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In this paper we operate under the assumption that no tensors from inflation will be measured in the
future by the dedicated experiments and argue that, while for single-field slow-roll models of inflation the
running of the spectral index will be hard to detect, in multifield models the running can be large due to its
strong correlation with non-Gaussianity. A detection of both the running and non-Gaussianity might
therefore strengthen the conclusion that more than one scalar degree of freedom was active during inflation.
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I. MOTIVATIONS

Inflation [1] provides a mechanism to explain the initial
conditions for the large-scale structure (LSS) and for the
cosmic microwave background (CMB) anisotropy. The
seeds for the density scalar perturbations are created from
the quantum fluctuations “redshifted” out of the Hubble
radius during the early period of superluminal expansion of
the Universe. At the same time, the generation of tensor
(gravity-wave) fluctuations is a generic prediction of an
accelerated de Sitter expansion of the Universe [2].
To characterize the scalar and tensor perturbations, several

observables are introduced: the spectral index (or tilt)ns of the
scalar perturbations, currentlymeasured to be ns ¼ 0.9655�
0.0062 at 68% C.L.; the running with the wave number k of
the spectral index αs ¼ dns=d ln k, currently consistent with
zero, αs ¼ −0.00571� 0.0071 at 68% C.L. (assuming no
tensors); and the level of local non-Gaussianities parame-
trized by fNL ¼ 0.8� 5.0 at 68% C.L. and gNL ¼ ð−9.0�
7.7Þ × 104 at 68% C.L. All these figures are quoted from the
last Planck releases [3,4]. Finally, the tensor-to-scalar ratio is
bounded to be r < 0.12 at 95% C.L. [5].
Many next-generation satellite missions—see, for in-

stance, Refs. [6–8]—are dedicated to measuring the polari-
zation of the CMB anisotropies. On large angular scales the
B-mode polarization of the CMB carries the imprint of
primordial gravitational waves, and its precise measure-
ment would provide a powerful probe of the epoch of
inflation. The goal of these missions is to achieve a
measurement of r down to Oð10−3Þ.
While a detection of gravity waves from inflation will be

a major milestone for the inflationary paradigm, on the
other hand one needs to remember that going from r ¼
10−1 down to r ¼ 10−3 means testing the energy scale of
inflation Einf only by a factor ð100Þ1=4 ≃ 3.1 better than
current bounds (r scales like E4

inf ).
One should therefore envisage the situation in which

nature has not been so kind to us as to set the scale of the

energy of inflation within a factor of 3 away from the
current limits. In this paper, we will therefore operate under
the working assumption that no tensors will be measured in
the future by the dedicated experiments.
While we hope this hypothesis will prove to be wrong in

the future, we believe it is reasonable to ask how else
we could learn something more about the inflationary
perturbations.
In this paper we turn our attention to the scale depend-

ence of the tilt of the scalar perturbations. Our hypothesis
on the tensor modes leads to a hardly detectable running
within single-field slow-roll models. On the other hand, a
negative result on tensors might indicate a low level of the
Hubble rate, leaving open the possibility that the scalar
perturbations are due to a light scalar field other than the
inflaton field. In such a case, our findings indicate that a
large running may be achieved thanks to an interesting
correlation between the running and the level of non-
Gaussianity. Such strong correlation exists only in multi-
field models of inflation, while it is missing in single-field
slow-roll models. If no tensors will be observed, a
measurement of a sizable level of non-Gaussianity will
lead to the conclusion that more than one scalar degree of
freedom was active during inflation. However, one has to
keep in mind that nonlinear relativistic corrections in
general relativity induce a signal in the observations that
might be misinterpreted as primordial non-Gaussianity
with a local shape [9,10]. The correlation between αs
and fNL might help to disentangle the multifield contri-
bution to fNL from the general relativity effects.
Our considerations are particularly relevant for the goals

of future missions designed to measure the three-
dimensional structure of the Universe, such as the ESA
mission EUCLID [11], the Square Kilometre Array [12],
and the NASA SPHEREx mission [13], a proposed all-sky
spectroscopic survey satellite. For instance, the combina-
tion of the galaxy power spectrum and bispectrum leads to
the forecasted 68% C.L. errors σðns − 1Þ ¼ 2.2 × 10−3,
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σðαsÞ ¼ 6.5 × 10−4, and σðfNLÞ ¼ 0.2 (for the local case)
in the case of SPHEREx. This is an improvement with
respect to EUCLID forecasts of a factor ∼2 in αs and a
factor ∼20 for the local fNL (or ∼6 with the galaxy power
spectrum only). For the other parameters SPHEREx will
deliver constraints comparable to those expected from the
EUCLID spectroscopic survey.
As EUCLID and (possibly) SPHEREx will strongly

narrow down the allowed parameter space in the ðαs; fNLÞ
plane, it is therefore extremely interesting and timely to
understand what are the theoretical expectations in terms of
αs and its connections to non-Gaussianity.

II. SINGLE-FIELD SLOW-ROLL INFLATION

Let us first consider the case in which the cosmological
perturbations are generated by the same scalar field ϕ
driving inflation. The power spectrum of scalar perturba-
tions is given in such a case by

PsðkÞ ¼
1

2M2
pϵ�

�
H�
2π

�
2

; ð1Þ

where the subindex � indicates that quantities have to be
computed at Hubble crossing, H� is the Hubble rate during
inflation, Mp ≃ 2.4 × 1018 GeV is the reduced Planck
mass, and ϵ� ¼ − _H�=H2� is one of the slow-roll parameters
(dots indicate derivatives with respect to time).
Let us now assume that no tensors will be observed in the

future and see what are the consequences we can draw.
Measuring no tensors implies that r ¼ 16ϵ� ≪ 10−3, or
ϵ� ≪ 10−4. Irrespectively of the form of the inflaton
potential, this means that ϕ ≪ Mp. To see this, take the
cosmological range of scales to span four decades, corre-
sponding to ln k ∼ 10. This corresponds to ∼10 e-folds of
inflation. In the first approximation in slow-roll inflation, ϵ�
has negligible variation over one e-fold, and in typical
models it has only small variation over the ∼10 e-folds.
Taking that to be the case, one finds (this is nothing else that
the reverse of the so-called Lyth bound [14]) ϕ ≪ 0.4Mp,
where we have used (primes indicate derivative with respect
to the inflaton field) N0ðϕÞ ¼ �ð1= ffiffiffiffiffi

2ϵ
p

MpÞ, and N is the
number of e-folds till the end of inflation. A more detailed
computation leads to sub-Planckian excursions of the
inflation field for r≲ 2 × 10−5 [15].
The first consequence of observing no tensors is there-

fore that the model of inflation will be characterized by a
potential of the form VðϕÞ ¼ V0 þ � � � with the constant
first term dominating.
The second consequence is that one can simplify the

formulas for the spectral index and its running [2]

ns − 1 ¼ 2η�; αs ¼ 2ξ2�; ð2Þ
where η� ¼ M2

pV 00=V and ξ2� ¼ M4
pðV 0V 000=V2Þ. Therefore,

observing no tensors implies that the running of the spectral

index will be sizable only if the third derivative of the
potential is nonvanishing. Also, since ðns − 1Þ ¼ 2η� is
measured to be negative by Planck, we conclude that the
second derivative of the potential must be negative.
A prototype of inflationary models summarizing all

these properties (domination of the vacuum energy, a
nonvanishing V 000 and V 00 < 0) is represented by the
following form of the potential (c > 0):

VðϕÞ ¼ V0ð1 − cϕpÞ; −∞ < p < 0 or p > 1:

ð3Þ

This parametrization has the virtue of reproducing for
p → −∞ the exponential models V ¼ V0ð1 − e−qϕÞ,
among which are the popular Starobinsky R2 model
[16] and the Higgs inflation model [17]. Related to the
expression (3), as far as the predictions are concerned,
are the logarithmic supersymmetry-inspired models V ¼
V0ð1þ cðlnϕ=μÞÞ obtained for p → 0 and the brane
inflation models obtained for p ¼ −4. Potentials of the
form VðϕÞ ¼ V0ð1� cϕ2Þ give a scale-independent
spectral index. In all these cases the predictions are [2]
(for p ≠ 2)

ns − 1 ¼ −
�
p − 1

p − 2

�
2

N
; αs ¼ −

�
p − 1

p − 2

�
2

N2
: ð4Þ

The running can be written as

αs ¼ −
1

2

�
p − 2

p − 1

�
ðns − 1Þ2 ¼ −

72

25

�
p − 2

p − 1

�
f2NL

≃ −6
�
p − 2

p − 1

�
× 10−4; ð5Þ

where in the second passage we have made use of the
known relation fNL ¼ −5ðns − 1Þ=12 valid for single-field
models [18], and the numerical estimate has been done
using the Planck central value for ðns − 1Þ (as we will do in
the following). The factor ðp − 2Þ=ðp − 1Þ is of order unity,
and the most favorable case is achieved for the logarithmic
models, for which p≃ 0 and αs ≃ 1.2 × 10−3.
Since the SPHEREx measurements of the power spec-

trum and the bispectrum may provide 1σ-level detection of
the running spectral index at the level of 6.5 × 10−4 [13], a
nondetection of the running will rule out models with p <
−12 at the 1σ level. On the other hand, a 2σ detection of the
running would require a running larger than 1.3 × 10−3,
which is almost impossible to get in single-field slow-
roll models of inflation if no tensors are observed, unless
ðns − 1Þ is redder than the Planck central value by more
than two Planck standard deviations. Of course, a large
running can be obtained by abandoning the slow-roll
regime [19], but in this case no detection of fNL is expected.
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III. MULTIFIELD INFLATION

In the single-field inflation scenario, the total curvature
perturbation is generated during inflation and remains
constant on super-Hubble scales. However, in many infla-
tionary models, there are usually a plethora of scalar fields
which may play a significant role during inflation. Indeed,
if these fields do not dominate the energy density during
inflation but are light enough to be quantum-mechanically
excited during the de Sitter stage, they provide a source of
isocurvature perturbation.
If the curvature perturbation associated with the field

driving inflation is suppressed, the total curvature pertur-
bation may have originated from such isocurvature pertur-
bation. From Eq. (1), one deduces that this is naturally
achieved if the Hubble rate is small: no significant amount
of tensor modes are expected to be detected in the case in
which the seeds of the LSS and CMB anisotropies are due
to a light field other than the inflaton (this is in fact not a no-
go theorem [20], but it is a very well-educated guess). More
precisely, r below the expected sensitivity of 10−3 implies
H� smaller than about 7.7 × 1012 GeV.
We will concentrate on the most studied example of such

a mechanism, the so-called curvaton mechanism [21–24],
even though our findings hold as well for other mechanisms
[25–28]. In the curvaton mechanism, during inflation the
curvaton energy density is negligible, and isocurvature
perturbations with a nearly flat spectrum are produced in
the curvaton field σ.
After the end of inflation, the curvaton field oscillates

during some radiation-dominated era, causing its energy
density to grow and thereby converting the initial isocur-
vature into curvature perturbation. The comoving curvature
perturbation ζ can be computed through the δN formalism
[29] ζð~x; tÞ ¼ Nð~x; tÞ − NðtÞ, where Nð~x; tÞ is the amount
of expansion along the worldline of a comoving observer
from a spatially flat slice at some initial time to a generic
slice at time t. Since the number of e-folds from the end of
inflation to the beginning of the oscillations is unperturbed
because the radiation energy density ρrad ¼ ðρtot − ρσÞ
dominates during this time, for the curvaton case, one
can redefine N as the number of e-folds from the beginning
of the sinusoidal oscillations (that is, when the quadratic
part of the curvaton potential with mass m starts dominat-
ing) to the curvaton decay [30]:

N½ρðtdÞ; ρðtoscÞ; σ�� ¼
1

4
ln

ρradðtoscÞ
ρtotðtdÞ − ρσðtdÞ

; ð6Þ

where

ρσðtdÞ ¼
1

2
m2g2ðσ�Þ

�
ρtotðtdÞ − ρσðtdÞ

ρradðtoscÞ
�

3=4
: ð7Þ

We have highlighted the role of the function g ¼ gðσ�Þ. It
represents the initial amplitude of curvaton oscillations,

which is some function of the field value at the Hubble exit.
The generic function gðσ�Þ parametrizes the nonlinear
evolution on large scales if the curvaton potential deviates
from a purely quadratic potential with mass m away from
its minimum [31,32].
The resulting power spectrum of the scalar perturbations

reads [30]

PsðkÞ ¼
4r2d
9

�
H�
2π

�
2
�
g0

g

�
2

; ð8Þ

where the prime now denotes differentiation with respect
to σ� and

rd ¼
3ρσðtdÞ

3ρσðtdÞ þ 4ρradðtdÞ
ð9Þ

parametrizes the curvaton energy density at the time of
curvaton decay with respect to the radiation component.
We neglect for the time being the scale dependence ofH�

and write therefore d=dlnk¼H−1� d=dt� ¼ð _σ�=H�Þ∂=∂σ�.
We then find

ðns − 1Þ ¼ 2
_σ�
H�

g0

g

�
g00g
g02

− 1

�
þ 2

_σ�
H�

r0d
rd

ð10Þ

and

αs ¼ 2

�
_σ�
H�

g0

g

�
2
�
g000g2

g03
−
g002g2

g04
−
g00g
g02

þ 1

�

þ 2

�
_σ�
H�

�
2
�
r00d
rd

−
r02d
r2d

�

−
2

3

V 00

H2�

_σ�
H�

�
g0

g

�
g00g
g02

− 1

�
þ r0d
rd

�
; ð11Þ

with r0d ¼ ð2g0=3gÞrdð1 − rdÞð3þ rdÞ and V ¼ VðσÞ the
curvaton potential. The expressions for the quadratic and
cubic non-Gaussianities are [33,34]

fNL ¼ 5

4rd

�
1þ g00g

g02

�
−
5

3
−
5rd
6

;

gNL ¼ 25

54

�
9

4r2d

�
g000g2

g03
þ 3

g00g
g02

�
−

9

rd

�
1þ g00g

g02

�

þ 1

2

�
1 − 9

g00g
g02

�
þ 10rd þ 3r2d

�
: ð12Þ

Notice that rd depends on σ� through ρσðtdÞ in Eq. (7). This
dependence is essential to obtain the correct fNL and gNL
given above [30].
We can recast the running of the spectral index in a rather

appealing and compact form:
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αs ¼
3

4
ðns − 1Þ2

�
gNL
f2NL

−
2

3

�
−

V 00

3H2�
ðns − 1Þ: ð13Þ

The same expression can be derived more directly in terms
of derivatives of the number of e-folds using the δN
formalism [29]. Indeed, knowing that

Ps ¼
�
H�
2π

�
2

N02; ns − 1 ¼ 2
_σ�
H�

N00

N0 ;

fNL ¼ 5

6

N00

N02 ; gNL ¼ 25

54

N000

N03 ; ð14Þ

one can write

αs ¼ 2

�
_σ�
H�

�
2
�
−
ðN00Þ2
N02 þ N000

N0

�
−

V 00

3H2�
ðns − 1Þ: ð15Þ

Using Eq. (14), we get

αs ¼
108

25

�
_σ�
H�

�
2

N02f2NL

�
gNL
f2NL

−
2

3

�
−

V 00

3H2�
ðns − 1Þ ð16Þ

and

N0fNL ¼ 5

12

H�
_σ�

ðns − 1Þ; ð17Þ

which allow us to reobtain the expression (13). We have
decided to include the first and slightly more involved
derivation of (13) to stress the importance of the non-
linearities in the curvaton potential.

Equation (13) is the main result of this paper and
indicates that the running of the spectral index can be
sizable if gNL ≳ f2NL. In general, this is true in those
models for which rd ≃ 1 and g00g=g02 ≃ 1 (or rd ≲ 1 and
g00g=g02 ≃ −1) when fNL becomes small. This can happen
if the curvaton potential has nonlinearities in it [35,36]. As
a rule of thumb, being 3ðns − 1Þ2=4≃ 9 × 10−4, we deduce
that SPHEREx could detect a running of the spectral index
at 2σ if gNL=f2NL ¼ Oð�2Þ. Since SPHEREx can detect at
the 1σ level a local fNL larger than 0.2, the situation seems
optimistic.
Consider, for instance, the case in which the curvaton

potential has a self-interacting piece λσ4, where λ is a
dimensionless coupling, besides the quadratic term. In the
limit in which the nonlinear term dominates over the
quadratic piece during inflation gðσ�Þ ∼ σ3=4� [35,36], one
obtains

ns − 1 ¼ 4

3
λðrdð2þ rdÞ − 1Þ σ

2�
H2�

;

fNL ¼ 5

6rd
ð1 − r2d − 2rdÞ: ð18Þ

For instance, for rd ¼ 1=3 we get a red tilt, fNL ¼ 5=9,
gNL ≃ −32f2NL, and αs ≃ −13 × 10−3. This running can
certainly be measured by EUCLID and SPHEREx.
To describe further the correlation between a sizable

running αs and the level of non-Gaussianity, we present
some illustrative examples obtained numerically in Fig. 1.
For completeness, we have restored the scale dependence
of H� through an inflaton potential of the form

FIG. 1 (color online). Left: The running αs as a function of fNL for a range of curvaton models. Right: Nonlinearity parameter gNL as a
function of fNL for the same models as in the left plot.
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VðϕÞ ∼ expðμϕ=M2
pÞ, which provides a constant contribu-

tion ð−μ2=M2
pÞ to ðns − 1Þ. The various points have been

obtained by finding the function gðσ�Þ, scanning over the
various parameters, and using the general expression (11).
We have systematically checked that all the observables,
such as the amplitude of the power spectrum, are in
agreement with the current observations and that the
contribution to the running from the V 00 term in Eq. (13)
and from the scale dependence ofH� is smaller than the one
coming from the ratio gNL=f2NL. The 2σ SPHEREx fore-
casted errors for αs and fNL are also shown. On the right
panel, we present the corresponding values of gNL as a
function of fNL. The dashed line illustrates that the running
is mainly due to the correlation with the non-Gaussianity.
Of course, one should keep in mind that there are regions of
the parameter space where the correlation is not present.
Finally, let us consider the case of the modulated

reheating scenario. The curvature perturbation is generated
during reheating if the inflaton decay rate Γ ¼ ΓðσÞ is a
function of a light field σ. The corresponding power
spectrum and non-Gaussianities are [34]

PsðkÞ ¼
�
H�
18π

�
2
�
Γ0

Γ

�
2

; fNL ¼ 5

�
Γ00Γ
Γ02 − 1

�
;

gNL ¼ 100

3

�
1 −

3

2

Γ00Γ
Γ02 þ 1

2

Γ000Γ2

Γ03

�
: ð19Þ

One can easily show that the analytical expression for the
running is exactly the same as in Eq. (13). Now, at the time
of reheating, the field σ will have a value σreh ¼ σrehðσ�Þ,
and the plausible dependence of the decay rate is ΓðσrehÞ ∝
σqreh (q > 0). If the potential for the light field is quadratic,
then σreh ¼ σ� and we find gNL=f2NL ¼ 4=3: the first term in
the running turns out to be of the order of 6 × 10−4, too
small to be detected. Nevertheless, if there is a nonlinear
relation between σreh and σ� due to the fact that the potential
of the field σ deviates from a purely quadratic potential,

then one can easily increase the ratio gNL=f2NL and make the
running detectable.

IV. CONCLUSIONS

In this paper we have stressed that a sizable running of
the spectral index may be connected to the primordial non-
Gaussianity in the case in which the curvature perturbation
is due to the presence of more than one scalar field during
inflation. A future detection of a significant running of the
spectral index and primordial non-Gaussianity may tell us a
lot about the true mechanism, giving rise to the primordial
perturbations. Of course, one could not disregard the
possibility that the running of the spectral index might
come from single-field models with a partial breaking of
slow roll and the measured non-Gaussianity from the
general relativity effects. Dedicated searches aiming at
measuring with great accuracy the running and non-
Gaussianity are therefore of vital importance.
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