying the post-Newtonian formalism to iso-
lated gravitational systems, such as the Sun, it is usual to

assume that the space-time is asymptotically flat. This
allows the boundary terms of Green’s functions to be
neglected, so that the solutions to Poisson’s equation are
given by simple integrals over spatial volumes. This
simplicity is a substantial benefit when solving for the
potentials defined in the equations above. In the case of a
cosmological model, however, we cannot assume asymp-
totic flatness. We must, therefore, be more careful with the
boundary terms.
The equations we want to solve take the form of the

Poisson equation,

∇2φ ¼ F ; ð15Þ

where φ is now being used to denote a potential, and where
F is some function on space-time (such as the mass
density). To solve this equation we consider the Green’s
function, Gðx;x0; tÞ, that satisfies

∇2G ¼ −δðx − x0Þ þ C1; ð16Þ

where x and x0 denote spatial positions, where δðx − x0Þ is
the Dirac delta function, and where C1 is a constant over
spatial hypersurfaces (the need for C1 in this equation will
become apparent shortly).
We want to solve Eq. (15) over a spatial volume Ω, with

boundary ∂Ω. The Green’s function we will use for this
must, of course, satisfy Gauss’ theorem on this domain,
such that

Z
Ω
∇2GdV ¼

Z
∂Ω

n ·∇GdS; ð17Þ

where n is the unit vector normal to the boundary. If we
now choose n ·∇Gj∂Ω ¼ 0 as the boundary condition for G,
then Eqs. (16) and (17) imply

C1 ¼
1

V
; ð18Þ

where V is the spatial volume of the cell. The solution to
Eq. (15) is then given, in terms of G, by considering

Z
Ω
GFdV ¼

Z
Ω
G∇2φdV

¼
Z
Ω
½∇ · ðG∇φÞ −∇G · ∇φ�dV

¼
Z
Ω
½∇ · ðG∇φÞ −∇ · ðφ∇GÞ þ φ∇2G�dV

¼
Z
Ω
∇ · ðG∇φ − φ∇GÞdV − φþ φ̄;

where φ̄ ¼ C1

R
Ω φdV ¼ 1

V

R
Ω φdV is a constant over Ω.

Rearranging, the potential φ can be seen to be given by
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φ ¼ φ̄ −
Z
Ω
GFdV þ

Z
∂Ω

Gn ·∇φdA; ð19Þ

where we have again made use of the boundary condi-
tion n ·∇Gj∂Ω ¼ 0.
If one were now to assume that φwas asymptotically flat,

then the first and last terms on the right-hand side of
Eq. (19) would vanish. The Green’s function would then
take the form of the Newton kernel, such that

φðx; tÞ ¼ −
1

4π

Z
Ω

F
jx − x0j d

3x0: ð20Þ

However, these assumptions are not true in general, and
especially not in the case of cosmological modelling. This
is because cosmological models do not have asymptotically
flat regions, by their very definition. In what follows, we
must therefore be more careful. We have to specify
appropriate boundary conditions for our potentials, and
include the boundary terms in Eq. (19), if we are to use the
Green’s function formalism to determine the form of our
gravitational potentials.

III. BUILDING A COSMOLOGY USING
JUNCTION CONDITIONS

In this paper we will take a bottom-up approach to
cosmological modelling. This will involve considering
cosmological models that are constructed from large
numbers of cells, that can be put next to each other to
form a periodic lattice structure. The shape of each cell will
be taken to be a regular polyhedron, and will be assumed to
be identical to every other cell, up to rotations, reflections
and translations.
The physical systems that we intend to model with these

cells will depend on the size of cell that we are considering.
For example, for cells that are approximately the size of the
homogeneity scale (about 100 Mpc), we could consider
modelling clusters of galaxies, as illustrated in Fig. 1. Other
systems, such as individual galaxies, could equally well be
modelled with cell sizes of the order of about 1 Mpc. The

only requirement we have is that the system must satisfy
the requirements of the post-Newtonian formalism.
Specifically, this means that v ≪ c and p ≪ ρ, so that
the bulk of the interior of each cell is described by
Newtonian and post-Newtonian gravitational physics.
The post-Newtonian formalism is expected to work well

in the regime of nonlinear density contrasts, and so should
be expected to be adequate for modelling most aspects of
the gravitational fields of galaxies and clusters of galaxies.
This formalism is, however, limited to scales much smaller
than the cosmological horizon. We therefore require each of
our cells to be much smaller than the Hubble radius,H−1

0 . A
violation of this requirement would result in matter at the
boundary of a cell moving at close to the speed of light. We
also assume each cell is filled with normal matter, so that
pressures are small with respect to energy densities.
We note that the post-Newtonian framework cannot, and

should not, be used to describe multiple cells simulta-
neously. However, due to the periodicity of our lattice
structure, we only need to know the space-time geometry of
any one cell, and its boundary conditions with neighboring
cells. As we will show below, this information is sufficient
to tell us how we should expect the entire Universe to
evolve.
Let us now turn to a more detailed consideration of the

conditions required in order to join two cells together at a
boundary. First and foremost, the cells must satisfy certain
smoothness requirements across their respective bounda-
ries, known as the Israel junction conditions, if their union
is to be a solution to Einstein’s equations. These conditions,
in the absence of surface layers, are given by [25]

½γij� ¼ 0 ð21Þ

½Kij� ¼ 0; ð22Þ

where ½φ� ¼ φðþÞ − φð−Þ denotes the jump across the
boundary for any quantity φ, and the i and j indices denote
tensor components on the boundary. The ðþÞ and ð−Þ
superscripts here show that a quantity is to be evaluated
on either side of the boundary (i.e. on the sides labeled by
þ or −, respectively).
In these equations, γij is the induced metric on the

boundary, and Kij is the extrinsic curvature of the boun-
dary, defined by

γij ≡ ∂xa
∂ξi

∂xb
∂ξj gab ð23Þ

and

Kij ≡ ∂xa
∂ξi

∂xb
∂ξj na;b; ð24Þ

FIG. 1 (color online). Two adjacent cubic cells, with example
matter content, consisting of filaments and voids. The second cell
is the mirror image of the first. This figure was produced using an
image from [24].
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where ξi denotes the coordinates on the boundary, and na is
the spacelike unit vector normal to the boundary.
In our construction we choose to consider reflection-

symmetric boundaries. The Israel junction conditions can
then be simplified. The situation we wish to consider is
illustrated in Fig. 2, for two cubic cells. We use xa and x ~a to
denote the coordinates used within the first and second
cells, respectively. Reflection symmetry means that
Eq. (21) is automatically satisfied. The second junction
condition, given by Eq. (22), can be written as

∂xa
∂ξi

∂xb
∂ξj n

ðþÞ
a;b ¼ ∂x ~a

∂ξi
∂x ~b

∂ξj n
ð−Þ
~a; ~b
; ð25Þ

where nðþÞ
a and nð−Þ~a are outward and inward pointing

normals, in the first and second cells, respectively. They are
shown in Fig. 2. Now, mirror symmetry implies that
nð−Þ~a ¼ −nðþÞ

a . Symmetry therefore demands that

∂xa
∂ξi

∂xb
∂ξj n

ðþÞ
a;b ¼ −

∂x ~a

∂ξi
∂x ~b

∂ξj n
ðþÞ
~a; ~b

: ð26Þ

This implies that Kij ¼ −Kij, or, in other words, that the
extrinsic curvature must vanish on the boundary of every
cell, i.e.

Kij ¼ 0: ð27Þ

This equation must be satisfied on each and every boundary
in our lattice.
Equation (27) is valid for any cell shape, as long as the

boundaries are reflection symmetric. In general, however,
there are only a finite number of ways that spaces of
constant curvature can be tiled with regular convex poly-
hedra. These are listed in Table I, where we have also
included the Schläfli symbols that allow the structure of the
lattice to be inferred, and the number of cells in each of the
different structures. A Schläfli symbol fpqrg corresponds
to a lattice with p edges to every cell face, q cell faces
meeting at every vertex of every cell, and r cells meeting
around every cell edge. One may note that regular lattices
on hyperspherical spaces have a maximum of 600 cells,
while those on flat and hyperbolic lattices always have an
infinite number of cells.

In what follows we will often require knowledge of the
total surface area of a cell, A. For each of the five different
polyhedra in Table I we can write A ¼ ακX2, where X is the
distance from the center of a cell to the center of a cell face,
and where κ denotes the number of faces per cell (e.g. a
cube has κ ¼ 6 faces). For the purposes of creating the
diagram in Fig. 2, we chose to consider cube-shaped cells.
In what follows we will also often consider this particular
case. One of the advantages of tessellating the Universe into
cubic cells is that tilings of this type exist for open, closed
and flat universes. Another advantage is that Cartesian
coordinates can be used, and aligned with the symmetries
of the cells.
Let us now finish this section by briefly considering the

motion of a boundary at x ¼ Xðt; y; zÞ, where the x
direction has been chosen to be orthogonal to the center
of a cell face (as in Fig. 2). The 4-velocity of this boundary
is then given by the following expression:

Ua ≡ dxa

dτ
¼ dt

dτ

�
1;
dX
dt

; 0; 0

�
; ð28Þ

where xa are the coordinates of points on the boundary,
where τ is the proper time measured along a timelike curve
in the boundary, and where we have chosen the integral
curves of Ua to stay at fixed y and z coordinates. This
vector is orthogonal to the spacelike normal to the cell face,
such that Uana ¼ 0.
We can now define two types of derivatives along the

boundary, in timelike and spacelike directions, respectively.
These are given to lowest order by

FIG. 2. A schematic diagram showing the normal vectors
involved in the junction conditions, nðþÞ

a and nð−Þ~a . The vector
−nðþÞ

a is shown as a dashed arrow, and is the mirror image of nð−Þ~a .

TABLE I. A summary of all regular lattice structures that can
exist on 3-surfaces of constant curvature. Hyperspherical lattices
are denoted by þ, flat lattices by 0, and hyperbolic lattices by −.
The lattice structure is given by the Schläfli symbols, fpqrg,
which are explained in the text. The shape of the cells, and the
number of cells in the lattice are also given. For further details of
these structures see [26].

Lattice
structure

Lattice
curvature

Cell
shape

Cells
per lattice

f333g þ tetrahedron 5
f433g þ cube 8
f334g þ tetrahedron 16
f343g þ octahedron 24
f533g þ dodecahedron 120
f335g þ tetrahedron 600
f434g 0 cube ∞
f435g − cube ∞
f534g − dodecahedron ∞
f535g − dodecahedron ∞
f353g − icosahedron ∞
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: ≡Ua∂a ≡ ∂t þ X;t∂x

jA ≡ma∂a ≡ ∂t þ X;A∂x; ð29Þ

where ma is a spacelike vector in the cell face, which
satisfies mana ¼ 0. These expressions allow us to write the
lowest-order parts of nt and nA as

nt ¼ −nxX;t

nA ¼ −nxX;A: ð30Þ

We know that X;t ∼ ϵ and nx ∼ 1, which means that the
leading-order part of nt ∼ ϵ. This information will be
used below.

IV. GOVERNING EQUATIONS

In this section we will present the equations that govern
the dynamics of each cell, and its matter content. We will
first use Einstein’s field equations to relate the space-time
metric [given in Eq. (4)] to the energy-momentum content
of the cell [given in Eq. (5)]. After this, we will evaluate the
extrinsic curvature of the cell boundaries, using the same
geometry. The extrinsic curvature will be required to
vanish, in order to satisfy the reflection-symmetric boun-
dary conditions, and will provide us with the information
required to study the evolution of the boundary.

A. Einstein’s field equations

To begin this study, we need to evaluate the Ricci tensor
for the perturbed Minkowski space given in Eq. (4). Recall
that the leading-order contributions to the metric perturba-
tions are at htt ∼ hμν ∼ ϵ2, and htμ ∼ ϵ3. The leading-order
components of the Ricci tensor are then given by

Rð2Þ
tt ¼ −

∇2hð2Þtt

2
; ð31Þ

Rð2Þ
μν ¼ 1

2
½hð2Þμα;να þ hð2Þνα;μα − hð2Þμν;αα − hð2Þαα;μν þ hð2Þtt;μν�; ð32Þ

and

Rð3Þ
tμ ¼ −

1

2
½−hð2Þμν;tν þ hð2Þνν;tμ þ hð3Þtμ;νν − hð3Þtν;νμ�: ð33Þ

Here we have used the short-hand notation∇2 ¼ ∂μ∂μ, and
j∇hð2Þtt j2 ¼ hð2Þtt;αh

ð2Þ
tt;α. As before, we have chosen units such

that spatial derivatives do not add an order of smallness,
and have used superscripts in brackets to denote the order
of a quantity.
The only higher-order part of the Ricci tensor that we

require will be theOðϵ4Þ part of the tt-component, which is
given by

Rð4Þ
tt ¼ 1

2

�
2hð3Þtν;νt −

1

2
j∇hð2Þtt j2 −∇2hð4Þtt − hð2Þμμ;tt

þ hð2Þtt;νðhð2Þνα;α − hð2Þαα;νÞ þ 1

2
hð2Þνα h

ð2Þ
tt;να

�
: ð34Þ

No other components of the Ricci tensor will be required at
this order.
To proceed further we now need to make a gauge choice,

in order to eliminate superfluous degrees of freedom. For
this we use the standard post-Newtonian gauge, which is
given by [23]

1

2
hð2Þtt;μ þ hð2Þμν;ν −

1

2
hð2Þνν;μ ¼ 0; ð35Þ

and

hð3Þνt;ν −
1

2
hð2Þνν;t ¼ 0: ð36Þ

Note that this is not the same as the harmonic gauge.
The perturbed metric, Eq. (4), and the definition of the

4-velocity can now be used to write the 4-velocity as

ua ¼
�
1þ hð2Þtt

2
þ v2

2

�
ð1; vμÞ þOðϵ4Þ; ð37Þ

where v2 ¼ vμvμ. We can use this equation to give us the
components of Tab, up to post-Newtonian levels of
accuracy. We note that in order to evaluate the field
equations at Oðϵ2Þ we only need to know Ttt ¼ −T ¼ ρ.
Using Eqs. (31) and (32), and the gauge conditions (35) and
(36), the field equations (3) then give us

∇2hð2Þtt ¼ −8πGρþOðϵ4Þ; ð38Þ

∇2hð2Þμν ¼ −8πGρδμν þOðϵ4Þ: ð39Þ

Using the potentials defined in Sec. II, we then find

hð2Þtt ¼ 2Φ; ð40Þ

and

hð2Þμν ¼ 2Φδμν: ð41Þ

These solutions, together with our gauge conditions (35)
and (36), allow us to simplify Eq. (33), to get

Rð3Þ
tμ ¼ −

1

2
½hð3Þtμ;νν þ Φ;tμ�: ð42Þ

The field equations (3) then give
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hð3Þtμ;νν þ Φ;tμ ¼ 16πGρvμ; ð43Þ

which has the solution

hð3Þtμ ¼ −4Vμ þ
1

2
χ;tμ; ð44Þ

where we have again made use of the potentials defined in
Sec. II. Equations (40), (41) and (44) give the leading-order
contributions to all of the components of the perturbed
metric.
To go further, we now need to evaluate hð4Þtt . This will be

done using Eq. (34), our gauge conditions (35) and (36),
and the lowest-order solutions found above. The relevant
part of the Ricci tensor then simplifies to

Rð4Þ
tt ¼ 1

2
½−4j∇Φj2 −∇2hð4Þtt þ 4Φ∇2Φ�; ð45Þ

which, using the identity j∇Φj2 ¼ 1
2
∇2Φ2 − Φ∇2Φ, can be

written as

Rð4Þ
tt ¼ −

1

2
½∇2ð2Φ2Þ − 8Φ∇2Φþ∇2hð4Þtt �: ð46Þ

Similarly, we can write the tt-component of the right-hand
side of Eq. (3) as

Ttt −
1

2
Tgtt ¼ ρ

�
v2 − Φþ 1

2
Πþ 3

2

p
ρ

�
þOðϵ6Þ: ð47Þ

Equating Eqs. (46) and (47), and using the field equa-
tions (3), we then find that

hð4Þtt ¼ −2Φ2 þ 4Φ1 þ 4Φ2 þ 2Φ3 þ 6Φ4: ð48Þ

Once more, this solution has been written in terms of the
potentials defined in Sec. II. Equations (40), (41), (44) and
(48) give all of the components of the metric that we will
require.

B. Extrinsic curvature equations

Let us now calculate the extrinsic curvature of the
boundary. To do this we require the covariant derivative
of the normal, na;b. As stated earlier, the leading-order parts
of nt and nμ are OðϵÞ and Oð1Þ, respectively. The
components of na;b can then be seen to be given, up to
the required order, by

nt;t ¼ nt;t þ
hð2Þtt;μnμ

2

− nμ

�
hð2Þμν h

ð2Þ
tt;ν

2
−
hð4Þtt;μ

2
þ hð3Þtμ;t

�
þ hð2Þtt;tnt

2
þOðϵ6Þ;

ð49Þ

and

nt;μ ¼ nt;μ

þ hð2Þtt;μnt
2

−
nν
2

h
hð2Þμν;t − hð3Þtμ;ν þ hð3Þtν;μ

i
þOðϵ5Þ; ð50Þ

and

nμ;ν ¼ nμ;ν

−
1

2
nα
�
−hð2Þμν;α þ hð2Þαμ;ν þ hð2Þαν;μ

�
þOðϵ4Þ: ð51Þ

New lines have been used, in each of these equations, to
separate terms of different orders.
The extrinsic curvature of the cell boundaries can now be

calculated using Eq. (24). The tt-component of this
equation is given, to lowest order, by

Kð2Þ
tt ¼ −nxX;tt þ

hð2Þtt;μnμ
2

; ð52Þ

where we have used nt ¼ −nxX;t. At next-to-leading-order
have

Kð4Þ
tt ¼ X2

;t

2
nαðhð2Þxx;α − 2hð2Þαx;xÞ þ hð2Þtt;μn

ð2Þ
μ

2
− nð2Þx X;tt

− 2X;t

�
hð2Þtt;xnxX;t

2
þ nν

2
ðhð2Þxν;t − hð3Þtx;ν þ hð3Þtν;xÞ

�

−
hð2Þtt;tX;t

2
− nμ

�
hð2Þμν h

ð2Þ
tt;ν

2
−
hð4Þtt;μ

2
þ hð3Þtμ;t

�
: ð53Þ

These equations can be simplified even further by making
use of the result nA ¼ −nxX;A.
Similarly, the leading-order parts of tA and AB-compo-

nents of the extrinsic curvature tensor are given by

Kð1Þ
tA ¼ −X;At; ð54Þ

and

Kð0Þ
AB ¼ −X;AB: ð55Þ

These two equations, together with the result Kij ¼ 0,
imply that X;A is independent of t, y and z at lowest order.
This implies that X;A also vanishes at lowest order, as X;A is
forced by symmetry to vanish at the center of every
cell face.
This information allows us to write simplified versions

of the next-to-leading-order parts of the tA and AB-
components of the extrinsic curvature tensor as
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Kð3Þ
tA ¼ −Xð2Þ

;At þ
1

2
½hð3ÞtA;x − hð3Þtx;A� −

hð2Þtt;AX;t

2
; ð56Þ

and

Kð2Þ
AB ¼ −Xð2Þ

;AB þ 1

2
nαhAB;α: ð57Þ

This is all the information we require about the extrinsic
curvature of the boundaries in our lattices.
Using Eq. (27), we can finally obtain from Eqs. (52)–

(57) the conditions

X;tt ¼
�
Φ;x − 2ΦΦ;x þ

hð4Þtt;x

2
− hð3Þtx;t

− 3Φ;xX2
;t − 3Φ;tX;t − Xð2Þ

;A Φ;A

�����
x¼X

þOðϵ6Þ; ð58Þ

and

X;tA ¼ 1

2
½hð3ÞtA;x − hð3Þtx;A − 4Φ;AX;t�jx¼X þOðϵ5Þ; ð59Þ

and

X;AB ¼ δABΦ;xjx¼X þOðϵ4Þ; ð60Þ

where we have made explicit the requirement that each
equation is to be evaluated on the boundary, at x ¼ X.
Equation (58) is similar to the geodesic equation, as shown
in Appendix A.

V. COSMOLOGICAL EXPANSION

We now have enough information to find the equations
for the acceleration of the boundary of each cell, up to post-
Newtonian accuracy. These will be the analogue of the
Friedmann equations, of homogeneous-and-isotropic cos-
mological models. In this section, we begin by reproducing
the lowest-order Friedmann-like equations at Newtonian
order. We then proceed to obtain the post-Newtonian
contributions to the same equations.

A. Newtonian order

We can begin by defining the gravitational mass within
each cell as

M≡
Z
Ω
ρdVð0Þ; ð61Þ

where dVð0Þ is the spatial volume element at zeroth order,
andΩ is now the spatial volume of the interior of a cell. We
can apply Gauss’ theorem to this equation, so that

4πGM ¼ −
Z
Ω
∇2ΦdVð0Þ

¼ −
Z
∂Ω

n ·∇ΦdAð0Þ; ð62Þ

where n ¼ nα is the normal to a cell face, and dA is the area
element of the boundary of the cell, ∂Ω.
By noting that the cell face is flat to lowest order [i.e. that

X;A ¼ Oðϵ2Þ], we can see that it is possible to write
X ¼ XðtÞ. Together with the lowest-order part of
Eq. (58), this implies that n ·∇Φ is constant on the
boundary. We therefore have

4πGM ¼ −An ·∇Φ; ð63Þ

where A is the total surface area of a cell. For a cell that is a
regular polyhedron, we can take the surface area to be
A ¼ ακX2, where X is the coordinate distance from the
center of the cell to the center of the cell face, where κ is the
number of faces of the cell, and where ακ are the numerical
coefficients that are given in Table II.
The lowest-order part of Eq. (58), along with Eq. (63),

then gives us

X;tt ¼ ðn ·∇ΦÞjx¼X ¼ −
4πGM

A
¼ −

4πGM
ακX2

: ð64Þ

We can solve this equation by multiplying both sides by X;t.
This gives

1

2
ððX;tÞ2Þ;t ¼ −

4πGMX;t

ακX2
; ð65Þ

which can be integrated to find

X;t ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGM
ακX

− C

s
; ð66Þ

where C ¼ Cðy; zÞ is an integration constant in t. However,
if this equation is to satisfy X;tA ¼ Oðϵ3Þ, we see that C
must also be a constant in y and z. Equation (66) is similar
in form to the Friedmann equation, with X behaving like

TABLE II. The five possible different cell shapes, together with
the number of faces per cell, and the numerical coefficients for the
surface area, ακ ≡ A=X2.

Cell shape
Faces

per cell, κ
Surface are a
coefficients, ακ

Tetrahedron 4 24
ffiffiffi
3

p

Cube 6 24

Octahedron 8 12
ffiffiffi
3

p

Dodecahedron 12 120

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ10

ffiffi
5

pp
25þ11

ffiffi
5

p

Icosahedron 20 120
ffiffi
3

p
7þ3

ffiffi
5

p
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the scale factor, and the constant C behaving like the
Gaussian curvature of homogeneous spatial sections.
From now on, we will take the positive branch in

Eq. (66), which corresponds to an expanding universe.
The solution to this equation depends on the sign of C. For
C ¼ 0 we have

X ¼
�
3

2

�
2=3

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGM
ακ

s
t − t0

�
2=3

þOðϵ2Þ; ð67Þ

where t0 is a constant, which can be absorbed into t by a
coordinate redefinition.
For C ≠ 0, we can obtain parametric solutions. For

C > 0 we have

X ¼ 8πGM
ακjCj

sin2
�
η

2

�
;

t − t0 ¼
4πGM

ακjCj3=2
ðη − sin ηÞ; ð68Þ

where η ¼ R
dt=X is the analogue of conformal time.

Similarly, for C < 0, we get

X ¼ 8πGM
ακC

sinh2
�
η

2

�
;

t − t0 ¼
4πGM

ακC3=2 ðsinh η − ηÞ: ð69Þ

These solutions represent parabolic, closed, and hyperbolic
spaces, respectively. At this order, they expand in the
same way as a dust-dominated homogeneous-and-isotropic
geometry with the same total gravitational mass.

B. Post-Newtonian order

To find the post-Newtonian contributions to the accel-
eration of the boundary of each cell it will be useful to
replace all of the terms in Eq. (58) by more physically
relevant quantities. The first step in doing this will be to
include all orders in the calculation of Gauss’ theorem, up
toOðϵ4Þ. We can begin by expanding the normal derivative
of the potential on the boundary to post-Newtonian order,
so that

1

2

Z
S
n · ∇httdA

¼ κ

Z
S

�
Φ;x þ nxð2ÞΦ;x þ nAð2ÞΦ;A þ hð4Þtt;x

2

�
dSð0Þ

þ κ

Z
S
Φ;xdSð2Þ þOðϵ6Þ; ð70Þ

where dS is the area element of one face of the cell, where κ
is the number of faces of the cell, where S is the area of one

face of the cell, where A ¼ κS is the total surface area of the
cell, and where dSð2Þ is the Oðϵ2Þ part of the area element.
We can then apply Gauss’ theorem, making sure we use

covariant derivatives, in order to ensure we include all post-
Newtonian terms. This gives

1

2

Z
S
n · ∇httdA

¼ 1

2

Z
Ω
gð3Þμνhtt;μνdV

¼
Z
Ω

�
1

2
∇2htt − 2Φ∇2Φþ 2j∇Φj2

�
dV þOðϵ6Þ:

ð71Þ

Note that here htt is being used to denote both h
ð2Þ
tt and hð4Þtt .

Expanding, and using the lower-order parts of the field
equations, allows us to write the first and last terms on the
right-hand side of Eq. (71) as

1

2

Z
S
∇2httdV ¼ −4πG

Z
Ω
ρdVð0Þ − 4πG

Z
Ω
ρdVð2Þ

þ 1

2

Z
Ω
∇2hð4Þtt dVð0Þ þOðϵ6Þ; ð72Þ

and

Z
Ω
j∇Φj2dV ¼

Z
Ω

�
4πGΦρþ 1

2
∇2Φ2

�
dVð0Þ

¼ 4πGhρΦi þ κ

Z
S
ΦΦ;xdSð0Þ; ð73Þ

where dVð2Þ is the Oðϵ2Þ correction to the volume element,
and where we have introduced the new notation

hφi ¼
Z
Ω
φdV; ð74Þ

where φ is some scalar function on the space-time.
To find the area and volume elements up to Oðϵ2Þ we

need the induced 2-metric on the boundary, g½2�AB, and the
spatial 3-metric, g½3�μν , both up to Oðϵ2Þ. These are given by

g½2�AB ≡ g½3�AB − nAnB

¼ ð1þ 2ΦÞδAB þOðϵ4Þ; ð75Þ

and

g½3�μν ¼ ð1þ 2ΦÞδμν þOðϵ4Þ: ð76Þ

The determinants of these two quantities, up to the required
accuracy, are given by
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detðg½2�ABÞ ¼ 1þ 4ΦþOðϵ4Þ; ð77Þ

and

detðg½3�μνÞ ¼ 1þ 6ΦþOðϵ4Þ: ð78Þ

By taking the square root of these determinants, and Taylor
expanding them, we obtain the higher-order area and
volume elements in terms of their lower-order counterparts:

dSð2Þ ¼ 2ΦdSð0Þ; ð79Þ

dVð2Þ ¼ 3ΦdVð0Þ: ð80Þ

We can now evaluate the higher-order corrections to the
normal.
As X;A vanishes at lowest order, nAð2Þ is given by

nAð2Þ ¼ −Xð2Þ
;A : ð81Þ

We can also use the normalization of the spacelike normal,
nana ¼ 1, to obtain

nxð2Þ ¼ −Φþ 1

2
X2
;t: ð82Þ

Using Eqs. (70)–(82) we can now write

κ

2

Z
S
hð4Þtt;xdSð0Þ ¼ 4πGhρΦi þ 1

2

Z
Ω
∇2hð4Þtt dVð0Þ

þ κ

Z
S
ΦΦ;xdSð0Þ −

κ

2

Z
S
X2
;tΦ;xdSð0Þ

þ κ

Z
S
Xð2Þ
;A Φ;AdSð0Þ: ð83Þ

To understand this equation further, we note that the second
term on the right-hand side can be written as

1

2

Z
Ω
∇2hð4Þtt dVð0Þ ¼

Z
Ω
ð−∇2Φ2 þ 2∇2Φ1 þ 2∇2Φ2 þ∇2Φ3 þ 3∇2Φ4ÞdVð0Þ

¼ −
Z
S
n ·∇Φ2dAð0Þ þ

Z
Ω
ð2∇2Φ1 þ 2∇2Φ2 þ∇2Φ3 þ 3∇2Φ4ÞdVð0Þ

¼ −2κ
Z
S
ΦΦ;xdSð0Þ þ

Z
Ω
ð2∇2Φ1 þ 2∇2Φ2 þ∇2Φ3 þ 3∇2Φ4ÞdVð0Þ; ð84Þ

where we have now used Eq. (48) and Gauss’ theorem. Using Eqs. (74) and (84), we can now rewrite Eq. (83) as

κ

Z
S

�
hð4Þtt;x

2
− Xð2Þ

;A Φ;A

�
dSð0Þ ¼ −κ

Z
S
ΦΦ;xdSð0Þ − 8πGhρv2i − 4πGhρΦi − 4πGhρΠi − 12πGhpi − κ

2

Z
S
X2
;tΦ;xdSð0Þ: ð85Þ

To proceed further, let us now determine the functional
form of X up to Oðϵ2Þ. Using the lowest-order parts of
Eqs. (58) and (60), this is given by

X ¼ ζðtÞ þ 1

2
ðy2 þ z2Þn ·∇ΦþOðϵ4Þ; ð86Þ

where ζðtÞ is some function of time only. Taking time
derivatives, and substituting from Eq. (58), then gives

ζ;tt ¼ X;tt −
1

2
ðy2 þ z2Þn ·∇Φ̈þOðϵ6Þ

¼ Φ;x − 2ΦΦ;x þ
hð4Þtt;x

2
− hð3Þtx;t − 3Φ;xX2

;t − 3Φ;tX;t

− Xð2Þ
;A Φ;A −

1

2
ðy2 þ z2Þn ·∇Φ̈þOðϵ6Þ; ð87Þ

where all terms in this equation should be taken as being
evaluated on the boundary.
Many of the terms in this equation can be simplified

using the lower-order solutions. For example, using
Eqs. (64) and (66), and taking time derivatives, gives

n · ∇Φ̈ ¼ −
224π2G2M2

α2κX5
þ 24πGMC

ακX4
: ð88Þ

We are now in a position to express the equation of motion
in terms of variables that can be easily associated with the
matter fields in the space-time. Recall that the total surface
area of the cell is given by A ¼ κS ¼ ακX2. As Eq. (87) is a
function of t only, we can integrate over the area on a cell
face to obtain
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Aζ;tt ¼ −
4πGMκS
ακX2

þ κS
ακX2

�
112π2G2M2

ακX
− 14πGMC

�

þ κ

Z
S

�
12πGMΦ
ακX2

− htx;t − 3Φ;tX;t

�
dS

− 8πGhρv2i − 4πGhρΦi − 4πGhρΠi − 12πGhpi

þ κ

�
112π2G2M2

α2κX5
−
12πGMC
ακX4

�Z
S
ðy2 þ z2ÞdS

þOðϵ6Þ; ð89Þ

where we have used Eqs. (85) and (88), and substituted in
for lower-order solutions.
We can make use of our gauge condition,

htν;ν ¼ 1
2
hνν;t ¼ 3Φ;t, and Gauss’ theorem, to replace one

of the terms in this equation in the following way:

κ

Z
S
nαhtα;tdS ¼ 3

Z
Ω
Φ;ttdV: ð90Þ

We must also expand our limits of integration to
Oðϵ2Þ, when dealing with the lowest-order term, in order
to ensure we include all the required post-Newtonian terms.
This gives

−
4πGM
ακX2

¼ −
4πGM

ακðXð0ÞÞ2 þ
8πGMXð2Þ

ακðXð0ÞÞ3 ; ð91Þ

where Xð0Þ is the zeroth-order part of X, which we solved
for earlier. Using Eqs. (90) and (91), we can write
Eq. (89) as

Aζ;tt ¼ −
4πGMκS

ακðXð0ÞÞ2 þ
κS

ακðXð0ÞÞ2
�
112π2G2M2

ακXð0Þ − 14πGMC

�
þ κ

Z
S

�
12πGMΦ

ακðXð0ÞÞ2 − 3Φ;tX
ð0Þ
;t

�
dS

− 3

Z
Ω
Φ;ttdV þ 8πGMXð2ÞκS

ακðXð0ÞÞ3 − 8πGhρv2i − 4πGhρΦi − 4πGhρΠi − 12πGhpi

þ κ

�
112π2G2M2

α2κðXð0ÞÞ5 −
12πGMC

ακðXð0ÞÞ4
�Z

S
ðy2 þ z2ÞdSþOðϵ6Þ: ð92Þ

Therefore, the equation of motion of the boundaries can be written in its final form as

X;tt ¼ −
4πGM

ακðXð0ÞÞ2 −
14πGMC

ακðXð0ÞÞ2 −
4πG

ακðXð0ÞÞ2 ½2hρv
2i þ hρΦi þ hρΠi þ 3hpi�

þ κ

ακðXð0ÞÞ2
Z
S

�
12πGMΦ

ακðXð0ÞÞ2 − 3Φ;tX
ð0Þ
;t

�
dS −

3

ακðXð0ÞÞ2
Z
Ω
Φ;ttdV þ 1

ακðXð0ÞÞ3
�
8πGMXð2Þ þ 112π2G2M2

ακ

�

þ
�
112π2G2M2

α2κðXð0ÞÞ5 −
12πGMC

ακðXð0ÞÞ4
��

κ

ακðXð0ÞÞ2
Z
S
ðy2 þ z2ÞdS − ðy2 þ z2Þ

�
þOðϵ6Þ: ð93Þ

This gives us the post-Newtonian correction to the
acceleration of the boundary, and hence the post-
Newtonian correction to the accelerated expansion of
the Universe. This equation is the main result of this
section.
The first term in Eq. (93) is the standard Friedmann-like

term for a dustlike source. The second term is a higher-
order correction due to the presence of the spatial curva-
turelike term. The third term in the first line contains all
post-Newtonian corrections to the matter sector. In the
second line, the terms integrated over the area and volume
are dependent on the potential, Φ, and the rate of change of
the potential. The terms that go as X−3 behave like radiation
terms, when compared to the standard Friedmann equation.
However, we remind the reader that these terms are purely a

result of geometry, and the nonlinearity of Einstein’s
equations. In the last line of this equation, the post-
Newtonian contributions depend on the cell shape that is
being considered.

VI. POST-NEWTONIAN COSMOLOGICAL
SOLUTIONS

In this section we will present solutions to Eq. (93).
We start by specializing this equation to lattices con-
structed from cubic cells. In this case we have ακ ¼ 24,
and κ ¼ 6. The lowest-order part of the limits of integration
in both the y and z directions are also given simply by
−Xð0Þ and Xð0Þ. The equation of motion, given in Eq. (93),
then simplifies to

VIRAJ A. A. SANGHAI AND TIMOTHY CLIFTON PHYSICAL REVIEW D 91, 103532 (2015)

103532-12



X;tt ¼ −
πG

6ðXð0ÞÞ2
�
M þ 11

2
MCþ 2hρv2i þ hρΦi þ hρΠi þ 3hpi

�
þ 1

8ðXð0ÞÞ2
�Z

S

�
ΦπGM

ðXð0ÞÞ2 − 6Φ;tX
ð0Þ
;t

�
dS −

Z
Ω
Φ;ttdV

�

þ 1

24ðXð0ÞÞ3
�
8πGMXð2Þ þ 70π2G2M2

9

�
−
�
7π2G2M2

36ðXð0ÞÞ5 −
πGMC

2ðXð0ÞÞ4
�
ðy2 þ z2Þ þOðϵ6Þ: ð94Þ

The last term in this equation is a function of its position
on the boundary, and vanishes at the center of a cell
face.
We can solve Eq. (94) if we know the functional form of

the potential, Φ, and its time dependence, as well as that of
the post-Newtonian corrections to the matter sector.
However, we do not need to know the functional form
of all the post-Newtonian corrections, as we can replace
one of the higher-order terms with the conserved post-
Newtonian mass. This is given by

MPN ¼
Z
V
ρ

�
1

2
v2 þ 3Φ

�
dV ¼ 1

2
hρv2i þ 3hρΦi: ð95Þ

The proof that this object is conserved can be found in
Appendix B.
We can now find the general functional form of the

potential Φ for our model, using the Green’s function
formalism. We will do this below for the case of cubic cells.
Similar analyses can also be performed for the other
platonic solids. This result can then be used to evaluate
the acceleration of the boundary. After this, we proceed to
study the special case of point sources, where the form of
the potential Φ can be found somewhat more straightfor-
wardly, and where the first post-Newtonian correction to
the acceleration of the boundary can be determined
explicitly.

A. The general solution: An application of the
Green’s function formalism

In this section we will use the explanation of Green’s
functions from Sec. II C, and in particular Eq. (19). To
give a concrete example of how this works, let us now
consider a lattice of cubes arranged on R3. In Fig. 3 we
show a 2D representation of such a 3D lattice. As before,
we assume reflection symmetry about every boundary,
which imposes a periodicity on our structure. For cubic
cells of edge length L ¼ 2X, the periodicity of the lattice
will be 2L. That is, if we move a distance of 2L in any
direction in our lattice, then two reflections will ensure
we return to a point that is identical to our starting
position.
If we consider one example cell, then we can now use the

method of images to construct a Green’s function that is
symmetric around each of its boundaries, and that therefore
satisfies the required boundary condition at each of its
faces, n · ∇Gj∂Ω ¼ 0. Due to the identical nature of every

cell, such a Green’s function can then be reused for each of
the cells. The way that this method will work is by
introducing mirror images of the points in our original
cell. We therefore consider the point sources of the Green’s
function to be a set of Dirac delta functions, separated from
infinitely many identical point sources by pairwise
distances of 2L. The structure that results will be a
superposition of several “Dirac combs.”
A Dirac comb can be expressed as a Fourier series in the

following way:

X
β∈Z3

δðx − 2LβÞ ¼
X
β∈Z3

1

8L3
eπiβ·

x
L; ð96Þ

where β ¼ ðβ1; β2; β3Þ, and where β1, β2 and β3 are
integers. To construct our Green’s function, we must
include the location of image points, in relation to the
location of points in the central cell. In Fig. 3, in 2D, we
choose an arbitrary point in the example cell, and use xð1Þ to

FIG. 3. A 2D representation of the vectors used to locate the
position of image points. In two dimensions we require only four
unique vectors, as compared to eight in 3D. The four lattice
vectors are given by x0ð1Þ ¼ x0, x0ð2Þ ¼ x0 þ Le1 − 2x01e1,
x0ð3Þ ¼ x0 þ Le2 − 2x02e2, and x0ð4Þ ¼ −x0 þ Lðe1 þ e2Þ.
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represent its position with respect to the center of that cell.
The mirror symmetry across the boundary of every cell
results in 8 image points in the 8 surrounding cells.
However, we only require 4 unique vectors to describe
the positions of the initial point source and its images.
These 4 vectors are shown in Fig. 3. The other points can be
added by considering Dirac combs, with periodicity 2L,
that contain these initial 4 points.
In 3D we can do something similar, but we require 8

unique vectors to describe the position of the initial point
and its images. The source for the Green’s function is then
the sum of the Dirac combs that contain all 8 of the image
points described by these 8 position vectors, plus an
additive time-dependent constant. Using Eqs. (16) and
(96), the source function is thus given by

∇2G ¼ −
X8
j¼1

X
β∈Z3

1

8L3
eπiβ·

ðx−x0ðjÞÞ
L þ 1

L3
ð97Þ

¼ −
X8
j¼1

X
β∈Z3�

1

8L3
eπiβ·

ðx−x0ðjÞÞ
L ; ð98Þ

where Z3� does not include the null triplet β ¼ ð0; 0; 0Þ, and
where the x0ðjÞ are given by

x0ð1Þ ¼ x0;

x0ð2Þ ¼ x0 þ Le1 − 2x01e1;

x0ð3Þ ¼ x0 þ Le2 − 2x02e2;

x0ð4Þ ¼ −x0 þ Lðe1 þ e2Þ þ 2x03e3;

x0ð5Þ ¼ x0 þ Le3 − 2x03e3;

x0ð6Þ ¼ −x0 þ Lðe1 þ e3Þ þ 2x02e2;

x0ð7Þ ¼ −x0 þ Lðe2 þ e3Þ þ 2x01e1;

x0ð8Þ ¼ −x0 þ Lðe1 þ e2 þ e3Þ; ð99Þ

where x10 ¼ x0 · e1, x02 ¼ x0 · e2 and x03 ¼ x0 · e3, and
where e1, e2 and e3 are orthogonal unit vectors.
The solution to Eq. (98) is then given by

Gðx;x0; tÞ ¼
X8
j¼1

X
β∈Z3�

1

8π2Ljβj2 e
πiβ·ðx−x

0ðjÞÞ
L : ð100Þ

If we take, as an example equation, the Newton-Poisson
equation (14), we can then see from Eq. (19) that the
Newtonian potential Φ is given by

Φ ¼ Φ̄þ 4πG
Z
Ω
GρdV −

πGM
6

Z
∂Ω

G
X2

dA; ð101Þ

where we have used Eq. (64). This is the general solution
for the potential. That is, for any given energy density
distribution we can simply evaluate the integral to find the
potential, as well as the rate of change of the potential. In
Eq. (94), this, along with the mass, velocity and pressure of
the matter fields can be used to evaluate the acceleration of
the boundary numerically, up to post-Newtonian accuracy.
Hence, this expression allows us to find the post-Newtonian
correction to the expansion of the Universe for general
configurations of matter.
Of course, within the interior of each cell we can also

solve for each of the post-Newtonian potentials defined in
Sec. II B using the same Green’s function, as each of these
potentials is defined as the solution to a Poisson equation.
We therefore have a complete solution, for the motion of
the boundary of every cell, and for the geometry interior to
each cell.

B. A special case: Point sources

In order to find an even more explicit solution, let us now
consider the case of a single point mass, located at the
center of each cell. In this case, the Poisson equation
simplifies to

∇2Φ ¼ −4πGMδðxÞ; ð102Þ

where M is the mass we defined in Eq. (61). We can
again use the method of images to solve for Φ. In this
case we want to place our image points such that Φ
satisfies the inhomogeneous boundary condition given in
Eq. (64). We therefore place an image mass at the center
of each surrounding cell, so that image masses are
separated by a distance L from each other. We can then
express the source of the potential, Φ, as a sum of Dirac
delta functions that correspond to these masses. We then
continue by placing image masses at the center of every
cell that surrounds the cells that already contain image
masses (taking care not to place two masses in any one
given cell). We repeat this process N times, and then
let N → ∞.
This description may initially sound similar to the

process used to find the Green’s function, above.
There is, however, a subtle difference. In order for there
to be a nonzero normal derivative of Φ on the boundary,
we need to take a sum whose number of terms tends
to infinity, rather than an array that is infinitely extended
from the outset. These two things are not equivalent, in
this case.
The source of the potential can then be written as

∇2Φ ¼ −4πGM lim
N→∞

XN
β¼−N

δðx − LβÞ; ð103Þ
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where L ¼ 2X is again the edge length of the cubic cell,
and whereN is a positive integer. The solution to Eq. (103)
is given by

Φ ¼ lim
N→∞

XN
β¼−N

GM
jx − Lβj þ fðtÞ; ð104Þ

where fðtÞ is an arbitrary function of time.
We can use fðtÞ to regularize the value of Φ at x ¼ 0,

such that it reduces to the regular form for a Newtonian
potential around a single point source. This can be done by
subtracting the contribution of all image points to the
potential at x ¼ 0:

Φ ¼ lim
N→∞

XN
β¼−N

GM
jx − Lβj − lim

N→∞

XN
β�¼−N

GM
jLβj ; ð105Þ

where β� indicates that the null triplet β ¼ ð0; 0; 0Þ is
excluded from the sum. With this choice, the value of Φ
near x ¼ 0 does not change as the number of image masses
is increased. This can be considered as a boundary
condition imposed at the location of the mass.
As L is the only time-dependent quantity in Eq. (105), it

can be seen that the rate of change of Φ is simply given by

Φ;t ¼ lim
N→∞

XN
β¼−N

GMðβ · x − jβj2LÞL;t

jx − Lβj3

þ lim
N→∞

XN
β�¼−N

GML;t

jβjL2
: ð106Þ

Likewise, the second time derivative of Φ is given by

Φ;tt ¼ lim
N→∞

XN
β¼−N

GMðβ · x − jβj2LÞL;tt − jβj2GML;t
2

jx − βLj3

þ lim
N→∞

XN
β¼−N

3GMðβ · x − jβj2LÞ2L2
;t

jx − βLj5

þ lim
N→∞

XN
β�¼−N

GML;tt

jβjL2
− lim

N→∞

XN
β�¼−N

2GML;t
2

jβjL3
:

Now, in order to solve Eq. (94), we need to evaluate a
few integrals. We need Φ and Φ;t integrated over the
boundary of a cell, and Φ;tt integrated over the volume.
These integrals are given explicitly below. Firstly,

Z
L=2

−L=2
Φjx¼L=2dydz ¼

Z
L=2

−L=2

�
lim
N→∞

XN
β¼−N

GMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL=2 − β1LÞ2 þ ðy − β2LÞ2 þ ðz − β3LÞ2

p − lim
N→∞

XN
β�¼−N

GM
jβjL

�
dydz:

This can be simplified by redefining coordinates such that y ¼ Lŷ, and z ¼ Lẑ. This gives

Z
L=2

−L=2
Φjx¼L=2dydz ¼ GML

Z
1=2

−1=2

�
lim
N→∞

XN
β¼−N

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2 − β1Þ2 þ ðŷ − β2Þ2 þ ðẑ − β3Þ2

p − lim
N→∞

XN
β�¼−N

1

jβj
�
dŷdẑ

≡GMDL; ð107Þ

where the last line of this equation defines the quantity D. Secondly, Φ;t integrated over the boundary is given by

Z
L=2

−L=2
Φ;tjx¼L=2dydz ¼

Z
L=2

−L=2

�
lim
N→∞

XN
β¼−N

GMðβ1xþ β2yþ β3z − jβj2LÞL;t

½ðx − β1LÞ2 þ ðy − β2LÞ2 þ ðz − β3LÞ2�3=2
þ lim

N→∞

XN
β�¼−N

GML;t

jβjL2

�
dydz:

We can again simplify this integral by using ŷ and ẑ coordinates. This gives

Z
L=2

−L=2
Φ;tjx¼L=2dydz ¼ GML;t

Z
1=2

−1=2

�
lim
N→∞

XN
β¼−N

ðβ1ð1=2Þ þ β2ŷþ β3ẑ − jβj2Þ
½ð1=2 − β1Þ2 þ ðŷ − β2Þ2 þ ðẑ − β3Þ2�3=2

þ lim
N→∞

XN
β�¼−N

1

jβj
�
dŷdẑ

≡GMEL;t; ð108Þ

where the last line gives the definition of E. Finally, the second time derivative of Φ, integrated over the volume, is
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Z
L=2

−L=2
Φ;ttdxdydz

¼
Z

L=2

−L=2

�
lim
N→∞

XN
β¼−N

3GMðβ1xþ β2yþ β3z − jβj2LÞ2L2
;t

jx − βLj5 þ lim
N→∞

XN
β¼−N

GMðβ1xþ β2yþ β3z − jβj2LÞL;tt

jx − βLj3

− lim
N→∞

XN
β¼−N

jβj2GML;t
2

jx − βLj3 þ lim
N→∞

XN
β�¼−N

GML;tt

jβjL2
− lim

N→∞

XN
β�¼−N

2GML;t
2

jβjL3

�
dxdydz

¼ GML2
;t

Z
1=2

−1=2

�
lim
N→∞

XN
β¼−N

3ðβ1x̂þ β2ŷþ β3ẑ − jβj2Þ2
jx̂ − βj5 − lim

N→∞

XN
β¼−N

jβj2
jx̂ − βj3 − lim

N→∞

XN
β�¼−N

2

jβj
�
dx̂dŷdẑ

þ GMLL;tt

Z
1=2

−1=2

�
lim
N→∞

XN
β¼−N

ðβ1x̂þ β2ŷþ β3ẑ − jβj2Þ
jx̂ − βj3 þ lim

N→∞

XN
β�¼−N

1

jβj
�
dx̂dŷdẑ

≡GML2
;tF þGMLL;ttP; ð109Þ

where F and P are defined by the last line.
For a single point source at the center of a cell we take vα ¼ p ¼ Π ¼ hρΦi ¼ 0. Making use of Eqs. (107), (108) and

(109), as well as the lower-order solutions, we then find that Eq. (94) reduces to

X;tt ¼ −
GM

6ðXð0ÞÞ2
�
π þ 11

2
πCþ 9ECþ 3FC

�
þ πGMXð2Þ

3ðXð0ÞÞ3 þ πG2M2

6ðXð0ÞÞ3
�
3

2
D −

P
2
− F − 3Eþ 35π

18

�

−
�
7π2G2M2

36ðXð0ÞÞ5 −
πGMC

2ðXð0ÞÞ4
�
ðy2 þ z2Þ þOðϵ6Þ: ð110Þ

To solve this equation, we can evaluate it at the center of
the cell face, where y ¼ 0 and z ¼ 0. In this case, it is
convenient to recombine the terms involving Xð0Þ and Xð2Þ,
to find

X;tt ¼ −
GM
6X2

�
π þ 11

2
πCþ 9ECþ 3FC

�

þ πG2M2

6X3

�
3

2
D −

P
2
− F − 3Eþ 35π

18

�
þOðϵ6Þ:

≡ −
N
X2

þ J
X3

þOðϵ6Þ; ð111Þ

where the last line defines N and J.
As can be seen from Table III, and the plots in Fig. 4, the

numerical constants D;E; F and P are all of order unity,
and converge rapidly as the number of image masses
becomes large. The two terms on the right-hand side of

Eq. (111) look like dust and radiation, respectively.
However, J ¼ 1.30πG2M2 is positive, so the radiationlike
term appears to have negative energy density, and hence
contributes positively to the acceleration of the boundary.
Integrating Eq. (111) gives the Friedmann-like

equation
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FIG. 4 (color online). The percentage difference from the
asymptotic value of D, E, F and P, for various numbers of
image points in the partial sum.

TABLE III. The asymptotic values of D, E, F and P, which are
approached as the number of image masses diverges to infinity.

Constant Asymptotic value

D 1.44…
E 0.643…
F −1.63…
P 0.304…
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X2
;t ¼

2N
X

−
J
X2

− CþOðϵ6Þ; ð112Þ

where C is a constant. The solutions to Eq. (112) depend on
the value of C. If C ¼ 0 then

X ¼ N
2
η2 þ J

2N
;

t − t0 ¼
J
2N

ηþ N
6
η3: ð113Þ

If 0 < C < N2

J then

X ¼ N
C
� 1

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − JC

p
sin½

ffiffiffiffi
C

p
η�;

t − t0 ¼
N
C
η ∓ 1

C3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − JC

p
cos½

ffiffiffiffi
C

p
η�: ð114Þ

In both of these equations η ¼ R
dt=X is analogous to the

conformal time parameter used in Friedmann cosmology.
For C < 0, on the other hand, we obtain

� ðt − t0Þ

¼ N

ð−CÞ3=2 ln
��� − N þ CX þ

ffiffiffiffiffiffiffi
−C

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−CX2 þ 2NX − J

p ���
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−CX2 þ 2NX − J

p

ð−CÞ ; ð115Þ

where we have written the inverted function tðXÞ, for
convenience. The arguments under the square root must be
positive for there to be real solutions, which is always true

if J > 0 and C < 0. For C ≥ N2

J there are no real solutions.
In Fig. 5 we present the functional form of XðtÞ for three
example values of C and J.
If we were to extrapolate these solutions beyond their

reasonable regime of validity, to very early times, then we
would observe a bounce at the following minimum values
of X:

Xmin ¼
(

N
C −

ffiffiffiffiffiffiffiffiffiffiffi
N2−JC

p
C ; if C ≠ 0

J
2N ; if C ¼ 0:

ð116Þ

This concludes our discussion of explicit solutions for XðtÞ,
in the presence of pointlike particles.

VII. RELATIONSHIP WITH FLRW MODELS,
AND OBSERVABLES

So far, we have only calculated coordinate distances, in
terms of coordinate time. In this section we will transform
these quantities into proper distances and proper time. We
will then perform a coordinate transformation that allows
the space-time within each cell to be written as perturba-
tions on a homogeneous-and-isotropic Robertson-Walker
background. Finally, we will work out the expansion rates
of our cell edges in this new description. This will allow us
the clearest possible comparison with standard FLRW
cosmological models. As an example, we will sometimes
use the model described in Sec. VI B. Similar analyses can
be performed for other configurations, by adjusting the
calculations that follow.

A. The proper length of cell edges

For our example cubic cell, we choose to consider an
edge defined by the intersection of cell faces at x ¼
Xðt; y; zÞ and y ¼ Yðt; x; zÞ. The proper length of such a
curve, in a hypersurface of constant t, is given by

L ¼
Z
edge

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2ΦÞðdx2 þ dy2 þ dz2Þ

q
þOðϵ4Þ: ð117Þ

Expanding this expression, and taking the locations of
the relevant corners of the cell to be at z ¼ �Zc, then
gives

L ¼
Z

Zc

−Zc

ð1þ ΦÞdzþOðϵ4Þ: ð118Þ

Using Eqs. (63) and (86), it can be seen that

Zc ¼
L
2
−
πGM
6

þOðϵ4Þ; ð119Þ

where L is being used here to denote the coordinate
distance between the centers of two cell faces, on opposite
sides of our cubic cell.
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FIG. 5 (color online). Illustrations of the solutions of XðtÞ for
different values of C and J. The constant J will likely take
much smaller values, for realistic configurations. Its value is
exaggerated here to illustrate the effect of the post-Newtonian
terms.
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Using the solution derived in Sec. VI B, we can numeri-
cally evaluated the integral in Eq. (118), between the limits
specified in Eq. (119), to find

L≃ L − 0.125GM: ð120Þ

Using this result, the Friedmann-like equation (112) can
then be written as

L2
;t ≃ 16N

L
−
66.4G2M2

L2
− 4C; ð121Þ

The functional form of this equation is obviously unaltered,
with only a small additional contribution to the radiation-
like term.
Let us now write this equation in terms of proper time, τ,

of an observer following the boundary at the corner of the
cell. In this case coordinate time can be related to proper
time using the normalization of the 4-velocity tangent to the
boundary, UaUa ¼ −1, so that

Ut ¼ dt
dτ

¼ 1þ Φþ 3

2
ðX;tÞ2 þOðϵ4Þ; ð122Þ

where all terms are to be evaluated at the corner of the cell,
and where the observer has been taken to be moving with
velocity equal to �X;t in each of the x, y and z directions.
This equation can be rewritten using the solution in Sec. VI
B, to find

Ut ≃ 1þ 3.61GM
L

−
3C
2

; ð123Þ

where we have used Eq. (120) to replace coordinate
distances with proper length. In terms of this proper time,
Eq. (121) is given by

�
dL
dτ

�
2 ≃ ð16N − 68.0GMCÞ

L
−
5.91G2M2

L2
− 4Cð1 − 3CÞ:

ð124Þ

The functional form of this equation is again the same as
Eq. (112), but now with corrections to both the dustlike and
spatial curvaturelike terms, as well as the radiationlike
term.

B. Transformation to a time-dependent background

Up to this point we have treated the geometry within
each cell as a perturbation to Minkowski space. This is
convenient, as it allows the apparatus constructed for the
study of post-Newtonian gravity in isolated systems to be
applied with only minimal modifications. When consider-
ing the case of a cosmological model, however, it is also of
use to be able to understand the form of the gravitational
fields in the background of a Robertson-Walker geometry.

In this section we will show that the perturbed Minkowski
space description and the perturbed Robertson-Walker
description are isometric to each other, as long as we
restrict our consideration to a single cell. We will present
coordinate transformations that make this isometry explicit.
This discussion follows, and extends, that presented in [13].
We begin by writing the unperturbed line element for a

Robertson-Walker geometry as

ds2 ¼ −dt̂2 þ aðt̂Þ2 ðdx̂2 þ dŷ2 þ dẑ2Þ
½1þ k

4
ðx̂2 þ ŷ2 þ ẑ2Þ�2 ; ð125Þ

where aðt̂Þ and k are the scale factor and curvature of
hypersurfaces of constant t̂, respectively. From the
Friedmann equations we know that k ∼ ða;t̂Þ2 ∼ a;t̂ t̂. As
a ∼ 1, this means that we must immediately require
that k ∼ ϵ2, which means that k can be treated as a
(homogeneous) perturbation to a spatially flat background.
With this information, we can write the line element of a

perturbed Robertson-Walker geometry as

ds2 ≃ −ð1 − ĥð2Þt̂ t̂ − ĥð4Þt̂ t̂ Þdt̂2 þ 2aðt̂Þĥð3Þt̂ μ̂ dx
μ̂dt̂

þ aðt̂Þ2
�
δμ̂ ν̂ þ ĥð2Þμ̂ ν̂ −

k
2
δμ̂ ν̂ðx̂2 þ ŷ2 þ ẑ2Þ

�
dxμ̂dxν̂;

ð126Þ

where the hatted coordinates xμ̂ ¼ ðx̂; ŷ; ẑÞ, and where ĥâ b̂
are perturbations. In this expression we have written the t̂ t̂-
component of the metric to Oðϵ4Þ, the μ̂ ν̂-component to
Oðϵ2Þ, and the t̂ μ̂-component to Oðϵ3Þ.
The lowest-order part of the Einstein’s field equations

give, for the perturbed metric in Eq. (126),

ĥð2Þμ̂ ν̂ ¼ ĥð2Þt̂ t̂ δμ̂ ν̂; ð127Þ

and

8 πGρ̂a3 þ a∇̂2ĥð2Þt̂ t̂ ¼ −6a;t̂ t̂a2 ¼ 3ða;t̂Þ2aþ 3ka: ð128Þ

An integrability condition of this latter equation is that

8 πGρ̂a3 þ a∇̂2ĥð2Þt̂ t̂ ¼ constant≡ 2C4; ð129Þ

where by constant we mean not a function of t̂; x̂, ŷ or ẑ.
This result shows that the ∇2ĥð2Þt̂ t̂ term in Eq. (128) behaves
like dust, in the way that it sources the evolution of the
scale factor.
Let us now consider the following coordinate

transformations:
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t̂ ¼ t −
a;t
2a

ðx2 þ y2 þ z2Þ þ Tðt; xμÞ þOðϵ5Þ

x̂ ¼ x
a

�
1þ ða;tÞ2

4a2
ðx2 þ y2 þ z2Þ

�
þOðϵ4Þ

ŷ ¼ y
a

�
1þ ða;tÞ2

4a2
ðx2 þ y2 þ z2Þ

�
þOðϵ4Þ

ẑ ¼ z
a

�
1þ ða;tÞ2

4a2
ðx2 þ y2 þ z2Þ

�
þOðϵ4Þ; ð130Þ

where Tðt; xμÞ is an unspecified quantity of Oðϵ4Þ. The
scale factor on the right-hand side of these equations is
written as a function of the time coordinate t, and is related
to aðt̂Þ by

aðt̂Þ ¼ aðtÞ
�
1 −

ða;tÞ2
2a2

ðx2 þ y2 þ z2Þ
�
þOðϵ4Þ: ð131Þ

In the unhatted coordinates, the perturbed metric in
Eq. (126) transforms into the one given in Eq. (4), where
the perturbations around the Robertson-Walker geometry
are given in terms of the perturbations about Minkowski
space in the following way:

ĥð2Þt̂ t̂ ¼ hð2Þtt þ C4

3a3
ðx2 þ y2 þ z2Þ þOðϵ4Þ

ĥð3Þtμ ¼ hð3Þtμ þ T;μ þ 2
a;t
a
xμhð2Þtt

þ
�
2C4

3a
−
k
2

�
a;t
a3

xμðx2 þ y2 þ z2Þ þOðϵ5Þ

ĥð4Þt̂ t̂ ¼ hð4Þtt þ 2T;t þ 2
a;t
a
ðhð3Þtμ þ T;μÞxμ

þ
�
C4

a3
−
6k
a2

�
hð2Þtt ðx2 þ y2 þ z2Þ

þ
�
5C4

2

36a6
−
kC4

2a5
þ k2

4a4

�
ðx2 þ y2 þ z2Þ2 þOðϵ6Þ:

ð132Þ

These equations cannot be used to transform a global
perturbed Robertson-Walker geometry to a global per-
turbed Minkowski geometry, as the velocities that result
in the latter would be greater than the speed of light on
scales of H−1

0 . They are, however, perfectly sufficient to
transform the geometry within any one of our cells. As
every cell is identical, this provides us with a way to
transform the entire geometry.
We can use these transformations to relate the proper

length calculated in the Minkowski space background, L,
to the proper length in a flat Robertson-Walker background,
L̂. The relevant corners in this background are given by
ẑ ¼ �Ẑc, which can be related to the positions of the cell
corners in the Minkowski space background using
Eq. (130), so that

Ẑc ¼
Zc

a
þ 3ða;tÞ2X3

4a3
þOðϵ4Þ: ð133Þ

For a flat Robertson-Walker background we do not need
any Oðϵ2Þ corrections to Ẑc, as we did for Zc in Eq. (119),
because the boundaries are flat to this order [13].
Using Eqs. (130) and (132), L̂ is given by

L̂≃
Z

Ẑc

−Ẑc

âð1þ Φ̂Þdẑ

≃
Z

Ẑc

−Ẑc

a

�
1 −

ða;tÞ2
4a2

ðx2 þ y2 þ z2Þ þ Φ

�
dẑ: ð134Þ

Using z ¼ aẑ at lowest order, and again choosing the edge
of our cell at x ¼ X and y ¼ Y, we can integrate part of this
equation to find

L̂≃
Z

Ẑc

−Ẑc

�
a−

aða;tÞ2
4

�
ẑ2þ L2

2a2

��
dẑþ

Z
Zc

−Zc

aΦ
dz
a
þOðϵ4Þ

≃2Ẑca−
aða;tÞ2

4

�
2Ẑc

3

3
þL2Ẑc

a2

�
þ
Z

Zc

−Zc

Φdz: ð135Þ

The last term in this equation can be evaluated numerically,
in the same way we evaluated the last term in Eq. (120).
We will do this below, for the explicit solution found in
Sec. VI B, consisting of a single pointlike mass at the center
of every cell.
Using Eqs. (133) and (135) we then obtain

L̂≃ L −
πGM
3

−
5X3ða;tÞ2
12a2

þ 0.922GM

≃ L −
5X3C4

18a3
; ð136Þ

where we have used Eqs. (120) and (128) in the last line.
For a flat FLRW background we can use Eq. (128), together
with the solution for the scale factor, to find

aðtÞ ¼
�
3

2

�
2=3

� ffiffiffiffiffiffiffiffi
2C4

3

r
t − t0

�2=3

; ð137Þ

where C4 has been taken to be positive. Now, using
Eqs. (67) and (137), for the solutions of X and a,
respectively, we can infer that

C4 ¼
πGMa3

2X3
: ð138Þ

The proper length of a cell edge in the Robertson-Walker
background is therefore given by

L̂≃ L − 0.436GM: ð139Þ

The Friedmann-like equation can then be written in terms
of this quantity as
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�
dL̂
dτ

�2

≃ ð16N − 68.0GMCÞ
L̂

−
9.56G2M2

L̂2
− 4Cð1 − 3CÞ:

ð140Þ

This equation has the same form as Eq. (124), but with a
different numerical coefficient for the radiationlike term.
Again, we remind the reader that this term, although it takes
the form of a radiation fluid in the evolution equation for
the scale of the space, does not correspond to any actual
matter field. It is purely a result of the nonlinearity of
Einstein’s equations.

C. Observables

The majority of this paper has been aimed at constructing
a geometry to model the space-time of a universe that can
accommodate large nonlinear density contrasts on small
scales, while maintaining a periodic structure that means it
is invariant under a certain set of discrete spatial trans-
lations on large scales. Space-time geometry itself, how-
ever, is not a direct observable. Wewill therefore pause, and
consider in this section the consequences of this new type
of model for cosmological observables.
We will briefly consider two types of observations:

(i) those based on the motion of timelike particles (i.e.
galaxies, dark matter, etc.), and (ii) those based on
observations made along null geodesics. Of course, almost
all observations are in fact made by observing light, but one
can in principle split ones considerations into the effect of
the expansion of space on the light directly, and the effect
of the expansion on the astrophysical objects that emit or
interact with the light.
Let us start with the motion of timelike particles. The

model constructed above, and in particular the Green’s
function formalism adopted in Sec. VI A, allows n-body
simulations of structure formation to be modelled to post-
Newtonian accuracy in a fully self-consistent way. This
problem has recently been studied using a different
approach in [27], where actual simulations were performed,
and observables extracted. The effects of post-Newtonian
gravitational fields are found to be small in all aspects of
these simulations, but are nonetheless important for under-
standing the consequences of relativistic gravity, and in
order to accurately interpret precision cosmological data.
We expect our formalism to produce similar results,
although the simplicity of our equations may bring some
computational benefits.
Winding back the evolution of the Universe to earlier

times, the consequences of relativistic gravitational fields
should be expected to become more significant. The
corrections we found for the large-scale expansion of
our particular solution, presented in Sec. VI B, were of
the order of our cell size squared divided by the Hubble
radius squared. Taking cells the size of the homogeneity
scale, this gives corrections at the level of about 1 part

in 104. Larger cells will give larger corrections. By coinci-
dence, this is about the same size as the contribution of
Cosmic Microwave Background (CMB) radiation to the
expansion of the Universe at late times. Our corrections also
scale likearadiationfluid,sonaivelyextrapolatingourresults
suggests that our correctionsmay start to become significant
in the evolution of the Universe at about the same time as
radiation starts to become important. For high precision
observables, suchas theCMB, it is conceivable that thiscould
have some impact on the interpretation of data.
Let us now consider observations based on the evolution

of null congruences in the space-time. The method of
propagating null geodesics through a lattice universe of this
type has already been considered in [13]. The method
suggested there was to decompose the tangent vector to
these curves as

ka ¼ ð−ubkbÞðua þ naÞ; ð141Þ

where ua and na are an orthogonal pair of timelike and
spacelike unit vectors. When a null geodesic reaches a cell
boundary one can then read off uaka and na, which can be
transformed to similar quantities in the new cell using the
coordinate transformations from Eqs. (23) and (24). These
quantities can then be used as initial conditions for
extending the same null geodesic through the new cell.
Depending on the coordinate system being used, the

cosmological redshift in thesemodels comes primarily either
from the expansion of space or the motion of the cell
boundaries (for the time-dependent and time-independent
backgrounds, respectively). As the leading-order part of the
expansion of each of our cells is given by a Friedmann-like
equation with a dustlike content, we expect this to contribute
the usual leading-order term to the redshifts calculated over
large distances. What our framework adds beyond the usual
treatment, however, is a consistent way to calculate the
consequences of both Newtonian and post-Newtonian gravi-
tational potentials on all scales up to the size of the cells being
considered (larger scales can always be included using
standard cosmological perturbation theory). The effect of
relativistic gravity on galaxy redshifts has recently attracted
much attention, in the light of upcoming surveys [8].
Finally, the effect of inhomogeneity on the brightness

and shear of a source can be calculated using the Sachs
optical equations [28]:

dθ
dλ

þ θ2 − ω2 þ σ�σ ¼ −
1

2
Rabkakb

dσ
dλ

þ 2σθ ¼ Cabcdmakbmckd

dω
dλ

þ 2ωθ ¼ 0; ð142Þ

where θ, σ and ω are the expansion, shear, and vorticity
scalars of the rays of light that are being modelled. The

VIRAJ A. A. SANGHAI AND TIMOTHY CLIFTON PHYSICAL REVIEW D 91, 103532 (2015)

103532-20



affine distance along these rays is denoted λ, and Rab and
Cabcd are the Ricci and Weyl tensors that describe the
curvature of the space-time. The complex vectors ma are a
set of mutually orthogonal and normalized vectors on the
screen space orthogonal to ka, and the angular diameter
distance can be calculated by integrating the expansion
scalar, such that rA ∝ expðR o

e θdλÞ.
One can immediately notice that, when light propagates

in the near-vacuum regions between galaxies, the driving
term in the evolution equation for θ is absent, while the
driving term in the corresponding equation for σ is non-
zero. This is exactly the opposite of what happens in
homogeneous-and-isotropic space-times [29]. Our model
provides a way in which this switching on and off of terms
can be consistently modelled to post-Newtonian order in an
expanding universe. Such quantities are of vital importance
not only for constructing Hubble diagrams, but also for
correctly interpreting data from galaxy surveys and the
CMB. It is therefore important that the models used to
interpret these observations are as robust as possible.

VIII. CONCLUSIONS

We have constructed cosmological models by patching
together many sub-horizon-sized regions of space, each of
which is described using post-Newtonian physics. The
boundaries between each of these regions was assumed to
be reflection symmetric, in order to make the problem
tractable. This allowed us to find the general form for the
equation of motion of the boundary, as well as the general
form of the post-Newtonian gravitational fields that arise
for general matter content. These results both follow from a
straightforward application of the junction conditions,
which in the latter case provides the appropriate boundary
conditions for solving Einstein’s field equations.
As an example of how to apply this formalism, we

considered the case of a large number of isolated masses,
each of which is positioned at the center of a cubic cell. We
found that the large-scale evolution that emerges from such
a configuration is well modelled by an equation that looks
very much like the Friedmann equation of general rela-
tivity, with pressureless dust and radiation as sources. The
radiation term is necessarily much smaller than the dust
term (if the post-Newtonian expansion is to be valid), and
appears in the Friedmann-like equation as if it had a
negative energy density. This happens without any viola-
tion of the energy conditions, as the term in question arises
from the nonlinearity of Einstein’s equations, and does not
directly correspond to any matter content.
While small, the radiationlike term appears as the first

relativistic correction to the large-scale expansion of the
Universe, when the matter content is arranged in the way
described above. This term provides a small negative
contribution to the rate of expansion, and a small positive
contribution to the rate of acceleration. The existence of a
radiationlike term has been found previously using exact

results derived for the evolution of reflection-symmetric
boundaries [16], and using the shortwave approximation
for fluctuations around a background metric [30].
It remains to be seen what form the first relativistic

correction will take for more general configurations of
matter fields, or for structures built with less restrictive
symmetries. The former of these cases can be studied using
the approach we have prescribed in Sec. VI A, while the
latter requires a generalization of our formalism.

ACKNOWLEDGMENTS

We are grateful to K. Malik and S. Räsänen for helpful
comments. V. A. A. S. and T. C. both acknowledge support
from the STFC.

APPENDIX A: GEODESIC EQUATION

The geodesic equation, in terms of proper time along a
curve, is given by

d2xa

dτ2
þ Γa

bc
dxb

dτ
dxc

dτ
¼ 0; ðA1Þ

where Γa
bc are the Christoffel symbols. Let us now

consider the motion of a boundary at x ¼ Xðt; y; zÞ. The
proper time derivatives of this boundary are given by

dX
dτ

¼ X;tt;τ þ X;AxA;τ; ðA2Þ
and

d2X
dτ2

¼ X;ttðt;τÞ2 þ X;tt;ττ þ 2X;tAt;τxA;τ

þ X;ABxA;τxB;τ þ X;AxA;ττ: ðA3Þ
Equation (A2) then allows us to write the t, y and z
components of the geodesic equation in terms of partial
derivatives as

t;ττ ¼ −Γt
bcðt;τÞ2xb;txc;t þOðϵ5Þ; ðA4Þ

x;ττ ¼ −Γx
bcðt;τÞ2xb;txc;t þOðϵ6Þ; ðA5Þ

xA;ττ ¼ −ΓA
bcðt;τÞ2xb;txc;t þOðϵ4Þ: ðA6Þ

Using these equations, Eq. (A3) can be written as

d2X
dτ2

¼ ðt;τÞ2½X;tt − X;tΓt
bcxb;txc;t þ 2X;tAxA;t

þ X;ABxA;txB;t − X;AΓA
bcxb;txc;t�jx¼X: ðA7Þ

The Christoffel symbols required for evaluating Eq. (A1)
can be simplified using Eq. (A7), and written explicitly as

Γt
bcxb;txc;t ¼ − Φ;t − Φ;xX;t þOðϵ5Þ; ðA8Þ
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ΓA
bcxb;txc;t ¼ −Φ;A þOðϵ4Þ; ðA9Þ

Γx
bcxb;txc;t ¼ −Φ;x þ 2ΦΦ;x −

hð4Þtt;x

2
þ hð3Þtx;t

þ 2Φ;tX;t þ 2Φ;xX;t
2 þOðϵ6Þ; ðA10Þ

where each term in these equations is taken to be evaluated
on the boundary.
Taking xA;t ¼ 0, we can then see that Eqs. (A5), (A7),

(A8), (A9), and (A10) allow the geodesic equation to be
written as

X;tt¼
�
Φ;x−2ΦΦ;xþ

hð4Þtt;x

2
−hð3Þtx;t

−3Φ;xX2
;t−3Φ;tX;t−Xð2Þ

;A Φ;A

�����
x¼X

þOðϵ6Þ: ðA11Þ

This is identical to Eq. (58).

APPENDIX B: POST-NEWTONIAN MASS

In this subsection we will follow the approach used by
Chandrasekhar [31,32]. If the 4-velocity is given by
Eq. (37), then the components of the energy-momentum
tensor are given by

Tab ¼ ðρþ ρΠþ pÞuaub þ pgab; ðB1Þ

such that

Ttt ¼ ρð1þ v2 þ Πþ 2ΦÞ þOðϵ6Þ

Ttμ ¼ ρ

�
1þ v2 þ Πþ 2Φþ p

ρ

�
vμ þOðϵ7Þ;

and

Tμν ¼ ρ

�
1þ v2 þ Πþ 2Φþ p

ρ

�
vμvν

þ ð1 − 2ΦÞpδμν þOðϵ8Þ:

Let us now define σ ≡ ρð1þ v2 þ 2Φþ Πþ p
ρÞ, and the

total time derivative

d
dt

≡ ∂
∂tþ v ·∇: ðB2Þ

To derive the form of the conserved post-Newtonian mass
let us consider

Ttb
;b ¼ σ;t þ ðσvμÞ;μ þ ρΦ;t − p;t: ðB3Þ

Using the continuity equations, and Eq. (B2), the last two
terms in this equation can be written as

ρΦ;t − p;t ¼ ρ
dΦ
dt

−
dp
dt

− vμðρΦ;μ − p;μÞ

¼ ρ

�
d
dt

�
Φ −

1

2
v2
��

−
dp
dt

: ðB4Þ

Equation (B2) can then be rewritten as

Ttb
;b ¼

�
d
dt

þ∇ · v

�
σ þ ρ

�
d
dt

�
Φ −

1

2
v2
��

−
dp
dt

:

ðB5Þ

We can now use the continuity equations to relate the time
dependence of the post-Newtonian energy density to the
pressure:

ρ
dΠ
dt

¼ p
ρ

dρ
dt

¼ −p∇ · v: ðB6Þ

Thus, Eq. (B5) simplifies to

Ttb
;b ¼

�
d
dt

þ∇ · v

�
ρ

�
1þ 1

2
v2 þ 3Φ

�
: ðB7Þ

Hence, at Oðϵ4Þ, we can use the conservation of energy-
momentum to identify the following conserved post-
Newtonian mass, MPN :

MPN ≡
Z
V
ρ

�
1

2
v2 þ 3Φ

�
dV

¼ 1

2
hρv2i þ 3hρΦi: ðB8Þ
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