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We explore some particle physics implications of the growing evidence for a helical primordial magnetic
field (PMF). From the interactions of magnetic monopoles and the PMF, we derive an upper bound on the
monopole number density, nðt0Þ < 1 × 10−20 cm−3, which is a “primordial” analog of the Parker bound for
the survival of galactic magnetic fields. Our bound is weaker than existing constraints, but it is derived
under independent assumptions. We also show how improved measurements of the PMF at different
redshifts can lead to further constraints on magnetic monopoles. Axions interact with the PMF due to the
gaγφE · B=4π interaction. Including the effects of the cosmological plasma, we find that the helicity of the
PMF is a source for the axion field. Although the magnitude of the source is small for the PMF, it could
potentially be of interest in astrophysical environments. Earlier derived constraints from the resonant
conversion of cosmic microwave background photons into axions lead to gaγ ≲ 10−9 GeV−1 for the

suggested PMF strength ∼10−14 G and coherence length ∼10 Mpc. Finally, we apply constraints on
the neutrino magnetic dipole moment that arise from requiring successful big bang nucleosynthesis in the
presence of a PMF, and we find μν ≲ 10−16 μB.
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I. INTRODUCTION

There is growing evidence for the existence of an
intergalactic magnetic field from the observation of high-
energy gamma rays. It is likely that a magnetic field in
intergalactic space would have been created in the early
Universe, since astrophysics alone is not expected to
generate fields on such large length scales. (For a recent
review on cosmic magnetic fields, see Ref. [1].) The
discovery of a primordial magnetic field (PMF) has
important ramifications for cosmology as it allows one
to test models of magnetogenesis, which are often tied to
the physics of inflation [2], cosmological phase transitions
[3,4], and baryogenesis [5–7]. The presence of a PMF after
cosmological recombination can also aid in the formation
of first stars [8] and provide the seed field for the galactic
dynamo [9]. Additionally, the existence of a PMF in our
Universe opens the opportunity to place indirect constraints
on exotic particle physics models where the new physics
couples to electromagnetism. In this paper we will inves-
tigate the consequences of a PMF for models that contain
magnetic monopoles, axions, and Dirac neutrinos with a
magnetic moment.
Blazars that emit TeV gamma rays are expected to

produce an electromagnetic cascade of lower-energy
gamma rays due to electron-positron pair production and
the subsequent inverse Compton upscattering of cosmic

microwave background (CMB) photons [10–14]. In the
presence of an intergalactic magnetic field, electrons and
positrons directed toward the Earth can be deflected off of
the line of sight, and those that are directed away from the
Earth can be deflected back toward the line of sight. As a
result the point source flux is depleted in the GeV band, and
the blazar acquires a halo of GeV gamma rays. The
nonobservation of these GeV gamma rays was used to
place a lower bound on the magnetic field strength at the
level of B≳ 10−16 G [15–17]. This bound depends on
modeling of the blazar flux stability and also the plasma
instabilities during propagation, and it may weaken sub-
stantially depending on these assumptions [18–21]. The
search for the GeV halo extended emission has been
ongoing [22–26]. Most recently, Chen et al. [27] have
found evidence for the halo in a stacked analysis of known
blazars at ∼1 GeV energies and interpret it to be due to a
field with strength B ∼ 10−17–10−15 G. For reference,
measurements of the cosmic microwave background place
an upper bound on the magnetic field strength at the level of
B≲ 10−9 G [28].
There are theoretical motivations for considering the

possibility that the PMF is helical; i.e., there is an excess of
power in either right- or left-circular polarization modes.
Helical magnetic fields emerge in many models of mag-
netogenesis [5–7,29], and helicity conservation dramati-
cally impacts the evolution of the PMF, aiding in its
survival and growth [30]. Recently, Tashiro et al. [31,32]
analyzed the diffuse gamma ray sky at 10–60 GeVenergies
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to look for the parity-violating signature [33,34] of a helical
magnetic field. They find evidence for an intergalactic
magnetic field with strength B ∼ 10−14 G on coherence
scales λB ∼ 10 Mpc and with left-handed helicity.
Although the results of Refs. [31,32] and [27] appear
inconsistent, it may be possible to reconcile them by noting
that the weak bending approximation breaks down for
B ∼ 10−14 G for gamma rays at ∼1 GeV energies [35].
Motivated by these recent results, we investigate if the

existence of a helical PMF can be used to constrain other
particle physics ideas in a cosmological setting. Our
analysis is sufficiently general that our results will remain
relevant even if the gamma ray observation results should
change or go away, e.g. with more data. However, for the
purpose of numerical estimates we will use B ∼ 10−14 G
and λB ∼ 10 Mpc as the fiducial field strength and coher-
ence length scale, and we will take the magnetic field to
have maximal (left-handed) helicity.
In Sec. II we consider the interaction of a hypothetical

abundance of cosmic magnetic monopoles and a PMF. The
magnetic field does work on the monopoles, and its field
strength is thereby depleted. The constraints we obtain in
this way are generally weaker than existing bounds but are
obtained under a different set of assumptions. These results
are summarized in Fig. 1. We also discuss how heavy
magnetic monopoles can lead to anomalous scaling of the
energy density in the PMF. As observations of the PMF
improve, they can be sensitive to the anomalous scaling and
thus become a tool for further constraining magnetic
monopoles.
In Sec. III we consider the interaction of an axion (φ)

with the PMF through the coupling gaγφF ~F. In this
analysis we include the cosmological plasma, and thus
we study the equations of magnetohydrodynamics coupled
to an axion. Although we find that the axion has a
negligible effect on the spectrum and evolution of the
PMF, it is interesting to note that this conclusion is not
sensitive to the assumed scale of Peccei-Quinn symmetry
breaking, fa, as long as gaγ ∝ 1=fa. In turn, the PMF leaves
the evolution of the axion condensate largely unaffected. In
principle the PMF damps the axion oscillations and the
helicity of the PMF shifts the equilibrium point, but these
effects are quadratic in the already-small magnetic field
strength.
In Sec. IV we consider the interaction of the neutrino

magnetic dipole moment, μν, with the PMF. Enqvist et al.
[39,40] have shown that this interaction induces a spin-flip
transition, which cannot be in equilibrium in the early
Universe without running afoul of constraints on the
number of relativistic neutrino species. Using their result
with our fiducial value of B ∼ 10−14 G, we evaluate an
upper bound on μν, which is shown in Fig. 2.
We work in the CGS system with ℏ ¼ c ¼ 1. The unit of

electric charge is e ¼ ffiffiffi
α

p ≃ 0.085 with α≃ 1=137 the fine
structure constant, and the unit of magnetic charge is

em ¼ 1=2e≃ 5.9. The magnetic field is measured in
Gauss, and 1 G≃ 6.93 × 10−20 GeV2. The reduced
Planck mass is denoted by MP ≃ 2.4 × 1018 GeV. The
metric signature is ðþ − −−Þ, and the antisymmetric tensor
normalization is ϵ0123 ¼ þ1.

II. MAGNETIC MONOPOLES

A conservative cosmological bound on the energy
density of magnetic monopoles is Ωm ≡ ρm=ρcr < 0.3
where ρm is the energy density in monopoles and ρcr ≃
10−29 gm c2=cm3 is the critical cosmological energy den-
sity. The number density of nonrelativistic monopoles is
nm ¼ ρm=m with m the monopole mass, and the cosmo-
logical bound implies

nm < 0.3
ρcr
m

≃ ð2 × 10−23 cm−3Þ
�

m
1017 GeV

�
−1
: ð1Þ

The bound grows weaker for lighter monopoles since they
contribute less to the energy density for the same number
density.
The existence of the galactic magnetic field leads to

another indirect bound. Magnetic monopoles tend to
deplete a magnetic field in the same way that free electrons
short out a conductor. The survival of the micro-Gauss
galactic magnetic field implies an upper bound on the
directed flux, F , of magnetic charge onto the Milky Way.
Requiring that the time scale for B-field depletion is longer
than the dynamo time scale of B-field regeneration
(τdyn ≃ 108 yr), leads to the so called Parker bound [41]

F < 0.9 × 10−16em cm−2 sec−1 sr−1: ð2Þ

Assuming that monopoles have unit charge and travel with
velocity v, the Parker bound can be expressed as an upper
bound on the monopole number density:

nm ≈
ð4π srÞF

emv
< ð4 × 10−23 cm−3Þ

�
v

10−3c

�
−1
: ð3Þ

Just as the Parker bound is predicated on the existence of a
magnetic field in the Milky Way, we expect that a similar
bound can be inferred from the existence of a primordial
magnetic field in the early Universe.
We study a gas of monopoles and antimonopoles

immersed in a magnetic field that permeates the cosmo-
logical medium. The monopoles have mass m, magnetic
charge em, and they are homogeneously distributed with
number density nmðtÞ. The magnetic field Bðt;xÞ induces a
Lorentz force of

FB ¼ emB ð4Þ
on a monopole at ðt;xÞ, and it begins to drift along the field
line with a velocity v. The field does work by pushing the
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monopole, and in this way the monopole extracts energy
from the magnetic field at a rate

_EB ¼ FB · v: ð5Þ

To solve for the evolution of the magnetic field strength we
must know the monopole velocity. Prior to electron-
positron annihilation, the monopole’s velocity is restricted
by elastic scattering with the cosmological medium, but
afterward it can free stream. We will consider each of these
cases in turn.

A. Friction-dominated regime

In the epoch prior to eþe− annihilation the cosmological
medium was dense with electromagnetically charged par-
ticles. In this regime, monopoles interact with the medium
through elastic scattering such as M þ e� → M þ e� with
M the monopole. It is safe to assume that the monopole’s
rest mass is much larger than the kinetic energy of particles
in the plasma. This allows us to characterize the effective
interaction with a drag force that takes the form [42]

Fdrag ¼ −fdragv: ð6Þ

At the time of interest, the scatterers are relativistic with
energy comparable to the temperature T of the plasma, and
they are in thermal equilibrium with number density
n ∼ T3. For such a system the drag coefficient takes the
form [43,44]

fdrag ≈ βe2e2mgemT2; ð7Þ

where gemðtÞ is the number of relativistic, charged degrees
of freedom in thermal equilibrium at time t and β is anOð1Þ
number related to the spin character and charge of the
scatterers. We will drop β from this point onward since it is
parametrically redundant with gem. Also note that gem and T
depend on time, but this can be ignored on short time scales
as compared to the Hubble time scale.
The monopole’s equation of motion is

m_v ¼ emB − fdragv: ð8Þ

We assume that the distance traveled by the monopole is
small compared to the correlation length λB of the magnetic
field, and we treat B as uniform. Eq. (8) immediately gives
the terminal velocity of the monopoles,

vterm ¼ emB
e2e2mgemT2

; ð9Þ

which is achieved on a time scale

τterm ¼ m
e2e2mgemT2

: ð10Þ

Comparing with the Hubble time tH ∼MP=T2 (radiation
era) we have τterm ≪ tH provided that m < gemMP, and
thus the cosmological expansion is negligible.
At the present cosmic epoch, the photon temperature is

∼10−4 eV and B ∼ 10−14 G. Assuming B ∝ T2, we get
B≃ 106 G at T ≃MeV when gem ≃ 10. These estimates
give vterm ≃ 10−8, which validates our uses of the non-
relativistic equation of motion. As a consequence, the
distance traveled by a monopole during τterm is quite small,
dterm < 10−8τterm. We shall assume that the correlation
length of the magnetic field is larger, λB > dterm, thus
justifying our treatment of the magnetic field as being
uniform.
The magnetic field’s response to this current is given by

the magnetic analog of Ampere’s law,

_B ¼ −4πjM ¼ −4πemnmv; ð11Þ

where nm is the number density of monopoles (assumed
equal to the number density of antimonopoles). Here we
have used E ¼ 0 since electric fields are screened due to
the high electrical conductivity of the cosmological
medium. For typical parameters, the inter-monopole spac-
ing is small compared to the correlation length of the
magnetic field, n−1=3m ≪ λB, and we can interpret nm and B
as coarse grained quantities on this length scale. Then we
insert v ¼ vterm from Eq. (9) into Eq. (11) to get the solution

BðtÞ ¼ BðtiÞe−ðt−tiÞ=τdecay ; ð12Þ

where the decay time scale of the magnetic field is given by

τdecay ¼
e2e2mgemT2

4πe2mnm
: ð13Þ

In obtaining this solution, we have assumed v ¼ vterm
which is justified if the monopoles reach terminal velocity
much more quickly than the decay time scale, i.e.
τdecay ≫ τterm. As we will see below, this condition is
satisfied for the range of parameters of interest to us.
To ensure survival of the magnetic field, we require that

τdecay is much larger than the Hubble time at temperature T,

tH ¼ 1

2H
≃ 1.5

MP

g�T2
; ð14Þ

with H the Hubble parameter and g� the effective number
of relativistic degrees of freedom. Substitution of Eq. (13)
into τdecay > tH now leads to a constraint on the number
density of monopoles,

nm <
e2e2m
6πe2m

gemg�T4

MP
; ð15Þ

when the Universe had temperature T.
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The strongest bound is obtained when T is smallest.
Since our calculation assumes that monopoles scatter on
relativistic, charged particles with a thermal abundance, the
last time at which this is possible is the epoch of eþe−
annihilation. At this time Tann ≃ 1 MeV, gem ≈ g�≈
g�S ≃ 10.75. To translate this into a bound on the monopole
number density today, denoted by n0, we multiply by
ðaann=a0Þ3 ¼ ðg�S;0T3

0=g�ST
3
annÞ with g�S;0 ≃ 3.91 and

T0 ≃ 2.3 × 10−4 eV the temperature of the microwave
background photons today. We find an upper bound on
the monopole number density today,

n0 <
e2e2m
6πe2m

g�S;0g�gem
g�S

TannT3
0

Mp
≃ 1 × 10−20 cm−3: ð16Þ

If this bound is not satisfied then any primordial magnetic
field would have been exponentially depleted by the time of
electron-positron annihilation. Due to the close connection
with the Parker bound for survival of galactic magnetic
fields, we will refer to Eq. (16) as the “primordial
Parker bound”.

In Fig. 1 we compare the primordial Parker bound in
Eq. (16) with other constraints derived previously in the
literature. Since these constraints are typically expressed as
a bound on the monopole flux, we translate into a bound on
the number density using ð4π srÞF ≈ fcnv. Here v is the
average monopole velocity and fc ¼ ngalaxy=ncosmo. is the
enhancement factor that accounts for clustering of monop-
oles in the galaxy. For clustered monopoles fc ∼ 105, but
otherwise fc ∼ 1. For the extended Parker bound calcu-
lation of Ref. [38], we take Bseed ¼ 10−11 G. For the direct
search constraint we show a relatively conservative and
robust limit of F < 10−15 cm−2 sec−1 sr−1, but stronger
constraints are available for specific monopole parameters
[36]. From the figure, one can see that the primordial Parker
bound becomes stronger than the cosmological bound for
light monopoles, m≲ 5 × 1013 GeV, but it always remains
weaker than the direct search constraints.

B. Free-streaming regime

After cosmological electron-positron annihilation the
number density of these scatterers decreases by a factor
of ∼10−10. The monopoles experience very little drag force,
and they can be accelerated freely by the magnetic field.
For a uniform and static magnetic field, the solution of
Eq. (8) with fdrag ¼ 0 is simply v ¼ emBt=m, or for an
inhomogenous field with domains of size λB, we find

vðtÞ ∼ emBλB
m

ffiffiffiffiffi
t
λB

r
ð17Þ

if the motion is diffusive. The monopole becomes relativ-
istic when vðtrelÞ ∼ 1 and comparing this time with the
present age of the Universe gives

trel
t0

∼
�

m
emBt0

�
2 t0
λB

∼ 1018
�

m
MP

�
2 t0
λB

: ð18Þ

With λB ∼Mpc and t0 ∼ 10 Gpc, we find that monopoles
are relativistic today if m≲ 108 GeV, and they are non-
relativistic otherwise.
The above estimate ignores backreaction of the monop-

oles on the PMF. To check for consistency, we compare the
kinetic energy in monopoles ρkin to the energy density
available in the PMF ρB ¼ B2=8π. For relativistic monop-
oles we should have ρB > ρkin ≫ mnm, and this provides
an upper bound on the number density of monopoles for
which the velocity estimate in Eq. (17) can be expected to
hold. Taking B ∼ 10−14 G we find

nm ≪ 10−35
�
108GeV

m

�
cm−3: ð19Þ

Since we are interested in much larger number densities, as
indicated by the bound in Eq. (16), we cannot use the
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FIG. 1 (color online). A summary of upper bounds on the
magnetic monopole abundance from this work and the literature.
Black: the requirement of survival of the primordial magnetic
field (“primordial Parker bound”), derived here in Eq. (16). Red:
the cosmological abundance bound in Eq. (1). Blue: direct search
constraints [36] (see the magnetic monopole review). Green: the
requirement of survival of the Galactic magnetic field (Parker
bound), given by Ref. [37]. Orange: the requirement of survival
of the Galactic seed field (“extended Parker bound”), given by
Ref. [38]. We take v≃ 10−3 and assume that monopoles are
unclustered, fc ≃ 1. If the monopoles are clustered then the
Parker bound, extended Parker bound, and direct search limits
move down by a factor of fc ∼ 105.
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velocity relation in Eq. (17), but instead the monopole
and magnetic field equations will need to be evolved
simultaneously.
Without friction to provide a means of energy dissipa-

tion, the monopoles cannot deplete the magnetic field
strength. Instead there is a conservative exchange of energy
between the magnetic field and the kinetic energy of the
monopoles. This co-evolution can lead to an anomalous
departure from the usual power law scaling behavior of the
magnetic field energy density if the monopoles are non-
relativistic. This can be seen from the following argument.
In the absence of the monopole gas, the energy density in
the magnetic field redshifts like radiation ρB ∼ ð1þ zÞ4
where z is the cosmological redshift. Meanwhile the kinetic
energy stored in a gas of nonrelativistic particles redshifts
more quickly. We can write the kinetic energy density as
ρkin ¼ nmp2=ð2mÞ where p is the typical momentum and
nm is the monopole number density. Since p ∼ ð1þ zÞ and
nm ∼ ð1þ zÞ3, the kinetic energy density redshifts like
ρkin ∼ ð1þ zÞ5. If energy is transferred quickly between the
monopoles and magnetic field then we might expect ρB ∼
ρkin ∼ ð1þ zÞ9=2 where 9=2 is the average of 4 and 5. This
result is confirmed by the full calculation, which we will
now present.
Once again we consider a gas of monopoles coupled to a

magnetic field, but we now include the effects of cosmo-
logical expansion. Let XλðτÞ be the world line of a
monopole, and let UλðτÞ ¼ dXλ=dτ be its 4-velocity.
The monopole equation of motion, given previously by
Eq. (8), is now replaced by

m

�
dUλ

m

dτ
þ Γλ

μνU
μ
mUν

m

�
¼ em ~Fλ

μU
μ
m ð20Þ

where Γλ
μν is the Christoffel symbol. The magnetic analog

of Ampere’s law in Eq. (11) is now replaced by

∇α
~Fαβ ¼ 4πjβM ð21Þ

where ∇α is the covariant derivative. The magnetic current
density jμM arises from monopoles with velocity Uμ

m and
antimonopoles with velocity Uμ

m̄. It can be written as

jμM ¼ emðnmUμ
m − nm̄U

μ
m̄Þ; ð22Þ

and it satisfies the conservation law

∇μj
μ
M ¼ 0: ð23Þ

The spatial component of the 4-velocity is the comoving
peculiar velocity ðUmÞi ¼ Ui

m, and with an additional factor
of a we form the physical peculiar velocity ðvmÞi ¼ aUi

m.
Neglecting the electric field and spatial gradients, the
system of equations can be put into the form

∂ηðavmÞ ¼
em
m

ða2BÞ ð24aÞ

a∂ηða2BÞ ¼ −4πemða3nmÞðavmÞ ð24bÞ

∂ηða3nmÞ ¼ 0 ð24cÞ

where dη ¼ dt=a ¼ da=Ha2 is the conformal time coor-
dinate. The third equation implies that the number of
monopoles per comoving volume is conserved; n0 ¼
a3nm is the number density of monopoles today. Then if
not for the additional factor of a in the second equation,
the solutions would simply be oscillatory with angular
frequency

ωpl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2mn0

m

r
: ð25Þ

This is just the usual formula for plasma frequency, but
instead of electron charge, mass, and density, here we find
the corresponding parameters for the monopole gas.
To solve these equations we must relate a to η. During

the radiation era we have η ¼ ηi þ ða − aiÞ=Hia2i ≈
a=Hia2i , and the solution is

B ¼
�
a
ai

�
−9=4

�
J0ðϕÞB1 þ Y0ðϕÞB2

ða=aiÞ−1=4
�

ð26aÞ

vm ¼
�
a
ai

�
−3=4

�
ϕJ1ðϕÞv1 þ ϕY1ðϕÞv2

ða=aiÞ1=4
�

ð26bÞ

where

ϕ≡ 2 ~ωηi
ai

ffiffiffi
a

p
: ð27Þ

At late times ϕ ≫ 1, and all of the Bessel functions go to
zero with an envelop ∼ϕ−1=2 ∼ a−1=4. Then the terms in
square brackets do not scale with a and we find B ∼ a−9=4

and vm ∼ a−3=4. One can check that the energy densities
scale in the same way

ρB ¼ jBj2
8π

∝ a−9=2 ð28aÞ

ρkin ¼
m
2
jvmj2nm ∝ a−9=2; ð28bÞ

which confirms our earlier argument.During the matter era
we have η ¼ ηi þ 2ð ffiffiffi

a
p

− ffiffiffiffi
ai

p Þ=Hia
3=2
i ≈ 2

ffiffiffi
a

p
=Hia

3=2
i ,

and the solution is

B ¼
�
a
ai

�
−9=4X

s¼�1

�
a
ai

�i
4
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ~ω2η2i =ai−1

p
Bs ð29aÞ
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vm ¼
�
a
ai

�
−3=4X

s¼�1

�
a
ai

�i
4
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ~ω2η2i =ai−1

p
vs: ð29bÞ

For typical parameters we have 4 ~ω2η2i =ai ≫ 1, and the
solution is oscillatory with a power law envelope. We find
the same anomalous scaling as in the radiation era,
cf. Eq. (28). If we remove the monopoles from the problem
by sending nm; ~ω → 0 then the would-be oscillatory factors
become a power law decay, and we regain the usual scaling
B ∼ a−2 and vm ∼ a−1.
This anomalous scaling does not provide constraints on

the monopole number density. However, it does affect the
way that we translate constraints on the magnetic field in
the early Universe into the value of the magnetic field
today. Measurements of the cosmic microwave background
restrict the magnetic field energy density to be less than
∼10−5 of the photon energy density at the time of
recombination [28]

ρBðzrecÞ ≲ 10−5ργðzrecÞ: ð30Þ

Using the scaling relations, ρB ∼ ð1þ zÞ9=2 and ργ ∼
ð1þ zÞ4 this inequality implies that the magnetic field
energy density today is bounded by

ρB;0 ≲ 10−5ργ;0ð1þ zrecÞ−1=2

≃ ð3 × 10−10 GÞ2
�
1þ zrec
1300

�
−1=2

ð31Þ

where ργ;0 ≈ 2π2T4
0=30 is the CMB energy density today.

If it were not for the anomalous redshifting, the constraint
on the B-field strength would be weaker by a factor of
ð1þ zrecÞ1=4 ≃ 6.
The anomalous scaling of the field strength in Eq. (28)

can become a tool in the future as measurements of the
PMF improve. By measuring the magnetic field strength at
different redshifts, say by using TeV blazars at different
distances, we can directly probe the anomalous scaling,
and hence obtain a new handle on the relic density of
nonrelativistic magnetic monopoles.

III. AXIONS

Consider an axion φðxÞ coupled to the electromagnetic
field AμðxÞ. The Lagrangian takes the form [45]

L ¼ 1

2
ð∂μφÞ2 −

m2
a

2
φ2 −

1

16π
FμνFμν

−
gaγ
16π

φFμν
~Fμν − Aμjμ ð32Þ

where ~Fμν ¼ 1
2
ϵμναβFαβ is the dual field strength tensor, and

jμ ¼ ðρ; jÞ is the electromagnetic current arising from the

charged Standard Model fields. Our analysis is sufficiently
general to apply to any axion or axion-like particle
described by Eq. (32), but as a fiducial reference point
we will consider a QCD axion with Peccei-Quinn scale of
fa ≃ 1010 GeV, an axion mass of ma≈Λ2

QCD=fa≃1meV,
and a photon-axion coupling constant gaγ ≈ α=ð2πfaÞ≃
10−13 GeV−1.
The classical axion condensate obeys the field equation

□φþm2
aφ ¼ gaγ

4π
E ·B ð33Þ

where we have used Fμν
~Fμν ¼ −4E ·B. The electromag-

netic field evolves according to the constraint equation

∂μ
~Fμν ¼ 0 ð34Þ

and the modified field equation

∂μFμν þ gaγ∂μφ ~Fμν ¼ 4π

c
jν: ð35Þ

In terms of the electric and magnetic vector fields we have

∇ ·B ¼ 0 ð36aÞ

∇ ×Eþ 1

c
∂B
∂t ¼ 0 ð36bÞ

∇ · Eþ gaγ∇φ ·B ¼ 4πρ ð36cÞ

∇ ×B −
1

c
∂E
∂t − gaγ _φB − gaγ∇φ ×E ¼ 4π

c
j: ð36dÞ

Note the presence of the additional terms arising from the
spatio-temporal variation of the axion field.We seek to study
the coevolution of the coupled axion and electromagnetic
fields. Eqs. (33) and (36) describe a nondissipative system.
Dissipation is introduced as the electromagnetic field
couples to charged particles in the cosmological medium,
which opens an avenue for energy to be lost in the form of
heat. This coupling is parametrized by the conductivity σ
which appears in Ohm’s law

j ¼ σðEþ v × BÞ ð37Þ

where vðt;xÞ is the local velocity of the plasma. Prior to the
epoch of eþe− annihilation, free charge carriers were
abundant and the cosmological medium had a high con-
ductivity [46]

σ ≈ T=α ð38Þ

where α≃ 1=137 is the fine structure constant. Ohm’s law
allows us to eliminate j and thereby reduce the system of
equations in four unknowns fE;B; j;φg to a set of
equations describing only three unknowns:
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φ̈ −∇2φþm2
aφ ¼ gaγ

4π
E · B ð39aÞ

_B ¼ −∇ ×E ð39bÞ

_E ¼ ∇ ×B − gaγ _φB − gaγ∇φ ×E

− 4πσE − 4πσv × B: ð39cÞ

In the MHD approximation (nonrelativistic flow) we can
neglect the displacement current since it is negligible
compared to the curl of the magnetic field, j _Ej=j∇ ×Bj ∼
ðv=cÞ2 ≪ 1 [47]. Then Eq. (39c) becomes algebraic in E,
and we can solve it to eliminate E from the remaining
equations. Focusing now on a homogenous axion field, the
system of equations reduces to

φ̈þ g2aγ
ηdjBj2
4π

_φþm2
aφ ¼ gaγηd

4π
B · ∇ ×B ð40aÞ

_B ¼ ∇ × ðv ×BÞ þ ηd∇2Bþ gaγηd _φ∇ ×B ð40bÞ

where

ηd ≡ 1

4πσ
≈

α

4πT
ð41Þ

is the magnetic diffusivity, assumed to be homogenous.
Eqs. (40a) and (40b) together with the Navier-Stokes
equation for the plasma velocity v are the final equations
to be solved. We first solve Eq. (40b) to determine the effect
of the axion on the magnetic field, and afterward we will
consider the evolution of the axion according to Eq. (40a).

A. Effect of axion on magnetic field

In order to solve Eq. (40b) for the B field we must know
the fluid velocity, which appears in the advection term,
∇ × ðv ×BÞ. Since our primary interest is in the coevolu-
tion of the magnetic field and the axion, not in the
magnetohydrodynamics, we will neglect this term [48].
Since Eq. (40b) is linear in B, and we assume that φ is
homogenous, we can solve the equation by first per-
forming a Fourier transform. For a given mode k, let
ðe1ðkÞ; e2ðkÞ; e3ðkÞÞ form a right-handed, orthonormal
triad of unit vectors with e3ðkÞ ¼ k=jkj. It is convenient to
introduce the right- and left-circular polarization vectors by

e�ðkÞ ¼ e1ðkÞ � ie2ðkÞffiffiffi
2

p : ð42Þ

Note that ik × e�ðkÞ ¼ �jkje�ðkÞ. The mode decompo-
sition is given by

Bðt;xÞ ¼
Z

d3k
ð2πÞ3 e

ik·x
X
s¼�

bsðt; jkjÞesðkÞ: ð43Þ

With this replacement, Eq. (40b) becomes

_b�ðt; kÞ ¼ −ηdk2b�ðt; kÞ � gaγηdk _φb�ðt; kÞ; ð44Þ

where we have written k ¼ jkj. The last term of this
equation, essentially the chiral-magnetic effect [49], has
been studied previously in the context of axions [50] and
cosmology [51,52]. The solution is

b�ðt; kÞ ¼ b�ðti; kÞe−k2ðt−tiÞηde�k=kaxðtÞ; ð45Þ

where we have defined the wave number

kaxðtÞ≡ 2

gaγΔφðtÞηd
; ð46Þ

and ΔφðtÞ ¼ φðtÞ − φðtiÞ is the change in the axion field.
The prefactor in Eq. (45) is the initial spectrum of the
magnetic field which will depend on the PMF generation
mechanism. The first exponential is the usual diffusive
decay term, which exponentially suppresses modes on a
length scale shorter than k−1diff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt − tiÞηd
p ≃ 10−1

ffiffiffiffiffiffiffiffi
t=T

p
.

The second exponential only kicks in at small length scales
where k > kax. Then it leads to a suppression of one
polarization mode and enhancement of the other, depend-
ing on the sign of ΔφðtÞ.
The value of ΔφðtÞ depends on the solution for the axion

field as well as the initial time ti. We expect that the
misalignment mechanism sets the initial condition
φðtiÞ ∼�fa. The subsequent evolution is determined by
solving Eq. (40a), which we will turn to in the next section.
For the moment we will assume that the axion evolution is
not significantly affected by the presence of the magnetic
field, and the solution is the standard one: the axion remains
“frozen” at φðtiÞ until the time of the QCD phase transition
when it begins to oscillate around φ ¼ 0 with angular
frequency ω ¼ ma [53]. Then we can approximate

ΔφðtÞ ≈
�

0 t < tQCD
sfa t > tQCD

; ð47Þ

where s ¼ sign½φðtiÞ�. Using this approximation we can
estimate kax. Prior to the QCD phase transition, Δφ is small
and kax is large, meaning that none of the modes receive the
enhancement or suppression from the axion coupling. This
is reasonable since the axion is derivatively coupled, and as
long as it is stationary there will be no effect on the
magnetic field. After the QCD transition, we can estimate

kax ≈
4πσ

gaγfa
≈

4πT
αgaγfa

ð48Þ

using Eqs. (38) and (41). Note that this result is insensitive
to the Peccei-Quinn scale, and as long as gaγ ¼ α=ð2πfaÞ
we have k−1ax ≈ α2=ð8π2TÞ≃ 10−6T−1.
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The solution in Eq. (45) can also be written as

b�ðt; kÞ ¼ b�ðti; kÞeK2ðt−tiÞηde−ðk∓KÞ2ðt−tiÞηd ; ð49Þ

where

KðtÞ≡ 1

kaxðt − tiÞηd
¼ gaγΔφðtÞ

2ðt − tiÞ
: ð50Þ

This representation of the solution is convenient, because
all the spectral information is contained in the second
factor. One of the helicity modes has a Gaussian spectrum
peaked at jKðtÞj > 0 with width

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðt − tiÞηd

p
, and the

other helicity mode peaks at k ¼ 0. Estimating kax as
above, we find that the associated length scale of the
spectral peak corresponds to K−1 ≈ kaxtηd ≃ 600t, which is
larger than the scale of the cosmological horizon dH ∼ t.
It appears that the presence of an axion condensate

coupled to electromagnetism has a negligible impact on the
evolution of a primordial magnetic field, unless there are
situations in which Δφ can be much larger than fa.
We note that our analysis ignores the possibility of

turbulence in the primordial plasma. It would be of interest
to include both turbulence and the axion coupling in future
studies.

B. Effect of magnetic field on axion

Next we will investigate the effect of a background
magnetic field on the axion condensate. We have seen that
the magnetic field is approximately unmodified on length
scales larger than the diffusion length, k−1diff ∼

ffiffiffiffiffiffi
ηdt

p
[cf.,

Eq. (45)]. In this regime Eq. (40a) can be rewritten as

φ̈þ 2
_φ

τdecay
þ φ

τ2a
¼ H; ð51Þ

where

τdecay ≡ 8π

g2aγηdhjBj2i
; ð52Þ

τa ≡ 1

ma
; ð53Þ

H≡ gaγηd
4π

hB · ∇ ×Bi; ð54Þ

and the angled brackets h·i denote spatial averaging. The
axion condensate evolves like a damped and driven
harmonic oscillator, where the damping and driving forces
are induced by the magnetic field background. As we
discuss below, it is interesting that the driving force is
associated with the helicity of the magnetic field.
The magnetic-induced damping of axion oscillations is

parametrized by the time scale τdecay. To determine when

this damping will be relevant for the evolution of the axion,
we compare it with the cosmological time scale, given by
Eq. (14). To express hjBj2i ¼ B2 in terms of the magnetic
field strength today, B0, we use B ¼ B0ða0=aÞ2≃
10B0ðT=T0Þ2, where the factor of 10 is related to the
number of relativistic degrees of freedom in the early
Universe and today. Then the ratio is found to be

τdecay
tH

≈
16π2g�
75

T4
0

αg2aγMPB2
0T

≃ 1016
ð10−13 GeV−1Þ2

g2aγ

ð1010 GeVÞ
T

ð10−14 GÞ2
B2
0

:

ð55Þ

This estimate suggests that the magnetic-induced decay of
the axion field is negligible for a typical Peccei-Quinn scale
and B-field strength. If the B-field strength today were as
large as B0 ∼ 10−9 G and the Peccei-Quinn scale were as
low as fa ∼ TeV, then τdecay would be comparable to the
Hubble time at T ≈ fa. As the temperature decreases, the
magnetic-induced decay becomes less relevant.
It is interesting that the magnetic field also induces a

driving force, parametrized by H. The pseudoscalar H is
related to the helicity of the magnetic field. This is perhaps
more evident from the initial form of the axion field
equation, Eq. (33), where E · B is equal to the rate of
change of the helicity density −ð1=2ÞdðA · BÞ=dt plus a
divergence, which vanishes upon spatial averaging. If the
power in the magnetic field is localized on a particular
length scale λB we can estimate hB · ∇ ×Bi ∼ B2=λB ∼
300ðB2

0=λB0
ÞðT=T0Þ5 where we used λB ∼ 3λB;0ðT0=TÞ.

Prior to the QCD phase transition we can neglect the
mass and drag terms in Eq. (51), and the solution is simply
φ ¼ Ht2=2. Since the axion is massless, there is no
restorative potential, and the helical magnetic field leads
to an unbounded growth of the axion condensate. Although
this analysis neglects the Hubble drag, we can estimate the
maximum field excursion in one one Hubble time to be
Ht2H=2. Comparing with the Peccei-Quinn breaking scale,
the corresponding angular excursion is

Δθ ≈
Ht2H
fa

≈
75

16π2
αgaγM2

PB
2
0

fag2�T5
0λB;0

≃ 10−35
�

B0

10−14 G

�
2
�

λB;0
10 Mpc

�
−1

×

�
gaγ

10−13 GeV−1

��
fa

1010 GeV

�
−1
: ð56Þ

We are led to conclude that for realistic parameters, the
helical PMF does not significantly impact the evolution of
the axion condensate prior to the QCD phase transition.
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After the QCD phase transition, the axion mass reaches
its asymptotic value, and the source term displaces the
minimum of the axion potential from φ ¼ 0 to
φmin ¼ Hτ2a ¼ H=m2

a. In terms of the angular coordinate:

θmin ≈
Hτ2a
fa

≈
25

12π2
αgaγB2

0T
4

fam2
aλB;0T5

0

≃ 10−47
�

B0

10−14 G

�
2
�

λB;0
10 Mpc

�
−1
�

T
200 MeV

�
4

×

�
fa

1010 GeV

�
−1
�

gaγ
10−13 GeV−1

��
ma

1 meV

�
−2
:

ð57Þ

The temperature dependence enters through B ∼ T2,
λB ∼ 1=T, and ηd ∼ 1=T, and the fractional shift is largest
at high temperature where B is large and λB is small.
Immediately after the QCD phase transition,
TQCD ∼ 200 MeV, the fractional shift is already extremely
small. Moreover, if the PMF is not helical then H ¼ 0 and
there is no shift in the axion potential.
It is interesting that the estimate of Eq. (57) is insensitive

to the Peccei-Quinn scale; as long as gaγ ¼ α=ð2πfaÞ and
ma ¼ Λ2

QCD=fa, we have gaγ=fam2
a ¼ α=ð2πΛ4

QCDÞ. Then
the primarily challenge toward obtaining a large effect is
the smallness of the magnetic field strength. Although
unrelated to primordial magnetic fields, which is the
motivation for this work, it would be interesting to study
the axion condensate in an astrophysical system where the
magnetic field is both helical and strong. For instance, the
field strength in a magnetar can grow as large as B ∼
1015 G and the magnetic field in some astrophysical jets is
known to be helical [54].

C. Axion-photon interconversion

Until this point we have focused our attention on the
interplay between the axion condensate and the primordial
magnetic field, and we now turn our attention to the quanta
of these fields. In the presence of a background magnetic
field, the interaction in Eq. (32) yields a mixing between
axion particles and photons. Typically, the conversion is
inefficient, but in the presence of a plasma the photon
acquires an effective mass, and the conversion probability
experiences a resonance when mγ ¼ ma [55]. In the
cosmological context, the conversion of photons into
axions may lead to a dimming of the cosmic microwave
background across frequencies. Then measurements of the
spectrum of the CMB can be used to place constraints on
the axion-photon coupling and the magnetic field strength.
Bounds were obtained from the COBE/FIRAS meas-

urement of the CMB spectrum in Ref. [56], and recently a
second group [57] has extended the calculation to include
forecasts for next-generation CMB telescopes, namely,
PIXIE and PRISM. The latter references find an upper

bound on the product of the axion-photon coupling and the
rms magnetic field strength today:

gaγB0 < 10−14 GeV−1nG ðCOBE-FIRASdataÞ
gaγB0 < 10−16 GeV−1nG ðPIXIE=PRISMforecastÞ ð58Þ

for a light axion ma < 10−14 eV. For larger axion masses,
the bound weakens. Using our fiducial value for the
magnetic field B0 ≃ 10−14 G, we can write

gaγ < 10−9 GeV−1
�

B0

10−14 G

�
−1

ðCOBE-FIRASÞ

gaγ < 10−11 GeV−1
�

B0

10−14 G

�
−1

ðPIXIE=PRISMÞ: ð59Þ

These bounds are comparable to the direct search limits
from the CAST helioscope [58],

gaγ < 8.8 × 10−11 GeV−1; ð60Þ

for ma ≲ 0.02 eV.

IV. DIRAC NEUTRINOS

While the neutrinos are known to be massive particles,
the nature of their mass remains a mystery. If neutrinos are
Dirac particles, then the theory contains four light states per
generation: an active neutrino νL, an active antineutrino ν̄R,
a sterile neutrino νR, and a sterile antineutrino ν̄L. The
active states interact through the weak force, and this allows
them to come into thermal equilibrium in the early
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FIG. 2. The requirement that spin-flip transitions are out of
equilibrium at the QCD epoch leads to an upper bound the
neutrino magnetic moment given by Eq. (64).
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Universe. The sterile states, on the other hand, interact only
via the Yukawa interaction with the Higgs boson, and
because of the smallness of the Yukawa coupling
yν ∼mν=v ∼ 10−12, these states are not expected to be
populated.
This story is modified if a strong magnetic field

permeated the early Universe. The nonzero neutrino mass
implies that the neutrino will also have a nonzero magnetic
moment μν. From Standard Model physics alone, one
expects [59,60]

μSMν ≃ ð3 × 10−20 μBÞ
mν

0.1 eV
; ð61Þ

where μB ≡ e=2me ≃ 83.6 GeV−1 is the Bohr magneton,
but new physics can increase this value appreciably. The
magnetic field couples to μν and induces the spin-flip
transitions νL → νR and ν̄R → ν̄L, which can be viewed as
the absorption or emission of a photon. If the spin-flip
occurs rapidly in the early Universe, the sterile states would
be populated, and the effective number of relativistic
neutrino species would double from Nν ¼ 3 to 6.
However, this is not consistent with measured abundances
of the light elements, which imply Nν ≈ 3 at the time of
nucleosynthesis [61]. We must therefore require that the
spin-flip transition goes out of equilibrium prior to the
QCD epoch, TQCD ≃ 200 MeV, so that the subsequent
entropy injection at the QCD phase transition can suppress
the relative abundance of sterile states to acceptable levels
[53]. This translates into an upper bound on the neutrino
magnetic moment and magnetic field strength, which was
originally discussed by Enqvist et al. [39,40].
In the rest of this section we apply the results of

Ref. [40]. The spin-flip transition occurs with a rate

ΓL→R ¼ hPνL→νRiΓtot
W ; ð62Þ

where hPνL→νRi is the average conversion probability and
Γtot
W is the total weak scattering rate. The active neutrinos

scatter via the weak interaction which leads to Γtot
W ≃

30G2
FT

5
QCD at the QCD epoch. The conversion probability

depends on the magnetic moment and field strength as
hPνL→νRi ∝ μ2νB2, since the interaction Hamiltonian is
Hint ¼ −μν ·B. The coefficient takes different values
depending on the relative scale of the magnetic field
domains λB and the weak collision length LW ≈ ðΓtot

W Þ−1.
At the QCD epoch LW ≃ 1.6 × 10−2 cm, which corre-
sponds to a length scale of LW;0 ≃ 3 × 1010 cm today. It is
safe to assume that the magnetic field of interest is much
larger than this length scale, and therefore λB ≫ LW . To
ensure that the spin-flip transition is out of equilibrium, one
must impose ΓL→R < H withH the Hubble parameter. This
inequality resolves to the bound (see Eq. (37) of Ref. [40])

μνBðtQCDÞ < ð3.5 × 102 μBGÞ
ffiffiffiffiffiffiffi
LW

λB

s
: ð63Þ

To express this inequality in terms of the B-field strength
and correlation length today, we use B≃ 6B0ðTQCD=T0Þ2
and LW=λB ¼ LW;0=λB;0. This leads to an upper bound on
the neutrino magnetic moment:

μν < ð3 × 10−16 μBÞ
�

B0

10−14 G

�
−1
�

λB;0
10 Mpc

�
−1=2

: ð64Þ

If this bound is not satisfied, the sterile neutrino states will
still be thermalized with the active neutrino states at the
time of BBN leading to Nν ≈ 6, which is inconsistent with
the data. If the neutrinos are Majorana particles, then the
sterile states are much heavier, and this bound does
not apply.
The bound in Eq. (64) is represented graphically in

Fig. 2. For comparison we show the SM prediction from
Eq. (61) and the direct search limits. The strongest
laboratory constraints arise from elastic ν − e scattering.
The limits are flavor-dependent, but they are typically at the
level of [36]

μν ≲ 10−10 μB ðdirectÞ: ð65Þ

From the figure we see that the indirect early Universe
constraint is significantly stronger than the direct constraint
for B≳ 10−18 G. This provides the exciting opportunity to
constrain extensions of the SM that predict an enhancement
to the magnetic moment of Dirac neutrinos.

V. SUMMARY

Growing evidence for the existence of an intergalactic
magnetic field has motivated us to consider the effects of a
primordial magnetic field on models of exotic particle
physics in the early Universe. We have focused our study
on magnetic monopoles, axions, and Dirac neutrinos with a
magnetic moment. We summarize our results here.
In the context of a universe containing relic magnetic

monopoles, we have derived a “primordial Parker bound”
by requiring the survival of a primordial magnetic field
until the time of electron-positron annihilation. The bound,
which appears in Eq. (16), gives an upper limit on the
cosmological monopole number density today: n0 <
1 × 10−20 cm−3. This translates into an upper bound on
the monopole flux in the Milky Way; if the monopoles are
unclustered, then F < 3 × 10−14 cm−2 sec−1 sr−1ðv=10−3Þ,
and if they are clustered, the bound weakens by a factor of
∼105. In Fig. 1 we compare the primordial Parker bound
with other constraints on relic monopoles. If the primordial
magnetic field is not generated prior to T ≃MeV, then this
bound does not apply.
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After eþe− annihilation the monopoles are able to free
stream, and they evolve along with the magnetic field as
described by the system of equations in Eq. (24). The
solution is an analog of the familiar plasma oscillations
(“Langmuir oscillations”) seen in an electron-ion plasma.
In the regime where the plasma oscillations are fast
compared to the cosmological expansion, the coupling
of the monopoles to the magnetic field leads to an
anomalous scaling with redshift such that B ∼ a−9=4,
vm ∼ a−3=4, and ρB ∼ ρkin ∼ a−9=2. The behavior of the
coupled system is effectively the average of the usual
scalings for radiation ρB ∼ a−4 and the kinetic energy of a
nonrelativistic gas ρkin ∼ a−5. If the strength of the inter-
galactic magnetic field could be measured over a range of
redshifts, this would allow for a direct test of the anomalous
scaling, and thereby probe relic magnetic monopoles.
We have also studied the effect of a primordial magnetic

field on the evolution of an axion condensate in the early
Universe. We obtain an exact solution to the MHD
equations for the magnetic field in the limit where the
advection term is negligible and the axion is homogenous.
After Peccei-Quinn breaking but prior to the QCD phase
transition, the axion field is frozen, because its mass is
smaller than the Hubble scale, and since the axion is
derivatively coupled, this leads to no effect on the magnetic
field. Below the QCD scale the axion field begins to
oscillate, and the spectrum of the magnetic field is distorted
as in Eq. (45). One helicity mode of the magnetic field is
enhanced while the other is suppressed; this CP-violation
is a consequence of the axion’s pseudoscalar nature.
However, the spectral shape of the magnetic field is only
affected on extremely large length scales, as given by
Eq. (50), except in situations where there can be significant
axion evolution prior to the QCD epoch.
We next study the evolution of the homogenous axion

condensate in the presence of a background magnetic field.
The axion behaves as a damped and driven harmonic
oscillator, as seen from its equation of motion Eq. (51). The
damping time scale depends on the strength of the magnetic
field and the photon-axion coupling. For typical parameters
it is generally larger than the cosmological time scale, and
therefore irrelevant for the evolution of the axion. It is
interesting that the driving force (source term H) is only
operative when the magnetic field has a helicity. This can
be seen directly from the interaction L ∋ φF ~F where

F ~F ∼E · B ∼ _h is related to the rate of change of magnetic
helicity h ¼ A ·B. Prior to the QCD phase transition when
the axion was effectively massless, the axion field equation
reduces to φ̈ ¼ H. In principle a very strong magnetic field
could cause the axion to grow without bound as
φðtÞ ¼ Ht2=2, by drawing energy from the magnetic field.
For typical parameters, however, this growth occurs on a
time scale that is much longer than the cosmological time.
It may still be the case that helical magnetic fields occurring
in astrophysical environments are strong enough to lead to
observable signatures.
We have also considered the resonant conversion of

CMB photons into axions, which leads to a distortion of the
CMB blackbody spectrum [55–57]. Using constraints on
spectral distortions from current and anticipated future
CMB telescopes, Ref. [57] obtained an upper bound on
the axion-photon coupling. For our fiducial magnetic field
strength this translates into gaγ ≲ 10−9 GeV−1 with current
data, and a forecast of gaγ ≲ 10−11 GeV−1 for experiments
presently under discussion [see Eq. (59)].
Finally we turn to the effect of the primordial magnetic

field on Dirac neutrinos, which carry amagnetic moment. In
the presence of a magnetic field, left-handed neutrinos can
be converted into right-handed neutrinos. If this spin-flip
process is in equilibrium in the early Universe, the right-
handed states would be populated, and the effective number
of relativistic neutrino species would double from three to
six, which is inconsistent with observations. Requiring that
this process is out of equilibrium at the time of the QCD
phase transition leads to an upper bound on the neutrino
magnetic moment and magnetic field strength. Drawing on
the work of Ref. [40], we find the limit in Eq. (64), which
implies μν < 3 × 10−16 μB for our fiducial magnetic field
parameters B0 ¼ 10−14 G and λB ¼ 10 Mpc. As seen in
Fig. 2, this bound is significantly stronger than the direct
search limits over most of the parameter space.
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