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Weak gravitational lensing is a powerful cosmological probe, with non-Gaussian features potentially
containing the majority of the information. We examine constraints on the parameter triplet ðΩm; w; σ8Þ
from non-Gaussian features of the weak lensing convergence field, including a set of moments (up to fourth
order) and Minkowski functionals, using publicly available data from the 154 deg2 CFHTLenS survey. We
utilize a suite of ray-tracing N-body simulations spanning 91 points in ðΩm; w; σ8Þ parameter space,
replicating the galaxy sky positions, redshifts and shape noise in the CFHTLenS catalogs. We then build
an emulator that interpolates the simulated descriptors as a function of ðΩm; w; σ8Þ, and use it to compute
the likelihood function and parameter constraints. We employ a principal component analysis to reduce
dimensionality and to help stabilize the constraints with respect to the number of bins used to construct
each statistic. Using the full set of statistics, we find Σ8 ≡ σ8ðΩm=0.27Þ0.55 ¼ 0.75� 0.04 (68% C.L.), in
agreement with previous values. We find that constraints on the ðΩm; σ8Þ doublet from the Minkowski
functionals suffer a strong bias. However, high-order moments break the ðΩm; σ8Þ degeneracy and provide
a tight constraint on these parameters with no apparent bias. The main contribution comes from quartic
moments of derivatives.
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I. INTRODUCTION

Weak gravitational lensing (WL) is emerging as a
promising technique to constrain cosmology. Techniques
have been developed to construct cosmic shear fields with
shape measurements in large galaxy catalogues. Although
the shear two-point function (2PCF) is the most widely
studied cosmological probe (see, e.g. [1]), alternative
statistics have been shown to increase the amount of
cosmological information one can extract from weak
lensing fields. Among these, high-order moments [2–6],
three-point functions [7–9], bispectra [10–13], peak counts
[14–21] and Minkowski Functionals [22,23] have been
shown to improve cosmological constraints in weak lensing
analyses.
In this work, we use the publicly available CFHTLenS

data, consisting of a catalog of ≈4.2 million galaxies,
combined with a suite of ray-tracing simulations in 91
different cosmological models to derive constraints on the
cosmological parameters Ωm, σ8 and the dark energy (DE)
equation of state w. The statistics we consider in this work
are the Minkowski functionals (MFs) and the low-order
moments (LM) of the convergence field. Cosmological
parameter inferences from CFHTLenS have been obtained
using the 2PCF [1], and a number of authors have

investigated the constraining power of CFHTLenS using
statistics that go beyond the usual quadratic ones. Fu et al.
[24] used three-point correlations as an additional probe for
cosmology, and found modest (10%–20%) improvements
over the 2PCF. These results rely on the third-order
statistics systematic tests performed by Simon et al. [25].
Liu et al. [26] have found a more significant (50%–60%)

tightening of the Ω and σ8 constraints, utilizing the
abundance of WL peaks. Cosmological constraints using
WL peaks in CFHTLenS Stripe82 data have also been
investigated by Liu et al. [27]. Finally, closest to the present
paper, Shirasaki & Yoshida [28] investigated constraints
from Minkowski Functionals, including systematic errors.
Our study represents two major improvements over pre-
vious work. First, constraints from the MFs in Ref. [28]
were obtained through the Fisher matrix formalism, assum-
ing linear dependence on cosmological parameters. Our
study utilizes a suite of simulations sampling the cosmo-
logical parameter space, mapping out the nonlinear param-
eter dependence of each descriptor. Second, we include the
LMs as a set of new descriptors; these yield the tightest and
least biased constraints.
This paper is organized as follows: we first give an

overview of the CFHTLenS catalogs, and summarize the
adopted data reduction techniques. Next, we give a
description of our simulation pipeline, including the ray-
tracing algorithm, and the procedure used to sample the*apetri@phys.columbia.edu
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parameter space. We call the statistical weak lensing
observables—the power spectrum, Minkowski functionals,
and moments—“descriptors” throughout the paper. We
discuss the calculation of the descriptors, including dimen-
sional reduction using a principal component analysis,
and the statistical inference framework we used. We then
describe our main results, i.e. the cosmological parameter
constraints. To conclude, we then discuss our findings and
comment on possible future extensions of this analysis.

II. DATA AND SIMULATIONS

A. CFHTLenS data reduction

In this section, we briefly summarize our treatment of the
public CFHTLenS data. For a more in–depth description of
our data reduction procedure, we refer the reader to [26].
The CFHTLenS survey covers four sky patches of 64,

23, 44 and 23 deg2 area, for a total of 154 deg2. The
publicly released data consist of a galaxy catalog created
using SExtractor [29], and includes photometric redshifts
estimated with a Bayesian photometric redshift code [30]
and galaxy shape measurements using lensfit [31,32].
We apply the following cuts to the galaxy catalog:

mask < 1 (see Table B2 in [29]), redshift 0.2 < z < 1.3
(see [31]), fitclass ¼ 0 (which requires the object to
be a galaxy) and weight w > 0 (with larger w indicating
smaller shear measurement uncertainty). Applying these
cuts leaves us 4.2 × 106 galaxies, 124.7 deg2 sky coverage,
and average galaxy density ngal ≈ 9.3 arcmin−2. The cata-
log is further reduced by∼25%when one rejects fields with
non-negligible star-galaxy correlations. These spurious
correlations are likely due to imperfect PSF removal,
and do not contain cosmological signal. These cuts are
consistent with the ones adopted by the CFHTLenS
Collaboration (see [24]).
The CFHTLenS galaxy catalog provides us with the sky

position θ, redshift zðθÞ and ellipticity eðθÞ of each galaxy,
as well as the individual weight factors wðθÞ and additive
and multiplicative ellipticity corrections cðθÞ; mðθÞ.
Because the CFHTLenS fields are irregularly shaped, we
first divide them into 13 squares (subfields) to match the
shape and ≈12 deg2 size of our simulated maps (see
below). These square-shaped subfield maps are pixelized
according to a Gaussian gridding procedure

ēðθÞ ¼
PNs

i¼1Wðjθ − θijÞwðθiÞ½eobsðθiÞ − cðθiÞ�PNs
i¼1Wðjθ − θijÞwðθiÞ½1þmðθÞ� ; ð1Þ

WθGðθÞ ¼
1

2πθ2G
exp

�
−

θ2

2θ2G

�
; ð2Þ

where the smoothing scale θG has been fixed at 1.0 arcmin
(but varied occasionally to 1.8 and 3.5 arcmin for specific
tests described below) and m; c refer to the multiplicative
and additive corrections of the galaxies in the catalog.

Using the ellipticity grid ēðθÞ as an estimator for the
cosmic shear γ1;2ðθÞ, we perform a nonlocal Kaiser-Squires
inversion [33] to recover the convergence κðθÞ from the E
mode of the shear field,

κðlÞ ¼
�
l21 − l22
l21 þ l22

�
γ1ðlÞ þ 2

l1l2
l21 þ l22

γ2ðlÞ: ð3Þ

The simulated κ maps we create below are 12 deg2 in size
and have a resolution of 512 × 512 pixels. The CFHTLenS
catalogs contain masked regions (which include the
rejected fields and the regions around bright stars). We
first create gridded versions of the observed κ maps
matching the size and pixel resolution of our simulated
maps, with each pixel containing the number of galaxies
(ngal) falling within its window. We then smooth this galaxy
surface density map with the same Gaussian window
function as Eq. (2) and remove regions where ngal <
5 arcmin2 (see [28]). Regions with low galaxy number
density can induce large errors in the cosmological param-
eter inferences.

B. Simulation design

We next give a description of our method to sample
the parameter space with a suite of N–body simulations.
We wish to investigate the nonlinear dependence of the
descriptors (in this work, Minkowski Functionals and
moments of the κ field) on the parameter triplet
p ¼ ðΩm; w; σ8Þ, while keeping the other relevant param-
eters ðh;Ωb; nsÞ fixed to the values (0.7, 0.046, 0.96) (see
[34]). We sampled the D-dimensional (D ¼ 3 in this case)
parameter space using an irregularly spaced grid. The grid
was designed with a method similar to that used to
construct an emulator for the matter power spectrum in
the COYOTE simulation suite [35]. Given fixed available
computing resources, the irregular grid design is more
efficient than a parameter grid with regular spacings: to
achieve the same average spacing between models in the
latter approach would require a prohibitively large number
of simulations.
We limit the parameter sampling to a box whose sides

range over Ωm ∈ ½0.07; 1�; w ∈ ½−3.0; 0�; σ8 ∈ ½0.1; 1.5�.
These are large ranges, with most of the corresponding
three-dimensional parameter volume ruled out by other
cosmological experiments. However, our focus in this work
is to quantify the constraints from CFHTLenS alone,
which, by itself has strong parameter degeneracies. We
next map this sampling boxΠ into a hypercube of unit side.
We want to construct an irregularly spaced grid consisting
of N points xi ∈ ½0; 1�D. Let a design D be the set of this
irregularly spaced N points. Our goal is to find an optimal
design, in which the points are spread as uniformly as
possible inside the box. Following Ref. [35], we choose our
optimal design as the minimum of the cost function
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CðDÞ ¼ 2D1=2

NðN − 1Þ
XN
i<j

1

jxi − xjj
: ð4Þ

This problem is mathematically equivalent to the minimi-
zation of the Coulomb potential energy of N unit charges in
a unit box, which corresponds to spreading the charges as
evenly as possible. Finding the optimal design Dm that
minimizes (4) can be computationally very demanding, and
hence we decided to use a simplified approach. Although
approximate, the following iterative procedure gives sat-
isfactory accuracy for our purposes:
(1) We start from the diagonal design D0: xdi ≡

i=ðN − 1Þ for d ¼ 1…D.
(2) We shuffle the coordinates of the particles in each

dimension independently xdi ¼ Pdð 1
N−1 ;

2
N−1 ;…; 1Þ,

where P1;…;PD are random independent permu-
tations of ð1; 2;…; NÞ.

(3) We pick a random particle pair ði; jÞ and a random
coordinate d ∈ f1;…; Dg and swap xdi ↔ xdj .

(4) We compute the new cost function. If the value is
less than in the previous step, we keep the exchange;
otherwise, we revert the coordinate swap.

(5) We repeat steps 3 and 4 until the relative cost
function change is less than a chosen accuracy
parameter ϵ.

We have found that for N ¼ 91 grid points Oð105Þ
iterations are sufficient to reach an accuracy of ϵ ∼ 10−4.
Once the optimal design Dm has been determined, we
invert the mapping Π → ½0; 1�3 to arrive at our simulation
parameter sampling ps. We show the final list of grid points
in Table I and Fig. 1.
For each parameter point on the grid ps we then run an

N-body simulation and perform ray tracing, as described
in Sec. II C, to simulate CFHTLenS shear catalogs.
Throughout the rest of this paper, we refer to this set of
simulations as CFHTemu1. Additionally, we have run 50
independent N-body simulations with a fiducial parameter
choice p0 ¼ ð0.26;−1.0; 0.8Þ, for the purpose of accurately
measuring the covariance matrices, needed for the param-
eter inferences in Sec. III B. This additional suite of 50
simulations will be referred to as CFHTcov.

C. Ray-tracing simulations

The goal of this section is to outline our simulation
pipeline. The fluctuations in the matter density field
between a source at redshift z and an observer located
on Earth will cause small deflections in the trajectories of
light rays traveling from the source to the observer. We
estimate the dark matter gravitational potential running
N–body simulations with N ¼ 5123 particles, using the
public code GADGET2 [36]. We adopted a comoving box

TABLE I. List of the CFHTemu1 grid points in the three-dimensional cosmological parameter space.

N Ωm w σ8 N Ωm w σ8 N Ωm w σ8 N Ωm w σ8

1 0.136 −2.484 1.034 26 0.380 −2.424 0.199 51 0.615 −1.668 0.185 76 0.849 −0.183 0.821
2 0.145 −2.211 1.303 27 0.389 −0.939 0.454 52 0.624 −2.757 0.327 77 0.859 −1.182 1.415
3 0.155 −0.393 0.652 28 0.399 −1.938 1.500 53 0.634 −1.575 0.976 78 0.869 −2.031 0.227
4 0.164 −2.181 0.313 29 0.409 −2.940 0.737 54 0.643 −2.454 1.444 79 0.878 −2.697 0.524
5 0.173 −0.423 1.231 30 0.418 −1.758 0.383 55 0.652 −1.029 1.458 80 0.887 −0.363 0.439
6 0.183 −0.909 0.269 31 0.427 −2.910 0.411 56 0.661 −0.486 0.892 81 0.897 −0.999 0.468
7 0.192 −1.605 1.401 32 0.436 −0.060 0.878 57 0.671 −2.364 0.793 82 0.906 −1.698 1.273
8 0.201 −2.787 0.807 33 0.446 −1.212 1.486 58 0.681 −2.970 0.610 83 0.915 −2.544 1.175
9 0.211 −0.333 0.341 34 0.455 −2.637 1.373 59 0.690 −1.332 0.482 84 0.925 −0.636 1.259
10 0.221 −1.485 0.666 35 0.464 −2.121 0.906 60 0.700 −0.273 0.283 85 0.943 −2.394 0.835
11 0.239 −1.848 0.962 36 0.474 −1.302 0.114 61 0.709 −2.061 0.425 86 0.953 −1.545 0.355
12 0.249 −2.727 0.369 37 0.483 −1.515 0.680 62 0.718 −1.728 1.472 87 0.963 −2.151 0.510
13 0.258 −1.395 0.241 38 0.493 −0.243 0.297 63 0.728 −0.120 0.596 88 0.972 −0.666 0.694
14 0.267 −2.667 1.317 39 0.502 −1.152 1.189 64 0.737 −2.847 1.203 89 0.981 −1.242 1.048
15 0.276 −0.849 1.429 40 0.512 −0.819 0.849 65 0.746 −0.090 1.118 90 0.991 −1.908 1.020
16 0.286 −1.272 1.104 41 0.521 −2.334 0.538 66 0.755 −0.456 1.359 91 1.000 −1.425 0.708
17 0.295 −1.878 0.100 42 0.530 0.000 0.624 67 0.765 −2.091 1.076 … … … …
18 0.305 −0.879 0.765 43 0.540 −0.030 1.161 68 0.775 −1.122 1.132 … … … …
19 0.315 −2.241 0.638 44 0.549 −1.818 1.287 69 0.784 −1.062 0.779 … … … …
20 0.324 −2.001 1.217 45 0.558 −2.577 1.146 70 0.794 −1.365 0.156 … … … …
21 0.333 −0.213 0.552 46 0.568 −0.516 1.331 71 0.803 −2.607 0.255 … … … …
22 0.342 −2.817 1.062 47 0.577 −3.000 0.948 72 0.812 −1.788 0.722 … … … …
23 0.352 −0.576 1.090 48 0.587 −2.304 0.128 73 0.821 −2.880 0.863 … … … …
24 0.361 −0.606 0.171 49 0.596 −0.696 0.496 74 0.831 −0.759 0.213 … … … …
25 0.370 −0.303 1.345 50 0.606 −0.789 0.142 75 0.840 −2.274 1.387 … … … …
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size of 240h−1 Mpc, corresponding to a mass resolution of
7.4 × 109h−1M⊙. The simulations include dark matter
only, and the initial conditions were generated with
N-GenIC at z ¼ 100, based on the linear matter power
spectrum created with the Einstein-Boltzmann code CAMB
[37]. Data cubes were output at redshift intervals corre-
sponding to 80h−1 (comoving) Mpc.
Using a procedure similar to Refs. [38,39], the equation

that governs the light ray deflections can be written in the
form

d2xðχÞ
dχ2

¼ −
2

c2
∇x⊥Φðx⊥ðχÞ; χÞ; ð5Þ

where χ is the radial comoving distance, x⊥ ¼ χβ refers to
two transverse coordinates (with β the angular sky coor-
dinates, using the flat sky approximation)a, xðχÞ is the
trajectory of a single light ray, and Φ is the gravitational
potential.
Suppose that a light ray reaches the observer at an

angular position θ on the sky: we want to know where this
light ray originated, knowing it comes from a redshift zs. To
answer this question we need to integrate Eq. (5) with the
initial condition βð0; θÞ ¼ θ up to a distance χs ¼ χðzsÞ to
obtain the source angular position βðχs; θÞ. Since light rays
travel undeflected from the observer to the first lens plane,
the derivative initial condition in the Cauchy problem (5)
reads _βð0; θÞ ¼ 0. We indicate the derivative of β with
respect to χ as _β. We use our proprietary implementation
Inspector Gadget (see, e.g., [40]) to solve for the light ray
trajectories based on a discretized version of Eq. (5) that is
based on the multi-lens-plane algorithm (see [39] for

example). Applying random periodical shifts and rotations
to the N-body simulation data cubes, we generate R ¼
1000 pseudoindependent realizations of the lens plane
system used to solve (5). Once we obtain the light ray
trajectories, we infer the relevant weak lensing quantities by
taking angular derivatives of the ray deflections Aðχs; θÞ ¼∂βðχs; θÞ=∂θ and performing the usual spin decomposition
to infer the convergence κ and the shear components
ðγ1; γ2Þ,

Aðχs; θÞ ¼ ð1 − κðχs; θÞÞI − γ1ðχs; θÞσ3 − γ2ðχs; θÞσ1;
ð6Þ

where I is the 2 × 2 identity and σ1;3 are the first and third
Pauli matrices. We perform this procedure for each of the R
realizations of the lens planes and we obtain R pseudoin-
dependent realizations of the γ weak lensing field. We use
these different random realizations to estimate the means
(from the CFHTemu1 simulations) and covariance matrices
(from the CFHTcov simulations) of our descriptors. Since
the random box rotations and translations that make up
the CFHTcov simulations are based on 50 independent
N-body runs, we believe the covariance matrices measured
from this set to be more accurate than the ones measured
from the CFHTemu1 set.
The convergence κ is related to the magnification, while

the two components of the complex shear γ ¼ γ1 þ iγ2 are
related to the apparent ellipticity of the source. Given a
source with intrinsic complex ellipticity es ¼ e1s þ ie2s, its
observed ellipticity will be modified to

FIG. 1 (color online). ðΩm; wÞ and ðΩm; σ8Þ projections of the final simulation design. The blue points correspond to the CFHTemu1
simulation set, which consists of one N-body simulation per point, while the red point corresponds to the CFHTcov simulation set,
which is based on 50 independent N-body simulations.
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e ¼
( esþg

1þg�es
jgj ≤ 1

1þge�s
e�sþg� jgj > 1

; ð7Þ

where g≡ γ=ð1 − κÞ is the reduced shear.
For each simulated galaxy, we assign an intrinsic ellip-

ticity by rotating the observed ellipticity for that galaxy by a
random angle on the sky, while conserving its magnitude jej.
To be consistent with the CFHTLenS analysis, we adopt
the weak lensing limit (jγj ≪ 1; κ ≪ 1), i.e. g ≈ γ and
e ≈ es þ γ. We also add the multiplicative shear corrections
by replacing γ with ð1þmÞγ. We note that the observed
ellipticity for a particular galaxy already contains the lensing
shear by large scale structure (LSS), but the random rotation
makes this contribution at least second order in κ by
destroying the shape spatial correlations induced by lensing
from LSS. Consistent with the weak lensing approximation,
the lensing signal from the simulations is first order in κ and
hence the randomly rotated observed ellipticities can be
safely considered as intrinsic ellipticities.
We analyze the simulations in the same way as we

analyzed the CFHTLenS data—constructing the simulated
κ maps as explained in Sec. II A. These final simulation
products are then processed together with the κ maps
obtained from the data to compute confidence intervals on
the parameter triplet ðΩm; w; σ8Þ.

III. STATISTICAL METHODS

The goal of this section is to describe the framework to
combine the CFHT data and our simulations, and to derive
the constraints on the cosmological parameter triplet
ðΩm; w; σ8Þ. Briefly, we measure the same set of statistical
descriptors from the data and from the simulations; these
are then compared in a Bayesian framework in order to
compute parameter confidence intervals.

A. Descriptors

The statistical descriptors we consider in this work are
the Minkowski functionals (MFs) and the low-order
moments (LMs) of the convergence field. The three MFs
ðV0; V1; V2Þ are topological descriptors of the convergence
field κðθÞ, probing the area, perimeter and genus character-
istic of the κ excursion sets Σκ0 , defined as Σκ0 ¼ fκ > κ0g.
Following Refs. [22,23], we use the following local
estimators to measure the MFs from the κ maps:

V0ðκ0Þ¼
1

A

Z
A
ΘðκðθÞ− κ0Þdθ;

V1ðκ0Þ¼
1

4A

Z
A
δDðκðθÞ− κ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2xþ κ2y

q
dθ;

V2ðκ0Þ¼
1

2πA

Z
A
δDðκðθÞ− κ0Þ

2κxκyκxy− κ2xκyy− κ2yκxx
κ2xþ κ2y

dθ:

ð8Þ

Here A is the total area of the field of view and κx;y denotes
gradients of the κ field, which we evaluate using finite
differences. In this notation ΘðxÞ is the Heaviside function
and δDðxÞ is the Dirac delta function. The first Minkowski
functional, V0, is equivalent to the cumulative one-point
PDF of the κ field, while V1; V2 are sensitive to the
correlations between nearby pixels. The one-point PDF
of the κ field, ∂V0, can be obtained by differentia-
tion ∂V0ðκ0Þ ¼ dV0ðκ0Þ=dκ0.
In addition to these topological descriptors, we consider

a set of low-order moments of the convergence field (two
quadratic, three cubic and four quartic). We choose these
moments to be the minimal set of LMs necessary to build
a perturbative expansion of the MFs up to Oðσ20Þ (see
[41,42]). We adopt the following definitions:

LM2∶ σ20;1 ¼ hκ2i; hj∇κj2i;
LM3∶ S0;1;2 ¼ hκ3i; hκj∇κj2i; hκ2∇2κi;

LM4∶ K0;1;2;3 ¼ hκ4i; hκ2j∇κj2i; hκ3∇2κi; hj∇κj4i: ð9Þ

If the κ field were Gaussian, one could express the MFs
in terms of the LM2 moments, which are the only
independent moments for a Gaussian random field. In
reality, weak lensing convergence fields are non-Gaussian
and the MF and LM descriptors are not guaranteed to be
equivalent. References [41,42] studied a perturbative
expansion of the MFs in powers of the standard deviation
σ0 of the κ field. When truncated at orderOðσ20Þ, this can be
expressed completely in terms of the LMs up to quartic
order. Such perturbative series, however, have been shown
not to converge [23] unless the weak lensing fields are
smoothed with windows of size ≥ 150. Because of this,
throughout this work, we treat MF and LM as separate
statistical descriptors.
We note that this choice is somewhat ad hoc. In general,

the LMs that contain gradients are sensitive to different
shapes of the κ multispectra Pn

κ ðl1;…; lnÞ because a
particular LMn has the general form

LMn ¼
Z

dl1…dlnρðl1…nÞPn
κ ðl1…nÞ; ð10Þ

where ρ is a polynomial of order n in the l’s. For example
for K2 we have ρðl1234Þ ¼ l24 and this moment emphasizes
quadrilateral shapes for which one side is much larger than
the others. On the other hand, for K3 we have ρðl1234Þ ¼
ðl1 · l2Þðl3 · l4Þ and this moment is most sensitive to
trispectrum shapes that are close to rectangular. There
are moments which include derivatives in addition to those
included in Eq. (9). In the future, we will investigate
whether there is additional constraining power in these
additional quartic moments.
In addition to the MFs and LMs, we consider the angular

power spectrum Pl ≡ P2
l of κ, defined as
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h~κðlÞ~κðl0Þi ¼ ð2πÞ2δDðlþ l0ÞPl; ð11Þ
where ~κðlÞ is the Fourier transform of the κ field. Previous
works have studied cosmological constraints from the
convergence power spectrum extensively. Here our purpose
is to compare the constraints we obtain from the MFs and
LMs to ones present in the literature, which are based on
the use of quadratic statistics (see for example [1]). The
statistical descriptors used in this work are summarized in
Table II.
When measuring statistical descriptors on κ maps,

particular attention must be paid to the effect of masked
pixels. The MFs and LMs remain well defined in the
presence of masks, since the estimators in Eqs. (8) and (9)
are defined locally, and can be computed in the nonmasked
regions (with the exception of the few pixels that are close
to the mask boundaries). The situation is more complicated
for power spectrum measurements, which require the
evaluations of Fourier transforms and hence rely on the
value of every pixel in the map. Although sophisticated
schemes to interpolate over the masked regions have been
studied (see for example [43]), for the sake of simplicity,
we here insert the value κ ¼ 0 in each masked pixel. Given
the uniform spatial distribution of the masked regions in the
data, we expect that masks have a little effect on the power
spectrum at the range of multipoles in Table II, except for
an overall normalization which will be the same both in the
data and the simulations. Likewise, we believe that the
way we deal with masked sky regions—essentially ignor-
ing them—is robust for the MFs and LMs. Since we apply
the same masks to our simulations and the data, they are
unlikely to introduce biases in the resulting constraints.
Masks, of course, can still affect the sensitivity and weaken
constraints. The impact of the masks and their treatment
has been evaluated for the MFs, obtained from CFHTLenS,
by Ref. [28], in which the authors find that the masked
regions are not a dominant source of systematic effects in
the CFHTLenS data.

B. Cosmological parameter inferences

In this section, we briefly outline the statistical frame-
work adopted for computing cosmological parameter con-
fidence levels. We make use of the MFs and LMs, as well as
the power spectrum, as discussed in the previous section.
We refer to Mr

i ðpÞ as the descriptor measured from a
realization r of one of our simulations with a choice of

cosmological parameters p (i.e. from one of the R ¼ 1000
map realizations in this cosmology), and to Di as the
descriptor measured from the CFHTLenS data. In this
notation, i is an index that refers to the particular bin on
which the descriptor is evaluated (for example, i can range
from 0 to 9 for the LM statistic and from 0 to Nb − 1 for a
MF measured in Nb different, linearly spaced κ bins, as
indicated in Table II).
Once we make an assumption for the data likelihood

LdðDijpÞ and for the parameter priors ΠðpÞ, we can use
Bayes’ theorem to compute the parameter likelihood Lp,

LpðpjDiÞ ¼
LdðDijpÞΠðpÞ

NL
: ð12Þ

Here NL is a p-independent constant that ensures the proper
normalization forLp. We make the usual assumption that the
data likelihood LdðDijpÞ is Gaussian [44]:

LdðDijpÞ ¼ ½ð2πÞNb detC�−1=2e−1
2
χ2ðDijpÞ;

χ2ðDijpÞ ¼ ½D −MðpÞ�TC−1½D −MðpÞ�: ð13Þ

We assume, for simplicity, that the covariance matrix C in
Eq. (13) is p-independent and coincides with Cðp0Þ. The
simulated descriptors MðpÞ are measured from an average
over the R ¼ 1000 realizations in the CFHTemu1 ensemble,

MiðpÞ ¼
1

R

XR
r¼1

Mr
i : ð14Þ

The covariance matrix,

Cij ¼
1

R − 1

XR
r¼1

½Mr
i ðp0Þ −Miðp0Þ�½Mr

jðp0Þ −Mjðp0Þ�;

ð15Þ

is measured from the R ¼ 1000 realizations in the
CFHTcov ensemble. While Eq. (15) gives an unbiased
estimator of the covariance matrix, its inverse is not an
unbiased estimator of C−1 (e.g. Ref. [39]). Given that in our
case R ≫ Nb, we can safely neglect the correction factor
needed to make the estimator for C−1 unbiased.
When computing parameter constraints from the

CFHTLenS weak lensing data alone, we make a flat prior
assumption for ΠðpÞ. We postpone using different priors,
incorporating external data, for future work. Parameter
inferences are made estimating the location of the maxi-
mum of the parameter likelihood in Eq. (12), which we
call pMLðDiÞ, as well as its confidence contours. The
Nσ-confidence contour of LpðpjDiÞ is defined to be the
subset of points in parameter space on which the likelihood
has a constant value cN and

TABLE II. Summary of the descriptors we used, together with
the specifications and the number of bins Nb in each case.

Descriptor Details Nb (linear spacing)

V0; V1; V2 (MF) κ0 ∈ ½−0.04; 0.12� 50

Power Spectrum (PS) l ∈ ½300; 5000� 50
Moments (LM) … 9
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Z
L>cN

LpðpjDiÞdp ¼ 1ffiffiffiffiffiffi
2π

p
Z

N

−N
dxe−x

2=2: ð16Þ

Using Eq. (17) below, and given the low dimensionality
of the parameter space we consider ðD ¼ 3Þ, we are able to
directly compute the parameter likelihood Eq. (12) for 1003

different combinations of the cosmological parameters p,
arranged in a finely spaced 100 × 100 × 100 mesh within
the prior window ΠðpÞ. We directly compute the maximum
likelihood pMLðDiÞ and the contour levels cN without the
need for more sophisticated MCMC methods.
The data likelihood is directly available for parameter

combinations on the simulated irregular grid ps. We use a
Radial Basis Function (RBF) scheme to interpolate MðpÞ
to arbitrary intermediate points. We approximate the model
descriptor as

MðpÞ ¼
XN
s¼1

λsϕðjp − psjÞ; ð17Þ

where ϕ has been chosen as a multiquadric function
ϕðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðr=r0Þ2

p
, with r0 chosen as the mean

Euclidean distance between the points in the simulated
grid ps. The constant coefficients λs can be determined
by imposing the N constraints Mðp ¼ psÞ ¼ MðpsÞ,
which enforce exact results at the simulated points. The

interpolation computations are conveniently performed
using the interpolate.Rbf routine contained in a
Scipy library [45].
We studied the accuracy of the emulator, built with the

CFHTemu1 simulations, by interpolating the convergence
descriptors to the fiducial parameter setting ðΩm; w; σ8Þ ¼
ð0.26;−1.0; 0.8Þ and comparing the result to the one
expected from the CFHTcov simulations. Figure 2 shows
that our power spectrum emulator has a relative error
smaller than 20% for the lower multipoles (l < 500), and
comparable to 1% for the higher multipoles. The MF
emulator has a relative error ≲10% for the first 30 bins
(which correspond to κ values in ½−0.04; 0.08�) and
deteriorates due to numerical noise for the remaining 20
bins. We eliminate the residual impact of these inaccuracies
using a dimensionality reduction framework, which we
explain in the next section. Nevertheless, we do not expect
these inaccuracies to affect our conclusions. Figure 2
demonstrates that our emulator is able to distinguish a
nonfiducial model from the fiducial one within numerical
errors. We thus found no need to implement a more
sophisticated interpolation scheme [46].

C. Dimensionality reduction

The main goal of this work is constraining the cosmo-
logical parameter triplet ðΩm; w; σ8Þ using the CFHTLenS

FIG. 2 (color online). Accuracy of the emulator based on the CFHTemu1 simulations. The figure shows the absolute difference
between the descriptor interpolated at the fiducial parameter setting, and the descriptor expected from the CFHTcov simulations (these
are the absoulte values of differences which oscillate around zero). The descriptors are shown in units of the standard deviation in each
bin i (determined from the diagonal elements of the CFHTcov covariance matrix). We show the accuracy results for the power spectrum
(red) and the three Minkowski functionals V0 (green), V1 (blue) and V2 (black). For reference, we also show, using dashed lines, the
difference between the expected CFHTcov descriptors and the interpolated descriptor at the nonfiducial point p ¼ ð0.8;−1.0; 0.5Þ. This
nonfiducial point lies beyond the LM 1σ contour from the simulations shown in Fig. 3 right panel, and corresponds to the target accuracy
we wish to achieve.
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data. Once the Nσ contours have been obtained, using the
procedure and Eqs. (12)–(16) outlined above, one may ask
whether the choice of binning affects these contours.
Indeed, in our previous work, we have found that the
number of bins, Nb, can have a non-negligible effect on the
contour sizes (see [23] for an example with simulated
data sets).
In order to ensure that are results are robust with respect

to binning choices, we have implemented a principal
component analysis (PCA) approach. Our physical moti-
vation for this approach is that, even though we need to
specify Nb numbers in order to fully characterize a binned
descriptor, we suspect that the majority of the constraining
information (of a particular descriptor) is contained in a
limited number of linear combinations of its binning. In the
framework adopted by [35], for example, the authors find
that the majority of the cosmological information in the
matter power spectrum is contained in only five different
linear combinations of the multipoles. Because of this, we
believe that dimensionality reduction techniques such as
PCA can help deliver accurate cosmological constraints
using only a limited number of descriptor degrees of
freedom.
In order to compute the principal components of our

descriptor space, we use the CFHTemu1 simulations,
which sample the cosmological parameters at the N ¼
91 points listed in Table I, and allow us to compute the
N × Nb model matrix Mpi ¼ MiðpÞ. Note that this is a
rectangular (nonsquare) matrix. Following a standard
procedure (see, e.g., Ref. [47]), we derive the whitened
model matrix ~Mpi, defined by subtracting the mean (over
the N ¼ 91 models) of each bin, and normalizing it by its
variance (always over the N ¼ 91 models). Next we
proceed with a singular value decomposition (SVD) of ~M,

USVT ¼
~Mffiffiffiffiffiffiffiffiffiffiffiffi

N − 1
p ; ð18Þ

where Sij ¼ Siδij is a diagonal matrix and VT
ij is the jth

coordinate (j ¼ 1…Nb) of the ith principal component
(i ¼ 1…min½Nb; N�) of ~M, with the index j ranging from
1 to Nb. By construction, V is p-independent.
To rank the principal components VT in order of

importance, we note that the diagonal matrix S2 is simply
the diagonalization of the model covariance [not to be
confused with the descriptor covariance in Eq. (15)],

1

N − 1
~MT ~M ¼ VS2VT: ð19Þ

We follow the standard interpretation of PCA components,
stating that the only meaningful components VT

i in the
analysis (i.e. the ones that contain the relevant cosmological
information) are those corresponding to the largest

eigenvalues S2i , with the smallest eigenvalues correspond-
ing to noise in the model, due to numerical inaccuracies in
the simulation pipeline. We expect our constraints to be
stable with respect to the number of components, once a
sufficient number of components have been included.
Using the fact that different principal components are
orthogonal, we perform a PCA projection on our descriptor
space by whitening the descriptors and computing the dot
product with the principal components, keeping only the
first n components:

MðnÞrpi ¼ VTðnÞij ~Mr
pj; DðnÞi ¼ VTðnÞij ~Dj: ð20Þ

Here we indicate with VTðnÞ the truncation of VT to the
first n rows (i.e. i can now range from 1 to n). As described
above, the expectation is that most of the cosmological
information is contained in a small number of components
n < Nb. We will describe in detail below the choice we
make for n, together with the sensitivity of our results to
this choice.
Looking at PCA from a geometrical perspective, the

dimensionality reduction problem is equivalent to the accu-
rate reconstruction of the coordinate chart of the descriptor
manifold. As outlined in Ref. [47], the coordinate chart
constructed with the PCA projection in Eq. (20) is accurate
for reasonably flat descriptor manifolds. When curvature
becomes important, more advanced projection techniques
(such as locally linear embedding) have to be employed.
We postpone an investigation of such improvements to
future work.

IV. RESULTS

This section describes our main results, and is organized
as follows. We begin by showing the cosmological con-
straints from the CFHTLenS data for the triplet ðΩm; σ8; wÞ,
as well as for an alternative parametrization, ðΩm;Σ8; wÞ,
with Σ8ðαÞ≡ σ8ðΩm=0.27Þα. In the next section we give a
justification on why we fix α to a value of 0.55. We then use
our simulations to perform a robustness analysis of the
parameter confidence intervals with respect to the number
of PCA components used in the projection. We finally
study whether the constraints can be tightened by combin-
ing different descriptors. A summary with the complete set
of results, along with the relevant figures, is shown in
Table III.

A. Cosmological constraints

We first make use of Eqs. (12)–(16) to compute the 1σ
constraints on cosmological parameters, using the triplet
ðΩm; σ8; wÞ. Figures 3 shows the constraints in the ðΩm; σ8Þ
plane, marginalized over w, for both the CFHTLenS data,
as well as from the mock data in our simulations. In Fig. 4,
we examine constraints from different sets of moments, as
well as using different smoothing scales. Figure 5 shows
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the confidence contours in the ðw;Σ8Þ plane, marginalized
over Ωm. As this figure shows, and as discussed further
below, no meaningful constraints were found on w from
CFHTLenS alone.
Because of the relatively small size of this survey,

degeneracies among the parameters can have undesirable
effects on the constraints. The well-known strong degen-
eracy between Ωm and σ8 is evident in the long “banana”
shaped contours in Figs. 3 and 4. To mitigate the effect
of this degeneracy, in addition to the usual triplet
ðΩm; σ8; wÞ, we consider an alternative parametrization,
built with the triplet ðα;Σ8; wÞ where α is a constant, and
Σ8ðαÞ≡ σ8ðΩm=0.27Þα. While Ωm and σ8 are poorly

constrained due to degeneracies, the Σ8ðαÞ combination
lies in the direction perpendicular to the error “banana” at
the pivot point Ωm ¼ 0.27. This is the direction of the
lowest variance LðΩm; σ8Þ for a suitable choice of α, and
hence has a much smaller relative uncertainty. We can
derive the optimal value of α from the full three dimen-
sional likelihood LðΩm; w; σ8Þ, from which we can com-
pute the expectation values,

EðαÞ ¼ hΣ8ðαÞi; VðαÞ ¼ hðΣ8ðαÞ − EðαÞÞ2i; ð21Þ

and minimizing the ratio
ffiffiffiffi
V

p
=E with respect to α. The

expectation values are taken over the entire parameter box.

TABLE III. Summary of our results and related figures.

Parameters Descriptors Short description
Relevant
figures

ðΩm; σ8Þ PSð3Þ; V0ð5Þ; V1ð20Þ; V2ð20Þ;LMð9Þ 1σ constraints from CFHTLenS and mock observations 3, 3b
ðΩm; σ8Þ ðσ2i ; Si; KiÞ 1σ constraints from CFHTLenS using κ moments combined at

different θG
4, 4b

ðw;Σ8Þ PSð3Þ; V0ð10Þ; V1ð10Þ; V2ð10Þ;LMð9Þ Contours from CFHTLenS 5
Σ8 PSð3Þ; V0ð10Þ; V1ð10Þ; V2ð10Þ;LMð9Þ LðΣ8Þ from CFHTLenS 6
- PS; V0; V1; V2;LM PCA eigenvalues 7
ðΩm; σ8Þ PS; V0; V1; V2;LM Stability of contours 8
ðΩm; σ8Þ PSð3Þ × V0ð5Þ × V1ð20Þ × V2ð20Þ × LMð9Þ Constraints from CFHTLenS combining statistics 9
ðw;Σ8Þ PSð3Þ × V0ð10Þ × V1ð10Þ × V2ð10Þ × LMð9Þ Constraints from CFHTLenS combining statistics 9b
Σ8 PSð3Þ × V0ð10Þ × V1ð10Þ × V2ð10Þ × LMð9Þ LðΣ8Þ from CFHTLenS combining statistics 10

FIG. 3 (color online). 1σ (68% C.L.) constraints on the ðΩm; σ8Þ parameter doublet using the power spectrum (red), the three
Minkowski functionals (V0: green, V1: blue, V2: black) and the moments (orange). We show the constraints from the data (left panel)
and from a mock observation constructed using the mean of 1000 realizations in the CFHTcov simulation suite (right panel). The
contours are calculated from the parameter likelihood function L marginalized over w. The parentheses near the descriptor label refer to
the number of principal components included.
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This procedure yields a value α ≈ 0.55 for the statistical
descriptors that we consider, consistent with what is found
in the literature (see [1] for example). Although α can
mildly depend on the type of descriptor considered, we
choose to keep it fixed, knowing that the width of the Σ8

likelihood cannot vary significantly with different choices
of α. We show the probability distribution of the best-
constrained parameter Σ8 (marginalized over Ωm and w)
in Fig. 6.
We discuss the results of this section in Sec. V below.

B. Robustness

The cosmological constraints should in principle be
insensitive to Nb, once a sufficient number of bins are
used, but inaccuracies in the covariance (due to a limited
number of realizations) can introduce an Nb dependence.
Our binning choices are summarized in Table II. Here
we show that the cosmological constraints derived in this
paper are numerically robust; i.e. they are reasonably stable
once we consider a large enough number n of principal
components.
Figure 7 shows the PCA eigenvalues from the SVD

decomposition of our binned descriptor spaces (following
the discussion in Sec. III C), as well as the cumulative sum
of these eigenvalues, normalized to unity. Figure 8 shows
the dependence of the ðΩm; σ8Þ constraints on the number
of principal components n.

FIG. 4 (color online). 1σ (68% C.L.) constraints on the ðΩm; σ8Þ parameter doublet using moments, with different colors
corresponding to different moment combinations (see Eq. (9) for their definitions). We show the results from the one-point moments
σ20; S0; K0 (black curves; both left and right panels). In the left panel, we also show constraints obtained adding moments of gradients to
the one-point moments. In the right panel, we combine one-point moments measured at different smoothing scales.

FIG. 5 (color online). 1σ (68% C.L.) constraints on the ðw;Σ8Þ
parameter doublet from the CFHTLenS data, obtained with the
power spectrum (red), the three Minkowski functionals (V0:
green, V1: blue, V2: black) and the moments (orange). The
contours are calculated from the parameter likelihood function L
marginalized over Ωm, and the parentheses near the descriptor
label refer to the number of principal components.
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These figures clearly indicate that we only need a limited
number of components in order to capture the cosmological
information contained in our descriptors. The eigenvalues
diminish rapidly with n, and, in particular, the confidence
contours converge to good (≲10%) accuracy typically for
n ¼ 5–10 (depending on the descriptor). This finding also
addresses the inaccuracy of the MF emulator at high
thresholds, pointed out in Fig. 2. By keeping a limited
number of principal components, we are able to prevent
the inaccurate high-threshold bins, which have a low
constraining power, from contributing to the parameter
confidence levels.

C. Combining statistics

Different statistics can include complementary cosmo-
logical information, allowing their combinations to
tighten the constraints. Previous work using multiple
lensing descriptors in CFHTLenS alone included com-
bining the power spectrum and peak counts [26], com-
bining the power spectrum and Minkowski functionals
[28], and combining quadratic (2PCF) statistics with
cubic statistics derived from the 3PCF of the
CFHTLenS κ field [24].
The procedure we adopt here is as follows. Consider two

binned descriptors, d1;i; d2;j where the indices i; j corre-
spond to bin numbers. We first compute each single–
descriptor constraint as a function of the number of PCA
components, as in Fig. 8. We then determine the minimum

FIG. 6 (color online). The likelihood of the best-constrained
parameter combination Σ8ðαÞ≡ σ8ðΩm=0.27Þα from the
CFHTLenS data, obtained with the power spectrum (red), the
three Minkowski functionals (V0: green, V1: blue, V2: black) and
the moments (orange). The likelihood was computed with a
constant optimized α ¼ 0.55, but marginalized over both Ωm
and w. The parentheses near the descriptor label refer to the
number of principal components.

FIG. 7 (color online). Results from the principal components analysis (PCA) of the binned power spectrum (red), the three
Minkowski functionals (V0: green, V1: blue, V2: black) and the moments (orange). The left panel shows the magnitudes of the PCA
eigenvalues S2i and the right panel shows their cumulative sum, normalized to unity. A dashed vertical (black) line has marks n ¼ 3

for reference.
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FIG. 8 (color online). The dependence of the 1σ contours in the ðΩm; σ8Þ plane on the number of PCA components, obtained from a
mock observation constructed with the CFHTcov simulations. The different panels refer to the different descriptors (from left to right,
top to bottom) V0, ∂V0(PDF), V1, V2, power spectrum and moments. The labels in each panel show the number of PCA components
included to obtain contour with different colors.
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number of PCA components n1;2 needed for the constraints
to be stable. We next construct the vector d1×2 ¼
fd1ðn1Þ; d2ðn2Þg and consider this as the combined
(n1 þ n2)-dimensional descriptor vector. This procedure
naturally allows us to account for the cross covariance
between different binned descriptors. An analogous pro-
cedure can be used to combine multiple (three or more)
descriptors.
We show constraints from different descriptor com-

binations in the ðΩm; σ8Þ and ðw;Σ8Þ planes in Fig. 9,
and on the best-constrained parameter Σ8 in Fig. 10. We
also provide a tabulated version of the Σ8 constraints
(1σ) in Table IV. We discuss these findings in the next
section.

FIG. 9 (color online). 1σ constraints on the ðΩm; σ8Þ (left panel) and ðw;Σ8Þ (right panel) doublets, using the power spectrum (PS)
alone (red), the MFs alone (blue), as well as using different combinations of descriptors: PS ×Moments (green), PS ×MFs (black) and
PS × MFs × Moments (orange). The likelihood function has been marginalized over w (left panel) and Ωm (right panel). The
parentheses next to each descriptor label refers to the number of PCA components included.

FIG. 10 (color online). The probability distribution of the best-
constrained parameter Σ8 from the CFHTLenS data, using the
power spectrum (PS) alone (red), the MFs alone (blue), as well as
using different combinations of descriptors: PS × Moments
(green), PS × MFs (black) and PS ×MFs ×Moments (orange).
The likelihood function has been marginalized over Ωm and w.
The parentheses next to each descriptor label refers to the number
of PCA components.

TABLE IV. Tabulated values of 1σ constraints on Σ8 corre-
sponding to Fig. 10.

Descriptor Σ8 ¼ σ8Ω0.55
m

PS(3) 0.84þ0.06
−0.09

PSð3Þ ×Momentsð9Þ 0.86þ0.02
−0.09

V0ð10Þ × V1ð10Þ × V2ð10Þ 0.75þ0.07
−0.04

PSð3Þ × V0ð10Þ × V1ð10Þ × V2ð10Þ 0.76þ0.04
−0.05

PSð3Þ × V0ð10Þ × V1ð10Þ × V2ð10Þ ×Momentsð9Þ 0.76þ0.06
−0.04
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V. DISCUSSION

In this section we discuss the results shown in Sec. IV
above, with particular focus on the constraints on
cosmology.
As pointed out in Sec. III C, the choice of the number of

bins, Nb, is an important issue. In order to ensure that our
results are insensitive to Nb, we adopted a PCA projection
technique to reduce the dimensionality of our descriptor
spaces. The left panel of Fig. 7 shows that the PCA
eigenvalues for all of our descriptors decrease by about
4 orders of magnitude from n ¼ 1 to n ¼ 3. The right panel
of this figure shows that more than 99% of the descriptor
variances are captured by including only the first n ¼ 3
components.
This does not necessarily mean, however, that the

cosmological information is captured by the first three
PCA components: in principle, one of the higher-n PCA
components could have an unusually strong cosmology
dependence, and could impact the confidence levels. To
address this possibility, we determined the 1σ contour sizes
as a function of n in Fig. 8. This figure shows that the first
three components indeed capture essentially all the infor-
mation contained in the power spectrum. However, this is
not true for the other descriptors. In particular, we find that
n ≥ 5 components are necessary for V0, and n ≥ 20
components for V1 and V2, in order for the ðΩm; σ8Þ
contours to be stable at the ∼5% level. All nine moments
need to be included for the moments contours to be stable
to this accuracy.
These results are slightly different when we study the

ðw;Σ8Þ constraints (with α fixed at α ¼ 0.55 as discussed
above). In this case we find that the optimal choice for all
three MFs is n ¼ 10, while the number of components
required for the PS and Moments remain at n ¼ 3 and
n ¼ 9, respectively. (These results are not shown, but
obtained analogously to the figures above.)
We now discuss the main scientific findings of this work.

In Fig. 3, we show the 1σ constraints on the ðΩm; σ8Þ
doublet from the CFHTLenS data. The MF constraints
appear to be biased towards the low–σ8, high–Ωm region.
Here and throughout the remainder of this paper, by
“biased” (or “unbiased”) we refer to being incompatible
(or compatible) with the concordance fiducial values at
1σ obtained in other experiments. For example, the current
best-fit values of ðΩm; σ8Þ ¼ ð0.32; 0.83Þ; ð0.28; 0.82Þ
from cosmic microwave background anisotropies mea-
sured, respectively, by the Planck [48] and WMAP [34]
satellites lie beyond the 99% likelihood contours obtained
from the three MFs (not shown).
This discrepancy may be due to uncorrected systematics

in the CFHTLenS data, amplified by the ðΩm; σ8Þ degen-
eracy. As a test of our analysis pipeline, when we try to
constrain mock observations based on simulations (shown
in the right panel of Fig. 3), we recover the correct input
position of the 1σ contours. It is important to note, however,

that the mock observations to which the right panel of
Fig. 3 refers, were built with the mean of R ¼ 1000
realizations of the CFHTcov simulations. We found that
it is possible to find some rare (10 out of the 1,000)
realizations for which the best fit for ðΩm; σ8Þ lies in the
lower right corner, near the location of the best-fit from
the data. While this could provide an alternative explan-
ation of the bias from the MFs, the likelihood of this
happening is very small (≲1%).
We observe that the moments give the tightest constraint

on ðΩm; σ8Þ. Furthermore, this constraint is unbiased, in the
sense defined above: it includes the current concordance
values for these parameters within 1σ. This leads us to
conclude that the bias in the constraints from the MFs is due
to systematic errors, rather than the rare statistical fluctua-
tions found above. The fact that the moments are useful for
deriving unbiased cosmological constraints has been noted
in previous work, which examined the biases caused by
spurious shear errors [49].
In order to determine the origin of the tight bounds

derived from moments, we studied the contribution of each
individual moment to the constraints. Figure 4 shows the
evolution of the ðΩm; σ8Þ constraints as we add increasingly
higher-order moments to the descriptor set. Since we are
constraining 3 cosmological parameters, we start by con-
sidering the set of the three traditional one-point moments
which do not involve gradients, i.e. the variance, skewness,
and kurtosis ðσ20; S0; K0Þ. We then add the remaining six
moments of derivatives one by one, starting from the
quadratic moments.
Figure 4 shows that the biggest improvement on the

parameter bounds comes from including quartic moments
of derivatives (i.e. Ki with i ≥ 1) in the descriptor set. This
might explain why [24] find only relatively weak contour
tightening (∼10%) when adding three-point correlations to
quadratic statistics, since the main improvement comes
from higher moments of κ derivatives. Reference [24]
consider one-point, third-order moments, combined for
multiple smoothing scales. Figure 4 explicitly shows,
however, that smoothing scale combinations are not as
effective as moments of derivatives in constraining the
ðΩm; σ8Þ doublet. Our results agree with an early prediction
[5] that the kurtosis of the shear field can help in breaking
degeneracies between Ωm and σ8. Here we found that
considering quartic moments of gradients further helps in
breaking this degeneracy.
As noted above, the bias in the ðΩm; σ8Þ constraints is

amplified by the cosmological degeneracy of these param-
eters. To mitigate this effect, we consider the combination
of Ωm and σ8 that lies orthogonal to the most degenerate
direction, namely Σ8 ¼ σ8ðΩm=0.27Þ0.55. Figure 5 shows
the 1σ constraints for the ðw;Σ8Þ doublet, while Fig. 6
shows the marginalized Σ8 likelihood from the CFHTLenS
data. The CFHTLenS survey constrains the Σ8 combination
to a value of Σ8 ¼ 0.75� 0.04ð1σÞ using the full descriptor
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set, in agreement with values previously published by the
CFHTLenS Collaboration [1].
These figures also show that the current data set is

insufficient to constrain w to a reasonable precision. This is
consistent with the previous analyses of CFHTLenS
[1,24,26,28]. We also note that Ref. [28] obtained the
best-fit value of w ≈ −2 (but with large errors that include
w ¼ −1 at 1σ). We found a similar result when using a
Fisher matrix to compute confidence levels. Since the
Fisher matrix formalism is equivalent to a linear approxi-
mation of our emulator (in which all cosmological param-
eter dependencies are assumed to be linear), we thus
attribute this bias to the oversimplifying assumption of
linear cosmology-parameter dependence of the descriptors.
Although the right panel in Fig. 9 shows that the moments
confine w to isolated regions in parameter space, we note
that w ¼ −1, the value favored by other existing experi-
ments, is excluded at the 1σ level. The 2σ contours (not
shown in the figure) join, and include w ¼ −1.
Regarding the parameter biases, our results overall are in

accordance with [49], namely, that unaccounted systemat-
ics result in larger parameter biases when the constraints
are derived from the MFs, and that the LM statistic is less
biased. However, for the CFHTLenS data the MFs can still
effectively constrain the nondegenerate direction in param-
eter space, Σ8 (Fig. 6).
Finally, we studied whether the combination of different

statistical descriptors can help in tightening the cosmo-
logical constraints. We show the effects of some of these
combinations in Figs. 9 and 10. The left panel of Figure 9
shows that, although combining the power spectrum and
the moments with the Minkowski functionals helps tighten
the ðΩm; σ8Þ constraints, it does not help in reducing the
inherent parameter bias of the MFs. The right panel of
Figure 9 shows that even with these statistics combined, w
remains essentially unconstrained. [50] found that even
weak lensing tomography alone is unable to constrain w
sensibly. Figure 10 shows that the Σ8 combination is
already well constrained by any of the descriptors alone,
without the need of combining different descriptors. This
further clarifies that the nonquadratic descriptors mainly
help to break degeneracies, tightening contours along the
degenerate direction.

VI. CONCLUSIONS

In this final section we summarize the main conclusions
of this work:

(i) We find that the power spectrum, combined with the
moments of the κ field provides the tightest con-
straint on the ðΩm; σ8Þ doublet from the CFHTLenS
survey data. The tightness of these constraints comes
mainly from the moments. Evidence of the unbiased
nature of constraints from the moments has been
found in [49]. We further find that the largest
improvement on parameter bounds is achieved when

we include the quartic moments of derivatives in the
descriptor set. This level of improvement cannot be
achieved by combining one-point moments at differ-
ent smoothing scales.

(ii) Although weak lensing surveys are a promising
technique to constrain the DE equation of state
parameter w, reasonable constraints cannot be ob-
tained with the CFHTLenS survey alone, even when
using additional sets of descriptors that go beyond
the standard quadratic statistics.

(iii) When studying the cosmological information con-
tained in the CFHTLenS data, special attention must
be paid to the effect of residual systematic biases.
While these residual systematics are found to be
unimportant when constraining cosmology with the
power spectrum alone, we find that these systematics
need to be corrected to obtain unbiased constraints
on the ðΩm; σ8Þ doublet using the Minkowski func-
tionals. We are aware that when trying to explain the
discrepancy between weak lensing and CMB con-
straints using the Minkowski functionals, there
might be other effects to be considered, namely,
non-Gaussian error correlations in the descriptors
and inaccuracies of the simulations on small scales.
These inaccuracies could in principle affect the
excursion set reconstruction at high κ0 thresholds.
We will investigate these additional sources of error
in future work.

(iv) For the CFHTLenS data set, Minkowski functionals
can effectively constrain the nondegenerate direction
in parameter space, Σ8, where the amplifying effects
of degeneracy are mitigated. The Minkowski func-
tionals alone are sufficient to constrain the Σ8

combination to a value of Σ8 ¼ 0.75� 0.04 at 1σ
significance level. This agrees with the value pre-
viously published by the CFHTLenS Collaboration
within 1σ. Some tensions with Planck [48] still
remain.

Possible future extensions of this work include simulat-
ing higher-dimensional parameter spaces (including, for
example, the Hubble constant H0, and allowing a tilt in the
power spectrum or a time dependence of the DE equation of
state w), and combining the CFHTLenS constraints with
different cosmological probes from large-scale structures
and the CMB. The latter can help in breaking the Ωm; σ8
degeneracy, and allow improvements in the constraints
on w. The techniques developed here can be applied to
larger, soon-forthcoming survey data sets, such as the
Dark Energy Survey [51], Subaru [52], WFIRST [53]
and LSST [54].
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