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Ultralight axions (ULAs) with masses in the range 10−33 eV ≤ ma ≤ 10−20 eV are motivated by string
theory and might contribute to either the dark-matter or dark-energy densities of the Universe. ULAs could
suppress the growth of structure on small scales, lead to an altered integrated Sachs-Wolfe effect on cosmic
microwave-background (CMB) anisotropies, and change the angular scale of the CMB acoustic peaks. In
this work, cosmological observables over the full ULA mass range are computed and then used to search
for evidence of ULAs using CMB data from the Wilkinson Microwave Anisotropy Probe (WMAP), Planck
satellite, Atacama Cosmology Telescope, and South Pole Telescope, as well as galaxy clustering data from
the WiggleZ galaxy-redshift survey. In the mass range 10−32 eV ≤ ma ≤ 10−25.5 eV, the axion relic-
density Ωa (relative to the total dark-matter relic density Ωd) must obey the constraints Ωa=Ωd ≤ 0.05 and
Ωah2 ≤ 0.006 at 95% confidence. Forma ≳ 10−24 eV, ULAs are indistinguishable from standard cold dark
matter on the length scales probed, and are thus allowed by these data. For ma ≲ 10−32 eV, ULAs are
allowed to compose a significant fraction of the dark energy.
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I. INTRODUCTION

A multitude of data supports the existence of dark matter
(DM) [1–12]. The identity of the DM, however, remains
elusive. Axions [13–15] are a leading candidate for this DM
component of the Universe [16–23]. Originally proposed to
solve the strong CP problem [13], they are also generic in
string theory [24,25], leading to the idea of an axiverse
[26]. In the axiverse there are multiple axions with masses
spanning many orders of magnitude and composing
distinct DM components. For all axion masses ma ≳
3H0 ∼ 10−33 eV, the condition ma > 3H is first satisfied
prior to the present day. When this happens, the axion
begins to coherently oscillate with an amplitude set by its
initial misalignment, leading to axion homogeneous energy
densities that redshift as a−3 (where a is the cosmic scale
factor). If ma ≳ 10−27 eV, the axion energy-density dilutes
just as nonrelativistic particles do after matter-radiation
equality, making the axion a plausible DM candidate.
The fact that axions can be so light places them, like

neutrinos, in a unique and powerful position in cosmology.
For as we shall show, unlike all other candidates for DM,
axions lead to observational effects that are directly tied
to their fundamental properties, namely the mass and
field displacement. Signatures in the cosmic microwave-
background (CMB) and large-scale structure (LSS) can be
used to pin down axion abundances to high precision as a
function of the mass; these constraints can be used to place

stringent limits on the mass of the axion as a candidate
for DM. Furthermore, the nature of inhomogeneities in the
axion distribution yield, as with primordial gravitational
waves, a direct window on the very early universe and, in

FIG. 1 (color online). Marginalized 2 and 3σ contours show
limits to the ultralight axion (ULA) mass fraction Ωa=Ωd as a
function of ULA mass ma, where Ωa is the axion relic-density
parameter today and Ωd is the total dark-matter energy density
parameter. The vertical lines denote our three sampling regions,
discussed below. The mass fraction in the middle region is
constrained to be Ωa=Ωd ≲ 0.05 at 95% confidence. Red regions
show CMB-only constraints, while grey regions include large-
scale structure data.*dmarsh@perimeterinstitute.ca
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particular, the energy scale of inflation. This state of affairs
echoes the remarkable recent developments in constraining
neutrino masses with weak lensing of the CMB [3,27,28]
and places cosmological constraints on axions on par with
current and future particle physics constraints.
For ultralight axions (ULAs) with masses

ma ≲ 10−20 eV, coherent oscillations of the axion field
suppress small-scale power [29–34] on astronomically
observable length scales. This allows ULA DM to be
distinguished from CDM using large-scale structure (LSS)
data. Hot (H)DM (e.g. ∼eV or lighter neutrinos) and warm
(W)DM (eg. ∼keV sterile neutrinos) [35] exhibit a quali-
tatively similar effect. The physical origin of power
suppression for ULAs, however, is distinct (see Ref. [36]
and references therein), resulting from the macroscopic de
Broglie wavelength of ULAs as opposed to thermal free-
streaming. The detailed shape of the power spectrum on
small scales thus distinguishes ULA DM from CDM,
WDM, and HDM.
Additionally, in this window, ULAs change the matter

content during the radiation era [behaving as dark energy
(DE) before beginning to oscillate] [29,37], thus changing
the heights of the CMB acoustic peaks. Interestingly,
because ULAs change the amplitude of the late-time
Integrated Sachs-Wolfe (ISW) effect [30] and alter the
expansion history during radiation domination, the CMB is
comparably sensitive to LSS measurements over the bulk of
the mass range explored; this augments the tests of ULAs
enumerated in Ref. [26].
For lower masses still (ma ≲ 10−27 eV), axions would

roll slowly and contribute to DE (as opposed to DM)
[29,37–46] for some period of time after matter-radiation
equality, perhaps even explaining the current era of
accelerated expansion. In this case, ULAs change the
amplitude of the large-angle ISW plateau in the CMB.
In this work, we search for ULAs in the mass range

10−33 eV ≤ ma ≤ 10−22 eV by comparing precision CMB
and galaxy-clustering data to theoretical predictions from a
self-consistent Boltzmann code (an appropriately modified
version of CAMB). This code follows the evolution of ULA,
standard fluid, and potential perturbations, including the
effect of ULAs on the Hubble expansion-rate H and
recombination. This builds upon past work, in which the
effect of ULAs was treated semi-analytically [32].
When ma ≫ 3H, the rapid oscillation of the ULA field

requires a small timestep (∼m−1
a ), making an exhaustive

search of ULA parameter space computationally prohibi-
tive. This bottleneck is addressed using an effective-fluid
formalism, averaging over the fast oscillation time scale
and following the evolution of the system containing
standard cosmological fluids and ULAs coupled only
through gravity. The CMB data used are the temperature
anisotropy (TT) power spectrum measured by the Planck
[47,48] satellite, E-mode polarization data from theWMAP
9-year data release [1], as well as small-scale CMB data

from the South Pole Telescope (SPT) [49] and Atacama
Cosmology Telescope (ACT) [28]. Finally, we use the
galaxy power-spectrum measured in the WiggleZ
survey [5,50,51].
We explore both the low-mass (ma ≤ 10−27 eV) region

of ULA parameter space, in which they are DE-like, and the
higher-mass (ma ≥ 10−27 eV) region of parameter space, in
which they are DM-like. The parameter space is multi-
modal, requiring us to adapt the usual COSMOMC code [52]
using nested sampling, as implemented in the MULTINEST

code [53]. We obtain marginalized constraints varying all
the primary cosmological parameters, namely the baryon
and CDM density parameters Ωbh2 and Ωch2, the ampli-
tude Δ2

R and logarithmic slope ns of the primordial power
spectrum, the optical depth τre to reionization, and the
Hubble constant H0, in addition to the ULA mass ma and
Ωah2 (where h is the dimensionless Hubble parameter
today). We check that degeneracies with foreground
parameters may be neglected.
These techniques allow a search for ULAs to be

conducted with precision cosmological data, applying
the structure-suppressing imprint of ULAs. As this effect
is gravitational in origin, it is independent of model-
dependent ULA couplings. Therefore our constraints are
applicable to any coherently oscillating particle in this mass
range, irrespective of its couplings. We find that in the mass
range 10−32 eV ≤ ma ≤ 10−25.5 eV, the LSS and CMB
data imply that the ULA relic-density must obey the
constraint Ωa=Ωd ≤ 0.05, and that Ωah2 ≤ 0.006. Our
key result is shown in Fig. 1, where upper limits to the
axion mass fraction Ωa=Ωd in the “dark-matter-like,”
“dark-energy-like,” and highly constrained mass regimes
are shown.
This paper is organized as follows. We begin in Sec. II by

introducing the ultralight axion scenario and its cosmology.
We then present the effective fluid formalism for ULA
perturbations in Sec. III, including discussion of initial
conditions and implementation in the Boltzmann code
CAMB [54]. In Sec. IV we discuss the effect of ULAs on
LSS and CMB observables. In Sec. V we present our
methodology and key results, which are constraints to the
ULA parameter-space. We interpret the constraints and
conclude in Sec. VI. In Appendix A, we give a simple
argument for the suppression of structure on small scales in
the ULA dark-matter scenario. In Appendix B, we derive
the early-time power-series initial condition for the ULAþ
fluid system in the adiabatic mode, which is used to set
initial conditions in CAMB.

II. ULTRALIGHT AXIONS

A. Axions in string theory

Axions are described by two energy scales: the Peccei-
Quinn (PQ) symmetry-breaking scale, fa, and the energy
scale of non-perturbative physics, Λa, which gives rise to
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the axion mass ma. In QCD, Λa is fixed by the requirement
that the axion solve the strong CP problem, and so the
axion mass is controlled by fa and QCD physics, in the
form of the pion mass and decay constant, and the quark
masses [14]. In the absence of fine-tuning and to avoid an
axion relic-density so high that the Universe is over-closed,
QCD axions must obey the constraint fa ≲ 1012 GeV
[20,21] or ma ≳ 10−6 eV; this is the classic QCD CDM
window. When fine tuning of the initial misalignment is
allowed, there is no upper bound on fa from relic density
constraints, and this defines the anthropic axion-window
(e.g. Refs. [55,56]).
It is possible for string theory to furnish us with the QCD

axion and its solution to the strong CP problem. Indeed
axions will always arise in string-theory compactifications
[24,25] as Kaluza-Klein zero modes of antisymmetric
tensor (form) fields analogous to the Maxwell tensor,
Fμν. These terms appear when the form fields are com-
pactified on closed cycles in the compact space. For
example the heterotic string theories contain the so-called
‘model independent’ axion arising from compactification
of the antisymmetric partner of the metric, Bμν, on closed
2-cycles. The number of axions is fixed by the topology of
the compactification. String theory compactifications on
Calabi-Yau manifolds [57] capable of realizing realistic
models of high energy physics can be highly complicated
topologies, and the number of axions is given by the Hodge
numbers of the Calabi-Yau manifold, which can be large
(see e.g. Refs. [58] and references therein). Such compac-
tifications therefore give rise to many axions [59,60].
The relevant scales, fa and Λa, in string theory are both

determined separately for each axion, and depend on the
action, S, due to nonperturbative physics on the corre-
sponding cycle:

fa ∼
Mpl

S
; ð1Þ

Λ4
a ¼ μ4e−S; ð2Þ

whereMpl is the reduced Planck mass:M2
pl ¼ 1=8πG. The

hard nonperturbative scale is μ, which may be due to, for
example, gauge-theory instantons (as is the case for QCD),
world-sheet instantons, or Euclidean D-branes, and its
value should be roughly given by the geometric mean of
the Planck scale and the SUSY scale [25,26]. Solving the
strong CP problem with one of the string axions requires
S≳ 200 [25,26], giving rise to stringy values of
fa ≈ 1016 GeV, near the GUT scale. The exact value of
S, however, scales with the volume of the corresponding
cycle (a dynamically distributed quantity in the landscape),
so that small variations in the area lead to exponential
variations in the scale of the potential, and thus the
axion mass.

The scale of the decay constant is unknown. For the
QCD axion one requires 109 GeV≲ fa ≲ 1017 GeV,
where the lower bound comes from stellar cooling
[61,62] and the upper bound comes from constraints from
the spins of stellar mass black holes [63]. Neither bound
applies to a general axion-like particle (ALP), since the
coupling to the standard model is model-dependent, and the
mass is not fixed by fa. There is, however, a strong
theoretical upper bound of fa < Mpl, realized in string
models [64], which follows from the weak gravity con-
jecture (WGC) [65,66] and bounds the instanton action
S≲Mpl=fa. The periodicity of the axion field implies that
fa bounds the maximum and natural field excursion, with
implications for the DM abundance that we discuss further
in subsequent sections.
Our final constraints to ϕi (the initial, and therefore

maximum necessary, axion field displacement), discussed
in Sec. V, are unsurprisingly consistent with WGC. The
value of fa can be further constrained if the energy scale of
inflation is large, generating primordial CMB B-mode
polarization of observable amplitude [67–70]. In this case,
large isocurvature perturbations would result, violating
Planck limits and severely constraining ULA DM
[71,72]. A full analysis of ULA isocurvature constraints
is in progress. In this work we fix the tensor and
isocurvature perturbations to be zero, consistent with a
low inflationary energy scale.
To date there are two explicit realizations of the axiverse

idea within string/M theory: the Type IIBAxiverse [73] and
the M-theory Axiverse [74].1 The distribution of fa (across
different axions) is different in each of these models.
A discussion of the expected distribution for fa in the
landscape is given in Ref. [77].
The Type IIB axiverse is constructed in the LARGE

volume scenario (LVS) for moduli stabilization [78,79],
where axions can emerge from compactifying the C4

4-form of IIB supergravity. Within the LVS one requires
the number of axions nax ≥ 2 in order to maintain the
natural value of the superpotential, W0 ∼Oð1Þ while at the
same time reproducing the visible sector GUT coupling,
αGUT. The axions in the LVS that remain light are
associated to moduli which are fixed perturbatively. The
perturbative shift symmetry of axions protects them from
acquiring mass via this mechanism, so that the masses
come from higher order nonperturbative effects and are
naturally small. The Type IIB axiverse has been constructed
explicitly with a decay constant fa ≈ 1010 GeV and axion
masses ranging from an essentially massless axion (asso-
ciated with the volume modulus) up to and beyond the
QCD axion. The small values of the decay constant arise
from the large volume.

1An accessible review of the Type IIB models, giving more
details than we give here, is Ref. [75]. See also Ref. [76].
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The M-theory axiverse has W0 ≪ 1 and this fixes
just one axion with nonperturbative physics giving a high
mass, corresponding to the small compactification volume
on the G2 manifold. All other axions are again fixed by
higher-order effects giving small masses. Axions in these
theories are compactified on closed 3-cycles. Again,
achieving the correct value of αGUT requires introducing
a second axion, whose mass is fixed by αGUT to be
ma;GUT ≈ 10−15 eV. The small compactification volume
leads to GUT scale decay constants, fa ≈ 1016 GeV,
and also implies a maximum axion mass, ma;max ¼
Oð1Þð10−8 → 1Þ eV, in order to maintain control over
the framework.
Finally, it is worth mentioning the recent explicit con-

struction of N-flation [80] within Type IIB theory [81]. This
construction not only allows for N-flation in the standard
way [80] (with ma ∼HI, where HI is the Hubble scale
during inflation), but with only a small change in the
volume of the compact space from V ¼ Oð102Þ to Oð103Þ
(in string units) one can also realize N-quintessence (with
ma ∼H0 ≪ HI). It is therefore completely plausible within
this model that one can realize all axion masses in between,
in particular those we constrain, giving N-ULA models for
DM with potentially large effective decay constants from
alignment (e.g. Refs. [82,83]).

B. Ultralight axion cosmology

The low-energy four-dimensional Lagrangian for a
single axion field θ is [with metric signature ð−;þ;þ;þÞ]:

L ¼ −
1

2
f2að∂θÞ2 − Λ4

aUðθÞ; ð3Þ

where UðθÞ is any periodic potential, with θ chosen such
that it is minimized at θ ¼ 0. Canonically normalizing, we
use the field ϕ ¼ faθ. When the potential is expanded to
leading order in 1=fa, only the mass term appears, with

m2
a ¼

Λ4
a

f2a
: ð4Þ

The value of the mass depends exponentially on the
nonperturbative action S, which we expect to be uniformly
distributed, and so the axion mass spectrum can be taken as
a uniform distribution on a logarithmic scale [26] (although
see Ref. [84]), as we can see from Eqs. (2) and (4). In a
Bayesian context, this Jeffreys prior is uninformative and
thus natural.
We will work only with the mass term in the potential,

since the form of the potential away from the minimum (the
axion self-interactions) is unknownwithout an explicit model
for the nonperturbative physics. The Lagrangian we use is

L ¼ −
1

2
ð∂ϕÞ2 − 1

2
m2

aϕ
2; ð5Þ

later shown to be a valid approximation over the vastmajority
of observationally allowed parameter space if fa < Mpl.
In this work, our focus is on the effect of a single ULA,

whose homogeneous energy-density and pressure are given
(in a Friedmann-Robertson-Walker spacetime) by

ρa ¼
a−2

2
_ϕ2
0 þ

m2
a

2
ϕ2
0; ð6Þ

Pa ¼
a−2

2
_ϕ2
0 −

m2
a

2
ϕ2
0; ð7Þ

where ϕ0ðτÞ is the homogeneous value of the scalar field as
a function of the conformal time τ, a is the cosmological
scale factor, and dots denote derivatives with respect to
conformal time. We restrict ourselves to a single ULA, as
the effective fluid formalism described in Sec. III has only
been developed for this case. The mass independence of
constraints in certain windows may mitigate this limitation.
The equation of motion for the axion field is

ϕ̈0 þ 2H _ϕ0 þm2
aa2ϕ0 ¼ 0; ð8Þ

where the conformal Hubble parameter isH ¼ _a=a ¼ aH.
At early times when ma ≪ H, the axion rolls slowly,

and if its initial field-velocity _ϕi;0 ¼ 0, it has equation of
state wa ≡ Pa=ρa ≃ −1. The axion thus behaves as a DE
component, with roughly constant energy density in time.
As the Universe cools and H falls, eventually the axion
field begins to coherently oscillate about the potential
minimum. This occurs when

ma ≈ 3HðaoscÞ; ð9Þ

where this equation defines the scale factor aosc. The
oscillation is on time scales δt ∼m−1

a , with ϕ ∝ a−3=2 on
longer time scales. Thereafter, the number of axions is
roughly conserved, yielding an axion energy density that
redshifts as matter, with ρa ∝ a−3 [85]. The relic-density
parameter Ωa is given by

Ωa ¼
�
a−2

2
_ϕ2
0 þ

m2
a

2
ϕ2
0

�
ma¼3H

a3osc=ρcrit; ð10Þ

where ρcrit is the cosmological critical density today. This
production mode is known as the misalignment mecha-
nism. When the ULA behaves as DE, it rolls slowly and
sources the ISW effect (due to the decay of gravitational
potential wells) [30].
We can use Eq. (10) to obtain a crude estimate for the

relic density in axions. Assuming that a−2 _ϕ2
0ðaoscÞ=2 ≪

ðm2
a=2Þϕ2

0ðaoscÞ ≈m2ϕ2
0;i=2 (where ϕ0;i is the initial homo-

geneous field displacement), and taking the background
evolution to be described by either pure radiation or pure
matter domination at a ¼ aosc, one obtains [33]
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Ωa ¼

8>>><
>>>:

1
6
ð9ΩrÞ3=4ðma

H0
Þ1=2ðϕ0;i

Mpl
Þ2 if aosc < aeq;

9
6
Ωmðϕ0;i

Mpl
Þ2 if aeq < aosc ≲ 1;

1
6
ðma
H0
Þ2ðϕ0;i

Mpl
Þ2 if aosc ≳ 1;

; ð11Þ

where the final line accounts for axions that never
oscillate.2

The expressions in Eq. (11) are useful for estimates, but
in our analysis we always compute the relic density
numerically by solving the Klein-Gordon equation with
an initial value ϕi. We iterate this value to get the desired
Ωa: Eq. (11) is used as the first guess in this iteration. We
find that independent ofΩa our procedure returnsΩa=Ωd to
a relative precision of better than 10−4, within the limits
set by the approximation to treat wa ¼ 0 for H < ma=3.
The relic density can also receive other nonthermal and
thermal contributions, but since the theoretical uncertainty
and model dependence in such contributions is large, we
take the vacuum-realignment production alone as the most
conservative estimate [55].
At fixed ϕi < fa ≪ Mpl Eq. (11) restricts Ωa < Ωd in

certain parts of parameter space [86]. For an axion
respecting the residual shift symmetry θ → θ þ 2π there
is a maximum value ϕ0;i ∼ πfa. This yields an ‘anthropic
boundary’: for axions beginning oscillation in the radiation
dominated era, with fa ∼ 0.01Mpl, it is impossible to have
Ωa > 1 for ma ≲ 10−19 eV [26]. This is an anthropic
boundary since axions above this mass must be fine tuned
anthropically to satisfy DM-density (or closure) bounds
[86]. However, when Ωa is observationally restricted
lighter axions may start to be fine tuned in a nonanthropic
way. On the other hand, for aosc > aeq and fa ∼ 0.01Mpl,
when the shift symmetry is respected there is a maximum
axion density of Ωa ∼ 10−5.
There are ways to obtain large Ωa for low axion masses

from the misalignment mechanism. The most obvious is to
allow larger symmetry-breaking scale fa ∼Mpl, which still
respects the WGC. That this can give Ωa ∼Oð1Þ even for
the lightest axion we consider, with ma ¼ 10−33 eV ∼H0

is obvious from Eq. (11). For low individual fa, as already
mentioned, alignment of many axions can give an effective
fa which is large. For a single axion with low fa,
anharmonic effects at ϕi ∼ fa flatten the potential and
delay oscillations [85], while broken shift-symmetry can
allow ϕi > fa [40,87]. In light of these issues, we treat the
axion abundance as a free model-parameter.

The expressions in Eqs. (11) differ from classic QCD
expressions (e.g. Ref. [56]). TheQCD axion has temperature-
dependent corrections to its mass which are still relevant
when it begins to coherently oscillate. For ULAs, however,
the temperature dependence of the axion mass is negligible
by the time the misalignment mechanism begins if the scale
of nonperturbative physics is above the QCD scale, as in
string theory [74]. Therefore one can use the constant, zero-
temperature mass in all calculations, which simplifies the
approximate expressions for the relic density, a simplification
also present for large fa QCD axions [56]. The temperature-
dependence of the axion mass depends on its couplings to
standard-modelparticles,which in turnoffernoncosmological
tests of the axion hypothesis.

C. Direct and indirect detection of axions
and astrophysical probes

Axions can only have perturbative couplings that respect
the shift symmetry, θ → θ þ const (e.g. derivative cou-
plings). Therefore ULAs are not subject to the same fifth-
force constraints as other light bosons and do not require a
screening mechanism. Axions can, however, have model-
dependent couplings to topological gauge-theory inter-
actions of the form giFi

~Fi, where Fi is the field-strength
tensor, which for coupling to the standard model could be
electromagnetism or QCD, ~Fi is its dual, and gi is a model
dependent coupling constant. The QCD axion has cou-
plings of this form to both electromagnetism, via pions, and
to QCD by virtue of it solving the strong CP problem, and
the value of gi is determined by fa.
There are many experimental constraints to axions that

couple to electromagnetism [86]. There are three classic
methods to constrain axions through such a coupling:
RF-cavity searches (haloscopes), solar axion conversion
to x-ray photons (helioscopes), and “light shining through a
wall” (LSW) experiments [88]. The QCD axion has only
one free parameter, fa, in such constraints and occupies a
line in the mass-coupling plane, but constraints to general
axion-like particles apply to regions of this parameter
space. Current experiments include ADMX [89] (halo-
scope), CAST [90] (helioscope), and ALPS-I [91] (LSW).
Astrophysical constraints to axions largely follow from

their electromagnetic coupling. If coupled to photons,
axions would hasten the cooling of stars. For the QCD
axion, this gives the lower limit to fa ≳ 109 GeV [61,92].
The neutrino burst from Supernova 1987a would also
have been shortened, yielding a similar constraint [93].
Constraints can also be derived from the dimming of
supernovae and quasars [94,95], CMB spectral distortions
[96,97] and various other astrophysical and cosmological
processes [98–100]. It has also been proposed that a
coupling of ULAs to electromagnetism might explain some
features related to the CMB cold spot [101], and can act
as a source of B-mode polarization via cosmological

2Our mass prior terminates below ma ¼ 10−33 eV ∼H0. For
significantly lighter ULA masses, the early time ULA dark-
energy behavior is trivial, and the final line of Eq. (11) is exact,
while for masses on the border of quintessence with aosc ∼ a0 the
guess in the second line of Eq. (11) is still very good through most
of parameter space (since Ωa ∼ Ωm ∼Oð1Þ for quintessence).
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birefringence [102]. Reviews of axion searches can be
found in Refs. [93,103,104].
Recently, a number of new experimental techniques to

search for axions have been proposed. These include
nuclear spin precession [105], using a LC circuit as a
RF cavity [106], and searching for axion-mediated forces
[107,108].
All the searches we have so far described constrain the

axion coupling, gi, to some standard-model field. Few
existing experiments yet reach the sensitivity to detect the
QCD axion, and it might be expected that a general axion
couples more weakly, at least to nucleons, than the QCD
axion [109]. Axion DM searches depend on all the axion
parameters, fgi; ma;Ωag, and constraints vanish if either of
gi;Ωa go to zero. Constraints relating to axion production,
such as LSW, do not depend on Ωa, but vanish if gi goes
to zero. Many of the constraints we have mentioned apply
to ULAs in the mass range we consider, but only if some gi
are nonzero.
Only ULA constraints that depend on gravitational

interactions alone apply when all gi go to zero. ULA
masses, and indeed the mass of any light boson, can be
constrained by the effect of the Penrose process leading to a
super-radiant instability of rotating black holes [26,63,110].
The observation of spinning stellar-mass black holes
constrains the QCD axion to have fa ≲ 1017 GeV, exclud-
ing ma ∼ 10−11 eV for ULAs/ALPs. The observation of
spinning supermassive black holes excludes ULAs with
masses 10−18 eV≲ma ≲ 10−19 eV [111].
These are the only constraints to axions that are

independent of both Ωa and gi: since super-radiance is
essentially a gravitational production of axions it applies
even when Ωa and all gi go to zero. It is therefore the only
constraint that applies in a completely model-independent
way to our search. Black hole super-radiance constraints
provide an upper bound to the cosmological axion mass
range, but do not extend to the lower masses probed in this
work. As we now discuss, ULA DM or DE would change
the growth of cosmological structure, providing an addi-
tional (and gauge-coupling independent) test of the ULA
hypothesis.

III. ULA PERTURBATIONS

So far, we have discussed the homogeneous cosmology
of ULAs. We now discuss how the perturbed inhomo-
geneous universe can be used to probe ULA DM and DE,
beginning with a qualitative discussion here and moving on
later in this section to formal developments and computa-
tional techniques.
It is well known that a coherently oscillating gas of

light axions (nearly all of which are in the ground state)
manifests a new scale, the axion “Jeans” scale, kJ ∼

ffiffiffiffiffiffiffiffiffiffi
maH

p
,

below which axions cannot cluster [26,29–31,33,112–121].
This is the de Broglie wavelength of axions moving with
the Hubble flow, as discussed in Appendix A, and

manifests itself as a downward step in clustering power
at small scales in the matter power-spectrum [122].3

Depending on the axion mass, this scale could be
macroscopic, and thus affect the CMB anisotropy and
observed galaxy clustering power spectra.4 For the classic
QCD axion (ma ≳ 10−6 eV), this scale is not cosmologi-
cally relevant, but for ULAs, this scale could be observa-
tionally relevant.
In the effective fluid formalism developed here, kJ arises

dynamically in the axion fluid, which has effective sound
speed

c2a ¼
� k2

4m2
aa2

if k ≪ km ≡ 2maa;

1 if k ≫ km:
ð12Þ

Structure is suppressed for scales with k > km, which
enter the horizon when c2a ¼ 1 [33]. This wave number
km is smaller (corresponds to larger length scales) as ma
decreases. The effect saturates at the smaller scale kJ ¼
að16πGρmÞ1=4m1=2

a . Therefore, like massive standard-
model neutrinos or warm DM (e.g. Refs. [135,136]), axions
exhibit suppressed structure on small scales. The effect has
a completely different origin, however, resulting from the
macroscopic ‘wavy’ properties of axions, unlike massive
neutrinos, which display suppressed structure because of
their large free-streaming velocity during structure
formation.
The suppression of small-scale power in the matter

power spectrum is shown in Fig. 2. For illustrative purposes
we show the theoretical linear matter power spectrum
computed at z ¼ 0. Current measurements of the matter
power spectrum on linear scales, k≲ 0.1 hMpc−1, and at
various redshifts are consistent with ΛCDM, within exper-
imental errors [5,50]. By inspection of Fig. 2 one can
therefore estimate the rough constraining ability of the
matter power spectrum to probe ULA masses ma ≲
10−25 eV as dominant components of the DM.
Figure 2 is obtained using a version of the Boltzmann

code CAMB [54], modified to include axions in an effective
fluid description, as discussed below. We see that the matter
power-spectrum is suppressed at small scales. We see that
lower values of ma or higher values of Ωa=Ωd cause
progressively more severe suppression, indicating that LSS
data can be used to constrain ULA properties. The effect is
present on linear scales k≲ 0.1 Mpc−1, and so the linear

3This also applies to axions moving at the virial velocity inside
halos, and implies the formation of density cores in axion halos
[31].

4Self-interactions of the field, however, can be important at low
mass and affect the resulting Jeans scale [123]. The (model-
dependent) form of these interaction terms can change the
evolution of the DM density and determine whether or not the
DM ends up in a Bose-Einstein condensate [124–134].
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power-spectrum can be used to impose tight constraints to
ULAs when ma ≲ 10−25 eV.
We can gain some insight into the suppression of the

power spectrum by examining the evolution of a variety of
modes for a single ULA mass (ma ¼ 10−26 eV), as shown
in Fig. 3. If k < kJðaÞ at all times (as is the case if
k ¼ 10−4h Mpc−1), the mode locks onto the CDM solution
after an early period of DE-like behavior.

If k ∼ kJðaÞ initially (as is the case if k ¼ 0.1h Mpc−1),
the mode shows suppressed growth initially, but has the
same scaling with a as the CDM case at late times, when
k > kJðaÞ, yielding an overall suppression of power.
Finally, if at early times, k≳ kJ (as is the case for
k ¼ 0.3 Mpc−1) the ULA perturbation oscillates rapidly
until very late times (a ∼ 10−2 > aosc), yielding a signifi-
cant suppression of small-scale power. This illustrates why
the matter power-spectrum is suppressed on small scales (as
in Fig. 2) at the level of the mode evolution as a function of
scale factor a. We discuss the detailed impact of altered
mode evolution on cosmological observables in Sec. IV.
The ULA hypothesis may have additional implications

for cosmological structure formation. These include
cored density profiles in dwarf-spheroidal galaxies
[31,120,133,137–140], suppressed number densities of
Milky Way satellites [139] (providing a possible solution
to well-known discrepancies between small-scale observa-
tions and the ΛCDM model, reviewed in Ref. [141]),
vortices/caustics in DM halos [133,142], altered reioniza-
tion due to delayed high-redshift galaxy formation [143],
and pulsar-timing searches for gravitational wave emission
caused by coherently oscillating density profiles in DM
halos [144]. These techniques all depend on the nonlinear
physics of ULAs in DM halos. For the rest of this work, we
restrict our attention to the linear theory of ULA perturba-
tions, which we now develop.
We begin in Sec. III A by describing the exact evolution

of the scalar field in terms of fluid variables. In Sec. III B,
we discuss the initial conditions used in CAMB for the
combined system of ULAs, baryons, neutrinos, photons,
CDM perturbations, self-consistently including the metric
perturbation. Further details of the initial condition
derivation are given in Appendix B. We then derive, in

FIG. 2 (color online). Adiabatic matter power spectra generated with the modified CAMB described in Sec. III, with varying axion mass
and energy-density fraction Ωa=Ωd at fixed total dark-matter density fraction Ωd. Power is suppressed for modes that enter the horizon
when the axion sound speed cs ∼ 1.

FIG. 3 (color online). Evolution of the fractional DM density
perturbation δ whenΩa=Ωd ¼ 1 (solid), for a ULA mass ofma ¼
10−26 eV and a series of wave numbers k (as shown in the figure),
compared to standard CDM (dashed). The overall normalization
of the mode amplitude is arbitrary here. The range of k-values
encompasses different behaviors, with suppression of growth
relative to CDM when k ∼ kJðaÞ, oscillation when k > kJðaÞ and
growth as CDM when k < kJðaÞ. This leads to an overall
suppression of power for large-k modes.
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Sec. III C, the effective fluid EOMs in terms of the same
fluid variables, valid in the coherently oscillating regime.
Finally, in Sec. III D, we summarize all the changes made to
CAMB to compute cosmological observables for compari-
son with data in this work. During the preparation of
this work, similar effective fluid methods have been
independently developed and applied to novel coupled
DM-DE systems [145].

A. Exact fluid equations for ULA perturbations

The equations of motion (EOMs) for the Fourier modes
of a perturbed scalar field ϕ ¼ ϕ0ðτÞ þ ϕ1ðτ; ~kÞ [in syn-
chronous gauge, with a Friedmann-Robertson-Walker
(FRW) metric] are [31,146]

ϕ̈1 þ 2H _ϕ1 þ ðm2
aa2 þ k2Þϕ1 ¼ −

1

2
_ϕ0
_β; ð13Þ

where β is the trace of the scalar metric perturbation [147],
k is the comoving Fourier wave number of a perturbation, a
is the scale factor, and τ denotes conformal time. In the
cosmological context, masses are always converted from
units of eV to units of h Mpc−1, where h is the dimension-
less Hubble constant today h ¼ H0=ð100 km s−1Mpc−1Þ.
There are four degrees of freedom coming from the
perturbed scalar field: fϕ0; _ϕ0;ϕ1; _ϕ1g. The components
of the scalar-field energy-momentum tensor are found from
these degrees of freedom in the usual way.
In an arbitrary gauge, the components of the perturbed

ULA energy momentum tensor are [148]

δρa ¼ a−2ð _ϕ0
_ϕ1 − _ϕ2

0AÞ þm2
aϕ0ϕ1; ð14Þ

δPa ¼ a−2ð _ϕ0
_ϕ1 − _ϕ2

0AÞ −m2
aϕ0ϕ1; ð15Þ

ðρþ PÞðva − BÞ ¼ a−2k _ϕ0ϕ1; ð16Þ

where A and B are the scalar potential and vector
longitudinal perturbations in the chosen gauge, respec-
tively, to the metric tensor. A scalar field has no anisotropic
stress at linear order in perturbation theory [148].
Using these definitions, one can exactly map the EOMs

and four degrees of freedom onto those of a generalized
DM (GDM) fluid, as shown in Ref. [149]. The homo-
geneous (background) evolution is specified by the density
ρa and the equation of state wa:

_ρa ¼ −3Hρað1þ waÞ: ð17Þ

wa ¼
Pa

ρa
: ð18Þ

There are two degrees of freedom in the homogeneous
scalar field equations, and so there is also an equation of
motion for Pa (and thus wa).

After performing a gauge transformation, the GDM
sound speed for the ULA is derived easily in the ULA
comoving gauge, where the ULA perturbation ϕ1 vanishes.
In this gauge, the ULA sound speed is easily seen to
be [148]

c2a ¼
δP
δρ

¼ 1: ð19Þ

The GDM fluid EOMs in synchronous gauge then yield

_δa ¼ −kua − ð1þ waÞ _β=2 − 3Hð1 − waÞδa
− 9H2ð1 − c2adÞua=k; ð20Þ

_ua ¼ 2Hua þ kδa þ 3Hðwa − c2adÞua; ð21Þ

where δa ¼ δρa=ρa, and the adiabatic sound speed is

c2ad ≡
_Pa

_ρa
¼ wa −

_wa

3Hð1þ waÞ
: ð22Þ

The dimensionless ULA heat flux is ua ¼ ð1þ waÞva.
Equivalent fluid equations for a scalar field are obtained
in Refs. [150,151]. It is straightforward to show that this
system is equivalent to the scalar field EOM, Eq. (13).
These ULA EOMS are numerically solved along with the
perturbed Einstein, fluid, and Boltzmann equations, in a
modified version of CAMB, in order to compute CMB
anisotropies and the matter power spectrum.
We also need the contribution of ULA fluid variables to

the source terms for the Einstein equations. In synchronous
gauge, this is

δPa ¼ ρa½δa þ 3Hð1 − c2adÞva=k�; ð23Þ

δρa ¼ ρaδa; ð24Þ

ðρa þ PaÞva ¼ ρaua: ð25Þ

B. Initial conditions

To start off CAMB for any particular set of cosmological
initial conditions, one needs a power series solution for all
the fluid and metric variables, as the (nonstiff) integrator
used in CAMB can not be started at conformal time τ ¼ 0,
when the homogeneous densities of baryons, photons,
DM, and neutrinos all diverge. CAMB begins the evolution
of all modes when they are well outside the horizon
(x ¼ kτ ≪ 1) so we seek an expansion in powers of x.
The relevant mode for our discussion is the adiabatic
mode.5 The power-series solution for this case is stated

5Note that we have also derived the power-series solutions for
isocurvature modes, including the ULA isocurvature mode. We
will discuss these and the associated observables in a future paper.
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in Ref. [152], ignoring the contribution of ULAs to the
cosmic energy density.
We reproduce this solution using the eigenmode method

of Refs. [153–155] in Appendix B. We also confirm that it
is valid up to corrections of order ðkτÞ4 for metric and
standard fluid perturbations, and τ=τeq for the ULA
variables themselves, even when the contribution of
ULAs to the energy density is included (here τeq is the
conformal time at matter-radiation equality). The initial
conformal time for CAMB is already chosen such that these
parameters are sufficiently small to obtain the required
precision for comparison with all existing cosmological
data of interest, and so we can safely neglect these
corrections to the usual adiabatic initial conditions. We
also require that the integration begins at an initial scale
factor ainit < 100aosc, where we set ϕ0ðτÞ ¼ constant and
_ϕ0ðτÞ ¼ 0. In the adiabatic mode, ULA perturbations do
not evolve or grow at leading order and early times, but this
changes later when ma ≫ 3H, and the ULA begins to
coherently oscillate, a regime we treat using an effective
fluid approximation.

C. Effective fluid equations for ULAs

Using the EOMs from Sec. III A with the initial con-
ditions just discussed, and choosing the initial conformal
time so that τinit ≪ τosc and ρa ≪ ργ , ρa ≪ ρν, ρa ≪ ρm,
we use CAMB to evolve the full system when a < aosc. We
solve independently for the background quantities ϕ, c2ad
and wa, and use the history of wa and _wa to correctly
compute the perturbation evolution. The initial value for ϕ0

is chosen using the shooting method to obtain the correct
relic density via Eq. (10) and the numerical solution
for ϕðaÞ.
The homogeneous ULA fields remain roughly frozen at

their initial values until the mass overcomes the Hubble
friction, at which point they coherently oscillate with
decaying amplitude and frequency ma. At times when
ma ≫ 3H these oscillations give rise to a large separation
of time scales and direct integration of the scalar field
EOMs becomes computationally prohibitive, even for
modest ULA masses (ma ≳ 10−27 eV).
To address this difficulty, we use the WKB method to

obtain an effective fluid approximation for perturbations,
averaging over the fast-time scale in the problem and
writing evolution equations for the fluid variables averaged
over the oscillation time scale m−1

a [26,31,33,112–121].
The behavior of the system is that of a fluid with the
asymptotic behavior shown in Eq. (12), leading to sup-
pressed structure growth on scales k ≫ km, with a dramatic
cutoff when k ≫ kJ. Precisely, in an arbitrary gauge, the
EOM for a scalar-field perturbation is [148]

ϕ̈1 ¼ −2H _ϕ1 − ðk2 þ a2m2
aÞϕ1 þ ð _A − 3 _HL − kBÞ _ϕ0

− 2Aa2m2
aϕ0 ¼ 0; ð26Þ

where HL is the scalar perturbation to the spatial curvature.
Following Refs. [118,119], we make the ansatz that
ϕ0ðτÞ ¼ ½ϕþðτÞ cos ðmaτÞ þ ϕ−ðτÞ sin ðmaτÞ�=a3=2 and
ϕ1¼ δϕþðk;τÞcosðmaτÞþδϕ−ðk;τÞsinðmaτÞ. We choose
the “comoving gauge” defined with respect to the
oscillation-averaged fluid [that is, we set v ¼ B in
Eq. (16), which requires that δϕ−ðk; τÞϕþðma; τÞ ¼
δϕþðk; τÞϕ−ðma; τÞ].
Substituting our ansatz into Eqs. (6)–(15) and Eq. (26),

and assuming that metric perturbations vary only on
conformal time scales τ ∼H−1 ≫ m−1

a , we obtain equa-
tions which can be grouped by powers of H=ma. We find
that to leading order in H=ma, and when a ≫ aosc,

c2a ≡ δP
δρ

¼ k2=ð4m2
aa2Þ

1þ k2=ð4m2
aa2Þ

; ð27Þ

which smoothly interpolates between the asymptotic
regimes given in Eq. (12). Going back to synchronous
gauge [and taking average values over the fast time scale,
that is, wa ≃ 0 and cad ≃ 0, both easily obtained from the
solution for ϕ0ðτÞ, Eq. (18), and Eq. (22)], the effective
fluid equations for ULAs (when a ≫ aosc) are

_δa ¼ −kua −
_β

2
− 3Hc2aδa − 9H2c2aua=k; ð28Þ

_ua ¼ −Hua þ c2akδa þ 3c2aHua: ð29Þ

To compute the evolution of ULA perturbations in
CAMB, we use Eqs. (20)–(21) when a < aosc together with
the numerical background evolution of ρa; wa. At late times
when a ≥ aosc we use Eqs. (28)–(29), with ρa ∝ a−3;
wa ¼ 0. To be sure that this sudden transition does not
produce numerical artifacts in the modified CAMB output,
we verified that results are insensitive to changes in the
exact matching time of order δτ ¼ 10m−1. We also checked
the code against a version of CAMB that directly solves
for the perturbed scalar field, and for masses as high
as ma ∼ 104H0, found agreement between the exact and
effective fluid treatments. The approximation improves at
higherma values, as the transition happens over shorter and
shorter intervals compared to the whole of cosmic time.
Since this mass is deep into the coherent oscillation regime
today, we are confident that our approximations are valid
over the full mass range considered, as discussed further in
Sec. III D.

D. Summary of changes to CAMB
and key physical effects

We self-consistently include the effect of ULAs on the
homogeneous expansion history by numerically solving
Eq. (8), including the ULA energy density in the compu-
tation ofH using the Friedmann equation. Using a shooting
method, the initial value ϕ0 is chosen to obtain the desired
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input value of Ωa=Ωd to a precision of 10−4. Additionally,
we include the contributions of ULAs to H everywhere in
CAMB that the Hubble expansion rate is needed, including
the RECFAST [156] recombination module itself and the
calculation of the visibility function. Early-time (m ≤ 3H)
evolution of perturbations is followed using the equations
of Sec. III A, with initial conditions set as discussed in
Sec. III B and Appendix B. Late-time (m ≥ 3H) evolution
is followed using the equations of Sec. III C.
We now discuss the evolution of specific modes (output

by our modified version of CAMB) in several cases of
interest, in order to highlight some of the physical effects
driving the behavior of the observable power spectra
discussed in Sec. IV. As already discussed in Sec. II,
Fig. 3 shows the behavior of a range of modes for ULAs
with ma ¼ 10−26 eV. We see there that if ULAs constitute
all the DM and the perturbation wavelength is smaller than
or of order the ULA Jeans scale, linear structure growth is
arrested until a later time.
Evolution of a DM density perturbation with k ¼

10−4h Mpc−1 is shown in Fig. 4. For this large-scale mode
(k ≪ km) and a large (CDM-like) value of ma, we expect
the ULA to behave as CDM. Once a≳ aosc, the initial
conditions are forgotten and the mode locks onto the
universal CDM-like behavior. For higher ma, aosc is lower
and CDM-like behavior begins earlier.
In Fig. 5, we show the behavior of the integrated Sachs-

Wolfe (ISW) source term (see Ref. [54] for a definition) for
a long-wavelength mode (k ¼ 10−4h Mpc−1) in ΛCDM
and Einstein-deSitter (EdS) cosmologies as well as cos-
mologies which include ULAs with rather low masses
(10−32 eV–5 × 10−32 eV), treating ULA perturbations
using the effective fluid formalism and modified CAMB

described above. The EdS cosmology is defined by the
values Ωm ¼ 1, ΩΛ ¼ 0).
When low-mass (m ¼ 10−32 eV) ULAs replace some of

the DM, there is an enhancement of the ISW effect due to
the early DE-like behavior of ULAs. When a > aosc, these
ULAs begin to behave as CDM, leading the ISW source
term to reconverge to the ΛCDM behavior. The small
deviation from ΛCDM behavior for scales that enter the
horizon when a < aosc will drive the CMB constraint
for comparable ULA masses, as we discuss further in
Secs. IV and V.
As another example, we set Ωm¼1, ΩΛ¼0, and

Ωa¼0.1, with a higher ULA mass of ma¼5×10−32 eV.
Because of their early DE-like behavior, these ULAs
initially enhance the ISW source term. The higher ma
(and lower aosc) value, however, causes CDM-like behavior
to set in earlier than the preceding case. The ISW source
term then closely tracks the EdS case, with a nearly
vanishing late-time ISW effect.
For both ULA parameter sets in Fig. 5, we compare

mode evolution in the effective fluid treatment with that
obtained by directly numerically integrating the EOMs of
scalar-field perturbations, using a code described in [36].
As expected, the onset of CDM-like behavior in the ULAs
corresponds to the onset of coherent oscillation in the
scalar-field perturbation, and occurs earlier for higher ma

values. Averaged over time scales greater than ∼m−1
a , the

behavior in the effective fluid treatment agrees with the full
evolution of the scalar field for both cases. This is one of
several tests we used to verify that the effective fluid
treatment agrees with the full scalar-field evolution.

FIG. 5 (color online). Evolution of the integrated Sachs-Wolfe
(ISW) source term [54] for a mode with k ¼ 10−4h Mpc−1. The
overall amplitude is arbitrary. Dark colored curves are generated
using the modified CAMB described in the text. Lighter curves are
generated using direct numerical integration of scalar-field
perturbation EOMs. Green curves show the effect of choosing
Ωa=Ωd ¼ 0.1 (with all other parameters set to ΛCDM values)
with ma ¼ 10−32 eV. Blue curves are obtained assuming
ΩΛ ¼ 0, Ωm ¼ 1 and Ωa=Ωd ¼ 0.1 with ma ¼ 5 × 10−32 eV.

FIG. 4 (color online). Evolution of the fractional dark-matter
density perturbation with wave number k ¼ 10−4h Mpc−1 for the
3 different ULA masses indicated compared to the standard CDM
case (dashed). For these ULA masses, k < km always, and so
soon after a > aosc, the mode behaves just as CDM.
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IV. COSMOLOGICAL OBSERVABLES

Before using CMB and galaxy-clustering data to search
for ULAs, we explore the observables and estimate the
expected level of constraints. All power spectra are com-
puted using the modified version of CAMB described in
Sec. III.
The overall behavior of the adiabatic matter power-

spectrum in the presence of a ULA playing the role of
DM can be understood using two simple physical effects
[31–33,36,63,112–120]. The first is that the ULA equation-
of-state transitions from the DE-like wa ≈ −1 for a ≪ aosc
to the DM-like wðaÞ ≈ 0 for a ≫ aosc. This leads to new
nontrivial behavior of the ratio of CDMþ ULA energy
density to the radiation energy-density, shifting the red-
shifts of equality, recombination, and decoupling. The
second observable effect of ULAs is the scale-dependent
sound speed of the ULA fluid, which leads to suppressed
clustering power on small scales. The amplitude of both
effects increases with the fraction of matter composed of
ULAs, and is more dramatic for lower ULA mass, as seen
already in Fig. 2.
We now discuss the effects of a ULA on the CMB, when

it is either DM- or DE-like. We also discuss the effects of a
DE-like ULA on the matter power spectrum, as well as its
effect on the observable galaxy power-spectrum.

A. The CMB

In Fig. 6 we show the two-point temperature auto-
correlation power spectrum, CTT

l , for the same models as
Fig. 2, where ULAs are introduced as a fraction of the DM,
holdingΩd ¼ Ωa þΩc fixed. Introducing a fraction of DM
that has w ¼ −1 for some period of cosmic history changes

the matter-to-radiation ratio compared with the same ratio
in a pure CDM universe. This changes the structure of the
acoustic peaks of the CMB. The change is most severe for
the lightest ULAs where w ¼ −1 for longer, and increases
with the fraction of DM in ULAs.
With ma > HðzeqÞ ∼ 10−27 eV the ULAs behave as

matter throughout the matter-dominated era and so this
leaves the large scale, low l, of the CMB power unchanged,
as the late-time growth and expansion rate imprinted by the
ISW effect is not altered. Since the expansion rate is not
altered, the angular size of the sound horizon is also not
changed much, and so the location and size of the first
acoustic peak remains unaltered also for ma ≳ 5×
10−27 eV. Indeed the constraining power of WMAP1 in
Ref. [32] cuts out at around this mass scale. Without
accurate measurements of the higher acoustic peaks, only
the lightest ULAs that oscillate in the matter era and change
the ISW plateau or the distance to the last scattering surface
could be constrained by WMAP. Looking at the second
third and fourth acoustic peaks, however, which are well
measured in Planck, ACT and SPT data, we see that the
CMB can distinguish slightly larger masses of ma ∼
10−26 eV at a fraction of around Ωa=Ωd ¼ 0.05. We
therefore expect ∼10%-level sensitivity to the ULA DM
mass fraction for all masses ma ≲ 10−26 eV.
We have so far considered the effects of introducing

ULAs to the DM that are heavy enough to leave the large
angle CMB unchanged. What about the lighter ULAs that
do alter the low-l CMB temperature power spectrum [36]?
ULAs with ma < 10−27 eV have aosc > aeq, therefore in
order to keep the physical condition that matter-radiation
equality be unchanged so that there are bound objects
formed on small scales, in all the following examples we

FIG. 6 (color online). CMB temperature power spectrum with varying ULA mass and energy density fraction Ωa=Ωd. Here, as in
Fig. 2, we introduce ULAs as a fraction of the dark matter, holding Ωd ¼ Ωa þΩc fixed. Since ULAs have wa ¼ −1 for some time
during the radiation era this changes the ratio of matter to radiation and alters the relative heights of the CMB acoustic peaks. For dark-
matter like ULAs with the highest ULA masses, and lowest fractions, CTT

l becomes indistinguishable from ΛCDM, with the ΛCDM
curve lying directly underneath the ULA curve.
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choose to keep Ωch2 ¼ 0.120 fixed. In order to see the
effects on the CMB of introducing the lightest ULAs, we
discuss various cases holding other parameters fixed.
In Fig. 7 we introduce Ωah2 ≠ 0 holding H0 (and thus

also the fractional density of DM) fixed. As we are also
holding Ωch2 fixed, introducing ULAs in this way reduces
the amount of DE. The ULAs introduced act as DE while
a < aosc. This is during the matter or Λ era, and so we refer
loosely to the lightest ULAs as “DE-like.” Since the scale
of structure suppression for these ULAs is comparable to
the scale of structure suppression for OðeVÞ mass neu-
trinos, they could also be said to be “neutrino-like,” or
“HDM-like” [32,36], although we will find the analogy to
DE more useful here.
In the left panel of Fig. 7 we fix Ωa=Ωd and vary the

ULA mass. For the fiducial cosmology shown, taking
Ωa=Ωd ¼ 0.5 reduces ΩΛ from ΩΛ ¼ 0.68 to ΩΛ¼0.42,
so ULAs make up a little over a third of the DE density. The
integrated contribution of DE is changed in the ULA
cosmology, which has a number of effects. The age of
the Universe is smaller in the ULA cosmologies, being
reduced from 13.8 × 109 years in the fiducial cosmology to
11.5 × 109 years with ma ¼ 10−30 eV. This reduces the
distance to the surface of last scattering, and so increases
the angular size of the sound horizon θA, shifting the
locations of the CMB acoustic peaks to lower l. Since the
integrated effect of DE is altered, the ISW plateau is also
changed relative to ΛCDM. The lightest ULAwe consider
has ma ¼ 10−33 eV, and is so close to Λ in the evolution of
the energy density that it has no discernible effects on the
CMB, regardless of how much of the energy density it

makes up, as long as flatness is maintained. In the right
panel of Fig. 7 we fix ma ¼ 10−32 eV and vary the ULA
relic density, so varying ΩΛ at fixed H0.
We have now seen that for low mass ULAs, the ULA

relic-density is degenerate with the value of θA at fixed H0.
We now explore the effect of ULAs on the CMB holding θA
fixed by varying H0. Compared to Fig. 7 this will shift the
locations of the acoustic peaks back towards their ΛCDM
locations and shift the ULA effects largely into the ISW.We
hold the l value of the first acoustic peak in CTT

l (and thus
also of the higher acoustic peaks) fixed, which requires
reducing H0 at fixed Ωch2 and Ωah2. For example, with
ma ¼ 10−32 eV and Ωa=Ωd¼0.25, H0 is reduced from
67.15 kms−1Mpc−1 to 50.15 km s−1Mpc−1 to maintain
constant θA. As H0 is lowered at fixed Ωch2 and Ωah2

in order to maintain flatness eventually one finds ΩΛ < 0.
We exclude such situations by prior. They can lead to a
collapsing universe at a ≤ 1, and will always collapse in the
future. They are ruled out by any reasonable prior on H0.
Not all values of θA,Ωa=Ωd andma are therefore consistent
with our prior. In Fig. 8 we show a selection of models
where varying H0 can be used to fix the l values of the
acoustic peaks. From this the DE-like nature of the lightest
ULAs is clear: they alter the shape of the ISW plateau of the
CMB and effects on small scales can be absorbed by
lowering H0.
From the preceding discussion of DE-like ULAs it

should be clear that the CMB can constrain ULAs of this
type with ma ≳ 10−32 eV. Changes to CTT

l are large for
Ωa=Ωd > 0.1 and require extreme values of H0, which
suggests constraints at least at the level Ωa=Ωd ∼ 10−2

FIG. 7 (color online). CMB temperature power spectrum with varying ULA mass and energy density fraction Ωa=Ωd. Here, we
introduce the lightest ULAs as a fraction of the dark energy, holding Ωch2 and H0 fixed so that maintaining flatness while introducing
ULAs reducesΩΛ. The lightest ULAs transition to matter-like behavior late in the lifetime of the Universe and can contribute to the dark
energy. The visible effects come from the change in the age of the Universe, which changes the angular size of the sound horizon, and in
changing the integrated effect of dark energy, which changes the amplitude of the ISW plateau. For dark-energy like ULAs with the
lowest ULAmasses, and lowest fractions, CTT

l becomes indistinguishable from ΛCDM, with the ΛCDM curve lying directly underneath
the ULA curve.
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taking into account all degeneracies, consistent with the
results of Ref. [32]. Even for the lightest mass we consider,
ma ¼ 10−33 eV, which behaves almost indistinguishably
from a cosmological constant, Ωa=Ωd is constrained to be
less than unity. Consider taking all the DM to be CDM, and
all the DE to be this ULA. In the ΛCDM cosmology one
has Ωc ≲ 3ΩDE at a high level of confidence, which gives
Ωa=Ωd ≲ 0.75. This provides an approximate upper bound
to Ωa=Ωd even for the lightest DE-like ULAs.

B. The matter power-spectrum revisited

We now turn to the effect of DE-like ULAs on the matter
power-spectrum, as well as the more subtle effect of ULAs
on the galaxy power-spectrum, which requires an approxi-
mate treatment of scale-dependent bias. The matter power-
spectrum, PðkÞ, is defined from the matter overdensity, δm,
and is related to the observed galaxy power spectrum,
PgalðkÞ, by the linear bias, b as

PgalðkÞ ¼ b2PðkÞ: ð30Þ
Galaxies are assumed to follow the total matter-density in a
prescribed manner, which fixes the form of bðkÞwhich is fit
from simulations and included in the likelihood when using
galaxy power-spectrum data [5,50,157].
On large scales, CDM and galaxies both cluster and have

the same linear growth. To a first approximation the bias is
constant and relates the amplitudes of the power spectra.
ULAs, however, have scale-dependent growth and do not
end up in collapsed structures on all scales. Clearly, the

galaxy field is uncorrelated with the ULA density field on
scales where ULAs do not form structure. On these scales,
galaxies can only trace whatever component of the matter is
still clustered. If PðkÞ is the total matter power-spectrum
including ULA perturbations, then specifying what portion
of the matter fluctuations the galaxies trace on a given scale
amounts to specifying a scale-dependent bias, bðkÞ. We
will treat the problem of scale-dependent bias by asking the
question “when do we include ULAs as part of the “matter”
in the matter power-spectrum?”
The importance of this issue for DE-like ULAs can be

illustrated with a simple example. This will demonstrate an
approximate way to treat the problem, which we will adopt
here. A full solution to the problem, following Ref. [158], is
deferred for future study.
For highma values, ULAs behave as DM on large scales.

For these values, we wish to include ULAs in the matter
density so that for sufficiently highma they can completely
replace the CDM and fit the observed PðkÞ. This suggests
the definition

δρm ¼ δρc þ δρb þ δρa;

ρ̄m ¼ ρc þ ρb þ ρa;

δm ¼ δρm=ρ̄m: ð31Þ
On the other hand, when ma is small, ULAs do not

cluster on any of the scales observed in a galaxy survey.
Consider the extreme case of ma < H0. Such a ULA does
not cluster on any subhorizon scales, so that δρa ≈ 0. We
can replace ρΛ with ρa, while holding ρc fixed at its ΛCDM
value. The left panel of Fig. 7 demonstrates that replacing Λ
by a ULAwith ma ¼ 10−33 eV < H0 produces no observ-
able effect on the CMB. This parameter choice has exactly
the same CMB temperature and lensing spectra, since the
gravitational potentials, which are physical observables,
always self-consistently feel the entire energy-density
content regardless of what is included in the definition
of “matter.” The evolution of the potential is not affected by
replacing Λ by a ULA with ma < H0.
Using the definition in Eqs. (31), we find that the shape

of PðkÞ is not changed relative to ΛCDM, since
δρa ≈ δρΛ ¼ 0. The amplitude, on the other hand, changes
by a factor of ½Ωm=ðΩm þΩΛÞ�2 ∼Oð0.1Þ because of the
increase in ρ̄m for this definition. The change in PðkÞwould
unfairly penalize the ma < H0 cosmology in the likelihood
relative to ΛCDM despite their physical equivalence on all
observable times and scales.6 In order to treat the lightest
ULAs consistently with PðkÞ data, we adopt an ULA-mass
dependent definition ρm when computing PðkÞ.

FIG. 8 (color online). CMB temperature power spectrum with
varying ULA mass and energy density fraction Ωa=Ωd. Here, we
introduce the lightest ULAs as a fraction of the dark energy,
holding Ωch2 and θA fixed, which requires varying H0. With the
angular size of the sound horizon fixed, the ULAs only affect the
CMB by altering the shape of the ISW plateau. Low values of
H0 ∼ 60 km s−1 Mpc−1 were necessary in these examples to keep
θA fixed, and certain cosmologies cannot be brought to fixed θA
while maintaining an expanding universe with ΩΛ ≥ 0.

6One could try to restore agreement with the data by increasing
Δ2

R to absorb this suppression. The primordial power-spectrum
Δ2

R, however, is also constrained by CMB data. If ma < H0 the
suppression can be absorbed into the large-scale (constant) bias,
but this is not be the case for all ma.
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A simple prescription is motivated by the band-limited
nature of the data. Galaxy power-spectrum data from any
given survey are only available down to some minimum
wave number kobs set by the size of the survey. Clearly
if ULAs do not cluster on any k > kobs then to some
approximation the galaxy density field on those scales
should not be correlated to the ULA density field and so we
should exclude ULAs from definition of the matter density
on these scales. This can be achieved by estimating the
scale at which ULAs cease to cluster as being the horizon
size when oscillations began, kosc ¼ aoscHðaoscÞ, and
excluding ULAs from the matter density if kosc < kobs.
This suggests that we can define the matter density in the
following way,

δρm ¼ Θðaosc − abiasÞðδρc þ δρbÞ
þ Θðabias − aoscÞðδρc þ δρb þ δρaÞ; ð32Þ

where ΘðxÞ is the Heaviside function, kobs ¼ abiasHðabiasÞ,
and similarly for the average density, ρ̄m. For our ULA
cosmologies we compute aoscðmaÞ from the Klein-Gordon
equation and so specifying abias gives the desired, simple,
mass-dependent prescription for ρm.
The value of kobs for WiggleZ, which we use, is close to

keq, and no galaxy survey to date has observed scales
k≲ keq. For simplicity we therefore take abias ¼ aeq as our
benchmark. When we obtain constraints in Sec. V we will
test the effect of this prescription by comparing constraints
with abias ¼ aeq and abias ¼ 1, where abias ¼ 1 only
excludes the “most Λ-like,” ma < 3H0, ULAs.
We will only ever use PðkÞ data in conjunction with

CMB data. Therefore, if the CMB (through the late-time
ISW effect) already provides strong constraints on all
masses in the range where aosc > aeq (ma ≲ 10−27 eV),
then constraints from CMBþ PðkÞ should be the same for
any abias > aeq. This will be the case if remaining effects in
PðkÞ for any choice of abias > aeq are small [relative to
experimental error bars on PðkÞ] for aosc > aeq within the
limits onΩa set by the CMB.We verify later that our choice
of abias has little effect on our constraints.
Our prescription, Eq. (32), is an approximate way to treat

the bias for ULA cosmologies. It is, however, an improve-
ment upon just blindly including both standard CDM and
structure-suppressing species in the matter density. It is a
definition of “matter” to only include those components
that were redshifting with the dominant matter at equality.
Such a definition is necessary due to our wide mass prior,
and is consistent with existing prescriptions for neutrinos
and clustering DE [54].
A full treatment of scale-dependent bias would fix the

form of bðkÞ based on the transfer function, relating the
perturbations in each component to the perturbations in
the total-matter field. Such a treatment is appropriate, but

by no means standard, in WDM and neutrino cosmologies
(see e.g. Refs. [158–160]). In neutrino cosmologies the
effects are small since Ωνh2 is small within the limits on
neutrino mass set by the CMB, and so it is reasonable in
this case to define bias with respect to just the CDM [160].
For clustering DE cosmologies, there is a default

prescription in CAMB to ignore the clustered component
of DE (in the definition of matter) when computing the
galaxy-clustering power spectrum. This is reasonable, as
DE clustering is still included in the potentials which
determine the physical effects of clustering DE on the
CMB, as well as the trajectories of DM particles and
halos that show up in the matter power-spectrum. The
validity of this default prescription requires that DE not
cluster on the same scales as galaxies do. Such simple
assumptions should be tested systematically in future
work.
In Fig. 9, we show some examples of PðkÞ for DE-like

ULAs when abias ¼ aeq. For the DE-like ULAs this bias
prescription excludes them from the definition of the matter
density in PðkÞ, so all effects are indirect via the expansion
rate and the potentials to which the CDM and baryons
respond.
In the left panel of Fig. 9, H0 is held fixed. It shows the

same models as the right panel of Fig. 7. With H0 fixed the
epoch of equality is unchanged, leaving the PðkÞ peak
unmoved. The ULAs in this example do not cluster on any
of the scales observed or shown, and so potentials for the
CDM and baryons, and thus the shape of PðkÞ is unaf-
fected. Nevertheless, a constraint to ULAs in this mass
range can be obtained from the matter power-spectrum.
This occurs because the age of the Universe is reduced, as
ULAs do not behave asΛ for all of cosmic history. The time
available for the growth of perturbations is thus lower,
decreasing PðkÞ relative to the ΛCDM case at all scales.
In the right panel of Fig. 9, the value of θA (and thus the

angular scale of all the acoustic peaks) is held fixed. It
shows the same models as Fig. 8. The models here would
not be heavily disfavored by the CMB alone. The extremely
low values ofH0 ∼ 50 km s−1 necessary to fix θA, however,
are strongly disfavored by measurements of the matter
power-spectrum PðkÞ. This demonstrates the well known
complementarity of the CMB and matter power-spectrum.
The matter power-spectrum contains information about the
baryon acoustic oscillation (BAO) scale in galaxies, and so
can be used to probe H0 in conjunction with the CMB.
These cosmologies require low H0 but match the CMB
(within the errors) otherwise. The CMB temperature
power alone (we do not include lensing in our analysis)
does not strongly constrain H0. These low H0 cosmologies
are inconsistent with measurements of the matter power-
spectrum.
To develop some intuition for the sensitivity of LSS data

to ULA parameters, it is useful to compare by eye the
output of our modified CAMB with survey observables. To
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do this, biased theory power-spectra must be convolved
with observational window functions (in particular, that of
the WiggleZ survey used to obtain constrains in Sec. V), as
described in Refs. [5,51,157]. The results are shown in
Fig. 10 using the appropriate binning. We see that for
ma ≲ 10−25 eV, we expect ∼1%-level constraints to the
ULA mass fraction Ωa=Ωd.

V. RESULTS

A. Data sets

In order to map out the allowed regions in ULA
parameter-space, we make use of several data sets. We
use Planck temperature data [47,48], as well as WMAP
large-scale CMB polarization data [1]. In addition, we add

FIG. 9 (color online). Matter power-spectrum with varying ULA mass and energy density fraction Ωa=Ωd. Here we introduce the
lightest ULAs as a fraction of the DE, holding Ωch2 fixed. No masses considered in this example cluster on scales where there are data,
and we exclude them from the matter density used to define PðkÞ [taking abias ¼ aeq in Eq. (32)]. Left Panel: Fixed H0, reducing ΩΛ to
maintain flatness. On scales shown the shape of PðkÞ is unchanged, and the only effect comes from the reduction in the age of the
Universe giving less growth time. Right Panel: Fixed θA, which requires reducing H0 as ULAs are introduced.

FIG. 10 (color online). Theoretical galaxy clustering power spectra, varying the ULA mass fraction Ωa=Ωd at fixed ULA mass
ma ¼ 10−27 eV. All non-ULA parameters are held at fiducial ΛCDM values. An example selection of WiggleZ data are shown from the
“9 hour region” [5,157]. The theoretical curves have been computed at the same redshift (z ¼ 0.6) as the WiggleZ data, and multiplied
by the window functions for the region in question. Left panel: Power spectra with galaxy bias fixed to its best-fit ΛCDM value. Right
panel: Power spectra, marginalizing over bias in the course of parameter-space exploration. At high values of Ωa=Ωd, the preference is
for higher values of the bias (to absorb the overall power suppression), explaining the upward trend in power at large scales in this panel.
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small-scale data from the Atacama Cosmology Telescope
(ACT) [28] and the South Pole Telescope (SPT) [49], as
included in the highL likelihood within the Planck public
likelihood code.
In addition to the CMB data, we include matter power-

spectrum data, from the WiggleZ survey [5,51,157]. We
use the full shape of the matter power-spectrum. The shape
also includes the information about the BAO. In order to
avoid double-counting we do not separately use the
WiggleZ measurement of the BAO peak scale. The BAO
are complementary to the CMB data in measuring H0,
providing additional constraining power on the lightest
ULAs (Fig. 9). We restrict our analysis to wave numbers of
k≲ 0.2h−1 Mpc and do not include nonlinear scales from
the WiggleZ data. We make this choice because the
HALOFIT [161] prescription for computing nonlinear power
used in CAMB has not been calibrated using simulations of
ULA DM, and incorrect modeling of the matter power-
spectrum on nonlinear scales could lead to spurious
constraints.

B. Sampling

The degeneracy structure in the eight-dimensional param-
eter space including a wide prior on ma is complex and
highly non-Gaussian. In order to fully explore this parameter
space we had to go beyond the standardMetropolis-Hastings
MCMC cosmological parameter estimation.
We make use of the MULTINEST [53] nested-sampling

package implemented in the December 2013 version of
COSMOMC [52], combined with our modified version of
CAMB to compute the power spectra. This is in contrast to
the existing constraints on ULAs in Ref. [32], where a grid-
based likelihood and analytic approximations for the power
spectra were used. We allow MULTINEST to search for
multiple nodes within the likelihood. For the vanilla
ΛCDM model, the two methods of standard MCMC and
nested sampling agree extremely well in the derived
cosmological parameters.
We speed up the COSMOMC exploration of the space by

fixing the foreground parameters for the CMB data to their
best-fit values. We tested this assumption by unpinning
foreground parameters and examining all possible pairings
of ULA and foreground parameters. In no case were there
degeneracies that change any of our conclusions. More
specifically, we computed the correlation coefficient of the
axion parameters with a coarsely sampled run over the full
parameter space. The correlation coefficient between the
axion parameters and the Poisson amplitude of the Planck
100-GHz data is ccorr < 0.2; for all other parameters there
is less than 10% correlation between the primary and
foreground parameters.
We checked for the dependence of the CMB results on

the fixed foreground model assumption by finding the best
fit primordial and foreground parameters given axion
parameters which are fixed at the best-fit positions in the

medium mass bin. We then fixed the foregrounds to these
newly determined best-fit values of the foregrounds (rather
than the best fit from the Planck results) and found the best-
fit ULA parameters in that case. We see shifts of less than
0.7σ for the ULA parameters.
We ultimately vary Δ2

R, ns, Ωbh2, Ωch2, τre, ma, Ωah2,
and the CAMB/COSMOMC parameter θMC. The value of θMC
closely tracks that of θA under the assumption that ULAs
behave entirely as DM [163]. It is not physical for low
values of ma, when ULAs are dark-energy like, but is a
useful tool to efficiently step in H0, a derived parameter.
Hence in Table I we only quote constraints on H0 and not
on θA. We assume zero spatial-curvature (Ωk ¼ 0) and
determine the cosmological constant ΩΛ accordingly. The
Hubble constant H0½km=s=Mpc� is a derived parameter, as
is the initial axion field displacement, ϕi.
ULAs are degenerate either with CDM (for large ma) or

DE (for low ma); this results in a mass-dependent degen-
eracy between the Ωah2 and Ωch2, illustrated in Fig. 11 for
our MULTINEST-sampled chains. We show the point density
of the chains sampled in three regions of the ULA mass,
and color the points by the value of the mass, in three bins.
Very low masses are not degenerate with CDM, and Ωah2

can be large independent of Ωch2. Heavy axions are
indistinguishable from CDM and there is a perfect degen-
eracy between Ωah2 and Ωch2. For intermediate-mass
axions Ωah2 is constrained (although it still lies along
the degeneracy line for high-mass axions) and Ωch2

remains close to its ΛCDM value.

FIG. 11 (color online). Mass-dependent degeneracy of axions
and CDM. Points are shown for a MULTINEST chain and colored
by ma. If axions are light (ma < 10−30 eV), they behave as dark
energy. Therefore while the CDM density is unchanged as Ωah2

increases, the dark-energy density ΩΛ is reduced (see Fig. 15). If
axions are heavy (ma > 10−25 eV), they behave as dark matter,
and so there is a perfect degeneracy between Ωch2 and Ωah2. For
ma in the intermediate mass range, the axion energy density is
constrained to be small.
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This mass-dependent degeneracy makes computing a
covariance matrix difficult in a normal MCMC scenario. In
particular, the bimodality of the ma −Ωah2 plane consists
of two regions where the axion density relative to the total
density is poorly constrained. These walls in the distribu-
tion present significant challenges, as MCMC chains
starting in either region can become ‘blocked’ in the highly
probable regions, which are separated by a well-
constrained “valley” for intermediate-mass axions. For a
standard MCMC, therefore, this valley is hard to traverse.
Nested sampling is far better suited to exploring like-

lihood surfaces like this, and so we choose to use
MULTINEST instead of standard Metropolis-Hastings
MCMC techniques. We are still limited computationally,
however, by the number of live-points used by MULTINEST.
Properly sampling the constrained valley in a global
exploration of our mass range proved prohibitive, and
using standard techniques, we could not obtain accurate
constraints in the two-dimensional space ðma;Ωa=ΩdÞ in
the constrained valley even using nested sampling.
Our solution to this problem is to break the parameter

space into three regions:

−33 < log10ðma=eVÞ < −30 ðlow massÞ;
−30 < log10ðma=eVÞ < −25 ðmed massÞ;
−25 < log10ðma=eVÞ < −22 ðhigh massÞ: ð33Þ

We term these “local chains,” and they are demarcated by
the dashed vertical lines in Fig. 1. We perform a
MULTINEST run with 500 live points and a tolerance of
0.3 in each region, satisfying the criterion Δ lnL ¼ 0.1,
where L is the likelihood. This typically results in
∼100 000 likelihood evaluations for each region. This
ensures that each region is well sampled in the local
chains. In addition, we check that splitting the chain in
two parts and computing constraints with different parts of
the chain produces results consistent at the ∼0.1–0.2σ level.
In order to combine the information from multiple

regions together to form a chain across the full space,
we do a coarse global MULTINEST run over the entire mass
range; we call this the “global” chain. We use this global
chain to re-weight the output from the individual regions as
follows. We first convert the global chain into a single chain
where each point has equal density (to ensure a valid
relationship between likelihood and point density). To
make a single chain we first divide the weight of each
step by the maximum global weight (and so in that way
turns the weights into fractional weights, and keeps the
information from the MCMC sampling). We then throw a
random number and accept this new point (and writes it
with weight one) to the single chain if it that random
number is less than the normalized weight.
The single global chain is then binned in the

ðma;Ωa=ΩdÞ plane and we use the point density in

two-dimensional bins as a posterior with which to re-
weight the individual (separately computed and hence
statistically independent) local chains. We perform an
interpolation of the points in the two-dimensional mass-
fraction plane for the individual, local chains to obtain a
re-weighting coefficient from the global two-dimensional
histogrammed point density. Following this two-
dimensional importance sampling [162], the local chains
are combined to form a ‘master chain,’ which is processed
as usual, and the global chain is not used again, as the local
chains are no longer independent from the global. The
master, combined chain is now well sampled in the full
parameter-space, and the proper relative likelihood applies
across the full range of ULA masses. This two-dimensional
importance sampling from the coarse global chain allows
us to keep global information about the relationship
between mass and fraction, but achieves better sampling
in the three regions.

C. Priors

The most conservative prior to place on the unknown
parameter ma is a Jeffreys prior, which is uniform in
logarithmic space. We bound this as

−33 < log10ðma=eVÞ < −22 ðglobal chainÞ; ð34Þ

and correspondingly for each local chain of Eq. (33). We
recall that this is also the preferred theoretical prior for
axions in the string landscape [26].

FIG. 12 (color online). Marginalized 2 and 3σ contours in the
ma − Ωa=Ωd plane for both the CMB-only (red) and CMBþ
WiggleZ (black) combinations of data sets. We obtain constraints
of Ωa=Ωd ≤ 0.03–0.05 at 95% confidence level over some seven
orders of magnitude in ma. The high-mass fluctuations/dips in
the plane are due to sampling of the space rather than true features
in the data set. For ultralight axions (ULAs) with masses
ma ≲ 10−20 eV, small-scale structure formation is suppressed
[29–34] on astronomically observable length scales.
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We impose flat priors on the axion and matter energy-
densities. Alternatively, we could have imposed a uniform
prior on the initial axionmisalignment angleϕi [55] resulting
in a density priorPðΩah2Þ ∝ 1=ð

ffiffiffiffiffiffiffiffiffiffiffi
Ωah2

p
Þ.Wedonot use this

prior, and choose to be consistent in our treatment of baryon,
CDM and axion densities. To ensure that we probe all the
way down to axion mass-fractions of Ωa=ðΩaþΩcÞ¼
10−4, we allow Ωah2;Ωch2 to vary in the range
10−5 → 0.3. As a test for prior dependence, we tried an
alternate procedure, in which the chains were importance
sampled with uniform priors inΩa=Ωd or ln ðΩa=ΩdÞ. There
is a weak prior dependence in that chains importance
sampled uniformly in ln ðΩa=ΩdÞ give less weight to the
top of the “U” in the low- and high-mass regions. The bounds
on the axion fraction in the highly constrained intermediate
mass range are unchanged by our choice of prior.

D. Cosmological parameter constraints

Our main results are constraints in the plane
ðma;Ωa=ΩdÞ, shown in Fig. 12 (and Fig. 1 on a linear
scale), marginalized over all other cosmological parame-
ters. We display 2 and 3σ exclusion regions for the
CMB and CMBþWiggleZ combinations of data sets.7

Examining Fig. 12, we see that Ωa=Ωd ≲ 0.07 across the
highly-constrained region −32≲ log10ðma=eVÞ≲−25.5].

Properly marginalizing over all ma values in this region,
we obtain the precise constraint Ωa=Ωd ≤ 0.048 at 95%
confidence.
Another way of viewing the results is in the ma −Ωah2

plane. The resulting constraints are shown in Fig. 13.
We see that across the highly constrained region
[−32≲ log10ðma=eVÞ≲ −25.5], ULAs can contribute a
mass fraction bounded asΩah2 ≲ 0.010 at 95% confidence.
Properly marginalizing over allma values in this region, we
obtain the precise constraint Ωah2 ≤ 0.0058 at 95% con-
fidence. Our results have placed percent-level constraints
on a possible ULA contribution to the DM energy-density
over some 6 orders of magnitude in ULA mass, with looser
constraints extending even further in mass.

TABLE I. Constraints on the cosmological parameters in the
axion model in the tightly constrained (data-driven) mass range
−32 ≤ log10 ðma=eVÞ ≤ −25.5. The one-sided limits are upper
95% bounds, while the error bars quoted represent the upper and
lower 95% errors. The lower limit should be the central value
minus the error bar.

Parameter
Planckþ highLþ lowL

þWP ðCMBÞ CMBþWiggleZ

Ωah2 <0.0058 <0.0062
Ωch2 0.119þ0.005

−0.008 0.121þ0.004
−0.005

Ωa=Ωd <0.048 <0.049
ϕi=Mpl 0.073þ0.1482

−0.058 0.089þ0.239
−0.073

logð1010AsÞ 3.092� 0.046 3.091� 0.046
ns 0.959� 0.012 0.956� 0.011
τre 0.091� 0.025 0.089� 0.025
100Ωbh2 2.212þ0.043

−0.045 2.201� 0.046
H0½km=s=Mpc� 67.3þ2.4

−3.5 66.2þ2.4
−4.9

FIG. 13 (color online). Marginalized 2 and 3σ contours in the ma − Ωah2 plane for both the CMB-only and CMBþWiggleZ
combinations of data sets. The left panel shows the contours with the axion density shown on logarithmic scale, while the right hand side
shows the same contours on a linear scale. We obtain constraints of Ωah2 ≤ 0.006 at 95% confidence level over some seven orders of
magnitude in axion mass ma. Color code is as in Fig. 12.

7We have checked that the 2 and 3σ constraints are robust to a
variety of tests: they are unaffected by priors, binning, and
sampling methodology. The 1σ constraint, on the other hand,
showed some sensitivity to these tests due to the flatness of the
likelihood near the Ωa → 0 boundary and being sample-size
limited in this region. Thus we do not show the 1σ constraint. On
physical grounds it is clear that it should extend from Ωa ¼ 0
upwards for all masses.
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The constrained regime [−32≲ log10ðma=eVÞ≲ −25.5]
spans across our individual mass regions of Eq. (33),
showing that its existence and size was not biased by
our sampling procedure. The tightly constrained region is a
data-driven feature and the marginalized constraint on
Ωah2 in this region is independent of the ULA mass-prior.
The cosmological parameter constraints in the constrained
region are quoted in Table I.
The inclusion of WiggleZ data affects the constraints

in a few key ways. In the mass range −28 <
log10ðma=eVÞ < −25, the WiggleZ data are sensitive to
damping in the matter power spectrum on small scales,
hence the constraints on the axion fraction tighten. The
limits on the fraction at lower masses are actually weakened
very slightly by the inclusion of galaxy-clustering data.
This could partly be due to the differences in clustering
preferred by LSS relative to CMB data [164–166]. CMB
data favor higher Ωm and lower σ8 than clustering data and
can thus tolerate a larger Ωa=Ωd (where σ8 is the variance
of the matter power-spectrum on 8h−1 Mpc scales). This
could help reconcile the difference between the CMB and
LSS power spectra. We will explore this issue further in
future work.
Our LSS constraints are likely to be overly permissive,

due to the fact that there is some constraining power on
scales for which aosc > abias (defined in Sec. IV B). We ran

an exploratory MCMC run in the highly-constrained region
with abias ¼ 1, and found that the LSS constraints tightened
by ∼30%, and that the edges of the allowed wings moved
out by roughly an order of magnitude in mass. In any case,
the CMB constraints are more robust and stringent, so we
defer a detailed treatment of scale-dependent bias to future
work. The apparent feature at log10ðma=eVÞ ¼ −30.5,
present in both data sets, is weakly dependent on the
binning procedure. In this region the shape of the ISW
signal from DE-like axions has a nontrivial shape, and can
play a role fitting low-l anomalies in CMB data.
In Fig. 14 we show sample points from our MULTINEST

chains in the ðma;Ωa=ΩdÞ plane colored by various other
cosmological parameters. There is no significant degen-
eracy between axion parameters and Ωbh2 or ns. A mild
degeneracy with H0 is observed, with points on the edge of
our constraints at low mass favoring lower H0.
Figure 15 shows one-dimensional marginalized con-

straints on various parameters. The constraints in each
local mass range (low, medium, high) are shown to
demonstrate the physical effects of ULAs of different
masses. In the high-mass regime, ULAs are degenerate
with CDM. Both Ωah2 and Ωch2 can therefore go to zero,
with upper bounds close to the ΛCDM constraint on
Ωch2. In the high-mass regime ΩΛ is unchanged from its
ΛCDM value near 0.68. In the low-mass regime, ULAs are

FIG. 14 (color online). Degeneracies between the axion parameters and other cosmological parameters. Color indicates value of
indicated parameter, as shown by color bar to the right of each panel. Axion parameters are independent of the baryon density, as well as
the normalization and tilt of the primordial power-spectrum, as can be seen in the top right, top left, and bottom left panels of the plot. In
the bottom right panel, we see that axion parameters can be degenerate with the Hubble constantH0 (in km s−1=Mpc) in the dark-energy
like part of parameter space, at low values of ma, where allowed values can drop to H0 ≲ 60 km s−1=Mpc.
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degenerate with DE, and so ΩΛ can become small com-
pared to its ΛCDM value, while Ωch2 remains sharply
peaked near Ωch2 ¼ 0.12. In the medium-mass regime,
ULAs are neither degenerate with CDM nor DE and Ωah2

in constrained to be small. The constraints from the CMB
(left panel) and CMBþWiggleZ (right panel) are quali-
tatively similar, with WiggleZ adding additional con-
straining power in the medium-mass regime.

E. Local limits

The marginalized two-dimensional ma − ðΩa=ΩdÞ plane
allows one to visualize the degeneracy between the fraction
and mass concretely. While a global limit on the axion

fraction (as a function of ma) is interesting, one might also
ask a related question—in a narrowly defined mass bin,
what are the limits on the fraction, and how do these
compare to the constraints in the two-dimensional
ma − ðΩa=ΩdÞ plane?
We compare the one-dimensional limit computed

over a range of masses [and within a mass bin of
Δ log10ðma=eVÞ ¼ 0.5] to the marginalized, two-
dimensional, global contours in Figure 16. The
mass-binned method is quasi-frequentist, while the full
two-dimensional contours are fully Bayesian. We see that
the 95% constraints closely agree between these two
methods. This is further evidence that we have adopted

FIG. 15 (color online). Marginalized one-dimensional constraints on the axion parameters for various data sets. Left panel: the solid
lines show the constraints when considering only CMB data, while the dashed lines (right panel) show the constraints when adding in
WiggleZ data. In both panels the parameter constraints are shown for the axions sampled in separated mass bins. The black dot-dashed
lines indicate the constraints obtained when combining the chains from the individual runs, weighted by the global run.

FIG. 16 (color online). Comparison of marginalized 95% contours and locally defined one-dimensional limits on the axion fraction.
The chains are binned in mass bins of Δ log10ðma=eVÞ ¼ 0.5. The bars give the 95% upper percentile of the axion fraction. The solid
line in each bar shows the location of the 50% percentile of the chain, and the two dotted lines show the 84% and 16% percentiles
respectively.
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a consistent methodology to sample and constrain the
challenging ULA parameter space.
While the global chain constraints are computed for

chains that have been added and re-weighted using the
prescription described above (and are indicated by the solid
lines), the individual constraints in a mass bin (indicated by
the bar chart) do not take the relative prior volume into
account. The one-dimensional limits are thus tighter than
the full n-dimensional case in the tightly constrained mass
range, as the extra n − 1 degrees of freedom have been
integrated out, while the marginalized two-dimensional
contours have only integrated out n − 2 degrees of freedom.
It is, however, not surprising that the limits are still largely
consistent between the two treatments of the chains.

F. Constraining the axion decay constant

Finally, we investigate the significance of our constraints
for the axion decay constant, fa, tuning of initial con-
ditions, and models of axion production. In Fig. 17, we plot
points from a MULTINEST chain in the ma −Ωa=Ωd plane
colored by the value of the initial field displacement
ϕi=Mpl. As already discussed, ϕi is a derived parameter
in our chains, found by using a shooting method to obtain
the correct axion relic-density from the vacuum realign-
ment mechanism.
For any fixed value of fa, we can divide the plane up

according to the value of ϕi. Regions with ϕi=fa < 1 are
consistent with the m2

aϕ
2 approximation to the potential

with no need for anharmonic effects or other additional

production mechanisms. On the other hand, regions with
ϕi=fa < 10−3 might be said to be tuned, like the anthropic
window for the QCD axion.
In most of the plane the initial field displacement is

small in Planck units, and can therefore be accommodated
within the m2

aϕ
2 approximation for the axion potential

with sub-Planckian decay constant, fa < Mpl. In particular,
this applies to the constrained intermediate mass region.
Regions where ϕi=Mpl < 0.01 are consistent with
fa ≲ 1016 GeV with no need for additional production
mechanisms. For ϕi=Mpl> 0.01 a larger value of
fa > 1016 GeV, anharmonic effects, multiple degenerate
axions, or other production mechanisms are necessary to
obtain the larger values of the relic density [167].
The only region favoring ϕi=Mpl > 1 is at low ULA

mass [ma ≲ 10−32 eV and large density fraction
(Ωa=Ωd ≳ 10−1)]. In this regime, ULAs drive today’s
accelerated cosmic expansion. Even so, all sample points
respect the bound ϕi=Mpl < π and so everywhere we are
consistent with fa < Mpl for the simple choice of a cosine
potential and small anharmonic corrections. Our results are
therefore consistent with the WGC described in Sec. II.

VI. DISCUSSION AND CONCLUSIONS

It has become clear that certain particles and fields in
cosmology supply us with a powerful portal into funda-
mental physics. Recent developments in neutrino physics
are a prime example, with future high resolution measure-
ments primed to measure the neutrino mass hierarchy with
extraordinary precision [168]. The presence of ultralight
axions in cosmology can also lead to constraints on new
mass scales in particle physics, as well as on the dynamics
of the early Universe.
In this paper we have presented the first ever cosmo-

logical search for ultralight axions using a fully self-
consistent Boltzmann code, modern Bayesian statistical
methods (including nested sampling), as well as state-
of-the-art CMB and LSS data. We have derived constraints
in the eight-dimensional parameter space of fΔ2

R; ns;H0;
τre;Ωbh2;Ωch2;Ωah2; mag, exploring all possible degen-
eracies, as well as those including foregrounds.
We have presented these constraints marginalized down

to one or two-dimensional spaces. Our main results are
shown in Figs. 12, 15, and 16, as well as in Table I. We
show that axions in the mass range 10−32 eV ≤ ma ≤
10−25.5 eV can contribute Ωa=Ωd < 0.048 at 95% confi-
dence (CMB only) and Ωa=Ωd < 0.049 at 95% confidence
(CMBþWiggleZ). Large fractions are allowed outside
this regime: for ma ≲ 10−32 eV axions become indistin-
guishable from dark energy, while for ma ≳ 10−25.5 eV
axions become indistinguishable from CDM. For the case
of CMBþWiggleZ data, this turnover from the con-
strained to the dark-matter like region occurs at a higher
mass, as we can see in Fig. 12.

FIG. 17 (color online). The ma − Ωa=Ωd parameter space
showing sample points for the CMB-only data, colored by the
initial field displacement ϕi=Mpl. All points satisfy ϕ=Mpl < π
and so are consistent with sub-Planckian decay constants,
fa < Mpl, and the Weak Gravity Conjecture. Most points satisfy
ϕi=Mpl < 1 and so are consistent with fa < Mpl. Regions with
ϕi=Mpl < 0.01 are consistent with a GUT-scale decay constant
with no need for additional production mechanisms.
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This interesting and challenging axion parameter space
required the use and development of new techniques. In
order to solve for the affect of axions on the cosmological
observables in a fully consistent manner, we developed
code to solve not only for the background but for the
perturbations in the axions. To that end, we modelled
axions as a perfect fluid with an equation of state and a
sound speed, modifying CAMB to consistently account for
axions.
Sampling the axion space is challenging. The unusually

shaped parameter space caused standard Metropolis-
Hastings chains to get stuck in the middle region of
intermediate mass, preventing them from climbing the
“walls” of the U-shaped distribution in the axion mass-
axion fraction plane. We were able to improve sampling by
using MULTINEST. The final chains, however, were under-
sampled in precisely the intermediate region, as MULTINEST

is designed to find the largest-volume allowed regions.
We tackled the problem by performing MULTINEST runs
restricted to three mass ranges, and then combined the
chains using information from a global, more a coarsely
sampled run to weight the individual, “local” chains. This
allowed us to closely probe all regions of interest while
including information about the relative probabilities of the
three separate mass ranges explored.
There are many open avenues to extend our analysis.

Preliminary investigations of CMB lensing data suggest it
will be possible to increase the constraint onma by an order
of magnitude or more using the l ∼ 1000 measurement of
the lensing potential power spectrum by the ACT [28]
and SPT collaborations [49]. Galaxy lensing data will
complement the CMB deflection data [36]. Lensing data
will impose ∼1%-level constraints on the axion energy-
density using well-understood linear physics. These
constraints will strengthen cruder and more systematic-
limited constraints from galaxy formation and reionization
[143]. Including isocurvature perturbations will allow us to
place constraints on the energy scale of inflation independ-
ently of the B-mode polarization. Axion-type isocurvature
is sensitive to extremely low-scale inflation inaccessible
to searches for tensor modes. The combination of more
accurate E-mode polarization measurements from Planck
in the interim and AdvACT [169] will place the strongest
bounds on isocurvature and lensing. We do not include
additional constraints on the BAO angular scale from SDSS
[8], but leave a detailed comparison of constraints from
different probes of LSS to future work. One might also
consider including more varied inflation scenarios with
axions, for example changing the shape of the primordial
power spectrum. No additional modifications to our version
of CAMB will be required to explore these possibilities.
We have not included various other extended sets of

well-motivated cosmological parameters, which may have
interesting degeneracies with axions. These include curva-
ture, Ωk, dark-energy equation-of-state variables, ðw0; waÞ,

and extended neutrino-sector parameters, ðNeff ;ΣmνÞ.
The version of CAMB developed for this work will
require additional modifications to accommodate these
parameters.
Cosmological observations are now narrowing in on the

minimum neutrino mass scale consistent with oscillation
experiments, and so the degeneracies of axion and neutrino
parameters is particularly interesting [36]. Some tensions
between CMB and LSS-derived parameters may be
resolved by neutrino mass (see Ref. [170] and references
therein), but perhaps ultralight axions offer better resolu-
tions than neutrinos to these tensions.
We have used precision cosmological data to search for

ultralight axions. Although we have found no evidence for
axions yet, our results place strong and robust constraints to
axion parameter space. Axions are well-motivated dark
matter candidates in string theory and particle physics. We
have probed ranges of axion parameter space inaccessible
to other searches. We have developed powerful computa-
tional tools to allow our analysis to be extended and applied
to future data. Our techniques demonstrate the power of
cosmological data not only to indicate the existence of dark
matter and dark energy, but also to constrain the detailed
physics of the dark sector.
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APPENDIX A: SUPPRESSION OF CLUSTERING
BY AXIONS- JEANS, HUBBLE

AND DE BROGLIE

A heuristic understanding of the suppression of cluster-
ing in an expanding universe containing axions is possible,
using a simple argument that relates the Jeans scale to
the de Broglie scale using only the Hubble expansion.
Consider a particle of mass m moving with the Hubble
flow, H, separated by a distance r from an observer. In the
observer’s frame of reference the particle is moving with a
velocity

v ¼ Hr: ðA1Þ
According to the observer, this velocity gives the particle a
de Broglie wavelength,

λdB ¼ 1

mv
¼ 1

mHr
: ðA2Þ

As the particle moves further away from the observer and
the distance r increases, the speed at the which the particle
is moving relative to the observer also increases. The de
Broglie wavelength therefore decreases, and the particle
can be localized on smaller scales. The particle can only be
localized within the celestial sphere of radius r when the
following inequality is obeyed

r ≥ λdB; ðA3Þ

Substituting for λdB in Eq. (A2) we find that a particle
moving with the Hubble flow can be localized on all scales
r satisfying

r≳ ðmHÞ−1=2: ðA4Þ

Identifying the wave number k ¼ π=r, we find that the
above inequality is saturated at

k⋆ ¼ π
ffiffiffiffiffiffiffiffi
mH

p
: ðA5Þ

For all k≳ k⋆ quantum mechanics prevents an observer
from localizing a particle moving with the Hubble flow,
and so the clustering of particles is forbidden at large
wave number. When m is small and k⋆ is cosmologically
observable, this leads to an observable suppression of
power relative to the case where m is large.
It is now simply a numerological fact to observe that

k⋆ ∼ kJ for axion DM, where kJ is the Jeans scale. Is this a
coincidence? A simple argument suggests not. The Jeans
scale is derived by taking the nonrelativistic limit and short-
long time-scale separation of the Klein-Gordon equation,
transforming into fluid form and identifying the sound
speed from the pressure term. The de Broglie wavelength
emerges from the wave-like properties of the Schrödinger
equation. The Schrödinger equation is, however, also a

description of the same limits of the Klein-Gordon equation
[171]. Transforming between the Schrödinger and fluid
pictures introduces the quantum pressure that is responsible
for the sound speed and thus the Jeans scale. This suggests
that the two interpretations are related, if not equivalent.
The difference between our heuristic derivation of k⋆

above and the Jeans analysis is that H only appears in the
Jeans analysis along with the correct power of k after
applying the Poisson equation. The Jeans analysis thus
depends on perturbation theory while our heuristic argu-
ment depends only on the background expansion. In a
modified theory of gravity it is therefore possible that the
two scales k⋆ and kJ will not coincide.

APPENDIX B: DERIVATION OF POWER
SERIES INITIAL CONDITIONS

Series solutions for the fluidþ Einstein equation system
laid out in Refs. [147,152] may be obtained by applying
power series expansions in τ and x ¼ kτ to the system. This
expansion is valid for super-horizon modes, a valid
assumption since the CAMB code begins mode integration
well outside the horizon. These equations are derived in the
tight-coupling regime, valid at early times. The solution
method originally used to obtain the power series solutions
in Refs. [147,152] is not specified, but these solutions are
readily (if tediously) obtained using a linear eigenmode
analysis, as first sketched in Refs. [153,154] and discussed
in Ref. [155]. Here we review this analysis, including the
evolution of the scalar field in a mixed matter-radiation
background and its influence on the gravitational field
through Einstein’s equations. Here we compute and state
values for all the other fluid and metric variables as a
function of the dimensionless conformal time τb.

1. Framework for obtaining series solution
to Einsteinþ fluid system

The synchronous gauge axion EOMs in terms of fluid
variables are stated in Sec. III. All the other fluid equations
and Einstein equations are given by well-known expres-
sions in Refs. [147,152], with additional axion source terms
given by Eqs. (23)–(25). If the full system of differential
equations can be written in the form

d ~U~k

d ln x
¼ ðA0 þ A1xþ � � �AnxnÞ ~Uk ðB1Þ

where x ¼ kτ, k is the wave number and τ is the conformal
time and ~Uk is the Fourier transform of the vector of all
fluidþmetric variables of interest, then the space of
solutions is spanned (to lowest order) by the eigenvectors
~Uα
k (with eigenvalue α) of A0:

~UkðτÞ ¼
X
α

cαxα ~U
α
k: ðB2Þ
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Here cα are coefficients setting the contribution of each
eigenmode to the solution, and are chosen so that fluid
variables match initial conditions. As we shall see, lowest-
order solutions often yield zero values for certain variables,
and we desire an expansion that yields the first nonzero
components for all fluid quantities. Around each eigen-
mode, we can extend each eigenmode to a solution Uα

~k
ðτÞ

including higher order corrections:

Uα
~k
ðτÞ ¼ Uα

~k
xα þ Uα

~k;ð1Þx
αþ1 þ � � �Uα

~k;ðiÞx
αþi þ � � � : ðB3Þ

We derive the corrections to the lowest-order solution by
applying Eq. (B1) to the ansatz, Eq. (B3), obtaining [154]:

½ðαþ 1ÞI − A0� ~Uα
~k;ð1Þ ¼ A1

~Uα
~k; ðB4Þ

½ðαþ 2ÞI − A0� ~Uα
~k;ð2Þ ¼ A1

~Uα
κ;ð1Þ þ A2

~Uα
~k; ðB5Þ

½ðαþ 3ÞI − A0� ~Uα
~k;ð3Þ ¼ A1

~Uα
~k;ð2Þ þ A2

~Uα
~k;ð1Þ þ A3

~Uα
~k;ð1Þ;

ðB6Þ

½ðαþ 4ÞI − A0� ~Uα
~k;ð4Þ ¼ A1

~Uα
~k;ð3Þ þ A2

~Uα
~k;ð2Þ þ A3

~Uα
~k;ð1Þ

þ A4
~Uα
~k: ðB7Þ

Here I is the identity matrix in the space of all fluid
variables. The solutions to this linear system can yield
higher-order corrections to the time-evolution of the fluid
variables for each eigenmode.

2. Fluid and Einstein equations in convenient
variables for eigenmode analysis

Wework in coordinates where the scale factor at equality
aeq ¼ 1=4 by definition and τb≡Cτ with C2¼ 4πGρeqa4eq=4
(where ρeq is the radiation energy density at matter-
radiation equality). For our purposes, ‘matter’-radiaiton
equality is defined by the relationship:

ρa þ ρb þ ρc ¼ ργ þ ρν; ðB8Þ

where ργ and ρν are the energy densities of photons and
neutrinos, while ρb and ρc are the energy densities of
baryons and CDM, respectively.
The solution to the Friedmann equation at early times

(ρa ≪ ρm; ρa ≪ ρrad ¼ ργ þ ρν, a ≪ aosc) is

a ¼ τb þ Kτ2b; ðB9Þ

K ¼
( ð1 − fÞ if aosc ≤ aeq

ð1−fNRÞ
ð1−fNRÞþfNRa3eq=a

3
osc

if aosc > aeq:
ðB10Þ

fNR ¼ Ωa=ðΩa þΩmÞ: ðB11Þ

These are the same conventions for conformal time and
expansion history employed in Ref. [152], facilitating ease
of comparison with the expansions derived in that work.
The one distinction between the early-time expansion
history here and in Ref. [152] is that we have self-
consistently allowed for axions to make up such a high
fraction fNR of the nonrelativistic matter density today, that
if τ ≪ τosc, the nonrelativistic matter density is reduced
from what it would have been if there were no axions (since
axions act like a cosmological constant at such early times).
The axion-free case corresponds to the choice K ¼ 1.
We use a dimensionless wave number κ ¼ k=C so that

x ¼ kτ ¼ κτb, dimensionless velocities ~ti ≡ θi=ðCκx2Þ, and
rescaled density contrasts ~δi ≡ δi=x. The axion velocity ua
is already dimensionless, so we define ~ua ¼ ua=x2. We also
define a metric velocity Θ≡ β0, where the derivative
0 ≡ κ−1d=dτb. It is useful to rescale higher-order moments

in the neutrino hierarchy using ~σν ≡ σν=x and ~Fð3Þ
ν ≡

Fð3Þ
ν =x2. We now reexpress the synchronous gauge fluidþ

Einstein equation system from Refs. [147,152], using
the choice of variables just described and adding the
axion EOMs and source terms of Eqs. (20)–(21) and
Eqs. (23)–(25), obtaining a system solvable using
Eqs. (B1)–(B3) and Eqs. (B4)–(B7):

~δ0γ ¼ −~δγ −
4

3
~tγbx2 −

2Θ
3

; ðB12Þ

~δ0ν ¼ −~δν −
4

3
~tνx2 −

2Θ
3

; ðB13Þ

~δ0c ¼ −~δc − ~tcx2 −
Θ
2
; ðB14Þ

~δ0b ¼ −~δb − ~tγbx2 −
Θ
2
; ðB15Þ

~t0γb ¼ −2~tγb þ
~δγ

4½3Rbðx=κÞðKx=κþ1Þ
Rγ

þ 1�

−
ð2Kx=κþ1Þ
ðx=κþ1Þ ~tγ

3Rb
Rγ

ðx=κÞðxK=κ þ 1Þ
½3Rb
Rγ

ðx=κÞðxK=κ þ 1Þ þ 1� ; ðB16Þ

~t0ν ¼ −2~tν þ
~δν
4
− ~σν; ðB17Þ

~t0c ¼ −2~tc −
ð2xK=κ þ 1Þ
ðxK=κ þ 1Þ ~tc; ðB18Þ
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~σ0ν ¼ − ~σν þ
4~tνx2

15
−
3 ~Fð3Þ

ν x2

10
þ 2Θ

15
þ 8ðRγ~tγ þ Rν~tνÞ

5ð1þ xK=κÞ2

þ 24xðRc~tc þ Rb~tbÞ
5κð1þ xK=κÞ þ 16πGx4

5C2κ4
ð1þ Kx=κÞ2ρa ~ua;

ðB19Þ

~Fð3Þ
ν ¼ −2 ~Fð3Þ

ν þ 6~σν
7

; ðB20Þ

Θ0 ¼ −
ð2xK=κ þ 1Þ
ðxK=κ þ 1Þ Θ −

6ðRγ
~δγ þ Rν

~δνÞ
ð1þ xK=κÞ2

−
12xðRc

~δc þ Rb
~δbÞ

κð1þ xK=κÞ −
32πGa2ρax2 ~δa

C2κ2

−
72πGa2ρax2

C2κ2
~uað1 − c2adÞ

�
1þ 2Kx=κ
1þ Kx=κ

�
; ðB21Þ

η0 ¼ 2x
ð1þxK=κÞ2 ðRγ~tγ þRν~tνÞþ

6x2

κð1þxK=κÞðRb~tbþRc~tcÞ

þ4πGx5

C2κ4
ð1þKx=κÞ2ρa ~ua; ðB22Þ

~δ0a ¼ −~δa − ð1þ waÞ
Θ
2
−
3ð1þ 2Kx=κÞ
ð1þ Kx=κÞ ð1 − waÞ~δa

− 9ð1 − c2aÞ ~ua
ð1þ 2Kx=κÞ2
ð1þ Kx=κÞ2 ; ðB23Þ

~u0a ¼
2ð1þ 2Kx=κÞ
ð1þ Kx=κÞ ~ua þ ~δa − 2~ua þ

w0
a ~uax

1þ wa
; ðB24Þ

A ¼ ρa
a40Ωrρcrit

: ðB25Þ

In these expressions 0 ¼ d=d ln x and a0 is the scale factor
today under this convention:

a0 ¼
( Ωm

4Ωr
fð1 − fNRÞ þ fNRðaeqaosc

Þ3g if aosc > aeq;

Ωm
4Ωr

if aosc ≤ aeq:

ðB26Þ

The neutrino energy density fraction is defined to be

Rν ¼ Ων=ðΩν þΩbÞ; ðB27Þ

and we assume for this work that all standard model
neutrinos are massless. Conversely, the photon energy
density fraction (defined relative to the total energy density
in relativistic species) is Rγ ¼ 1 − Rν.
Eq. (B21) is obtained from a linear combination of the

Einstein equations [147,152]

k2η −
1

2

_a
a
_β ¼ −4πGa2δρ; ðB28Þ

β̈ þ 2
_a
a
_β − 2k2η ¼ −24πGa2δP; ðB29Þ

where δρ and δP are the total energy density and pressure
perturbations, respectively. Equation (B22) is obtained
from the Einstein equation [147,152]

k2 _η ¼ 4πG
X
i

ðρ̄þ P̄Þiθi þ 4πGua; ðB30Þ

where the sum on i is over all the conventional fluid
species. The axion energy density ρa has some time
dependence, which we compute below, where we also
obtain the time evolution of the axion EOSwa and adiabatic
sound speed cad.

3. Homogeneous scalar field evolution in a mixed
(matterþ radiation) universe

To obtain power series solutions for the initial condi-
tions, we must compute the squared adiabatic sound speed
c2ad and scale factor wa as a function of conformal time,
using Eq. (22), evaluating Eqs. (6)–(7), and using the field
evolution as specified by Eq. (8). Since we are in the regime
ρa ≪ ρm; ρa ≪ ρr; a ≪ aosc, we may use Eqs. (B9)–(B11)
to evaluate the conformal Hubble parameter H. Making a
power series expansion in the dimensionless conformal
time τb, we obtain the desired results from the solution for
the homogeneous field ϕ0ðτbÞ:

wa ¼ − 1þ 2m2τ4b
25C2

þ 4Km2τ5b
75C2

þ � � � ; ðB31Þ

c2ad ¼ −
7

3
þ 10Kτb

9
−
520K2τ2b
189

þ 3445K3τ3b
567

þ
�
−151465K4

11907
þ 2m2

27C2

�
τ4b

þ
�
870025K5

35721
þ 26Km2

405C2

�
τ5b þ � � � ; ðB32Þ

ρa ¼ ρð0Þa

�
1 −

3m2τ4b
50C2

−
2Km2τ5b
25C2

þ � � �
�
; ðB33Þ

where ρa is the asymptotic value of ρa when a ≪ aosc.
Converting to physical (dimensional) conformal time via
the substitution

τb ¼ ΩmH0τ=ð4
ffiffiffiffiffiffi
Ωr

p
Þ; ðB34Þ

we see that Eq. (B31) agrees with the early time evolution
of the quintessence equation of state derived in Ref. [153].

SEARCH FOR ULTRALIGHT AXIONS USING PRECISION … PHYSICAL REVIEW D 91, 103512 (2015)

103512-25



4. Modes of the system

To obtain the normal modes of the system, we make
an expansion in both τ, and x, valid for super-horizon
deep into radiation domination. Using the assignment
~Uk ¼ f~δγ; ~δν; ~δc; ~δb; ~tγb; ~tν; ~tc; ~σν; ~F3

ν;Θ; η; ~δa; ~uag, we de-
termine the matrices A0; A1; A2; A3; A4. To check that our
machinery is consistent with past work, we begin by
restricting attention to the case where there are no axion
perturbations, and the expansion history is not adjusted for
the reduced matter density at early times due to axions
rolling slowly. In this case, using Eqs. (B4)–(B7), we
recover exactly the growing adiabatic, baryon isocurvature,
CDM (cold DM) isocurvature, neutrino density isocurva-
ture, neutrino velocity isocurvature modes, as well as a set
of decaying modes, as stated in Refs. [152].
The familiar adiabatic mode has eigenvalue α ¼ 1 and

corresponds to the initial condition

δγ ¼ δν ¼
4

3
δc ¼

4

3
δb; ðB35Þ

δi ¼ ð1þ wiÞδc: ðB36Þ

where δγ , δν, δc, and δb are the fractional energy over-
densities in photons, neutrinos, CDM, and baryons respec-
tively. Since at early times, wa ¼ −1, the adiabatic
condition for axions implies δa ¼ 0 initially. In synchro-
nous gauge, the corresponding power series solution (valid
at early times) is [147,152]

δγ ¼ δν ¼ −
ðκτbÞ2
3

; ðB37Þ

δc ¼ δb ¼ −
ðκτbÞ2
4

; ðB38Þ

θγ
Cκ

¼ θb
Cκ

¼ −
ðκτbÞ3
36

; ðB39Þ

θν
Cκ

¼ −
ð23þ 4RνÞðκτbÞ3
36ð15þ 4RνÞ

; ðB40Þ

θc ¼ 0; ðB41Þ

σν ¼
2ðκτbÞ2

3ð15þ 4RνÞ
; ðB42Þ

Fð3Þ
ν ¼ 4ðκτbÞ3

21ð15þ 4RνÞ
; ðB43Þ

δa ¼ 0; ðB44Þ

ua ¼ 0: ðB45Þ

β ¼ ðκτbÞ2
2

; ðB46Þ

η ¼ 1 −
ð5þ 4RνÞðκτbÞ2
12ð15þ 4RνÞ

; ðB47Þ

where the metric perturbations β and η are defined as
described in Ref. [147,152], as are the fluid perturbations.
The dimensionless conformal time is defined in Eq. (B34).
We also confirm that this power-series solution is valid

up to corrections of order ðkτÞ4 for metric and standard
fluid perturbations, and τ=τeq for the ULA variables
themselves, even when the contribution of ULAs to the
energy density is included. Corrections to δa appear at order
ðkτÞ4 for metric and standard fluid perturbations, and τ=τeq
for the axion variables themselves, even when the con-
tribution of axions to the energy density is included. The
overall normalization of the perturbations at this stage of
the analysis is arbitrary, but is eventually set by the
power spectrum PRðkÞ for the gauge-invariant curvature
inside CAMB.
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