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Rubano and Barrow have discussed the emergence of a dark energy, with late-time cosmic acceleration
arising from a self-interacting homogeneous scalar field with a potential of hyperbolic power type. Here, we
study the evolution of this scalar-field potential back in the inflationary era. Using the hyperbolic power
potential in the framework of inflation, we find that the main slow-roll parameters, like the scalar spectral
index, the running of the spectral index and the tensor-to-scalar fluctuation ratio can be computed analytically.
Finally, in order to test the viability of this hyperbolic scalar-field model at the early stages of the Universe, we
compare the predictions of that model with the latest observational data, namely Planck 2015.
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I. INTRODUCTION

The study of cosmic microwave background (CMB)
photons using the Planck [1] and BICEP2 [2] data sets has
opened up a new constraint on inflationary models [3].
Specifically, the detailed analysis of Planck data [1]
constrains single scalar-field models of slow-roll inflation,
to have the very low tensor-to-scalar fluctuation ratio
r ¼ nt=ns ≪ 1, with a scalar spectral index ns ≃ 0.96
possessing no appreciable running. The upper bound set
by the Planck Collaboration [1] on the tensor-to-scalar
fluctuation ratio, related to the absence of the B-modes of
polarization in the CMB, is r < 0.11, but their favored
regions (higher than 95% C.L.) point towards a more
stringent bound of r ≤ 10−3. From a theoretical viewpoint
one can see that this is in agreement with the so-called
Starobinsky-type (or R2, with R denoting the scalar
spacetime curvature) inflationary models [4].
Last year, however, the BICEP2 team [2] made an

important claim: to have made the first measurement of
B-mode polarization in the CMB radiation. This meas-
urement was initially interpreted as an indication of
gravitational waves at the time of the last scattering, with
a tensor-to-scalar ratio r ¼ 0.16þ0.06−0.05 . If such claims were
confirmed, they would constitute the first experimental
observation of (transverse) primordial (possibly quantum)
metric fluctuations. For the scalar spectal index, it has
been found that ns ≃ 0.96 and dns=d ln k≃ 0, in agree-
ment with the Planck data [1].
Since then a great effort has been spent in order to

compare the BICEP2 tensor-to-scalar ratio with the choice of
inflationary paradigm (R2 [4], chaotic [5], inverse power law
[6], hilltop [7], natural [8], supersymmetry [9], D-flation [10]
and the like).
Furthermore, during this period there was an intense

debate as to whether the BICEP2 signal is indubitably due

to primordial gravitational waves, or is polluted by
gravitationally lensed E-modes and galactic foregrounds.
Recently, in Ref. [11] it was stressed that magnetized dust
associated with radio loops due to supernova remnants
might affect the signal received by BICEP2. In the case of
polarization effects by galactic dust, Refs. [12,13] have
shown that the cosmological value of the tensor-to-scalar
ratio could be very small, r ≪ 0.1. Within this framework,
the recent analysis on the foreground dust in the BICEP2
region released by the Planck collaboration [14] points to
a significant foreground pollution which means that the
BICEP2 B-mode polarization data cannot be used as
evidence for primordial CMB polarization.
Recently, the joint analysis of BICEP2/Keck Array and

Planck data appeared in the literature [15]. This analysis
has placed an upper bound in the tensor-to-scalar ratio,
namely r < 0.12 at 95% significance level. In this context,
the Planck team has repeated the inflationary analysis by
using the Planck 2015 data and has essentially confirmed
the Planck 2013 results: ns ¼ 0.968� 0.006, dns=d ln k ¼
−0.003� 0.007 and r < 0.11 [16].
The crux of these studies is that the potential energy of

the scalar field is not really known and that one must
introduce it using phenomenological arguments, starting
with the simplest possibilities. There has been intense
debate and speculation about the functional form of the
potential energy VðϕÞ. Various candidates have been
proposed in the literature, such as a power law, inverse
power law, exponential and so on (for a review see [17] and
references therein) but exact solutions are not abundant and
always possess special mathematical features.
Some time ago, a special solution for a spatially flat

Friedmann-Lemaître-Robertson-Walker spacetime with a
perfect fluid with a constant equation of state parameter
Pm ¼ ðγ − 1Þρm (where, for radiation γ ¼ 4=3 and for dust
γ ¼ 1) and a scalar field with a constant equation of state
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Pϕ ¼ ðγϕ − 1Þρϕ was found in [18]. In particular, Rubano
and Barrow [18] (see also [19,20]) showed that under
specific conditions we can solve the Einstein equations
when the potential VðϕÞ has the interesting hyperbolic form

VðϕÞ ¼ A

�
sinh

� ffiffiffi
3

p ðγ − γϕÞffiffiffiffiffi
γϕ

p ðϕ − ϕ0Þ
��

b

; ð1Þ

where the constant A is

A ¼ 3H2
0ð1 −Ωm0Þ

�
1 − γϕ

2

��
1 −Ωm0

Ωm0

�−b=2
ð2Þ

and

b ¼ − 2γϕ
γ − γϕ

¼ 2ð1þ wϕÞ
1þ wϕ − γ

: ð3Þ

Note that H0 and Ωm0 are the usual cosmological param-
eters (although Ωm0 denotes any possible matter content
according to the appropriate choice of γ). If we trace the
late Universe (dustlike matter Pm ¼ 0) we have γ ¼ 1. We
remind the reader that wϕ denotes the equation of state
parameter of the dark energy usually parametrized by

wϕ ¼ Pϕ

ρϕ
¼ γϕ − 1, with Pϕ and ρϕ being the pressure

and density of the dark-energy fluid. Obviously the
exponent b plays an important role in the cosmic dynamics,
since it is related with the equation of state parameter, wϕ.
In this context, inverting Eq. (3) one can prove that the
equation of state parameter reduces to wϕ ¼ 2=ðb − 2Þ.
Note that the accelerated expansion of the Universe poses
the restriction wϕ < −1=3Ωde0 which implies 2ð1 − 3Ωde0Þ
< b < 2, where Ωde0 ¼ 1 −Ωm0.
The potential (1) has some interesting geometric char-

acteristics. Under specific conditions, it behaves either as
an exponential or as a power law. If jλϕj ≫ 1 (or jλϕj ≪ 1),

we find V ∝ e−bλϕ [or V ∝ ðλϕÞb], where λ ¼
ffiffi
3

p ð1−γϕÞffiffiffiffi
γϕ

p (see

also [19]). The initial motivation in [18] was to use
potential (1) to describe the late-time acceleration of the
Universe, but we can also apply Eq. (1) to the very early
states of the cosmic evolution when the cosmic fluid is
dominated by the radiation and the inflaton components.
This might then provide a unified picture of inflation and
dark energy in which both eras are described by the
potential of Eq. (1). It is the purpose of this work to
demonstrate compatibility of the Rubano and Barrow [18]
scenario with the Planck 2015 data, taking into account the
foreground ambiguities clouding the Planck 2015 data, as
mentioned previously. The structure of the paper is as
follows. The slow-roll inflation and its connection to the
hyperbolic potential of Ref. [18] are reviewed in Sec. II.
In Sec. III we study the performance of Eq. (1) against the

Planck 2015 data. Finally, our conclusions are summarized
in Sec. IV.

II. SLOW-ROLL INFLATION

Let us present here the basic ingredients in the context
of single-field inflation. Assuming an inflaton field ϕ
with potential energy VðϕÞ, the slow-roll parameters are
given by

ϵ ¼ M2
plV

02

2V2
; ð4Þ

η ¼ M2
plV

00

V
; ð5Þ

ξ ¼ M4
plV

0V 000

V2
; ð6Þ

where the prime denotes derivatives with respect to ϕ and
M2

pl ¼ 1=8πG. The corresponding spectral indices are
defined in terms of the slow-roll parameters, as usual
[21], by

ns ≃ 1þ 2η − 6ϵ; ð7Þ
r≃ 16ϵ≃−8nt; ð8Þ

n0s ¼ dns=d ln k≃ 16ϵη − 24ϵ2 − 2ξ: ð9Þ
In this framework, the number of e-folds is written as1

N ¼
Z

tend

t
HðtÞdt≃ 1

M2
pl

Z
ϕ

ϕend

VðϕÞ
V 0ðϕÞ dϕ; ð10Þ

where ϕend is the value of the inflaton field at the end of
inflation, namely ϵðϕendÞ≃ 1. Now, let us focus on the
potential of Eq. (1) which is written as

VðϕÞ ¼ Asinhbðϕ=fÞ; ð11Þ
where f is the scale in units of Mpl. Recall that in the dark-
energy era the corresponding constants are related to the
cosmological parameters [see Eqs. (2) and (3)]. Therefore,
in the early Universe one may expect that the corresponding
constants in Eq. (11) are not necessarily equal to those
derived by [18] using arguments from the late Universe
where pressureless matter dominates radiation (for com-
parison with the observational data see [19]). When
radiation dominates we have γ ¼ 4=3 and so from the
second equality of Eq. (3) we arrive at

1In the literature sometimes we label ϕ by ϕ⋆, which denotes
the value at the horizon crossing for which the scalar amplitude
is As ≈ Λ4=24π2ϵM4

pl, where the energy scale of inflation is
Λ ∼ 1016 GeV.
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b ¼ 6ð1þ wϕÞ
3wϕ − 1

: ð12Þ

Note that the restriction b > 1 implies that the potential
contains a critical point.
Now inserting Eq. (11) into the slow-roll parameters we

obtain after some simple algebra

ϵ ¼ b2M2
pl

2f2
coth2ðϕ=fÞ; ð13Þ

η ¼ bM2
pl

f2
½ðb − 1Þcoth2ðϕ=fÞ þ 1�; ð14Þ

ξ ¼ b2M4
pl

f4
coth2ðϕ=fÞ½ðb − 1Þðb − 2Þcoth2ðϕ=fÞ

þ ð3b − 2Þ�: ð15Þ

Combining Eq. (13) with Eqs. (14) and (15) we can write
ðη; ξÞ in terms of ϵ:

η ¼ bM2
pl

f2

�
2f2ϵ
b2M2

pl

ðb − 1Þ þ 1

�
ð16Þ

ξ ¼ 2M2
plϵ

f2

�
2f2ðb − 1Þðb − 2Þϵ

b2M2
pl

þ ð3b − 2Þ
�
: ð17Þ

In this case, the number of e-folds becomes

N ≃ f2

bM2
pl

ln

�
coshðϕ=fÞ

coshðϕend=fÞ
�
: ð18Þ

Inverting the above, we can express the inflaton as ϕðNÞ
by

ϕ ¼ fcosh−1½eNbM2
pl=f

2

coshðϕend=fÞ�: ð19Þ

In order to proceed with the analysis we need to
know the values of N and ϕend. First, it is natural to
consider that the number of e-folds lies in the interval
½50; 60�. Here, we set it to 55, for concreteness. Second,
using the constraint ϵðϕendÞ≃ 1 and Eq. (13) we can
estimate the value of the scalar field at the end of
inflation to be

ϕend ≃ f
2
ln

�
θ þ 1

θ − 1

�
; ð20Þ

where θ ¼ ffiffiffi
2

p
f=bMpl. Since θ > 1, the scale f obeys

the restriction f >
ffiffiffi
2

p
bMpl=2.

III. OBSERVATIONAL RESTRICTIONS

The point of this section is to test the viability of the
potential (11) at the inflationary level, involving the latest
cosmological data. In particular, the combined analysis
between Planck 2015 and various data such as WMAP,
high-l data and baryonic acoustic oscillations, shows that
the scalar spectral index is ns ¼ 0.968� 0.006. For the
scalar spectral index in this work we use n0s ¼ −0.003�
0.007. Furthermore, as mentioned in the Introduction, the
analysis of the Planck Collaboration places an upper limit
on the tensor-to-scalar ratio, r < 0.11, which is in agree-
ment with the joint analysis of the BICEP2/Keck Array and
Planck [15].
Let us now briefly present our results. In Figs. 1 and 2 we

show the confidence contours in the ðns; rÞ and ðns; n0sÞ
planes which are provided by the Planck team [16]. On top
of that we present the area for the individual sets of ðns; rÞ
which are based on the potential (11), whereas in Fig. 2 we
display the corresponding area in the case of ðns; n0sÞ.
Obviously, our results are consistent with those of Planck
2015. Specifically, as can be seen from Fig. 1, the tensor-to-
scalar fluctuation ratio could reach the value of r≃ 0.075,
which is in a good agreement within 1σ with that of the
BICEP2/Keck Array/Planck results (r≃ 0.05 see Fig. 9 in
[15]). Notice that in order to derive r≃ 0.075 the constants
in Eq. (11) need to obey the following inequalities: 1.02 ≤
b ≤ 1.1 [or inverting Eq. (12) we obtain −2.63 ≤ wϕ ≤
−2.39] and 26Mpl ≤ f ≤ 39Mpl. Concerning the running
spectral index we obtain n0s ≃−0.004, which is consistent
with that of Planck 2015, namely n0s ¼ −0.003� 0.007.
Moreover, we find that the running of the scalar spectral
index does not change significantly as a function of ns
(see Fig. 2). Regarding the inflaton field at the beginning of

Planck
Planck
Planck

FIG. 1 (color online). The ns − r diagram for the hyperbolic
potential of [19] using N ¼ 55. The contours are borrowed from
Planck 2015 [16]. The area which is plotted over the contours
corresponds to the hyperbolic Rubano and Barrow [18] potential
[see Eq. (11)]. The points correspond to chaotic (solid point) and
Starobinsky (star) inflation respectively.
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inflation, we obtain 10.6Mpl ≤ ϕ ≤ 12.9Mpl, while at the
end of inflation we require 0.7Mpl ≤ ϕend ≤ 1.1Mpl.
Furthermore, we find that the allowed region in which
our results satisfy the 2σ observational restrictions of
Planck 2015 is f ≥ 11.7Mpl and 1 < b ≤ 1.5. Thus the
data applied to slow-roll inflation place constraints on b,
although the value of scale f has only a lower limit at the
2σ level.
Finally, we would like to compare our results with those

found using other potentials. Specifically, in the case of
the chaotic inflation VðϕÞ ¼ Λ4ðϕ=MplÞk [5], the corre-
sponding slow-roll parameters are written as ϵ ¼ k=4N,
η ¼ ðk − 1Þ=2N and ξ ¼ ðk − 1Þðk − 2Þ=4N2. The latter
implies ns¼ 1− ðkþ2Þ=2N, r¼ 4k=N and n0s ¼−ð2þkÞ=
2N2. Using k ¼ 2 and N ¼ 55 we obtain ns ≃ 0.964, r≃
0.145 and n0s ≃−0.0007. This also corresponds to the
slow-roll regime of intermediate inflation [22] with Hubble
rate during inflation given by H ∝ tk=ð4−kÞ, with ns ¼ 1−
ðkþ 2Þr=8k, and k ¼ −2 gives ns ¼ 1 exactly to first order
and n0s ¼ −2ðns − 1Þ2=ðkþ 2Þ. On the other hand the
Starobinsky inflation [4], namely VðϕÞ ∝ ½1 − 2e−Bϕ=Mpl þ
Oðe−2Bϕ=MplÞ�, leads to the following slow-roll predictions
[23,24]: ns ≈ 1 − 2=N and r ≈ 8=B2N2, where B2 ¼ 2=3.
Furthermore, for Starobinsky inflation following the nota-
tions of [24] we find that the running spectral index is given
by n0s ≈ −2=N2. To this end using N ¼ 55 we obtain
ðns;r;n0sÞ≈ ð0.963;0.004;−6.6×10−4Þ. The above slow-
roll parameters are indicated by the solid points (chaotic

inflation) in Figs. 1 and 2 while the stars represent values
for the Starobinsky inflation.

IV. CONCLUSIONS

In the light of the Planck 2015 results, a debate is taking
place in the literature about the best implementation of the
inflationary paradigm. In the current article we would like
to contribute to this discussion. Employing the hyperbolic
dark-energy scalar-field potential of Rubano and Barrow
[18] (see also [19]) we study the performance of this model
as a description of inflation. We find that the hyperbolic
inflation turns out to be quite promising in the context of
the new data from Planck 2015. Specifically, using the
scalar-field potential (11), we calculate the slow-roll
parameters analytically and then we compare the corre-
sponding predictions against the observational data. We
find that currently hyperbolic inflation is consistent with
the results provided by Planck 2015 within 1σ uncertain-
ties. The combination of Ref. [18] with these calculations
provides an overall cosmological investigation of the
potential given by Eq. (11). We find that the hyperbolic
structure of this potential leads to a viable model which can
be used separately to understand the main properties of
both inflation and dark energy in the presence of a single
perfect fluid.2 Finally, following the notations of [25] we
can provide a unified picture of dark energy and inflation
using the sum of the potentials (1) and (11):

V totðϕÞ ¼ Ade sinhbde ½λdeðϕ − ϕ0Þ� þ A sinhbðϕ=fÞ;

where λde ¼
ffiffi
3

p ð1−γϕÞffiffiffiffi
γϕ

p and the constants Ade, bde, b are given

by Eqs. (2), (3) and (12). Note that similar considerations
hold for the early dark-energy model [26].
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Planck
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FIG. 2 (color online). The ns − n0s diagram. The area corre-
sponds to the hyperbolic Rubano and Barrow [18] potential (for
more details see the caption of Fig. 1).

2If two fluids are present (for example, matter and radiation)
simultaneously, then an exact solution requires the scalar field to
have a more complicated potential than the power of an
exponential. Our model gives the limiting form of that more
complicated solution in the limiting cases where one perfect fluid
dominates over the other.

SPYROS BASILAKOS AND JOHN D. BARROW PHYSICAL REVIEW D 91, 103517 (2015)

103517-4



[1] For Planck constraints on inflationary models, see P. A. R.
Ade et al. (Planck Collaboration), Astron. Astrophys. 571,
A22 (2014); for a general survey of Planck results, including
measurement of cosmological parameters, see 571, A1
(2014); 571, A16 (2014).

[2] P. A. R. Ade et al. (BICEP2 Collaboration), Phys. Rev. Lett.
112, 241101 (2014).

[3] For an up-to-date review of inflationary models, and
comparison to recent data, see J. Martin, C. Ringeval,
and V. Vennin, Phys. Dark Univ. 5–6, 75 (2014).

[4] A. A. Starobinsky, Phys. Lett. 91B, 99 (1980); A. S.
Goncharov and A. D. Linde, Sov. Phys. JETP 59, 930
(1984); J. D. Barrow, Nucl. Phys. B 296, 697 (1988); J. D.
Barrow and S. Cotsakis, Phys. Lett. B 214, 515 (1988); K-I.
Maeda, Phys. Rev. D 37, 858 (1988).

[5] A. D. Linde, Phys. Lett. 129B, 177 (1983).
[6] J. D. Barrow, Phys. Lett. B 235, 40 (1990); A. Muslimov,

Classical Quantum Gravity 7, 231 (1990).
[7] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220

(1982).
[8] K. Freese, J. A. Frieman, and A. V. Olinto, Phys. Rev. Lett.

65, 3233 (1990).
[9] N. E. Mavromatos, arXiv:1412.6437.

[10] J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, J. Cosmol.
Astropart. Phys. 11 (2014) 014.

[11] H. Liu, P. Mertsch, and S. Sarkar, Astrophys. J. 789, L29
(2014).

[12] M. J. Mortonson and U. Seljak, J. Cosmol. Astropart. Phys.
10 (2014) 035.

[13] R. Flauger, J. C. Hill, and D. N. Spergel, J. Cosmol.
Astropart. Phys. 08 (2014) 039.

[14] R. Adam et al. (Planck Collaboration), arXiv:
1409.5738.

[15] P. A. R. Ade et al. (BICEP2/Keck and Planck Collabora-
tions), Phys. Rev. Lett. 114, 101301 (2015).

[16] P. A. R. Ade et al. (Planck Collaboration), arXiv:1502.0211.
[17] D. H. Lyth and A. Riotto, Phys. Rep. 314, 1 (1999).
[18] C. Rubano and J. D. Barrow, Phys. Rev. D 64, 127301

(2001).
[19] V. Sahni and L. Wang, Phys. Rev. D 62, 103517

(2000); V. Sahni, Classical Quantum Gravity 19, 3435
(2002).

[20] L. A. Urena-Lopez and T. Matos, Phys. Rev. D 62, 081302
(2000); V. Sahni and A. Starobinsky, Int. J. Mod. Phys.
D 9, 373 (2000); J. A. Espichán Carrillo, J. M. Silva, and
J. A. S. Lima, in Proceedings of the Third Workshop
(IWARA07) on Astronomy and Relativistic Astrophysics:
New Phenomena and New States of Matter in the Universe,
Paraíba, Brazil, 2007, edited by C. A. Z. Vasconcellos,
B. E. J. Bodmann, and H. Stoecker (World Scientific,
Singapore, 2010).

[21] D. H. Lyth and A. R. Liddle, The Primordial Density
Perturbation (Cambridge University Press, Cambridge,
England, 2009).

[22] J. D. Barrow, Phys. Lett. B 235, 40 (1990); J. D. Barrow and
A. R. Liddle, Phys. Rev. D 47, R5219 (1993); J. D. Barrow,
A. R. Liddle, and C. Pahud, Phys. Rev. D 74, 127305
(2006); J. D. Barrow, M. Lagos, and J. Magueijo, Phys. Rev.
D 89, 083525 (2014).

[23] V. F. Mukhanov and G. Chibisov, JETP Lett. 33, 532 (1981).
[24] J. Ellis, D. V. Nanopoulos, and K. A. Olive, J. Cosmol.

Astropart. Phys. 10 (2013) 009.
[25] P. J. E. Peebles and A. Vilenkin, Phys. Rev. D 59, 063505

(1999).
[26] T. Barreiro, E. J. Copeland, and N. J. Nunes, Phys. Rev. D

61, 127301 (2000).

HYPERBOLIC INFLATION IN THE LIGHT OF PLANCK … PHYSICAL REVIEW D 91, 103517 (2015)

103517-5

http://dx.doi.org/10.1051/0004-6361/201321569
http://dx.doi.org/10.1051/0004-6361/201321569
http://dx.doi.org/10.1051/0004-6361/201321529
http://dx.doi.org/10.1051/0004-6361/201321529
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1103/PhysRevLett.112.241101
http://dx.doi.org/10.1103/PhysRevLett.112.241101
http://dx.doi.org/10.1016/j.dark.2014.01.003
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1016/0550-3213(88)90040-5
http://dx.doi.org/10.1016/0370-2693(88)90110-4
http://dx.doi.org/10.1103/PhysRevD.37.858
http://dx.doi.org/10.1016/0370-2693(83)90837-7
http://dx.doi.org/10.1016/0370-2693(90)90093-L
http://dx.doi.org/10.1088/0264-9381/7/2/015
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://dx.doi.org/10.1103/PhysRevLett.65.3233
http://dx.doi.org/10.1103/PhysRevLett.65.3233
http://arXiv.org/abs/1412.6437
http://dx.doi.org/10.1088/1475-7516/2014/11/014
http://dx.doi.org/10.1088/1475-7516/2014/11/014
http://dx.doi.org/10.1088/2041-8205/789/2/L29
http://dx.doi.org/10.1088/2041-8205/789/2/L29
http://dx.doi.org/10.1088/1475-7516/2014/10/035
http://dx.doi.org/10.1088/1475-7516/2014/10/035
http://dx.doi.org/10.1088/1475-7516/2014/08/039
http://dx.doi.org/10.1088/1475-7516/2014/08/039
http://arXiv.org/abs/1409.5738
http://arXiv.org/abs/1409.5738
http://dx.doi.org/10.1103/PhysRevLett.114.101301
http://arXiv.org/abs/1502.0211
http://dx.doi.org/10.1016/S0370-1573(98)00128-8
http://dx.doi.org/10.1103/PhysRevD.64.127301
http://dx.doi.org/10.1103/PhysRevD.64.127301
http://dx.doi.org/10.1103/PhysRevD.62.103517
http://dx.doi.org/10.1103/PhysRevD.62.103517
http://dx.doi.org/10.1088/0264-9381/19/13/304
http://dx.doi.org/10.1088/0264-9381/19/13/304
http://dx.doi.org/10.1103/PhysRevD.62.081302
http://dx.doi.org/10.1103/PhysRevD.62.081302
http://dx.doi.org/10.1142/S0218271800000542
http://dx.doi.org/10.1142/S0218271800000542
http://dx.doi.org/10.1016/0370-2693(90)90093-L
http://dx.doi.org/10.1103/PhysRevD.47.R5219
http://dx.doi.org/10.1103/PhysRevD.74.127305
http://dx.doi.org/10.1103/PhysRevD.74.127305
http://dx.doi.org/10.1103/PhysRevD.89.083525
http://dx.doi.org/10.1103/PhysRevD.89.083525
http://dx.doi.org/10.1088/1475-7516/2013/10/009
http://dx.doi.org/10.1088/1475-7516/2013/10/009
http://dx.doi.org/10.1103/PhysRevD.59.063505
http://dx.doi.org/10.1103/PhysRevD.59.063505
http://dx.doi.org/10.1103/PhysRevD.61.127301
http://dx.doi.org/10.1103/PhysRevD.61.127301

