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The Hamiltonian formulation of mimetic gravity is formulated. Although there are two more equations
than those of general relativity, these are proved to be the constraint equation and the conservation of the
energy-momentum tensor. The Poisson brackets are then computed and closure is proved. At the end, the
Wheeler-DeWitt equation was solved for a homogeneous and isotropic universe. This was done first for a
vanishing potential where agreement with the dust case was shown, and then for a constant potential.
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I. INTRODUCTION

Not long ago, Chamseddine and Mukhanov [1] proposed
a theory of mimetic dark matter by modifying Einstein’s
general relativity. Their theory was shown to be a con-
formal extension of Einstein’s theory of gravity. They
defined a physical metric in terms of an auxiliary metric,
Gy~ and first derivatives of a scalar field ¢. Interestingly, the
equations of motion differ from Einstein equations by the
appearance of an extra mode of the gravitational field
which can reproduce dark matter. An equivalent formu-
lation of the model was given in [2] where the action is
written without the auxiliary metric. Then the ghost-free
models of this theory were discussed in [3]. It was found
that the theory is free of ghost instabilities for a positive
energy density. In a recent paper [4], the mimetic dark
matter theory was extended by adding an arbitrary potential
and then cosmological solutions were studied. It was shown
how various cosmological solutions can be found by
choosing an appropriate potential.

In this paper we are going to consider the canonical
formulation of this theory. There are advantages of setting
up the Hamiltonian dynamics for this new model such as
quantization. Arnowitt, Deser, and Misner (ADM) con-
structed a canonical formulation of gravity in 1959 [5]. The
tetrad form of this ADM formalism was derived in [6].
Schwinger constructed an invariant action operator under
both local Lorentz and general coordinate transformations
[7]. Ashtekar [8,9] introduced new variables which lead to
simplifications in the gravitational constraints, and his
theory lead to loop quantum gravity. Also, the canonical
formulations of matter couplings to gravity were consid-
ered (see, for example, [10-15]).

The aim of this paper is to analyze the Hamiltonian
equations of motion and to check that the degrees of
freedom are those of general relativity. Also, Poisson
brackets will be computed.

II. CANONICAL FORM

Consider the action of the extended mimetic dark matter
theory [2.4]
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S=- / d*x(—g)'/? (%R + %/1(1 - ¢"0,00,9) + Lm>,
(1)

where L,, is an arbitrary potential V(¢) added. Variation
with respect to the variable 4 gives the constraint equation
on the scalar field

glwauqﬁaugb =1 (2)
To construct the canonical formalism of this theory, we first

start by rewriting the action in a 3 4+ 1 dimensional form.
The part of the action containing the scalar field ¢ becomes

Sp=- / d“x%Nm (1 — 8" 0opdod — 26" o,
. N'N/
+ h 0,0 ;p— N 8,~¢8j¢) +NVhV(9), (3)

where ¢% = 1/N?, ¢" = —-N//N?, and g¢" = —hV +
NNJ/N? [5].
The momentum conjugate to A is given by

OL
Pi= a =0, (4)
while that conjugate to ¢ is
oL NICL 0i
P05 NVhi(gP0op + 9" 0ip). (5)

Therefore, p; =0 is a primary constraint, and this will
imply a secondary constraint by demanding its time
constancy

. o0H
OZPAZ{P,l»H}:é—}L- (6)

By inverting Eq. (5), ¢ can be substituted by the conjugated
momentum p, and then the Hamiltonian is given by
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Np? 1 - _
H=—"+ _NVhi]l + hid,pd,¢] + pN'O;

+ NVRV (). (7)

This Hamiltonian is still a function of the Lagrange
multiplier 4. To exclude it, we solve Eq. (6). This gives

p
A= . (8)
Vhy/1+ hI9,0 ¢

Upon plugging back we get the final form of the total action

S=5,+S,

= / d*x(Lapy + pdp— Npy/ 1 + hid,dp — N pdygp

~NVhV(9)), 9)
where [5]

LADM :h‘ijﬂ'ij—NRO—NiRi. (10)

R® and R; are the intrinsic curvatures given by

7.1'1']' = {ﬂl],H} = —N\/E<3RU - 2

+ \/il’(NhJ - h”NIm|m) + (ﬂlJNm>|m — N‘imﬂ'mj - NL'mﬂ'mi +
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1 .
R’ = —\/E{3R + h! (57[2 - ﬂ’/rtij>]
y
R; = ~2hya'}. (11)

III. EQUATIONS OF MOTION

Starting from the total action constructed above
= N'(R; + pdp) = NVhV(). (12)

the equations of motion are found by varying with respect
to the variables. We first obtain

hil = {hi H} = 2Nh~1/2 (nw - 5h”7r> + Nl 4 Nl

(13)

J

1 1 1 1
—h,-j3R> + ENh—l/Zh,, (ﬂmnﬂmn - 5;:2) —2Nh~1/2 (nimn'." - Ennij)

Npdipd;p 1y

27/ HH O pop +1 2

VhV(d)hy;. (14)

These equations result from varying z;; and h'/, respectively. The former, Eq. (13), is independent of the scalar field ¢ since
the action S is independent of z;;. However, Eq. (14) contains two terms as a function of ¢ which are not there for

Einstein’s gravity.

Variation of N and N’ yields four constraint equations given by

RO+ p\/h10,0;p + 1+ VhV(p) = Hypy + Hy =0

There are two more equations of motion for the phase
variables (¢, p). That for the scalar field is given by

¢ —N\/h0,pd;p + 1 — N'9,p = 0, (16)

while for the conjugated momentum it reads

kl
NoWZ0d o i | + v D),

V00 + 1 de

p =0k

(17)

R+ p0ip = H,gray + Hjjy = 0. (15)

|
Therefore, the number of equations of motion are those of
Einstein’s gravity plus two more equations coming from the
variation of the ¢ and p. However, Eq. (16) is exactly the
constraint equation, ¢**0,¢d,¢ = 1; therefore, it gives no
new info. Equation (17) is the Bianchi identity as explained
below. Therefore, we end up with the same number of
equations of motion as those of general relativity.

Considering only the part of the action depending on the
scalar field ¢, it is given by

Sy = /d“x(p(b — Npy\/hi0,p0;¢p + 1

— N'pdip = NVhV (). (18)
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The canonical components of stress-energy tensor are given
by [16]

N oS .08 NN/ &S

Vh \ 6N SN’ N2 Shil
N (8S, . Ni&S,
Ty = —— - — —
0i \/E <5Nl + N2 5hlj>
2 (35S,
T, =——— = 19
T NV <6h”> )

Computing the variations, we get

N*p [ 2N .
—=/h0;p0:¢p + 1 + —=N'p0;
NG 0 pOi¢p

Vh
NN/ p0ip0;p
Vi 100, + 1

Too =

+N?V(h) = N'N;V(¢)

N N/ pOip0;¢d
Toi = = pdip + ———LAPIY N ()
R/ 0,0, + 1
0.0
T L B——) (20)

Vhy [ 179,48, + 1

This is in agreement with what is found in the Lagrangian
formalism, T,, = 10,¢0,¢, upon using Eq. (16). Then
starting from

1
VTl = =0/ STt (1)
it is easy to show that Eq. (17) is just the iden-
tity V, 7% = VoT? + V, T, = 0.

To summarize, the equations of motion for mimetic
gravity are those of Einstein’s gravity plus two more
equations. These are for the scalar field, which is reinter-
preted as the conservation of the energy-momentum tensor,
and the other is the constraint equation. However, the
equations resulting from varying with respect to 4/, N, and
N are those of pure Einstein’s gravity [5] but including
extra terms as a function of the scalar field ¢. This is how
the mimetic dark matter enters the picture.

IV. POISSON BRACKETS

In the presence of the scalar field, the combined con-
straints are

H:ngav+H(); Hi:Higrav+Hi¢’ (22)

where the first is the Hamiltonian constraint and the latter is
called the diffeomorphism constraint. The presence of these
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constraints shows that there are underlying symmetries. In
general relativity, these are realized as first class constraints
and they imply diffeomorphism invariance [17]. The
coupling in these constraints is ‘“nonderivative” since the
H, does not depend on the gravitational momentum
mi; [15].

For computing the Poisson brackets, we consider
smeared functions to have well-defined algebraic relation-
ships. Then derivatives by fields are free of delta distribu-
tions. Writing the constraints in smeared form [16] we have

H[N] = /d3xN(x)H(x)
D[Ni| = /d3xNi(x)H,~(x). (23)

To find the Poisson bracket of two Hamiltonian constraints,
we start by expanding

{H[N,]. H[N]}
= {ngav[Nl] + H(ﬁ[Nl]v ngav[N2] + H¢[N2]}
= {ngav[N1]7 ngav [NZ]} + {ngav [Nl]’ H¢[N2]}

+ {H¢[N1 ’ ngav[NZ]} + {Htﬁ[Nl}’ H¢[N2]}' (24)

The gravitational Hamiltonian constraint, Hg,,, is free of
spatial derivatives of the momentum,; i.e., the two Poisson
brackets {ngav [Nl}’ H¢[N2]} and {H¢[N1]’ ngav [NZ]}
cancel out. Therefore, we get

{H[Nl]’ H[N2]} = {ngav[Nl}’ ngav[NZ]}

+ {Hy[N1]. Hy[N>]}. (25)
Since the Poisson bracket is given by

{Hy[N,], Hy[No]}

:/d3x<5H¢[N1]5H¢[N2]_5H¢[N1]5H¢[Nﬂ>
op(x) op(x)  dp(x) dp(x) )

(26)

the functional derivatives should be first computed. These
are given by

) NVh—
5¢p(x) VKO0, + 1 " fdrﬁ

SH,[N
#Ec)] = N\/ WX OO, + 1, (27)

which give upon plugging in the integral

{Hy[N\]. Hy[Ny]} = Dy[h7(N20;N, — N19;N,)]. (28)
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Similarly we have

oD .

# = =0;(pN")

5D¢ i

o N'O;¢, (29)

which give upon integration

{Dy[N'\]. Dy N1} = Dy[N{0;Ny = Njo;Ni]. (30)

In computing {D[N‘|,H[N]}, the Poisson bracket
{Dyguy[N'], Hy[N]} survives since the scalar Hamiltonian
constraint H, depends on the metric 4. Therefore, we
have

{D[N']. HIN]} = { Dy [N] Hygo [N]} + {Dy[N']. Hy [N]}

+{Dgrav[ ],H¢[N]} (31)

Computing the Poisson bracket for the scalar constraints
we get

{Dy[N']. Hy[N]}

= pN*ON\/h10,d;p + 1 = NVR Nkak¢ 7

~ N¥;pNh'10;p0p

Vh? 0,40, +1°

Adding {Dy,, [N'], H,[N]} to it cancels the last two terms
and gives the expected result

(32)

{D[N']. H[N]} = H[N'O;N]. (33)

Therefore the full constraint algebra is given by

{H[N,].H[N,]} = D[#"(N,0;N, = N,9;N,)]
{D[Ni]. D[N}]} = D[N{9;N} — NjO;N]
{D[N], H[N]} = H[N'0;N], (34)

which is equivalent to the Dirac algebra [18] (see also [19]).

V. WHEELER-DEWITT

To discuss quantum cosmology, the ADM Hamiltonian
formulation of general relativity is employed. In this
section, we apply the above Hamiltonian method to the
particularly simple case of a homogeneous and isotropic
universe. The line element is then given by Friedmann-
Lemaitre-Robertson-Walker (FLRW) form
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ds* = N(t)*dr* — a(t)2<

2t r*(do* + sin29d¢2)>.
(35)

For this isotropic metric, the gravitational action is given by

&2
Sgrav == 3 / dt <T - kaN) (36)

Momenta are derived in the usual way as

a‘Cgrav 6 aa oL grav

= =0— - = 7

and the gravitational action is then given by

Sgrav = ‘/d4x(pa‘.Z _]V’ngav)7 (38)
where the Hamiltonian constraint is

1P}
_

H grav 12 a

+ 3ka. (39)

The ¢-Hamiltonian constraint should be added to the
gravitational part. We get by considering spatially
homogeneous ¢

1
+—&+ 3ka+ p+a*V(p). (40)

H=Hga + Hy = 24

To apply the Wheeler-DeWitt quantization scheme, we set

9 Y
pa__l%’ p__l% (41)

This will form the operator H and the Wheeler-DeWitt
equation will give us the evolution of the wave function of
the universe, ¥, by demanding

HU = 0. (42)
This equation takes the form

1 9*v

o
o g T AV iG H@V@Y =0 (43)

and it can be written as a Schrodinger equation after
rearranging

oA 1 0%

9~ " Taa 82+3k\11 (44)

where V(¢) was taken to be zero for simplicity. For the
operator
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(45)

to be self-adjoint, the inner product of any two wave
functions is defined by

o) = [ avipada. (46)
For k = 0, the operator H is symmetric if
(w1. Hyy) = (Hy 1. w»). (47)
which gives
©  dy, oy
. da = Ly,da. 48
AWldaza Adazlha (48)

Thus for y and its derivative being square-integrable, the
simplest boundary conditions imposed to the wave function
are

OV (a, p)

U(0,4) =0 or (49)

The Wheeler-DeWitt equation (44) can be solved by
separation of variables. This will result in stationary
solutions of the form

U(a,p) = ey (a), (50)
and this leads to a differential equation in y(a),
d*
Y 36ka’y + 12Eay =0, (51)

da

where E is a real parameter.
The general solution to the above equation in the case of
a flat universe (k = 0) is

y(a) = Va {AJI s @ \/ﬁam)

+BJ @ \/ﬁam)] . (52)

w(a) =

_|_
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Upon applying the first boundary condition and due to the
behavior of the Bessel function, B is set to zero. If instead
the second boundary condition is imposed, then A = 0.

The norm of these solutions is infinite; hence, wave
packets must be constructed by superposing the solutions.
This can be done similar to the work in [20] and [21] where
we have

Vap) = [T B R ()

Solutions can also be found to the cases k =1 and
k = —1. For the first case, the solutions are given in terms
of Hermite polynomials while for the latter we get
Whittaker functions. This is all in agreement to what
was found before for dust in [20].

A. V(¢) being a constant

Above we took V(¢) =0 and our results were all in
agreement with what was done before for dust. Now we
will look for solutions when the potential takes a constant
value, V(¢) = A. The condition of self-adjointness still
applies for A being real. The equation then takes the form

2

d
d_:; + 12Eay - 36ka’y — 12a* 2y = 0. (54)

The stationary solutions for k = 0 are given by Whittaker
functions

a~|—-

U(a,p) = e Fq! {CIMJL_
/3
+C2W\/_§T%( 3

()

)

Wave packets are hard to obtain because integrals over
Whittaker functions are difficult to deal with.

These Whittaker functions can be written in terms of
hypergeometric functions

(55)

%(mwzazhypergeomdg ;] H 3V ))

3e3V30°

2C, <433 3Jsan hypergeom( 35—
G- )

433327a°T (2)hypergeom([2 — \/%], [4.4V34a%)

3

S ) . (56)

103526-5



O. MALAEB

Taking the limit ¢ — 0, we get

2C,413313 167
V(a0 = 3T s B (57)
3TRrG-5)

The boundary condition ¥(0,¢) =0 is satisfied upon
choosing C, = 0.
To take the limit as 4 =0, we first write the hyper-

geometric function as a series. Also, we use the asymptotic

series for ﬁ which is given by
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1 1
~ 62_ 2\,3
6 z+yz+—12(y )z

+ % 2y —ya® +4¢3)|z* +---,  (58)
where y is the Euler-Mascheroni constant and {(z) is the
Riemann zeta function. Then as 4 — 0, the Bessel solution
[Eq. (52)] is recovered as expected.

For k = 1 and k = —1, the solutions turn out to take the
form of Heun functions. They are given, respectively, by

V3(2a31+94) 0182/3 3\/§E 31223 1
w(a) = Cie 3V HeunT( AT 7 W ,—§a22/3(243/1)1/6>
Baa19a) 91823 3/3E 31223 1
-+ Cze 32 HeunT( 414/3 s \/Z ,5 12/3 ,56122/3 (243/1)1/6> (59)
and
323 190) 918*3 3V3E 31223 |
l//(a) = Cle 3V2 HeunT( 414/3 , ﬂ B _E /12/3 ’_§a22/3<243ﬂ)1/6)
VA 19) 91823 33E 31223 1
+ C2€ 3V HeunT< 424/3 s \//_1 , = 5 12/3 s g a22/3 (243),) 1/6) . (60)

For a = 0, the Heun functions are equal to 1. Hence, the
first boundary condition, ¥(0, ¢p) = 0, is satisfied when the
sum of the two constants C| 4+ C, equals zero. Unfortu-
nately, integrals are also difficult to deal with.

VI. CONCLUSION

In this paper, we constructed the Hamiltonian of mimetic
gravity. We showed that the two extra equations of motion
are the constraint equation and the conservation of energy-
momentum tensor. Then, the Poisson brackets are com-
puted and the theory is shown to be closed. At the end,

canonical quantization was performed for a homogeneous
and isotropic universe. This was done first for a vanishing
potential and then for a constant one.

ACKNOWLEDGMENTS

I would like to thank Professor Ali Chamseddine for
useful discussions.

Note Added.—It was later noticed that a similar work was
done in [22] almost simultaneously.
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