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In a modified gravity theory, the propagation equation of gravitational waves will be presented in a
nonstandard way. Therefore this tensor mode perturbation of time-space, as a complement to the scalar
mode perturbation, provides a unique character distinguishing modified gravity from general relativity. To
avoid the model-dependent issue, in this paper, we propose a parametrized modification to the propagation
of gravitational waves. We show the effects on the angular power spectrum of cosmic microwave
background radiation due to the parametrized modification and its degeneracy to the tensor mode power
spectrum index nt and its running αt. Last, we report the current status on the detection of modified gravity
through the currently available cosmic observations. Our results show no significant deviation to general
relativity.
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I. INTRODUCTION

Commonly realizing a late time accelerated expansion of
our Universe needs a modification to general relativity
(GR) at large scales dubbed as modified gravity (MG), or
an addition of exotic energy component named dark energy
(DE). However, these realizations are totally different in
nature. Finding out a modification to GR at large scales
means the discovery of new gravity theory beyond GR.
Confirming the existence of DE implies the discovery of
new particle(s) beyond the standard particle physics model.
The issue is how to distinguish MG theories from DE
models. It is believed that cosmic observations provide the
finally experimental judgement in addition to the funda-
mental physics theory.
Due to the existence of a great diversity of MG theories

and DE models, it is almost impossible to test every model.
One possibility is finding out a general formalism which can
grasp the main characteristics of MG theories and DE
models, for example, a feasibly parametrized MG and DE
model that are consistent with cosmic observations but may
be independent of any concrete fundamental physics. Based
on this spirit, a parametrized modification to GR in the scalar
mode perturbation was studied in the literature; see [1–3] and
references therein for examples. The modification was
mainly focused on the Poisson equation and the slip of
the Newtonian potentials of Φ and Ψ, but keeps the back-
ground evolution to a standard ΛCDM cosmology, say,

k2Ψ ¼ −μðk; aÞ4πGa2½ρΔþ 3ðρþ PÞσ�; ð1Þ

k2½Φ − γðk; aÞΨ� ¼ μðk; aÞ12πGa2ðρþ PÞσ; ð2Þ

in Fourier k-space as an example borrowed from Ref. [2],
whereΔ ¼ δþ 3Hð1þ wÞθ=k2 is the gauge-invariant over-
density and δ≡ δρ=ρ is the overdensity of energy compo-
nent ρ; H≡ _a=a is the conformal Hubble parameter, where
the dot denotes the derivative with respect to the conformal
time τ, and a is the scale factor; w is the equation of state of
energy component ρ; θ is the divergence of the velocity
perturbation, i.e., the peculiar velocity; and σ is the aniso-
tropic stress. Ψ and Φ are the Newtonian potentials in the
conformal Newtonian gauge

ds2 ¼ aðτÞ2f−ð1þ 2ΨÞdτ2 þ ½ð1− 2ΦÞδij þ 2hTij�dxidxjg;
ð3Þ

where hTij is a traceless (hTii ¼ 0), divergence-free (∇ihTij),
symmetric (hTij ¼ hTji) tensor field. The two μðk; aÞ and
γðk; aÞ are scale- and time-dependent functions encoding
any modification to gravity theory in scalar mode. Note that
GR is recovered in the μ ¼ γ ¼ 1 limit. When considering
the locality, general covariance and the quasistatic approxi-
mation, the physically acceptable forms of μðk; aÞ and
γðk; aÞ should be the ratios of polynomials in even k, with
a numerator of μ set by the denominator of γ [3]. Therefore,
for the scalar part modification, one obtains [3] (see also
Refs. [4–6])

γðk;aÞ ¼ p1ðaÞþp2ðaÞk2
1þp3ðaÞk2

; μðk;aÞ ¼ 1þp3ðaÞk2
p4ðaÞþp5ðaÞk2

;

ð4Þ

where piðaÞ; i ¼ 1…5 are functions of a. The μðk; aÞ and
γðk; aÞ can be fixed for a specific MG model; see Refs. [7,8]
for examples. However, the Planck 2015 DE and MG paper*lxxu@dlut.edu.cn
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has shown that the scale dependence of μ and γ does not lead
to a significantly small χ2 with respect to the scale-
independent case [9]. This may come from the insufficiency
of the large scale structure information. Therefore in this
paper, we only consider the scale-independent forms. After
eliminating the scale dependence, the final form for μ and γ
should be

γðk; aÞ ¼ pγðaÞ; μðk; aÞ ¼ 1

pμðaÞ
; ð5Þ

for explicitness we propose piðaÞ ¼ λiasi ; ði ¼ γ; μÞ
as a working example. In phenomena, it can be a function
of wdeðaÞ and ΩdeðaÞ effectively, say, piðaÞ ¼
λsiwdeðaÞΩdeðaÞsi , etc.
The tensor mode perturbation, as a complement to the

scalar mode perturbation, should also be altered in a
modified gravity theory. In GR, the propagation of gravi-
tational waves in Fourier k-space is written as

ḧTij þ 2H _hTij þ c2Tðk2 þ 2KÞhTij ¼ 8πGa2Πij; ð6Þ

where the transverse-traceless tensor Πij is the anisotropic
part of the stress tensor, K the three-dimensional curvature
(K ¼ 0 is adopted in this paper), and c2T is the square of the
speed of gravitational waves. In the literature [10–14], a
parametrized modification to the tensor mode perturbation
was proposed recently. In general, the propagation of
gravitational waves is modified due to the interaction
between the new degree of freedom (introduced for
providing late time accelerated expansion of our
Universe) and the curvature or metric [10],

ḧTij þ 2H
�
1þ χðk; aÞ

2

�
_hTij þ c2Tðk2 þ 2KÞhTij þ a2m2

ghTij

¼ 8πGa2Γðk; aÞSij; ð7Þ

where χ ≡H−1ðd lnM2�=dtÞ describes the running rate of
the effective Planck mass M�, and mg is the mass of a
graviton in a massive gravity theory. The transverse-trace-
less tensor Sij is the source term for the gravitational waves.
The form of this source term Sij depends on MG theories or
the properties of matter fluid [10,15]. It is very important to
note that when the source term Sij comes from the
anisotropic stress of matter fluid, the homogenous part
of Eq. (7) will never be modified [10]. Therefore the
anisotropic stress plays the role of a signature of nonstand-
ard propagation of gravitational waves. It also implies that
any significant ξðk; aÞ ≠ 0 or mg ≠ 0 signals the detection
of MG which cannot be disguised by DE. The Γðk; aÞ term
modification would be related to the ξðk; aÞ term for a
specific MG model; for example in fðRÞ gravity the
propagation of gravitational waves is given by [16]

ḧTijþ 2H
�
1þ 1

2

d lnF
d lna

�
_hTijþ c2Tðk2þ 2KÞhTij ¼

8πGa2Πij

F
;

ð8Þ

where F≡ df=dR. Sometimes c2T will also deviate from
the speed of light in a MG model, for example, the scalar-
tensor and Einstein-aether models as shown in Ref. [10]. In
Ref. [17], the speed of the cosmological gravitational
waves was constrained by using the Planck 2013 and
BICEP2 data sets, where no significant deviation from the
standard values c2T ¼ 1 was probed: c2T ¼ 1.30� 0.79.
Therefore in this paper, we will fix c2T to its standard
value. But we also will show the possible degeneracy
between the c2T and the χðk; aÞ term in Sec. II. Motivated by
the modification coming from fðRÞ gravity, say, Eq. (8),
one can propose a modified equation in the following form:

ḧTij þ 2ξðk; aÞH _hTij þ c2Tðk2 þ 2KÞhTij ¼ 8πGμðk; aÞΠij;

ð9Þ

where ξðk; aÞ and μðk; aÞ are two functions encoding a
modified gravity theory. Since the ξðk; aÞ characterize the
running rate of the effective Planck mass, which should be
scale independent, we therefore assume

ξðk; aÞ ¼ ptðaÞ; ð10Þ

and we will take ptðaÞ ¼ λtast as a working example. In
phenomena, it can be a function of wdeðaÞ and ΩdeðaÞ
effectively, say, ptðaÞ ¼ λtwdeðaÞΩdeðaÞt, etc.
Recently, the Background Imaging of Cosmic

Extragalactic Polarization (BICEP2) experiment [18,19]
has detected the B-modes of polarization in the cosmic
microwave background (CMB), where the tensor-to-scalar
ratio r ¼ 0.20þ0.07

−0.05 with r ¼ 0 disfavored at 7.0σ of the
lensed-ΛCDM model was found. Recently, Planck 2015
released the polarization result and did not find significant
signal of the primordial gravitational waves. However the
Planck 2015 temperature angular power spectrum (TT),
E-mode polarization power spectrum (EE), and temper-
ature-polarization cross-power spectrum (TE) data are not
released now. So in this paper, we still use the Plank 2013
data points. But our analysis on the CMB TT and B-mode
polarization power spectrum (BB) power spectrum does not
depend on the data points.
This paper is structured as follows. At first, in Sec. II, we

show the effects on the CMB TT and BB power spectrum
due to the parametrized modification to GR along with
Eqs. (5), (9), and (10). To confirm these effects purely
coming from the parametrized modification, we also test
the possible degeneracy to the tensor spectrum index nt and
its running αt ¼ dnt=d ln k. We report the current probe of
MG by performing a global Markov chain Monte Carlo
(MCMC) analysis in Sec. III. Section IV is the conclusion.
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II. EFFECTS ON THE CMB TT AND BB POWER
SPECTRUM

To study the effects on the CMB TT and BB power
spectrum arising from the parametrized modification to
GR, we modified the MGCAMB code [2] to include the
tensor perturbation equation as shown in Eqs. (9)–(10). In
the MGCAMB code, the CMB TT source term from the
scalar mode perturbation in terms of the synchronous gauge
variables is given by [20]

SðSÞT ðk; τÞ ¼ g

�
ΔT0 þ 2_αþ _vb

k
þ Π

4
þ 3Π̈
4k2

�

þ e−κð_ηþ α̈Þ þ _g

�
αþ vb

k
þ 3 _Π
2k2

�
þ 3g̈Π

4k2
;

ð11Þ

where κ is the optical depth, g is the visibility function, and
Π ¼ ΔT

2 þ ΔP
2 þ ΔP

0 and ΔT
lðΔP

lÞ are the lth moments of
ΔTðΔPÞ in terms of Legendre polynomials [20]. The α term
is changed to [2]

α ¼
�
ηþ μ8πGa2

2k2
½γρΔþ 3ðγ − 1Þðρþ PÞσ�

�
=H; ð12Þ

in terms of μ and γ for the parametrized MG. The integrated
Sachs-Wolfe (ISW) effect term e−κð_ηþ α̈Þ in (11) is
modified to [2]

_ηþ α̈ ¼ κ

2k2

�
−
�
ðγ þ 1Þð_ρΔþ ρ _ΔÞ þ γ

3

2
ðρþ PÞ _σ þ γ

3

2
ð_ρþ _PÞσ

�
þ _γμ

�
ðρΔÞ þ 3

2
ðρþ PÞσ

��
; ð13Þ

which is the time derivative of the summation of the
Newtonian potentials

Ψþ Φ ¼ _αþ η; ð14Þ
that is modified by the μ and γ terms through the variation
of α. The CMB TT source term from the tensor mode
perturbation in terms of the synchronous gauge variables is
given by [20]

SðTÞT ¼ − _he−κ þ g ~Ψ; ð15Þ

where ~Ψ denotes the temperate and polarization perturba-
tions generated by gravitational waves. Here _h is related to
α by

_h ¼ 2k2α − 6_η: ð16Þ
Now we move to study the effects on the CMB TT and

BB power spectrum as shown in Fig. 1, by fixing the
relevant cosmological parameters to their mean values
obtained by the Planck group [21] and r ¼ 0.2 by the
BICEP2 group [19], but varying the parameters contained
in γ, μ, ξ, and c2T freely. When λi ¼ 1, si ¼ 0 (i ¼ μ; γ; t)
and c2T ¼ 1 are respected, and the standard ΛCDM cos-
mology is recovered. It is called the corresponding stan-
dard value.
In the top two panels of Fig. 1, we show the effects on the

CMB TT (left panel) and BB (right panel) power spectrum
resulting from the variation of the μ term, by fixing γ ≡ 1,
ξ≡ 1, and c2T ≡ 1. For the CMB TT power spectrum, since
γ ≡ 1 is fixed, the ISW term is untouched (retained to the

standard ΛCDM model). The change of the amplitude of
the CMB TT power spectrum is mainly caused by the
integration of μ and _μ terms through the SW effect (the g _α
and _gα terms) along the line of sight, i.e., at the range of
20 < l < 200. Actually it is the result of the competition

between SðSÞT and SðTÞT source terms. For the CMB BB
power spectrum, the tensor perturbation h is sourced by the
μ term; therefore the amplitude of the CMB BB power
spectrum is enlarged with the increase of μ through the
lensing effects at the multipole l > 100 region. This
modification keeps the CMB BB power spectrum almost
untouched at low multipole l < 10, where the BB power
spectrum is mainly dominated by the primordial gravita-
tional waves.
In the middle two panels of Fig. 1, the effects on the

CMB TT (left panel) and BB (right panel) power spectrum
due to variation of the γ term are shown. The term
contributes not only to the SW effect but also to the early
and late ISW effect. Therefore it makes an observable
change at the low multipole l < 20. This late ISW effect
arises from the evolution of γ which cannot be produced by
the μ term. Similar to the μ term, the contribution to the
CMB BB power spectrum mainly comes from the lensing
effects, but the γ term makes its amplitude change along the
contrary direction.
In the bottom two panels of Fig. 1, we show the effects

on the CMB TT (left panel) and BB (right panel) power
spectrum arising from the variation of the ξðk; aÞ term in
the case of a fixed c2T ¼ 1. The ξðk; aÞ term only modifies
the propagation of the primordial gravitational waves
through the friction term _hT , but keeps the CMB TT power
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spectrum untouched. Increasing the friction depresses the
amplitude and make it move to the right direction. This
effect happens at the low multipole l < 100 and cannot be
mimicked by the μ and ξ terms which usually modify the

relations between Newtonian potentials. Therefore, the
CMB BB power spectrum at low multipole provides a
unique character, distinguishing MG from the DE model in
principle. In the right panel of Fig. 1, we also show the

FIG. 1 (color online). The effects on the CMB TT (left panel) and BB (right panel) power spectrum arising from the variation of μ (top
two panels), γ (middle two panels) and ξ (bottom two panels) terms, where the relevant cosmological parameters are fixed to their mean
values obtained by the Planck group [21] and r ¼ 0.2 by the BICEP2 group [19]. For every two panels, the other relevant MG
parametrization terms are fixed to their standard values.
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effects on the CMB BB power spectrum with a varying c2T .
When c2T varies for a MG model with fixed ξ≡ 1, it can
mimic the effect on the CMB BB power spectrum as that of
the ξ term. That is the degeneracy between ξðaÞ and c2T
terms as shown in Fig. 1. This confirms the results obtained
in Ref. [17] and the reliability of our code. The degeneracy
happens when 2ξðk; aÞH _hTij ∼ c2Tk

2hTij is respected. And
this degeneracy makes it more difficult to detect MG from
the CMB BB power spectrum.
However, in the above investigation, the primordial

power spectrum is specified by a fixed tensor-to-scalar
ratio r ¼ 0.2. But commonly the primordial power spec-
trum is characterized by the tensor-to-scalar ratio r, the
tensor mode power spectrum index nt, and its running
αt ¼ dnt=d ln k. So one should check whether the shift of
the CMB BB power spectrum at the multipole l < 100 is
caused by MG or modification of the propagation equation
of gravitational waves. In doing so, we show the effects on
the CMB TTand BB power spectrum arising from different
values of r, nt, and αt in GR for the standard ΛCDM
cosmology in Fig. 2. Here we only focus on the CMB BB
power spectrum. Large r values increase the ratio of At=As
and make the whole BB power spectrum move along the

vertical direction at the multipole l < 100, but the spec-
trum retains its shape. The index nt changes the amplitude
and shape of the power spectrum simultaneously at the
range 10 < l < 100. The running αt changes the shape at
l < 10 and has little effect on the power spectrum in the
range 10 < l < 100. Therefore careful choices of r, nt, and
αt can mimic the effects arising from the MG ξ term. Thus
to distinguish MG from DE models, one still needs to
understand the inflation very well. So in this work, we
assume the inflation model is parametrized by r only.

FIG. 2 (color online). The effects on the CMB TT and BB power spectrum with the variation of r, nt, and αt, where the relevant
cosmological parameters are fixed to their mean values obtained by the Planck group [21].

TABLE I. The data points of fσ8ðzÞ measured from RSD with
the survey references.

♯ z fσ8ðzÞ Survey and refs.

1 0.067 0.42� 0.06 6dFGRS (2012) [30]
2 0.17 0.51� 0.06 2dFGRS (2004) [31]
3 0.22 0.42� 0.07 WiggleZ (2011) [32]
4 0.25 0.39� 0.05 SDSS LRG (2011) [33]
5 0.37 0.43� 0.04 SDSS LRG (2011) [33]
6 0.41 0.45� 0.04 WiggleZ (2011) [32]
7 0.57 0.43� 0.03 BOSS CMASS (2012) [34]
8 0.60 0.43� 0.04 WiggleZ (2011) [32]
9 0.78 0.38� 0.04 WiggleZ (2011) [32]
10 0.80 0.47� 0.08 VIPERS (2013) [35]

TABLE II. The mean values with 1σ errors and the best fit
values of the model parameters and the derived cosmological
parameters, where the Planck 2013, WMAP9, BAO, BICEP2,
JLA, HST, and RSD data sets were used. “−” denotes the one
which is not well constrained.

Parameters Priors Mean with errors Best fit

Ωbh2 [0.005, 0.1] 0.02201þ0.00038
−0.00038 0.02200

Ωch2 [0.001, 0.99] 0.1177þ0.0017
−0.0017 0.1161

100θMC [0.5, 10] 1.0436þ0.0013
−0.0013 1.0431

τ [0.01, 0.81] 0.089þ0.013
−0.014 0.091

lnð1010AsÞ [2.7, 4] 3.113þ0.089
−0.088 3.135

ns [0.9, 1.1] 0.958þ0.026
−0.042 0.970

r [0, 1] 0.045þ0.008
−0.038 0.058

λμ [0, 2] 1.030þ0.023
−0.023 1.021

sμ ½−1; 1� 0.0054þ0.0037
−0.0037 0.0042

λγ [0, 2] 1.11þ0.16
−0.15 1.07

sγ ½−1; 1� 0.007þ0.027
−0.019 0.002

λt [0, 2] − 0.95
st ½−1; 1� 0.62þ0.31

−0.73 0.19
H0 73.8� 2.4 68.78þ0.77

−0.76 69.15
ΩΛ … 0.7032þ0.0095

−0.0094 0.7098
Ωm … 0.2968þ0.0094

−0.0095 0.2902
σ8 … 0.798þ0.021

−0.021 0.803
zre … 10.95þ1.14

−1.13 11.12
Age=Gyr … 13.745þ0.046

−0.046 13.753
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III. DATA SET AND RESULTS

In this section, we probe the signal of MG parametrized
by μ, γ, and ξ terms by using the currently available cosmic
observations which are summarized in the following, based
on the assumption that the inflation model is well under-
stood and parametrized by r only, and c2T is fixed to its
standard value 1:

(i) The newly released BICEP2 CMB B-mode data
[18,19]. They will be denoted by BICEP2. Although
the BICEP2 data have been confirmed as dust
polarization recently, we will still use these data
points; then they can be taken as a test with

significant primordial gravitational waves signals
in the future.

(ii) The full information of CMB which includes the
recently released Planck data sets, which include the
high-l TT likelihood (CAMSpec) up to a maximum
multipole number of lmax ¼ 2500 from l ¼ 50, the
low-l TT likelihood (low1) up to l ¼ 49 and the low-
l TE, EE, BB likelihood up to l ¼ 32 fromWMAP9.
The data sets are available online [21]. This data set
combination will be denoted by PþW.

(iii) For the BAO data points as “standard ruler,” we use
the measured ratio of DV=rs, where rs is the
comoving sound horizon scale at the recombination

FIG. 3 (color online). The 1D marginalized distribution and 2D contours for interested model parameters with 68% C.L., 95% C.L. by
using the Planck 2013, WMAP9, BAO, BICEP2, JLA, HST, and RSD data sets.
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epoch, and DV is the “volume distance,” which is
defined as

DVðzÞ ¼ ½ð1þ zÞ2D2
AðzÞcz=HðzÞ�1=3; ð17Þ

whereDA is the angular diameter distance. The BAO
data includeDVð0.106Þ ¼ 456� 27 ½Mpc� from the
6dF Galaxy Redshift Survey [22]; DVð0.35Þ=rs ¼
8.88� 0.17 from SDSS DR7 data [23]; and
DVð0.57Þ=rs ¼ 13.62� 0.22 from BOSS DR9 data
[24]. This data set combination will be denoted
by BAO.

(iv) The ten fσ8ðzÞ data points from the redshift space
distortion (RSD) are used; they are summarized in
Table I.
The scale dependence of the growth rate f ¼

d lnΔm=d ln a in a gravity theory beyond GR at
linear scale was reported in Refs. [25,26], where
Δm ¼ δm þ 3Hð1þ wmÞθm=k2. Thus the product
fðz; kÞ and σ8ðzÞ, i.e., fσ8ðz; kÞ, depends on the
scale k obviously, since σ8ðzÞ is the function only of
redshift z. To remove this explicit scale dependence
of fσ8ðzÞ, we should define it in theory as

fσ8ðzÞ ¼
dσ8ðzÞ
d ln a

; ð18Þ

which is scale independent for any gravity theory
and cosmological model. The conventional defini-
tion is recovered for GR. Here we would like to warn
the reader that the observed values of fσ8ðzÞ are
obtained based on the standard ΛCDM model, and
are still unavailable for MG. With the observations
on Fig. 11 in Ref. [27], say, in the regime k <
0.1h=Mpc at z ¼ 0 for jfR0j ¼ 10−4, the linear
theory prediction for the growth rate almost matches
the N-body simulation results for the fðRÞ model,
but deviates from the GR ones by about 20%.
Therefore, we naively assume that the underlying
complication [including the scale dependence of the
growth rate fðz; kÞ] can enlarge the error bars listed
in Table I to 20%, when the model parameter space
is constrained. Therefore, we can take it as a
preliminary result from the RSD constraint.

(v) The consistence of Ωm between Ia supernovae and
Planck 2013 was shown by the SDSS-II/SNLS3
joint light-curve analysis; for details, please see [28].

(vi) The present Hubble parameter H0 ¼ 73.8�
2.4 ½km s−1Mpc−1� from HST [29] is used.

We perform a global fitting to the model parameter
space

P ¼ fΩbh2;Ωch2; 100θMC; τ; lnð1010AsÞ; ns; r; λμ; sμ; λγ; sγ; λt; stg; ð19Þ

on the Computing Cluster for Cosmos by using the
publicly available package CosmoMC [36]. The priors
for the model parameters are shown in the second
column of Table II. The running was stopped when
the Gelman and Rubin R − 1 parameter R − 1 ∼ 0.02
was satisfied; that guarantees the accurate confidence
limits. The obtained results are shown in Table II for the
data combinations: Planck 2013, WMAP9, BAO, BI-
CEP2, JLA, HST, and RSD. The obtained contour plots
for the model parameters r, st and λt are shown in
Fig. 3.
One can clearly see that no significant deviation fromGR

was detected for the scaler perturbations in 2σ regions.
However, for the scalar perturbations modeling the modi-
fication to the Poisson equation, slight deviations to the
standard values in 1σ regions for model parameters λμ ¼
1.030þ0.023

−0.023 and sμ ¼ 0.0054þ0.0037
−0.0037 are shown. This tension

was also reported in the Planck 2015 paper for dark energy
and modified gravity [37]. And this tension can be
reconciled by including the CMB lensing [37]. It is
interesting to show the correlations for model parameter
pairs λμ − sμ and λγ − sγ . The lack of correlation between
the μ and γ terms implies that they have different sources
and cannot mimic each other.

FIG. 4 (color online). The same as in Fig. 3, but for the model
parameters r, λt, and st.
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For the tensor perturbations, as shown in Fig. 4, one can
see the anticorrelation between model parameters st and r.
This can explain the small values of r. The model parameter
λt cannot be well constrained due to the lack of data points
below l < 10. A detection of the deviation to GR in this
region is a tough task due to the domination of cosmic
variance.
In the whole global fitting process, we have fixed c2T to

its standard value 1. If it is taken as another free model
parameter, one cannot obtain a tight constraint to c2T based
on currently available data points due to the degeneracy to
the ξ term which is not well constrained, as shown in Fig. 3
and Table II. Therefore, the introduction of free c2T will not
change the main results of our analysis.

IV. CONCLUSION

In this paper, we proposed a parametrized time-dependent
modification to the propagation of gravitational waves, since
the scale dependence does not lead to a significantly small χ2

with respect to the scale-independent case [9]. Taking this
specific form as a working example, we showed the effects
on the CMB TT and BB power spectrum due to this kind of
modification to GR by adopting different values of the model
parameters. We also showed the possible degeneracy to the
tensor mode power spectrum index nt and its running αt. Our
analysis reveals that the modification to GR at tensor mode
perturbations has effects on the CMB BB power spectrum at
low multipole l < 10, i.e., the large scale, and keeps the
shape of the CMB BB power spectrum. The tensor mode
power spectrum index nt and its running αt have effects on
the CMB BB power spectrum in the range l ∈ ð1; 100Þ and
change the shape of the CMBBB power spectrum. It implies
that precise data points below l ∼ 10 can break this degen-
eracy between modification to GR and the power spectrum
index and its running. However it is a tough task due to the
domination of cosmic variance in this region.

We also used the currently available cosmic observa-
tional data sets, which include Planck 2013, WMAP9,
BAO, BICEP2, JLA, HST, and RSD, to detect the possible
deviation to GR. The results were gathered in Table II and
Figs. 3 and 4. We did not find any significant deviation to
GR in 2σ regions. But for the scalar perturbation part, we
found the same tension as that reported in the Planck 2015
paper for dark energy and modified gravity [37]: the slight
deviations to the standard values in 1σ regions for model
parameters λμ ¼ 1.030þ0.023

−0.023 and sμ ¼ 0.0054þ0.0037
−0.0037 . The

lack of correlation between the μ and γ terms implies that
they have different sources and cannot mimic each other.
For the tensor perturbation part, the model parameter λt is
not well constrained due to the lack of data points. The
anticorrelation between model parameters λt and r was also
shown. This anticorrelation explains the small values of r.
Although in this paper, we have used the BICEP2 data

points which are already confirmed as dust polarization, the
analysis on the effects to the CMB TT and BB power
spectrum is still robust. Also, the correlation and anti-
correlation of the model parameters are irrelevant to the
BICEP2 data points.
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