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A scheme of simplified smooth hybrid inflation is realized in the framework of supersymmetric SUð5Þ.
The smooth model of hybrid inflation provides a natural solution to the monopole problem that appears in
the breaking of SUð5Þ gauge symmetry. The supergravity corrections with nonminimal Kähler potential are
shown to play important role in realizing inflation with a red-tilted scalar spectral index ns < 1 within
Planck’s latest bounds. As compared to shifted model of hybrid inflation, relatively large values of
the tensor-to-scalar ratio r≲ 0.01 are achieved here, with nonminimal couplings −0.05≲ κS ≲ 0.01 and
−1≲ κSS ≲ 1 and the gauge symmetry-breaking scale M ≃ ð2.0–16.7Þ × 1016 GeV.
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I. INTRODUCTION

Supersymmetric (SUSY) hybrid inflation [1–7] offers a
natural framework to realize inflation within grand unified
theories (GUTs). The GUT symmetry breaking in these
models is associated with inflation in accordance with the
cosmological observations on the cosmic microwave back-
ground (CMB) radiation. In the standard version of SUSY
hybrid inflation [1,2] GUT symmetry is broken at the end
of inflation, whereas in the shifted [8] and the smooth [9]
versions of the model it is broken during inflation. The
copious formation of topological defects (such as magnetic
monopoles) are, therefore, naturally avoided in the shifted
and smooth versions of SUSY hybrid inflation.
The supersymmetric SUð5Þ is the simplest GUT gauge

symmetry where all three gauge couplings of the Standard
Model (SM) gauge group, GSM ≡ SUð3ÞC × SUð2ÞL×
Uð1ÞY , unify at GUT scale MG ≃ 2 × 1016 GeV. The
SUð5Þ gauge symmetry is usually broken into the SM
by the nonvanishing vacuum expectation value (VEV) of
24 adjoint Higgs field. This then leads to the overproduc-
tion of catastrophic magnetic monopoles in conflict with
the cosmological observations. To avoid this problem
shifted and smooth variants of SUSY hybrid inflation
can be employed.1 In shifted hybrid inflation, the addition
of a leading-order nonrenormalizable term in the super-
potential generates an additional classically flat direction.
With the necessary slope provided by the one-loop radiative
corrections, this shifted track can be used for inflation; see
Ref. [11] for details. As SUð5Þ gauge symmetry is broken
in the shifted track, catastrophic magnetic monopoles are
inflated away. In the smooth version of hybrid inflation,
this additional direction appears with a slope at the classical
level which then helps to drive inflation. The radiative

corrections are usually assumed to be suppressed in smooth
hybrid inflation. Furthermore, inflation ends in the smooth
hybrid model due to slow-roll breaking, whereas in
standard and shifted hybrid models, termination of inflation
is abrupt and followed by a waterfall.
In this paper we consider the simplified version of

smooth hybrid inflation in SUSY SUð5Þ. In simplified
smooth hybrid inflation [12], the ultraviolet (UV) cutoffM�
is replaced with the reduced Planck mass, mP ≃ 2.4×
1018 GeV, in contrast to the standard smooth hybrid
inflation [9] where M� is allowed to vary below mP.
With the minimal Kähler potential, inflation requires
trans-Planckian field values which is inconsistent with
the supergravity (SUGRA) expansion. However, with the
nonminimal Kähler potential, successful inflation is real-
ized with sub-Planckian field values. The predicted values
of the scalar spectral index ns and the tensor-to-scalar ratio
r are easily obtained within Planck’s latest bounds [13]. As
compared to the shifted case, we obtain relatively large
values of the tensor-to-scalar ratio r in smooth hybrid
inflation.

II. SMOOTH HYBRID SUð5Þ INFLATION

In SUSYSUð5Þ, thematter superfields are accommodated
to the one-, five-, and ten-dimensional representations,while
the Higgs superfields belong to the fundamental represen-
tations Hð≡5hÞ, H̄ð≡5̄hÞ and adjoint representation
Φð≡24HÞ. The superpotential of the model which is con-
sistent with the R, SUð5Þ, and Z3 symmetries with the
leading-order nonrenormalizable terms is given by2

W ¼ S

�
μ2 þ TrðΦ3Þ

mP

�
þ γ

H̄Φ3H
m2

P
þ δH̄H þ yðuÞij 10i10jH

þ yðd;eÞij 10i5̄jH̄ þ yðνÞij 1i5̄jH þmνij1i1j; ð1Þ*mansoor@qau.edu.pk
†umer.hep@gmail.com
1See Ref. [10] for an alternative scheme to avoid the monopole

problem in SUSY GUTs. 2For SUSY SUð5Þ inflation without R symmetry, see Ref. [14].
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whereS is a gauge singlet superfield, μ is a superheavymass,
and the UV cutoff mP (reduced Planck mass) has replaced
the cutoff M� [12] usually employed in smooth hybrid

inflation models [9]. In the superpotential above, yðuÞij , yðd;eÞij ,

yðνÞij are the Yukawa couplings for quarks and leptons, and
mνij is the neutrinomassmatrix. The first term in the first line
of Eq. (1) is relevant for inflation,while the last two terms are
required for the solution of the doublet-triplet splitting
problem, for which a fine-tuning on the parameters is
required. The terms in the second line generate fermion
masses after the electroweak symmetry breaking. The global
Uð1ÞR symmetry ensures the linearity of the superpotential
W in S-omitting terms such as S2 which could spoil inflation

by generating an inflaton mass of Hubble size, H ≃
ffiffiffiffiffiffiffi
μ4

3m2
P

q
.

Also,W respects a Z3 symmetry under which Φ → e2ι̇π=3Φ
and, hence, only cubic powers of Φ are allowed. All other
fields are neutral under the Z3 symmetry. The R charges of
the superfields are assigned as follows [11]:

R∶ Sð1Þ; Φð0Þ; Hð2=5Þ; H̄ð3=5Þ;
10ð3=10Þ; 5̄ð1=10Þ; 1ð1=2Þ: ð2Þ

In component form, the above superpotential takes the
following form,

W ⊃ S

�
μ2 þ 1

4mP
dijkϕiϕjϕk

�
þ δH̄aHa

þ γ
H̄aHd

m2
P

Ti
abT

j
bcT

k
cdϕiϕjϕk; ð3Þ

where we have employed the SUð5Þ adjoint basis for
Φ ¼ ϕiTi with Tr½TiTj�¼ 1

2
δij and dijk¼2Tr½TifTj;Tkg�.

Here the indices i, j, k vary from 1 to 24, whereas the indices
a, b, c, d vary from 1 to 5. The F-term scalar potential
obtained from the above superpotential is given by

VF ¼
����μ2 þ 1

4mP
dijkϕiϕjϕk

����
2

þ
X
i

���� 3

4mP
dijkSϕjϕk

þ 3γ
H̄aHd

m2
P

Ti
abT

j
bcT

k
cdϕjϕk

����
2

þ
X
d

����δH̄d þ γ
H̄a

m2
P
Ti
abT

j
bcT

k
cdϕiϕjϕk

����
2

þ
X
d

����δHd þ γ
Ha

m2
P
Ti
abT

j
bcT

k
cdϕiϕjϕk

����
2

; ð4Þ

where the scalar components of the superfields are denoted
by the same symbols as the corresponding superfields. The
VEVs of the fields at the global SUSY minimum of the
above potential are given by

S0 ¼ H0
a ¼ H̄0

a ¼ 0;

Tr½ðΦ0Þ3� ¼ dijkϕ0
iϕ

0
jϕ

0
k ¼ −M3=

ffiffiffiffiffi
15

p
; ð5Þ

where M ¼ ð4 ffiffiffiffiffi
15

p
μ2mPÞ1=3, and the superscript “0”

denotes the field value at its global minimum. Using
SUð5Þ symmetry transformation the VEV matrix Φ0 ¼
ϕ0
i T

i can be aligned in the 24-direction. This implies
that ϕ0

i ¼ 0; ∀ i ≠ 24, and ϕ0
24 ¼ M, where d242424 ¼

−1=
ffiffiffiffiffi
15

p
andϕ0�

i ¼ ϕ0
i have been assumed. Thus, theSUð5Þ

gauge symmetry is broken down to SMgauge groupGSM by
the nonvanishing VEVof ϕ0

24 which is a singlet under GSM.
The D-term scalar potential,

VD ¼ g2

2

X
i

ðfijkϕjϕ
†
k þ TiðjHaj2 − jH̄aj2ÞÞ2; ð6Þ

also vanishes for this choice of the VEV (since fi;24;24 ¼ 0)
and for jH̄aj ¼ jHaj.
The scalar potential in Eq. (4) can be written in terms of

the dimensionless variables

x ¼ jSj
M

; y ¼ ϕ24

M
ð7Þ

as

V ¼ μ4ðð1 − y3Þ2 þ 9x2y4Þ: ð8Þ

This potential is displayed in Fig. 1 which shows a valley of
minimum given in the large x limit by

y ¼ −
2 × 21=3x2

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32x6

p
Þ1=3 þ

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32x6

p
Þ1=3

21=3
≈

1

6x2
:

ð9Þ

This valley of local minimum is not flat and possesses a
slope to drive the inflaton towards the SUSY vacuum.

FIG. 1 (color online). The tree-level, global scalar potential
~V ¼ V=μ4 of SUSY SUð5Þ smooth hybrid inflation.
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Here we assume special initial conditions for inflation to
occur in the valley. However, see the relevant references
in [15] for a detailed discussion of the fine-tuning of
initial conditions in various models of SUSY hybrid
inflation. During inflation (x ≫ 1), the global SUSY
potential is given by

V ≃ μ4
�
1 −

1

432x6

�
: ð10Þ

The inflationary slow roll parameters are given by

ϵ ¼ 1

4

�
mP

M

�
2
�
V 0

V

�
2

; η ¼ 1

2

�
mP

M

�
2
�
V 00

V

�
;

ξ2 ¼ 1

4

�
mP

M

�
4
�
V 0V 000

V2

�
: ð11Þ

Here, the derivatives are with respect to x ¼ jSj=M
whereas the canonically normalized field σ ≡ ffiffiffi

2
p jSj. In

the slow-roll (leading-order) approximation, the tensor-to-
scalar ratio r, the scalar spectral index ns, and the
running of the scalar spectral index dns=d ln k are given
by

r≃ 16ϵ; ð12Þ

ns ≃ 1þ 2η − 6ϵ; ð13Þ
dns
d ln k

≃ 16ϵη − 24ϵ2 − 2ξ2: ð14Þ

The last N0 number of e-folds before the end of inflation
is

N0 ¼ 2

�
M
mP

�
2
Z

x0

xe

�
V
V 0

�
dx; ð15Þ

where x0 is the field value at the pivot scale k0, and xe is
the field value at the end of inflation, defined by
jηðxeÞj ¼ 1. The amplitude of the curvature perturbation
is given by

Asðk0Þ ¼
1

24π2

�
V=m4

P

ϵ

�����
x¼x0

; ð16Þ

where As ¼ 2.142 × 10−9 is the Planck normalization at
k0 ¼ 0.05 Mpc−1 [13]. In the large x limit, we obtain the
following results for various inflationary parameters,

ηðxeÞ ¼ −1⇒xe ≃
�

7

144

�
mP

M

�
2
�

1=8
; ð17Þ

N0 ≃ 18

�
M
mP

�
2

ðx80 − x8eÞ⇒x0 ≃
�
8N0

144

�
mP

M

�
2
�

1=8
;

ð18Þ

As ≃ 18

5π2

�
M
mP

�
8

x140 ⇒
M
mP

≃
�
ð18Þ3=2 ð5π

2Þ2A2
s

N7=2
0

�
1=9

;

ð19Þ

ns ≃ 1 −
7

72x80

�
mP

M

�
2 ≃ 1 −

7

4N0

; ð20Þ

r≃ 1

1296x140

�
mP

M

�
2

; dns=d ln k≃ −
7

1296x160

�
mP

M

�
4

:

ð21Þ

For N0 ¼ 50, we obtain ns ≃ 0.965, r≃ 1.2 × 10−7, and
dns=d ln k≃ −7 × 10−4, with x0 ≃ 3.6, xe ≃ 2.2 and
M ≃ 2.4 × 1016 GeV.

A. Supergravity corrections and nonminimal
Kähler potential

The above analysis is incomplete unless we include
SUGRA corrections which have an important effect on the
global SUSY results. The F-term SUGRA scalar potential
is given by

VF ¼ eK=m
2
PðK−1

ij̄ DziWDz�j
W� − 3m−2

P jWj2Þ; ð22Þ

with zi being the bosonic components of the superfields
zi∈fS;Φ; H; H̄;…g where we have defined

DziW ≡ ∂W
∂zi þm−2

P
∂K
∂zi W; Kij̄ ≡ ∂2K

∂zi∂z�j ð23Þ

and Dz�i
W� ¼ ðDziWÞ�. The Kähler potential may be

expanded as

K ¼ jSj2 þ TrjΦj2 þ jHj2 þ jH̄j2

þ κSΦ
jSj2TrjΦj2

m2
P

þ κSH
jSj2jHj2
m2

P
þ κSH̄

jSj2jH̄j2
m2

P

þ κHΦ
jHj2TrjΦj2

m2
P

þ κH̄Φ
jH̄j2TrjΦj2

m2
P

þ κHH̄
jHj2jH̄j2

m2
P

þ κS
jSj4
4m2

P
þ κΦ

ðTrjΦj2Þ2
4m2

P
þ κH

jHj4
4m2

P
þ κH̄

jH̄j4
4m2

P

þ κSS
jSj6
6m4

P
þ κΦΦ

ðTrjΦj2Þ3
6m4

P
þ κHH

jHj6
6m4

P
þ κH̄ H̄

jH̄j6
6m4

P

þ � � �: ð24Þ

As Φ is an adjoint superfield, and many other terms of the
form

f

�
jSj2; jΦj2;TrðΦ

3Þ
mP

þ H:c:;…

�
ð25Þ
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can appear in the Kähler potential. The effective contribu-
tion of all these terms is either suppressed or can be
absorbed into other terms already present in the Kähler
potential. Therefore, the supergravity (SUGRA) scalar
potential during inflation becomes

VSUGRA ¼ μ4
�
1 −

1

432x6
− κSx2

�
M
mP

�
2

þ γS
x4

2

�
M
mP

�
4

þ � � �
�
; ð26Þ

where γS ¼ 1 − 7κS
2
þ 2κ2S − 3κSS. As expected, the domi-

nant contribution in the potential comes only from the
terms with higher powers of S as all other fields
(jΦj ∼ ðM=jSjÞ2M and H ¼ 0) are suppressed as compared
to jSj ≫ M. The one-loop radiative corrections and the
soft SUSY-breaking terms are expected to have a negligible
effect on the inflationary predictions; therefore, in numeri-
cal calculations we can safely ignore these contribu-
tions [12].
Including SUGRA corrections usually generates a large

inflaton mass of the order of the Hubble parameter which
makes the inflationary slow-roll parameter η ∼ 1 and spoils
inflation. This is known as the η problem [3]. In SUSY
hybrid inflation with minimal Kähler potential, this prob-
lem is naturally resolved as a result of a cancellation of the
mass squared term from the exponential factor and the other
part of the potential in Eq. (22). This is a consequence of R
symmetry3 which ensures this cancellation to all orders
[2,3]. With the nonminimal Kähler potential, however, a
mass squared term of the form

∼κSH2jSj2 ð27Þ

appears which requires some tuning of the parameter κS
(κS ≲ 0.01), so that the scalar potential is flat enough to
realize successful inflation.
It can readily be checked that, for the minimal Kähler

potential (with κS ¼ κSS ¼ 0), the SUGRA corrections
dominate the global SUSY potential for the values x0 ≃
3.6 andM ≃ 2.4 × 1016 GeV obtained earlier. This, in turn,
alter the values of ns and r significantly, making their
predictions lie outside the Planck data bounds. Stating the
same fact in a different way, the SUGRA corrections
require trans-Planckian field values to obtain ns and r
within Planck’s bounds. But this invalidates the SUGRA
expansion itself. The minimal case (κS ¼ κSS ¼ 0) is,
therefore, inconsistent with the Planck’s data.
For the nonminimal Kähler potential, we obtain the

following approximate results for ns and r in the large x
limit,

ns ≃ 1 − 2κS þ
�
−

7

72x80
þ 6γSx20

�
M
mP

�
4
��

mP

M

�
2

; ð28Þ

r≃ 4

�
1

72x70

�
mP

M

�
− 2κSx0

�
M
mP

�
þ 2γSx30

�
M
mP

�
3
�

2

:

ð29Þ

Now with the addition of two extra parameters, κS and γS,
we expect to find the red-tilted (ns < 1) solutions consis-
tent with the latest Planck bounds on ns. For example, with
S0 ¼ mP, ns ¼ 0.968 and r ¼ 0.01 we obtain κS ≃ −0.045
and γS ≃ −0.02 from above expressions. This rough
estimate guides us to the region of parameters where we
can possibly find the large r solutions.
In our numerical calculations we take ðjκSj; jκSSjÞ ≤ 1

and jS0j ≤ mP. Employing (next-to-leading-order) slow-
roll approximations [17,18], the predicted values of various
parameters are displayed in Figs. 2–4. The results obtained
here are quite similar to those obtained in the simplified
smooth model of hybrid inflation [12], where instead of the

FIG. 2 (color online). The tensor-to-scalar ratio r and mass scale μ versus the scalar spectral index ns withN0 ¼ 50. The orange curves
represent the Planck 2-σ bounds, while the upper and lower (brown) curves represent the jS0j ¼ mP and κSS ¼ −1 constraints,
respectively. The blue, red and green curves are drawn for ns ¼ 0.9622 (1-σ), 0.9681 (central value), and 0.9733 (1-σ) all with zero
tensor modes (r ¼ 0), respectively.

3See Ref. [16], for a SUSY hybrid inflation scenario
(with minimal Kähler potential) in which the R symmetry is
explicitly broken by Planck-scale-suppressed operators in the
superpotential.
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adjoint superfield, a conjugate pair of chiral superfields
(Φ; Φ̄) is employed. For the predictions of standard, shifted,
and smooth hybrid inflation with a conjugate pair of chiral
Higgs superfields and nonminimal Kähler potential, see
Refs. [19–23]. It can be seen from the Figs. 2–4 that by
employing nonminimal Kähler potential, there is a signifi-
cant increase in the tensor-to-scalar ratio r. Moreover, both
κS and γS play the crucial role to bring the scalar spectral
index ns to the central value of Planck data bounds, i.e.,
ns ≃ 0.968, with a large value of tensor to scalar ratio r, i.e.,
r≃ 0.01. For −0.05≲ κS ≲ 0.01 and −1≲ κSS ≲ 1, we
obtain scalar spectral index ns within Planck 2-σ bounds.
The behavior of r and μwith respect to the scalar spectral

index ns is presented in Fig. 2. The relation between these
parameters looks very similar which can be understood by
noting that r and μ are proportional to each other. From
Eq. (16), we obtain the following approximate relation
between the tensor-to-scalar ratio r and μ,

r≃
�

2

3π2As

��
μ

mP

�
4

; ð30Þ

which gives an adequate estimate of the numerical results
displayed in Fig. 2. The upper boundary curve in Fig. 2
represents the jS0j ¼ mP constraint, whereas the lower
boundary curve corresponds the κSS ¼ −1 constraint. The
impact of κS and κSS on the behavior of r is of particular
interest. The variation of κS with respect to r is shown in the
left panel of Fig. 3, while the right panel shows the
relationship between γS, κSS, and κS. As depicted in
Fig. 3, a red tilted (ns < 1) scalar spectral index and a
large tensor-to-scalar ratio r require (κs, γs) < (0, 0).
Therefore, the large values of r are obtained with the
potential of the form

V
μ4

¼ 1þ Quadratic − Quartic: ð31Þ

In the right panel of Fig. 3, one can see that in the large r
limit both κS and κSS are tuned to make γS very small.
For the curve depicted in Fig. 4 (right panel),

M varies in the range ð2.0–16.7Þ × 1016 GeV. This shows
that small values of r particularly favors M ∼MGUT

FIG. 3 (color online). The tensor-to-scalar ratio r and the nonminimal couplings γS and κSS versus κS for N0 ¼ 50. The Planck 2-σ
bounds are shown by the orange curves, while the brown curves represent the jS0j ¼ mP and κSS ¼ −1 constraints. The blue, red and
green curves are drawn for ns ¼ 0.9622 (1-σ), 0.9681 (central value), and 0.9733 (1-σ) all with zero tensor modes (r ¼ 0), respectively.

FIG. 4 (color online). The tensor-to-scalar ratio r versus the running of scalar spectral index dns=d ln k and symmetry-breaking scale
M for N0 ¼ 50. The orange curves represent the Planck 2-σ bounds, while the upper and lower (brown) curves represent the js0j ¼ mP
and κSS ¼ −1 constraints, respectively. The blue, red, and green curves are drawn for ns ¼ 0.9622 (1-σ), 0.9681 (central value) and
0.9733 (1-σ) all with zero tensor modes (r ¼ 0), respectively.
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(≃2 × 1016 GeV), whereas the large tensor-to-scalar ratio r
requires M greater than MGUT. The range of running scalar
spectral index dns=d ln k is found to be (−0.001 to 0.007)
(see left panel of Fig. 4), which is compatible with the
Planck data assumptions on the power-law expansion of
AsðkÞ [13].
It is worth comparing our results with the model of

shifted hybrid inflation [11], where we find the scalar
spectral index ns ≃ 0.9603 with a much smaller tensor-to-
scalar ratio r, taking on values r≲ 10−5. The reduction in
the value of r is mainly due to the dominant contribution of
the radiative corrections which keeps the value of r small.
This is in contrast to the above model of smooth hybrid
inflation where the radiative corrections are suppressed
enough to have any influence on the inflationary predic-
tions. However, in shifted model M ¼ MGUT is easily
obtained whereas in above model M ≳ 2 × 1016 GeV.
After the SUð5Þ symmetry breaking, the fields ϕj,

j ¼ 9;…; 20, acquire super heavy masses, while the fields
ϕ24 and S acquire masses of order μ2=M. The octet ϕi,
i ¼ 1;…; 8, and the triplet ϕk, k ¼ 21, 22, 23, remain
massless as shown in [11]. The presence of these massless
particles (or flat directions) in simple groups like SUð5Þ
[24] and SOð10Þ with a Uð1ÞR symmetry is a generic
feature as pointed out in [25]. For a relevant discussion also

see [26]. These massless octets and triplets spoil the gauge
coupling unification. To preserve unification we can add
vectorlike fermions as discussed in [11]. However, these
vectorlike fermions do not form a complete multiplet of
SUð5Þ and thus their presence does not respect SUð5Þ
symmetry. In short, we have to give up gauge coupling
unification in all SUSY SUð5Þ models of inflation with a
Uð1ÞR symmetry.

III. SUMMARY

To summarize, we have analyzed the simplified smooth
hybrid inflation in the supersymmetric SUð5Þ model. As
SUð5Þ gauge symmetry is broken during inflation, monop-
ole density is diluted and remains under the observable
limits. With minimal Kähler potential, SUGRA corrections
over-dominate all other terms to have any inflation.
However, with nonminimal terms in the Kähler potential,
successful inflation is realized. We obtain the tensor-to-
scalar ratio r≲ 0.01 with the nonminimal couplings
−0.05≲ κS ≲ 0.01 and −1≲ κSS ≲ 1 consistent with the
Planck 2-σ bounds on the scalar spectral index ns and
tensor-to-scalar ratio r. If the detection of gravitational
waves is confirmed by Planck’s B-mode polarization data,
then these models will be ruled out.
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