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We investigate models in which inflation is driven by an ultraviolet safe and interacting scalar sector
stemming from a new class of nonsupersymmetric gauge field theories. These new theories, different from
generic scalar models, are well defined to arbitrary short distances because of the existence of a controllable
ultraviolet interacting fixed point. The scalar couplings at the ultraviolet fixed point and their overall
running are predicted by the geometric structure of the underlying theory. We analyze the minimal and
nonminimal coupling to gravity of these theories and the consequences for inflation. In the minimal
coupling case the theory requires large nonperturbative quantum corrections to the quantum potential for
the theory to agree with the data, while in the nonminimal coupling case the perturbative regime in the
couplings of the theory is preferred. Requiring the theory to reproduce the observed amplitude of density
perturbations constrains the geometric data of the theory such as the number of colors and flavors for
generic values of the nonminimal coupling.
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I. INTRODUCTION

The inflationary paradigm plays a central role in modern
cosmology [1,2]. Many realizations have appeared in the
literature [3] with the vast majority using elementary scalar
fields to drive inflation. Theories with fundamental scalars
are, however, typically trivial. Meaning that for the theory to
be well defined at arbitrary short scales the renormalized
couplingmust vanish, and consequently the resulting theory
is noninteracting. It could happen that gravitational correc-
tions can render field theories featuring scalars well defined
at short distances, but so far no formal proof exists in four
dimensions, and without requiring additional (space-time)
symmetries. It is therefore interesting to explore models
where the issue is resolved before the underlying funda-
mental particle theory of the inflaton is coupled to gravity. A
possible solution is to assume the inflaton to be a composite
state made by a more fundamental matter [4,5] governed by
an asymptotically free theory [6,7]. The gravity dual
dynamics of these models has been investigated in [8].
Recently, however, a novel class of nontrivial four-

dimensional theories featuring elementary scalars appeared
[9]. The crucial ingredient is the presence of an exact
interacting ultraviolet (UV) fixed point in all the couplings
of the theory; i.e. the theories are complete asymptotically safe
[9]. The asymptotic safety scenario refers to the existence of
high-energy fixed points [10]. It plays a relevant role as a
possible UV completion of quantum gravity [10–15].1

The resulting physics is quite distinct from the traditional
complete asymptotic freedom scenario where a noninter-
acting UV fixed point emerges in all the couplings [45,46];
see also [47,48] for recent studies.
The template that we shall consider here consists of an

SUðNCÞ gauge theory featuring Aa
μ gauge fields with field

strengthFa
μν ða ¼ 1;…; N2

C − 1Þ,NF flavors of fermionsQi

ði ¼ 1;…; NFÞ in the fundamental representation, and an
NF × NF complex matrix scalar field H invariant under
UðNFÞL ×UðNFÞR rotations andunchargedunder thegauge
group. The fundamental Lagrangian is given by the sum of
theYang-Mills term, the fermion and scalar kinetic terms, the
Yukawa interaction, and scalar self-interaction terms,

L ¼ −
1

2
TrFμνFμν þ TrðQ̄iγμDμQÞ þ Trð∂μH†∂μHÞ

þ yTrðQ̄LHQR þ Q̄RH†QLÞ
− uTrðH†HÞ2 − vðTrH†HÞ2; ð1Þ

where the decomposition Q¼QLþQR with QL=R ¼
1
2
ð1�γ5ÞQ is understood. The trace Tr indicates the trace over
both color and flavor indices. The model has four classically
marginal coupling constants in four space-time dimensions
given by the gauge coupling g, the Yukawa coupling y, the
quartic scalar couplings u, and the “double-trace” scalar
coupling v. Further details of the model can be found in [9].
The large NF and NC Veneziano limit is taken such that

the ratio NF=NC is a continuous parameter. It is useful to
introduce the positive control parameter δ ¼ NF=NC −
11=2 that can be taken to be arbitrarily small.2
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1In addition several UV conformal extensions of the standard

model with(out) gravity have been discussed in the literature
[16–29]. Scale invariant inspired models have also been consid-
ered in particle physics and cosmology [30–44].

2δ corresponds to ϵ in [9]. We switched to δ to avoid
misunderstanding with respect to the standard notation for one
of the slow-roll parameters.
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The hypercritical surface, in the four-dimensional coupling
space, is unidimensional. This implies that along the line of
physics, which is the globally defined renormalization
group line connecting the infrared and the UV fixed point,
the dynamics is driven by a single coupling, e.g. the gauge
coupling. All the other couplings, including the scalar ones,
follow the gauge one. Furthermore in [49] it has been
shown that the scalar potential is stable at the classical and
quantum level. Therefore these theories hold a special
status; they are fundamental according to Wilson’s defi-
nition and we shall use it to model inflation. The first
phenomenological application of these kinds of theories
appeared in [50].
The quantum corrected and leading-log resummed

potential along the renormalization group flow from the
infrared to the ultraviolet reads [49]

V iUVFPðϕÞ ¼
λ�ϕ4

4N2
fð1þWðϕÞÞ

�
WðϕÞ
Wðμ0Þ

� 18
13δ

; ð2Þ

where the positive quartic coupling is given by λ� ¼
δ 16π2

19
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pp
−

ffiffiffiffiffi
23

p
− 1Þ at the fixed point. ϕ is

the real scalar field along the diagonal of
Hij ¼ ϕδij=

ffiffiffiffiffiffiffiffiffi
2Nf

p
. The different normalization inHij with

respect to Ref. [49] ensures a canonically normalized
kinetic term for ϕ. WðϕÞ≡W½zðϕÞ�, where W½z� is the
Lambert function solving the transcendent equation

z ¼ W expW; with ð3Þ

zðμÞ ¼
�
μ0
μ

�4
3
δα�

�
α�

α0
− 1

�
exp

�
α�

α0
− 1

�
: ð4Þ

α� ¼ 26
57
δþOðδ2Þ is the gauge coupling at its UV fixed

point value and α0 ¼ αðμ0Þ the same coupling at a
reference scale μ0. The asymptotically safe nature is easily
grasped by showing the explicit running of the coupling:

α ¼ α�

1þWðμÞ : ð5Þ

At asymptotically high energies WðμÞ vanishes while it
grows towards the infrared. It is convenient to fix α0 via
α0 ≡ α�=ð1þ kÞ with k ∈ Rþ which, in practice, amounts
to fixing the arbitrary renormalization reference scale μ0
along the RG flow. As pointed out in [49] the value of
k ¼ 1=2, i.e. α0 ¼ 2α�=3, corresponds to an exact critical
transition scale μ0 ¼ Λc above which the physics is
dominated by the interacting UV fixed point and below
it by the Gaussian IR fixed point. The interacting nature of
the UV fixed point embodies the fact that it is approached
as a power law in the renormalization scale

αðμÞ ¼ α� þ ðαðμ0Þ − α�Þ
�
μ

μ0

�
−104
171

δ2þOðδ3Þ
; ð6Þ

along the line of physics.
The Lambert function in the deep UV limit approaches

lim
ϕ=μ0→∞

WðϕÞ ¼ k

�
ϕ

μ0

�
−104
171

δ2

: ð7Þ

Here we have replaced the renormalization scale with the
value of the background scalar field value ϕ. The potential
therefore acquires the asymptotic form

lim
ϕ=μ0→∞

V iUVFP ¼
λ�ϕ4

4N2
F

�
ϕ

μ0

�
−16
19
δ

: ð8Þ

Because δ > 0 the overall exponent is reduced, at high
energies, with respect to the classical theory. In a theory
with an interacting UV fixed point we observe that the
overall coupling and exponent are geometric quantities that
depend solely on the number of flavors and colors of the
theory. Furthermore the overall height of the potential can
be made arbitrarily small by reducing δ, which, de facto
leads to a small amplitude of scalar perturbations as will
be shown.
The template offers the opportunity to investigate the

inflationary dynamics of asymptotically safe gauge theories
and to grasp some of its general features.

II. GRAVITY AND INFLATION

We couple the model to gravity as follows:

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
M2 þ ξϕ2

2
Rþ gμν

2
∂μϕ∂νϕ−V iUVFP

�
;

ð9Þ
where we explicitly show the coupling to ϕ, the modulus of
H, that we take to drive inflation. The part of the action
omitted here contains kinetic and covariant derivative terms
shown in (1) that do not drive inflation. The extra particles
can become interesting, however, when trying to connect
the theory to the standard model.
In this work we consider single-field inflation with a

quantum corrected potential. This can be technically
achieved by further adding to the action an UV irrelevant
mass operator for 2N2

f − 1 real scalar fields while keeping
massless the singlet scalar along the diagonal of H. It
would, however, be very interesting to explore in the future
a more general mass texture causing several scalar fields to
be active during inflation.
A conformal transformation of the metric allows us to

rewrite the action as minimally coupled but with a new
canonically normalized scalar field and potential. This will
transform to the so-called Einstein frame from the original
Jordan frame [5,51].
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We will now examine the inflationary predictions of this
potential, assuming single-field slow-roll inflation, by first
computing the associated slow-roll parameters [52]

ϵ ¼ M2
P

2

�
dU=dχ

U

�
2

ð10Þ

and

η ¼ M2
P
d2U=dχ2

U
: ð11Þ

Here U ¼ V iUVFP=Ω4 with Ω2 ¼ ðM2 þ ξϕ2Þ=M2
P the

conformal transformation of the metric and χ the canoni-
cally normalized field in the Einstein frame. Note that
throughout this paper we will assume M ¼ MP. In the
future it would be interesting to analyze also the induced
gravity limit [53–58].
Inflation ends when the slow-roll conditions are violated,

that is when ϵðϕendÞ ¼ 1 or jηðϕendÞj ¼ 1. The number of
e-folds is

N ¼ 1

M2
P

Z
χini

χend

U
dU=dχ

dχ; ð12Þ

which we will set to N ¼ 60. In this work we will compare
to the experimental results via the power spectrum of scalar
perturbation of the cosmic microwave background, namely
the amplitude As and tilt ns, and the relative strength of
tensor perturbations, i.e. the tensor-to-scalar ratio r. In
terms of slow-roll parameters these are given by

As ¼
U

24π2M4
Pϵ

; ð13Þ

ns ¼ 1þ 2η − 6ϵ; ð14Þ

r ¼ 16ϵ; ð15Þ

where all parameters are evaluated at the field value χin.
The analysis will be made independently for the

minimally (ξ ¼ 0) and for the nonminimally coupled
scenario (ξ > 0).

III. MINIMAL COUPLING

The inflationary potential here is directly V iUVFP. For
each given value of ϕ the overall height of the potential
decreases with increasing NF, decreasing δ, and/or by
decreasing the reference scale μ0 above which the UV fixed
point is nearly reached. It is therefore clear that the model
allows for several natural ways to achieve the observed
amplitude of scalar perturbations. The naturality resides in
the fact that these parameters that we are allowed to change
are all geometric in nature, i.e. depend on the structural
properties of the underlying theory like the number of

flavors and colors. This is different from the usual infla-
tionary single-field paradigm where a scalar self-coupling,
a priori of order one, must be fine-tuned to a tiny value.
For the UV potential (8) the field value at the end of

inflation ϕend reads

ϕend ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
4 −

16

19
δ

��
3 −

16

19
δ

�s
MP: ð16Þ

The initial value of the field for N e-folds reads

ϕin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
4 −

16

19
δ

��
2 N þ 3 −

16

19
δ

�s
MP: ð17Þ

We observe that the corrections to the anomalous dimen-
sion of the scalar field parametrized by δ tends to lower the
field values of inflation that, however, remain trans-
Planckian. For N ¼ 60 e-folds we have for r and ns,

3

ns ¼
2N − 3

2N þ 3 − 16
19
δ
¼ 0.951þ 0.00651 · δþOðδ2Þ;

ð18Þ

r ¼ 32ð1 − 4
19
δÞ

2N þ 3 − 16
19
δ
¼ 0.260 − 0.0530 · δþOðδ2Þ: ð19Þ

These results are shown in Fig. 1. This shows that to be
within the 2σ Planck ’15 contours [52] values of δ around
0.7–0.8 are needed. These relatively large values are
outside the perturbative regime of the theory. The impor-
tance of higher order corrections can be deduced from
Fig. 2 where we show the comparison of the linear
approximation in δ with the full dependence stemming
from the potential in Eq. (2).
Using (8) and (13) we compute the amplitude of scalar

perturbations

As ¼
λ�

48π2ð4 − 16
19
δÞ2N2

F

�
ϕin

MP

�
6−16

19
δ
�
μ0
MP

�16
19
δ

∼
105 · δ
N2

F

�
μ0
MP

�16
19
δ

: ð20Þ

Requiring As ¼ 2.2 × 10−9, as measured by Planck ’15,
allows us to determine the following relationship between
the transition scale μ0, δ, and NF:

2log10NF − log10δ −
16δ

19
log10

�
μ0
MP

�
≈ 14: ð21Þ

3These results correct the ones in Eqs. (33) and (34) of [51]
because it is η that violates first the slow-roll condition and not ϵ,
as it was assumed in [51].
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If we, for example, require the transition scale to be close to
the grand-unified inspired energy scale ∼10−3MP and
further assume δ ¼ 0.1 we obtain NF ∼ 106. The needed
number of flavors drops when δ increases towards the
values preferred by the Planck results while the final overall
number of fields remains large.

IV. NONMINIMAL COUPLING

Here the nonminimal coupling parameter ξ is non-
vanishing. The Einstein frame potential is

U ¼ V iUVFP

Ω4
≈

λ�ϕ4

4N2
Fð1þ ξϕ2

M2
P
Þ2
�
ϕ

μ0

�
−16
19
δ

: ð22Þ

We plot the potential in Fig. 3. In the large field limit ϕ ≫
MP=

ffiffiffi
ξ

p
the ϕ4 term in the numerator cancels against the

term in the denominator. In this limit the quantum correc-
tions dictate the behavior of the potential, which is found to
decrease as

λ�M4
P

4N2
Fξ

2

�
ϕ

μ0

�
−16
19
δ

: ð23Þ

This is the region of the potential to the right of the
maximum in Fig. 3. Inflation could, in principle, occur on
this side of the potential, naively indicated by the rolling of
the red ball. However since the potential flattens out with
increasing ϕ this option is not viable because the theory, in
isolation, does not permit a violation of the slow-roll
conditions. This would, in fact, lead to a never-ending
slowly rolling inflationary epoch.
We will therefore concentrate on the region to the left of

the maximum, indicated by the green rolling ball, where it
is seen that inflation can be brought to an end. Furthermore
the resulting r and ns values agree with the Planck ’15
measurements. We show in Fig. 4 the r and ns predictions
for different δ for 60 e-folds and for either ξ ¼ 1=6 or
ξ ¼ 103. In agreement with attractor-type models
[51,57,59,60] the tensor-to-scalar ratio is small and the
ns predictions are mostly inside the Planck contours. The
larger ξ is, the more the results are sensitive to increasing δ?
Different from the minimal coupling case we are well
within the Planck allowed regions for values of δ compat-
ible with perturbation theory of the underlying fundamental
inflationary dynamics.
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FIG. 3 (color online). The nonminimally coupled potential for
δ ¼ 0.1, NF ¼ 10, ξ ¼ 1=6, μ0 ¼ 10−3MP.
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FIG. 2 (color online). This figure shows r in red (upper curves
at small δ) and ns in blue as functions of δ. The solid lines are
calculated using the complete expression for the potential in (2)
and further assuming μ0 ¼ 10−3MP. The dashed lines show the
leading order in δ from Eqs. (18) and (19).
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FIG. 1 (color online). We compare the theoretical predictions in
the r-ns plane for different values of δ with Planck ’15 results for
TT, TE, EE, þlowP, and assuming ΛCDMþ r [52]. We used the
complete expression for the quantum corrected potential in (2)
and further assumed μ0 ¼ 10−3MP
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Requiring the theory to produce the correct value of the
amplitude of density perturbations relates the μ0, δ,NF, and
now also the ξ parameters. We show in Fig. 5 the resulting
dependence of δ on Nf for fixed μ0 ¼ 10−3MP and several
values of ξ. There is also a rather weak dependence on the
choice of μ0=MP, since it enters the potential with a power
of ð16=19Þδ. NF decreases fast with increasing ξ but also
with decreasing δ because of the further underlying theory
relation λ� ∝ δ.

For completeness we show in Fig. 6 the initial (dashed
line) and final (solid line) values of the field in units of the
Planck scale as function of the nonminimal coupling ξ.
The figure demonstrates that these values decrease below
the Planck scale for ξ above the conformal value and
approach constant trans-Plankian values above the Planck
scale for small ξ.

V. CONCLUSION AND SELF-CRITICISM

We introduced models of inflation stemming from
complete asymptotically safe field theories. The novelty
resides in the fact that, different from generic scalar models,
the theories, before coupling to gravity and without addi-
tional symmetries such as supersymmetry or extra space-
time dimensions, are well defined to arbitrary short
distances because of the existence of the controllable
UV interacting fixed point. The scalar couplings and their
running are predicted by the geometric structure of the
underlying theory [9]. The quantum potential has been
computed in [49]. We could therefore use it to analyze the
minimal and nonminimal coupling to gravity and its
consequences for inflation. We have shown that inflation
can occur in both cases. The minimal coupling case
requires large nonperturbative corrections to the potential
for the theory to agree with the data, while the nonminimal
coupling prefers the perturbative regime of the theory.
Furthermore the observed value of the amplitude of density
perturbations helps in selecting the geometric data of the
theory, i.e. the number of colors and flavors, for generic
values of the nonminimal coupling. In particular one can
achieve a successful inflationary scenario even for ξ ¼ 1=6,
i.e. the conformal value.
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= 100

100 1000 104 105
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FIG. 5. This figure shows the δ dependence on NF for different
values of the nonminimal coupling ξ obtained by constraining the
model to provide the observed amplitude of density perturba-
tions. The plot assumes the transition scale μ0 ¼ 10−3MP.
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FIG. 4 (color online). We compare the theoretical predictions in
the r-ns plane, in the nonminimally coupled case, for different
values of δ with Planck ’15 results [52]. Full dots refer to the
conformal coupling choice for ξ ¼ 1=6 and the * marked points
to ξ ¼ 103. We used the complete expression for the quantum
corrected potential in (2) and further assumed μ0 ¼ 10−3MP and
the number of e-folds is 60.
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FIG. 6. The figure shows the initial (dashed line) and final
(solid line) values of the inflaton field in the Jordan frame as
functions of the nonminimal coupling ξ for δ ¼ 0.01 and
μ0 ¼ 10−3MP.
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Despite these partial successes we still face several
challenges. Gravity, for example, in our investigation has
played a spectator role. It is conceivable that once its
dynamics is taken into consideration, in a controllable
manner, it might modify the UV behavior of the theory.
In this case one can imagine the possible existence of a
combined UV interacting fixed point of the resulting
theory. If gravity itself develops an UV interacting fixed
point as suggested by Weinberg [33] it might also drive

inflation [10]. Variations on the theme have been considered
in [61]. In the future it would be interesting to analyze or
perhaps even unify these, so far, complementary avenues.
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