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A detection of primordial B modes has been heralded not only as a smoking gun for the existence of
inflation, but also as a way to establish the scale at which inflation took place. In this paper we critically
reinvestigate the connection between a detection of primordial gravity waves and the scale of inflation.
We consider whether the presence of additional fields and nonadiabaticity during inflation may have
provided an additional source of primordial B modes competitive with those of the quasi–de Sitter vacuum.
In particular, we examine whether the additional sources could provide the dominant signal, which could
lead to a misinterpretation of the scale of inflation. In light of constraints on the level of non-Gaussianity
coming from Planck we find that only hidden sectors with strictly gravitationally strong couplings provide
a feasible mechanism. The required model building is somewhat elaborate, and so we discuss possible UV
completions in the context of type IIB orientifold compactifications with Ramond-Ramond axions. We find
that an embedding is possible and that dangerous sinusoidal corrections can be suppressed through the
compactification geometry. Our main result is that even when additional sources of primordial gravity
waves are competitive with the inflaton, a positive B-mode detection would still be a relatively good
indicator of the scale of inflation. This conclusion will be strengthened by future constraints on both
non-Gaussianity and cosmic microwave background polarization.
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I. INTRODUCTION

A positive detection of B-mode polarization in the
cosmic microwave background (CMB)—if identified as
being of primordial origin—has been argued to provide
smoking gun evidence for the existence of inflation [1].
It has been further argued that the signal would provide us
with the scale at which inflation took place. Given the
current and projected sensitivity of polarization experi-
ments [1], a positive detection of primordial B modes
would then imply inflation occurred near the grand uni-
fication theory scale, or slightly below. Indeed, if the results
from BICEP2 [2] are confirmed, this would be the first
direct evidence for physics beyond the standard model at a
scale nearly a billion times that probed at the Large Hadron
Collider.
In this paper we revisit the following question: Does a

detection of primordial B modes necessarily provide us
with the scale of inflation? In [3] it was argued that the
answer is no. In that paper, the authors considered addi-
tional sources of gravity waves arising from nonadiaba-
ticity and particle production during inflation and claimed
that in some cases this source of B modes could exceed
those coming from the quantum fluctuations of the quasi–
de Sitter background. Related ideas have appeared in [4–15],
although the primary focus of these papers was different. In
this paper we review both approaches and explicitly dem-
onstrate their relation for the case of on-shell particle
production. In many of these works it was also pointed
out that the same effects leading to a significant level of
gravity waves would also lead to a substantial level of
equilateral-type non-Gaussianity (NG)—a prediction that
was important for Planck. Utilizing the current Planck data

[16] we can now revisit these models utilizing the constraints
on the level of equilateral-type NG fequilNL < −42� 75. Using
this constraint, and demanding successful inflation and
self-consistent model building, in this paper we examine
these models to see if particle production can lead to a
competitive source for primordial B modes.
We first consider the case of an inflaton directly coupled

to spectator fields. This captures models with on-shell
particle production such as trapped inflation and moduli
trapping [17–19], and we also consider production of
pseudoscalar and gauge fields during inflation [12]. In
all of these models we find that the direct coupling typically
leads to a high level of NG, rendering these alternatives for
generating primordial B modes irrelevant. We next consider
the production of spectator fields with gravitational cou-
pling to the inflaton sector [4,9]. Because of the suppressed
couplings, in some cases these models can lead to a lower
level of NG and an alternative B-mode source is possible.
However, additional constraints from backreaction and
isocurvature perturbations severely restrict the parameter
space. We identify the most promising case as gauge field
production resulting from a tachyonic and time-dependent
mass term resulting from the interaction of the gauge field
with an additional spectator scalar field (not the inflaton).
Given the elaborate nature of this model, after constraining
the parameter space we turn to the question of UV
completing the model. We construct an inflationary sector
utilizing axion monodromy [20–26], and then we realize
the additional spectator fields needed within the framework
of O3=O7 orientifold compactifications of type IIB string
theory. We find that a UV embedding can be realized in
the weakly coupled string theory if the compactification
volume is taken parametrically larger than the Planck
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scale and if the axion decay constant is sub-Planckian. Our
embedding also demonstrates that dangerous sinusoidal
corrections to the gauge field production models can be
suppressed through the compactification geometry.
The remainder of the paper is as follows. In the next

section we review both the classical and quantum produc-
tion of gravity waves during inflation. This section is
primarily to establish notation and to address a few subtle
points in the literature regarding the production of gravity
waves from on-shell particle production. In Sec. III, we
consider the case of particle production of fields directly
coupled to the inflationary sector. In Sec. IV, we consider
the gravitationally coupled case. Unlike the direct coupling
case, we find that some of these models do result in B
modes although the parameter space is severely restricted.1

In the remainder of the paper, we consider the UV
completion of these models. First, in Sec. V we review
the relevant details of type IIB orientifold compactifications
and their role in inflationary model building. Then in
Sec. VI we present an explicit model including the particle
production and establish the model building constraints. In
the final section we conclude. In Appendix A we list a
number of concerns for string model building with moduli
stabilization and their possible resolutions.

II. GRAVITY WAVES FROM INFLATION AND
PARTICLE PRODUCTION

In this section we review the general formalism for
establishing the amount of gravity waves produced during
inflation from both quantum fluctuations of the metric and
classical sources from particle production events during
inflation. For readers familiar with these types of

calculations this section may be skipped; however it does
serve to set our notation and conventions.
Gravity waves produced during inflation can perturb

the homogeneous and isotropic background metric. These
tensor fluctuations are described by the metric

ds2 ¼ aðτÞ2½−dτ2 þ ðδij þ hijÞdxidxj�; ð1Þ

where latin indices denote spatial coordinates,2 hij is the
transverse (∂ihij ¼ 0) and traceless (hii ¼ 0) metric per-
turbation and we work in conformal time with a ¼
−1=ðHτÞ for quasi–de Sitter.
The mode equation for gravity waves in the cosmologi-

cal background (working in Fourier space) is

h̄00ij þ
�
k2 −

a00

a

�
h̄ij ¼

2

m2
p
aTTT

ij ; ð2Þ

where we introduced canonical modes h̄ij ¼ aðτÞhij and
TTT
lm is the transverse and traceless components of the stress

energy tensor for any sources which are present. The
transverse, traceless components of the stress tensor can
be obtained by introducing the projector Πij

lm ¼ Pi
lPj

m −
1
2
PijPlm where Pij ¼ δij − kikj=k2 so that TTT

ij ¼ Πij
lmTlm

(cf. [28]).
We can formally solve (2) to find

h̄ijð~k; τÞ ¼
2

m2
p

Z
dτ0Gkðτ; τ0Þaðτ0ÞTTT

ij ð~k; τ0Þ; ð3Þ

where Gkðτ; τ0Þ is the Green function satisfying the source
free version of (2) with appropriate boundary conditions.
For the quasi–de Sitter background we find

Gkðτ; τ0Þ ¼
kðτ0 − τÞ cos ðkðτ0 − τÞÞ − ð1þ k2τ0τÞ sin ðkðτ0 − τÞÞ

k3ττ0
Θðτ − τ0Þ; ð4Þ

where Θðτ − τ0Þ ¼ 0 for τ < τ0 signaling that the source
only produces gravity waves after its creation. This
expression along with a source in (3) then allows us to
find the resulting gravitational radiation.

A. Quantum vacuum fluctuations and gravity waves

For inflationary vacuum fluctuations and in the absence
of sources (Tlm ¼ 0) Eq. (2) can be easily solved (see e.g.
[29] or [30]) and one finds that the inflationary background

generates a nearly scale invariant spectrum of gravitation
waves. We can relate the correlation function to the tensor
power spectrum for each helicity as

1

a2
hh̄sijð~kÞh̄s0ijð~k0Þi ¼ ð2πÞ3δð3Þð~kþ ~k0Þδss0Ph; ð5Þ

where s refers to the polarization. The dimensionless tensor
power spectrum resulting from quantum vacuum fluctua-
tions of the graviton is then

Δ2
t ðkÞ ¼ 2 ·

k3

2π2
· Ph ¼

8

m2
p

�
H
2π

�
2

ð6Þ
1The authors of [27] have argued for slightly different

constraints than we find for these models. In particular, their
analysis of the behavior of the hidden sector at Hubble radius
crossing leads to stronger constraints from the curvature power
spectrum and bispectrum than those found in the existing
literature. If confirmed, this would strengthen our conclusions.
We refer the reader to their paper for details.

2We follow metric signature ð−;þ;þ;þÞ and work with the
reduced Planck mass mp ¼ 2.44 × 1018 GeV.
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evaluated at k ¼ aH and the tilt of the spectrum is
nt ¼ d lnPh=d ln k. In the absence of any other primordial
sources of gravity waves, a measurement of the tensor-to-
scalar ratio (along with existing measurements of the scalar
power spectrum) then allows us to determine the scale of
inflation HI through (6). In terms of the scalar power
spectrum Δ2

s we can then define the tensor-to-scalar
ratio

r≡ Δ2
t

Δ2
s
; ð7Þ

where near-term and future experiments can be optimisti-
cally expected to probe as low as r≃ 10−3 [1]. Using the
COBE normalization Δ2

s ¼ 2.5 × 10−9 this can be reex-
pressed as a determination of the scale of inflation
(cf. [30])

HI ¼ 3 × 10−5
�

r
0.1

�
1=2

mp: ð8Þ

Thus, given an observation of r and knowledge that the
only source of gravity waves resulted from primordial

vacuum fluctuations, we can determine the scale of
inflation HI ∼ V1=2=mp.

3

B. Gravity waves from particle production
during inflation

We first consider gravity wave sources from scalar field
production during inflation and later generalize this to
vector fields. To calculate the effect of the produced
particles on gravity wave production we note that the
contribution of the particles to the spatial part of the stress
tensor will be of the form Tij ¼ ∂iχ∂jχ þ δijð…Þ. This
implies that in Fourier space the transverse, traceless source
is the convolution [32]

TTT
ij ðk; τÞ ¼ Πij

lmðkÞ
Z

d3p

ð2πÞ3=2 plpmχðp; τÞχðk − p; τÞ:

ð9Þ

Using this result, along with (3) we can construct the two-
point, equal time correlator

hh̄ijðk; τÞh̄�ijðk0; τÞi ¼
4

m4
p

Z
dτ0aðτ0ÞGkðτ; τ0Þ

Z
dτ00aðτ00ÞGk0 ðτ; τ00ÞhTTT

ij ðk; τ0ÞTTT�
ij ðk0; τ00Þi

¼ 4

m4
p

Z
dτ0

Gkðτ; τ0Þ
aðτ0Þ

Z
dτ00

Gk0 ðτ; τ00Þ
aðτ00Þ Πij

lmðkÞΠij
noðk0Þ

Z
d3p

ð2πÞ3=2
Z

d3p0

ð2πÞ3=2
× plpmp0

np0
ohχ̂ðp; τ0Þχ̂ðk − p; τ0Þχ̂�ðp0; τ00Þχ̂�ðk0 − p0; τ00Þi; ð10Þ

where we have introduced the canonical field χ̂ ¼ aðτÞχ.
As discussed in [32] if we now assume that the fields are

well approximated by statistically homogeneous, random
Gaussian fields then the four-point function can be written
in terms of two-point functions by Wick’s theorem.4 Using
that

hχ̂ðp; τ0Þχ̂�ðp0; τ00Þi ¼ fðp; τ0; τ00Þδðp − p0Þ; ð11Þ

for statistically homogeneous and isotropic fields and
keeping only the connected pieces of the correlator we have

hχ̂ðp; τ0Þχ̂ðk − p; τ0Þχ̂�ðp0; τ00Þχ̂�ðk0 − p0; τ00Þiconnected
¼ δðk − k0Þfðp; τ0; τ00Þfðk − p; τ0; τ00Þ½δðp0 − pÞ

þ δðp0 − kþ pÞ�:

Using this result and the property of the projectors that
Πij

lmΠij
noplpmpnpo ¼ Πlmnoplpmpnpo ¼ p4sin4ðθÞ=2

where θ is the angle between k and p, we can perform one
of the momentum integrals in (10) and we find

hhijðk; τÞh�ijðk0; τÞi

¼ δðk − k0Þ 2

m4
p

Z
dτ0

a2ðτ0ÞGkðτ; τ0Þ

×
Z

dτ00

a2ðτ00ÞGk0 ðτ; τ00Þ

×
Z

d3p
ð2πÞ3 p

4sin4ðθÞfðp; τ0; τ00Þfðk − p; τ0; τ00Þ: ð12Þ

It remains to determine the functions in the two-point
correlator (11). We are interested in cases where quanta of
the χ̂ field become excited due to the interaction with the

4The authors of [32] pointed out that this is a good approxi-
mation at both the beginning and end of inflationary preheating
and is in good agreement with lattice simulations. Here we
consider these events during inflation and work within the same
approximation. We see that any strong coupling of the spectator
field χ will tend to generate a large level of non-Gaussianity
making this approximation justified given existing CMB con-
straints.

3In [31], the issue of whether the choice of the Bunch-Davies
vacuum as the initial condition for perturbations is important or
not was discussed.
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inflaton and particle production. To calculate this contri-
bution to (11) we follow the treatment in [33].
The equation of motion for the canonical field is

χ00 þ ω2ðτÞχ ¼ 0; ð13Þ
where we make the change of notation χ̂ → χ for simplicity
and where

ω2ðτÞ ¼ k2 þ a2m2
effðτÞ − a2Δ; ð14Þ

where Δ ∼ a00=a is typically negligible compared to the
effective time-dependent mass meff . The WKB solution to
this equation

χðk; τÞ ¼ 1ffiffiffiffiffiffiffiffi
2ωk

p ðαkðτÞe−i
R

τ
ωkð~τÞd~τ þ βkðτÞei

R
τ
ωkð~τÞd~τÞ

ð15Þ
is valid as long as ω0 < ω2 and all higher order adiabatic
invariants remain small. The condition that initially there

are no quanta of the field present requires α ¼ 1 and β ¼ 0,
i.e. only positive frequency modes are present. When the
adiabatic conditions fails, particle production results, and
the Bogolyubov coefficients above give the mode mixing
that occurs due to the time dependence of the system. The
creation and annihilation operators after production can be
expanded in terms of the initial creation â†k and annihilation
operators âk of the field as

b̂kðτÞ ¼ αkðτÞâk þ β�kðτÞâ†−k;
b̂†kðτÞ ¼ αkðτÞâk þ β�kðτÞâ†−k; ð16Þ

where although âk annihilates the vacuum initially, b̂k does
not, and if the system returns to adiabatic evolution the
number density of particles produced is nk ∼ jβkj2. Proper
renormalization requires that one normal orders the corre-
lators with respect to the b̂k basis and then uses that âk
annihilates the vacuum to find the surviving terms (see e.g.
[4,10]). Expanding the field and performing the normal
ordering we find that the unknown function in (11) is

fðp; τ0; τ00Þ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωpðτ0Þωpðτ00Þ

p �
αpðτ0Þβ�pðτ00Þe−i

R
τ0
ωkð~τÞd~τ−i

R
τ00
ωkð~τÞd~τβpðτ0Þα�pðτ00Þei

R
τ0
ωkð~τÞd~τþi

R
τ00
ωkð~τÞd~τ

þ βpðτ0Þβ�pðτ00Þe−i
R

τ00
τ0 ωkð~τÞd~τ þ β�pðτ0Þβpðτ00Þei

R
τ00
τ0 ωkð~τÞd~τ

�
: ð17Þ

We then use this expression in (12) to find the amount of
gravitational radiation. However, as shown in [4] the
arguments of the exponentials above lead to rapidly
oscillating phases and do not give a significant contribution
to the final correlator (12). Neglecting the phases, using the
result above in (12) and keeping only the leading terms we
find

hhijðk; τÞh�ijðk0; τÞi

¼ δðk − k0Þ 2

m4
p

Z
dτ0

a2ðτ0ÞGkðτ; τ0Þ

×
Z

dτ00

a2ðτ00ÞGk0 ðτ; τ00Þ

×
Z

d3p
ð2πÞ3 p

4sin4ðθÞ jβpj
2ðjαpj2 þ jβpj2Þ

2ωpðτ0Þωpðτ00Þ
þ…; ð18Þ

where the missing terms are subleading and we refer the
reader to [4] for a more detailed discussion. The result (18)
will allow us in the remainder of the paper to connect
particle production and nonadabaticity during inflation
with the generation of gravitational waves. Given the
Green function (4), we simply calculate the Bogolyubov
coefficients for a given model and this gives us the
associated gravity waves produced via (18). Given this

contribution to the tensor power spectrum we can then
compare with the vacuum source in (6) to determine if
particle production can lead to a larger signal.

III. PARTICLE PRODUCTION MECHANISMS
WITH DIRECT INFLATION COUPLING

Any contribution to the production of gravitational
waves during inflation, if competitive to vacuum fluctua-
tions, could obstruct the use of observations to determine
both the scale of inflation and whether the waves are of
classical or quantum mechanical origin—with quasi–de
Sitter fluctuations exemplifying the latter. In this section we
consider the gravitational waves resulting from the pro-
duction of fields directly coupled to the inflaton, and
establish constraints for whether such effects can be
competitive.
Inflation models in best agreement with existing data are

necessarily sensitive to high-energy (UV) physics. Thus,
consistent model building requires these models to be
embedded in a UV complete theory, with string theories
currently providing the most developed approach. String
theories comewith additional fields, strings and branes, and
the importance of these degrees of freedom on the inflation
process has been demonstrated in a number of contexts
(see [30] for a review). Among the anticipated effects, if
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these states couple to the inflaton during inflation this can
lead to particle production, which in some cases may be
expected to generate a large background of gravitational
waves.
Following [34] (see also [3]) our starting point is the

action

S ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
m2

pR −
1

2
ð∂φÞ2 − VðφÞ

�
þ Sp þ Ss þ Sint;

ð19Þ
where for particle sources we have

Sp ¼ −
X
p

Z
d4x

Z
dτδð4Þðxμ − xμpðτÞÞθðt − tpÞmðφÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðτÞ

dxμ

dτ
dxν

dτ

r
; ð20Þ

and the mass mðφÞ of the particle depends on the inflaton
(and so coordinate time t), tp is the time at which a particle
is created, and the argument of the square root is given by
the world line trajectory of the particle and so depends on
the proper time τ. Similarly for string sources one has

Ss ¼ −
X
s

Z
d4x

Z
d2σδð4Þðxμ − xμsðσÞÞθðt − tsÞTðφÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det

�
gμνðσÞ

dxμ

dσα
dxν

dσβ

�s
ð21Þ

where the string tension TðφÞ can depend on the inflaton
and σ ¼ ðτ; σ1Þ are the induced coordinates on the string
world volume and ts is the time of string production. Sint
accounts for any interactions between the inflationary
sector and the particles and strings.
In the rest of the section, we go through several examples

of how the time dependence of the couplings (mass and
tension) in (20)–(21) can lead to particle and string pro-
duction during inflation. We follow the standard methods
presented in [17] for on-shell particle production and the
approach of [34] where string production within an effective
field theory approach was discussed. Our examples will
cover the cases of a scalar and pseudoscalar inflaton,
producing scalar or vector particles. We will then go on
to describe gravity wave production in these models, and
finally constraints from non-Gaussianity and backreaction.

A. Scalar production during inflation

The time-dependent mass and tension appearing in
(20)–(21) can lead to interesting cosmological implications.
In models of moduli trapping [17,18,35,36] the particle
production resulting from the scalar’s time dependence
was shown to lead to dynamical stabilization of moduli
(massless scalars) that would otherwise have little or no

potential and remain unstablized. When identified as the
inflaton, it was shown in [19,37] that when accounting for
the effects of particle production one can obtain slow-roll
inflation from potentials that would otherwise not satisfy
the slow-roll conditions. Taking the scalar in (20)–(21) to
be the inflaton we can capture the dynamics of this
production through an effective interaction

Lint ¼ g2ðφ − φ0Þ2χ2: ð22Þ
Here φ is the inflaton and χ the spectator field to be
produced. Although this interaction is much simpler than
what one might expect from (20)–(21), since we are
treating χ as a simple scalar, it was shown in [34] that
this also provides an adequate description of string and
brane production within the low-energy effective theory.
How generic is such an interaction? Interactions captured

by (22) generically occur within the context of string theory
and M-theory model building. Common examples include
the presence of new light states (here represented as χ) as
the size of a compact dimension or internal cycle (para-
metrized by φ) shrinks and the symmetries of the theory
become enhanced [18,35]—i.e. there is an inverse string
Higgs effect. Other examples include when D branes
become coincident, as in models of brane inflation, and
new light states appear5 [17], or near locations in field space
associated with changes in topology [36]. In these and other
cases the interaction is effectively captured by (22) where
far from the location φ ¼ φ0 the quanta of χ can be quite
heavy and so do not affect the dynamics. However, as the
inflaton φ approaches φ0 quanta of the χ field can become
excited leading to on-shell6 particle production.7

Given this motivation we are now interested in determin-
ing the amount of gravitational waves that could be
generated during the creation process, while still allowing
for successful inflation and being consistent with a bound
on non-Gaussianity. We first emphasize that scalar field
waves do not produce an appreciable amount of gravita-
tional radiation [32]. Instead, here the expectation of
gravity waves comes from both the creation process and
the existence of the particles following creation as they
provide a classical source in (3). We emphasize that the
created particles are inhomogenously distributed, on shell,
and are not perturbations8 [32]. Moreover, the creation

5These new states correspond to open strings stretching
between the branes becoming light.

6In this paper we focus on on-shell production, whereas the
interaction (22) can also lead to important off-shell (virtual)
effects as discussed first in [38]. Which effect is dominant
depends on whether the theory is in the strong or weak coupling
regime as discussed in [17].

7This is analogous to Schwinger pair production in a strong
electromagnetic field.

8This explains why it is consistent to use the linearized
equation for the graviton in (3), whereas we see that the sources
will be quadratic in the created fields.
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process is nonperturbative and cannot be described within
standard methods of linearized perturbation theory9 [33].
Following the formalism reviewed in Sec. II, the inter-

action (22) provides a time-dependent mass in (14) where
m2

effðτÞ ¼ g2ðφ − φ0Þ2. As discussed there, particle pro-
duction occurs when the adiabatic condition fails,10 which
in this case implies ω0=ω2 ∼m0

eff=m
2
eff ≳Oð1Þ. As shown

in e.g. [17] the production occurs on time scales small
compared to the Hubble time so that gravitation effects are
negligible and if we denote the time of production as τ0 the
Bogolyubov coefficients above for τ > τ0 are

jαkj2 ¼ 1þ exp

�
−π

k2

m0
effðτ0Þ

�
;

jβkj2 ¼ exp

�
−π

k2

m0
effðτ0Þ

�
; ð23Þ

where m0
effðτ0Þ ¼ gφ0

0 is the time derivative of the effective
mass evaluated at the moment of production and we set
aðτ ¼ τ0Þ ¼ 1. We also note that the coefficients respect
the normalization jαj2 − jβj2 ¼ 1 implying that the
Bogolyubov transformation is canonical. The correspond-
ing number density of produced particles is then nχ ∼R
d3knk with nk ∼ jβkj2 given by (23). The most interesting

case will be when a number of the locations φ ¼ φðiÞ
0 occur,

as this will lead to a continuous production of gravity waves
whereas a single event will lead to an isolated (but perhaps
interesting) signature [3].
The amount of gravitational radiation resulting from

both single and multiple events has been examined taking
two different approaches. In [10] the authors argued that
gravity waves will result from both the production events
themselves, as well as from the existence of χ particles
following production—both sources were found to yield a
comparable amount of gravitational radiation; whereas in
[3], the authors performed estimates adapting the methods
of Weinberg [40] to the time-dependent case of interest here
and found that the production event along with gravita-
tional bremsstrahlung from the inflaton could result in
gravity waves. Here we qualitatively argue that the two
approaches yield similar results, but for the majority of
our calculations we primarily follow the approach of [10].
The key will be that in all instances—and independent of
the computational method—we find that if particle pro-
duction for fields coupled directly to the inflaton is to lead
to an observable gravity wave signal it presents a tension

with existing constraints from Planck on the level of
equilateral non-Gaussianity.
To calculate the gravity waves generated from the

presence of on-shell χ particles following production we
can use the result for the Bogolyubov coefficients (23) and
Green function (4) in the correlator (18) and we find11

hhijðkÞhijðk0Þi ¼
δð3Þðkþ k0Þ

2π5k3

�
H
mp

�
4
�
nχ
H3

�
Fðkτ0Þ ð24Þ

with nχ ∼ ðm0
effÞ3=2 ¼ ðgφ0Þ3=2 the number density of

produced particles and

Fðkτ0Þ≃ ½kτ0 cosðkτ0Þ − sinðkτ0Þ�2
jkτ0j3

× log2
�
nχ
H

�
≃Oð10–100Þ; ð25Þ

the first term results from the two copies of the Green
function (4) in (18) and peaks around jkτ0j ¼ 2.5 after
which it sharply drops off reflecting both the locality of the
production as well as the fact that only gravity waves
produced near the horizon have a chance of contributing
significantly to the spectrum.12 The second term in (25) is
to be evaluated at the time of production and as we will
see is typically at most Oð100Þ.
Using the definitions (5)–(6) the contribution to the

tensor power spectrum from production is then

Δ2
t ¼ Δ2

std

�
1þ 4.8 × 10−4

�
H
mp

�
4
�
nχ
H3

�
Fðkτ0Þ

�
; ð26Þ

where Δ2
std ¼ 2H2=ðπ2m2

pÞ is the standard vacuum con-
tribution coming from (6).
Before proceeding, let us compare the result (24) [and

so also (26)] with the estimates found in [3]. From (24) we
find

h2cs ∼ hðkÞ2k3 ∼
�
nχ
H3

��
H
mp

�
4

ð27Þ

where hcs is the amplitude in real space andH is the Hubble
scale during inflation. Now let us compare this estimate to
the one in [3]. There it was found that

h2ssz ∼
ρGW
ρtotal

∼ f
H3

Em3
p
; ð28Þ

9It was for many of these reasons that in [13] it was shown that
within perturbation theory the production of gravitational waves
would be negligible (see also [32]).

10Within the effective theory, the adiabatic condition can fail
either because the particles become massless or simply because
the inflaton undergoes nonadiabatic evolution. In the latter case
the yield of particles depends on the dynamics of the inflaton
and the mass scale of the particles to be produced [39].

11This result agrees with the correlators in both the adiabatic
and nonadiabatic cases studied in [10].

12Causality requires gravity wave production to occur on near
or sub-Hubble scales and gravity waves produced on small length
scales will undergo significant redshifting reducing their signifi-
cance. Thus, production near the Hubble scale will provide the
largest contribution to the tensor spectrum.
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where ρGW=ρtotal is the relative energy density in gravity
waves, E is the characteristic energy, and f ∼ Enχ=ρtotal is
the fraction of waves resulting from the nχ density of
particles. Here the frequency of produced waves was taken
as ω ∼H so no redshifting occurred [as we also assumed
in (27)] and plugging in f we find

h2ssz ∼ f
H3

Em3
p
∼
�

Enχ
H2m2

p

��
H3

Em3
p

�
∼
�
nχ
H3

��
H
mp

�
4

∼ h2cs;

ð29Þ

and so we see the two approaches agree qualitatively. This
result is easily understood—the production events are
independent and so proportional to nχ per Hubble volume
(H3) and the amplitude of each waves is proportional to
H2=m2

p as expected.
We would now like to see if the new contribution in (26)

can be competitive with the vacuum contribution Δ2
std.

We define the difference as

ΔPt ≡ ðΔ2
t − Δ2

stdÞ=Δ2
std ð30Þ

so that ultimately we are interested in whether ΔPt ≫ 1 is
feasible. Given (26) we can already see that a large gravity
wave signal is difficult to obtain. In order that the produced
particles nχ do not ruin inflation we must have at least
nχ ≪ H2m2

p. Using this in (26) we find

ΔPt ≃ 10−2
�
H
mp

�
4
�
nχ
H3

�
≪ 10−2

�
H
mp

�
2
�
H
mχ

�
; ð31Þ

where we used that Fðkτ0Þ≲Oð100Þ and we see that
unless the produced scalars remain far lighter than the
Hubble scale a competitive signal is simply not possible.
This requires that the gravity waves are produced at the
time the field is light (mχ ≪ H) and at the time particle
production is occurring. But this implies that the gravity
waves will actually be a scale-dependent feature in the
spectrum, which is manifest from the kτ0 dependence in
(25). Instead we are interested in the continuous generation
of gravity waves, which suggests that the multiple pro-
duction case is of more interest.
Requiring the inflaton to copiously and continuously

produce particles, while also providing an adequate number
of e-foldings of slow-roll inflation, requires a delicate
approach to model building. However, in models of trapped
inflation [19] it is precisely this type of balance (and
accounting for the backreaction of produced particles) that
permits slow-roll inflation in the presence of a steep
inflationary potential. Denoting the spacing between the
particle production events as Δ≡ φiþ1 − φi, the scalar
power spectrum in this model takes the form [19]

k3Pζ ¼
g7=2Hφ01=2

~mΔ
; ð32Þ

where ~m2 ¼ 7
2

g5=2

Δð2πÞ3 φ
03=2.

In addition, the production events generate non-
Gaussianity of the equilateral type, which was estimated
in [19] to be

fequilNL ∼
~m2

H2
¼ 7

2

g5=2

Δð2πÞ3
φ03=2

H2
: ð33Þ

Using (32)–(33) we will be able to place constraints on the
level of gravity waves resulting from particle production
events [41].
As before the largest signal will come from gravity

waves produced near the Hubble scale (more precisely near
kτ0 ¼ 2.5) as these modes will suffer less redshifting before
freeze-out. In addition, as discussed in [19] the production
events are independent and so we can simply add the
contributions to the tensor spectrum as

ΔPtotal
t ¼ NeventsΔPt; ð34Þ

with ΔPt being the contribution from a single event and
the number of events within a Hubble time being roughly
Nevents ¼ H−1=Δt ¼ φ0=ðHΔÞ. Using (32)–(33) to elimi-
nate φ0 and Δ from the tensor spectrum given by (26)
and (34) we find

ΔPt ≃ 3.8 ×

�
Nevents

4400

��
H

1012 GeV

�
4
�

g
0.01

�
3

×

�jfequilNL j
42

�3=4�Fðkτ0Þ
34

�
; ð35Þ

where Fðkτ0Þ is again given by (25) and using the fiducial
values above and with jkτ0j≃ 2.5 we have

F1=2ðkτ0Þ ¼
2

3
log

�
nχ
H

�

≃
�
5.8þ 2

3
log

��
g

0.01

��jfequilNL j
42

�1=4��
; ð36Þ

where we have again used the constraints (32)–(33). As
written, the level of gravity waves seems to depend
sensitively on the model parameters, particularly the
coupling g. However, again using the constraints and
noting that the number of events in (35) can also be
written as

Nevents ¼ 2.7 × 10−4
jfequilNL j3=4

g3

≃ 4400

�
0.01
g

�
3
�jfequilNL j

42

�3=4

; ð37Þ
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we can reexpress (35) as

ΔPt ≃ 3.8 ×

�
H

1012 GeV

�
4
�jfequilNL j

42

�3=2�Fðkτ0Þ
34

�
; ð38Þ

which is only sensitive to the coupling g logarithmically
through the dependence in (36). The strong dependence on
the Hubble scale in (38) demonstrates the challenge of being
consistent with the level of non-Gaussianity while generating
a competitive signal. For the fiducial value H ¼ 1012 GeV
the standard contribution is of the same order of magnitude
and reducing to H ¼ 1011 GeV already rules out particle
production as the primary origin. This can be seen from
Fig. 1 for both single (Nevents ¼ 1) and multiple production
(Nevents > 1) cases. We emphasize that our result (38) shows
the tension with non-Gaussianity constraints without even
invoking model building constraints within trapped inflation.
Moreover, as bounds on non-Gaussianity improve this will
strengthen confidence in vacuum fluctuations as the origin of
the primordial tensor spectrum.

B. Pseudoscalar inflaton and vector production

A promising candidate for large field inflation is when
the inflaton is realized as a pseudo-Nambu-Goldstone

boson (PNGB) associated with the breaking of a global
symmetry at some high scale [42,43]. As discussed above,
the UV sensitivity of large field inflation emphasizes the
importance of realizing models of inflation within a high-
energy framework. Within string theory constructions,
PNGBs naturally arise from the compactification of higher
dimensional gauge fields to four dimensions [44]. Often the
higher dimensional gauge invariance of these fields leads
to an an approximate shift symmetry φ → φþ const in the
four-dimensional low-energy effective theory. This shift
symmetry can be lifted by a number of effects (both tree
level and nonperturbative) that depend on the details of
the compactification [44]. One promising class of PNGB
inflation models is those arising in models of axion
monodromy (see [21] and references within). In these
models a large field range for the inflaton is achieved as
branes wrapping the same extra dimensions as the gauge
fields lift the shift symmetry in a controlled way leading to
relevant terms in the inflaton potential but with naturally
suppressed coefficients. Other nonperturbative effects can
contribute (such as gauge and brane instantons), but in
particular constructions it is possible to arrange for these
effects to be parametrically small yielding a viable inflation
model. That is, these string based models realize the idea of
natural inflation proposed in [42,43] in a technically
natural way.
In addition to the inflaton sector, it is natural for PNGB

inflatons to couple to four-dimensional gauge fields. In
fact, for any PNGB of inflation it is natural to consider
interactions of the form

Lint ¼ −
1

4f
φFμν ~Fμν; ð39Þ

where Fμν ¼ ∂μAν − ∂νAμ and ~F ¼ ð1=2ÞϵμνλσFλσ is the
dual field strength.13 The axion decay constant is denoted
by f. For an exactly constant field φ this term is a total
derivative (i.e. topological), and so it does not enter the
equations of motion. However, during inflation the inflaton
slowly evolves and this interaction leads to an effective
tachyoniclike mass term for the gauge field—thus, particle
production is possible. We are interested in whether such a
term can lead to significant gravity wave production, while
evading the bounds established for the scalar production
case in the last section.
Just as in the scalar case of the previous section, the

interaction (39) can lead to particle production of gauge
fields δA when adiabaticity is violated.14 Analogous to (13)
we have

Not competitive

Tension with non-gaussianity 

FIG. 1. Change in the tensor power spectrum due to particle
production ΔPt ≡ ðΔ2

t − Δ2
stdÞ=Δ2

std with Δ2
std being the contri-

bution from vacuum fluctuations during inflation for both the
single (Nevents ¼ 1) and multiple production cases (Nevents > 1).
The lightly shaded region (gray) represents a tension with the
Planck upperbound on equilateral-type non-Gaussianity
(jfequilNL j < 42), whereas in the dark shaded region particle
production is clearly not competitive with the vacuum contribu-
tion. We note that even in cases where the signal is competitive,
this does not necessarily imply a dominant contribution. Thus, we
see that in both cases (single or multiple production) non-
Gaussianity puts strong constraints on the tensor contribution.
The multiple production case is rather insensitive to the coupling,
but in both cases we have plotted results for g ¼ 10−2 and
jfequilNL j ¼ 42.

13Here we are interested in the case that the inflaton is a
pseudoscalar and so we do not consider couplings of the type
∼fðφÞFμνFμν; see e.g. [5] for these scalar inflaton models.
However, we expect the bounds on the level of gravity waves
found in this section and the previous section to be representative
of any inflaton coupled to the fields being produced.

14See [6] for a review.
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A00
� þ ω2ðτÞA� ¼ 0; ð40Þ

where � denotes the transverse polarization. The time-
dependent frequency of the field is

ω2ðτÞ ¼ k2 ∓ m2ðτ; kÞ; ð41Þ

where the tachyoniclike mass term depends on the wave
number as

m2ðτ; kÞ ¼ k _φ
Hjτjf ;

¼ 1

2π
ffiffiffiffiffiffi
Δ2

s

p �
kH
fjτj

�
≃ 3.2 × 103k2

�
H
f

��
1

kjτj
�

ð42Þ
where in the last line we have used the normalization of the
scalar power spectrum Δ2

s ¼ 2.4 × 10−9 to eliminate15 _φ.
Assuming _φ > 0 without loss of generality, it is easy to see
from (40)–(42) that only positive helicity gauge modes Aþ
are amplified while A− modes stay in the vacuum. For
_φ=ð2HfÞ≃ constant the amplification of the positive
helicity modes is given by [7,45]

Aþ ∼ eðH=fÞ=ð4
ffiffiffiffi
Δ2

s

p
Þ for kjτj≲ ðH=fÞ=ð2π

ffiffiffiffiffiffi
Δ2

s

q
Þ; ð43Þ

where the exponential dependence here is consistent with
the particle production coming from a tachyonic instability.
The essential physics is that gauge field modes with kjτj ≲
ðH=fÞ=ð2π

ffiffiffiffiffiffi
Δ2

s

p
Þ will become violently excited by the

interaction as the tachyonic mass term (42) becomes
significant in (41) in this regime. On the other hand, this
growth saturates deep in the IR kjτj → 0 causing the
physical ~E and ~B fields to decay sufficiently far outside
the horizon.16 This can be seen by the scaling of the

physical fields with the expansion, i.e. ~B ¼ ð ~∇ × ~AÞ=a2
and ~E ¼ −~A0=a2; whereas the gravity waves that result
from this process will not decay outside the Hubble radius,
but instead become “frozen in” with this process over time
leading to a late time stochastic background of gravity
waves. The question is whether this source is competitive
with that of the quasi–de Sitter vacuum fluctuations. To
answer this question, first we need to take into account the
constraints arising on non-Gaussianities and backreaction
produced from the interaction (39).
As shown in [7,45], the NG contribution to cosmological

correlators in this model arises due to the inverse decay
processes: δAδA → δφ associated with the interaction (39).

This new source of inflaton fluctuations leads to curvature
perturbations ζ ∼ −ðH= _φÞδφ and non-Gaussianity of the
equilateral type.
Following [7] the corrections to the scalar power

spectrum and the tensor spectrum in our notation are

ΔPζ ≃ 2.95 × 102ðΔ2
sÞ5

�
f
H

�
6

exp

�
H

f
ffiffiffiffiffiffi
Δ2

s

p �
; ð44Þ

and

ΔPt ≃ ðΔ2
sÞ3

�
H
mp

�
2
�
f
H

�
6

exp

�
H

f
ffiffiffiffiffiffi
Δ2

s

p �
: ð45Þ

We note that in the parameter range of interest, the
correction to the scalar power spectrum is negligible;
whereas, the equilateral-type NG is [7]

jfequilNL j≃ 2.2 × 103ðΔ2
sÞ11=2

�
f
H

�
9

exp

�
3H

2f
ffiffiffiffiffiffi
Δ2

s

p �
: ð46Þ

Thus, combining these results and utilizing the Planck
result jfequilNL j < 42 we find a bound on the tensor spectrum

ΔPt ≲ 5.5 × 103jfequilNL j2=3
�
H
mp

�
2

;

≲ 1.2 × 10−8
�jfequilNL j

42

�2=3� H
1012 GeV

�
2

; ð47Þ

and we see it is difficult for this model to account for
the gravity wave spectrum while allowing for a low-scale
inflation model.

C. Summary of direct coupling case

In this section, we have considered particle production
resulting from a direct coupling of fields to the inflaton and
the resulting production of gravitational waves. In particu-
lar, we were interested in whether the contribution to the
tensor power spectrum from production events could be the
leading contribution, since this would imply that an
observation of primordial tensors does not necessarily
imply the scale at which inflation took place.
However, in both the scalar and gauge field cases we

have seen that existing constraints on non-Gaussianity from
Planck lead to a tension for model building if the produced
tensor signal is to be competitive with the quasi–de Sitter
source. Moreover, for gauge field production additional
constraints from backreaction make it very difficult to see
how such a source could lead to an alternative origin of
gravity waves for any range of the parameters. For scalar
production we saw that multiple events can improve the
situation; however we are left with a small region of the
parameter space near the highest possible inflationary
scales. Therefore, even in this special region, if a substantial

15We note that for comparison with the results in [7,45], here
we have used the COBE normalization to simplify the ξ≡
_φ=ð2HfÞ parameter of that paper where one would find
ξ ¼ ðH=fÞ=ð4π

ffiffiffiffiffiffi
Δ2

s

p
Þ.

16We thank Lorenzo Sorbo for discussions related to this point.
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signal resulted it would still provide us with information on
the (high) scale at which inflation took place.
Given the direct coupling of the produced fields to the

inflaton in these models a strong level of constraint from
non-Gaussianity bounds was anticipated—our results have
quantified this. However, we have also argued that the types
of couplings and interactions above are generic expect-
ations from the UV perspective, e.g. in the context of
inflationary model building within string theory. One may
have asked, if such interactions are around, why have we
not seen their gravitational signatures? Our results imply
that these fields can exist and be produced without leading
to a large tensor contribution.
In the next section, we consider gravity wave and particle

production in models that contain fields which are only
gravitationally coupled to the inflaton.

IV. PARTICLE PRODUCTION MECHANISMS
WITH GRAVITATIONAL COUPLING

In this section we explore whether particle production in
a hidden sector which is only gravitationally coupled to the
inflaton can lead to a competitive alternative for generating
a primordial tensor spectrum. As in the previous section,
we again utilize constraints on the backreaction and on the
level of non-Gaussianity—the latter anticipated to be less
stringent since the fields are only gravitationally coupled.
The system is described by the following action [4,9]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
m2

pR −
1

2
ð∂φÞ2 − VðφÞ

þ Lhidden½∂μχ; χ; F�
�
; ð48Þ

where the field φ is the inflaton and we assume VðφÞ can
support inflation. Lhidden consists of a pseudoscalar field χ
with potential UðχÞ during inflation. It is coupled gravi-
tationally to the inflaton and Uð1Þ gauge field Aμ through
an axionic coupling,

Lhidden ¼ −
1

2
ð∂χÞ2 −UðχÞ − 1

4
FμνFμν −

χ

4f
Fμν

~Fμν: ð49Þ

The gauge field production is similar to the case in Sec. III,
except this time the χ field is responsible for the ampli-
fication of the gauge field fluctuations. The tachyonic mass
term responsible for amplification is now m2ðk; τÞ ¼
k2 _χ=ðkjτjHfÞ and modes grow as

Aþ ∼ eπ
ffiffiffi
ϵχ
2

p
ðmp

f Þ for kjτj≲ ffiffiffiffiffiffiffi
2ϵχ

p �
mp

f

�
: ð50Þ

The parameter ϵχ is given by ϵχ ¼ _χ2=ð2H2m2
pÞ.

Successful model building requires the following
conditions:

(i) The field χ is to be a spectator field implying that

UðχÞ ≪ VðφÞ; _χ2 ≪ _φ2: ð51Þ

(ii) The energy density of the produced gauge fields
must be subdominant to the kinetic energy of χ and
this energy should not backreact on the background
evolution of χ. It turns out that the former is a
stronger condition than the latter [4,46]. Therefore
we require

1

2
_χ2 ≫

1

2
h~E2 þ ~B2i; ð52Þ

where from the earlier definitions for the fields and
using the mode functions one can show that this
gives [4,46]

_χ2 ≫ 2.2 × 10−3H4

�
Hf
_χ

�
3

exp

�
π _χ

Hf

�
: ð53Þ

(iii) Non-Gaussianity constraints from Planck imply
jfequilNL j < 42.

Contrary to the pseudoscalar inflation case, the inverse
decay effects (δAδA → δχ) associated with the last term in
(49) do not necessarily produce strong NG correlations.
Moreover, as shown in [4,9,46] the scalar power spectrum
Pζ gets a negligible contribution from the gauge fields. On
the other hand, gravity waves sourced by vector fields Aμ

can dominate over vacuum ones and hence can contribute
significantly to the tensor power spectrum Pt. The change
in the tensor power spectrum is given by [4,9,46]

ΔPt ≃ 2.8 × 10−5
�
H
mp

�
2
�
Hf
_χ

�
6

exp

�
2π _χ

Hf

�
; ð54Þ

and the NG is

fNL ≃ 2.5 × 105
�
H
mp

�
6
�
Hf
_χ

�
9

exp

�
3π _χ

Hf

�
: ð55Þ

Combining these we find the constraint

ΔPt ≲ 4.8 × 105
�jfequilNL j

42

�2=3�
1012 GeV

H

�
2

; ð56Þ

which demonstrates that the tensor signal can be quite large
depending on the inflationary scale.
We note that the corrections to the scalar power spectrum

in this case are further suppressed by a factor ϵ2 compared
to (44), as shown in [4].
However, we have not yet used the backreaction con-

straint (53). This turns out to be a much more stringent
constraint compared to NG and we find
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ΔPt ≪ 5.7 × 1014
�
ϵχ
ϵ

�
2
�
H
mp

�
2

≪ 1.0

�
ϵχ=ϵ

0.1

�
2
�

H
1012 GeV

�
2

; ð57Þ

where ϵ is the usual slow-roll parameter of inflaton and we
took a fiducial value for the ratio ϵχ=ϵ that is implied by the
condition (51). In Fig. 2, we summarize the constraints
obtained from (56)–(57). These constraints can also be used
to restrict the axion decay constant f. The requirement of
generating a significant tensor signal implies that the

argument of the exponential in (50) must satisfyffiffiffi
ϵχ
2

q
ðmp

f Þ≳ 3.5. Using this along with the constraint from

(51) we have

f
mp

≪ 1.8 × 10−2
�

ϵ

0.008

�
1=2

; ð58Þ

where we have chosen a fiducial value for the slow-roll
parameter corresponding to a quadratic potential with N ¼
60 e-foldings. On the other hand, (52) implies f=mp ≫
8.5 × 10−4ðϵ=0.008Þ1=2 and so we have

8.5 × 10−4
�

ϵ

0.008

�
1=2

≪
f
mp

≪ 1.8 × 10−2
�

ϵ

0.008

�
1=2

:

ð59Þ
Thus, we find that this model provides a competitive
source of gravity waves for a narrow region of the
parameter space. We now turn to the question of whether
such a model is UV completable. Studies of other UV
contexts such as braneworld inflation have recently been
undertaken in [47].

V. TOWARDS A UV COMPLETION AND
THE RESULTING CONSTRAINTS FROM

STRING THEORY

We have seen that the most promising case for observ-
able particle production arises from the gravitationally
coupled case. In this section we want to consider the
possibility of UV completing such a model and any
additional constraints on model building that this might
imply. In the next few subsections, we gather the tools that
will be required for our analysis.

A. Axions in type IIB string theory

As our starting point we focus on axions arising from
compactifications of type IIB string theory. To see how
axions arise in the theory, we consider the dimensional
reduction of the theory to four dimensions by starting from
the ten-dimensional action in the string frame given
by [48]

SIIB10 ¼ 1

ð2πÞ7α04

×
Z

d10x
ffiffiffiffiffiffiffi
−G

p �
1

g2s

�
R½G� − 1

2
jH3j2

�
þ 1

2
jF3j2

�
þ � � � ð60Þ

where GMN is the ten-dimensional string frame metric and
H3 ¼ dB2 and F3 ¼ dC2 are the NS-NS and Ramond-
Ramond (RR) three-form fluxes, respectively, with B2 and
C2 being the corresponding gauge potentials and 1=ð2πα0Þ
the string tension. The model independent axion C0 and
dilaton are combined as the axiodilaton τ ¼ C0 þ i=gs
where gs ¼ expðϕ0Þ is the string coupling and we take
C0 to be fixed and instead concentrate on the model
dependent axions arising from the compactification of the
form fields. The additional terms represented by dots will be
discussed in more detail below and include higher form
fields such as C4 (we concentrate on C2 axions for now).
The zero modes of B2 and C2 are independent of the

coordinates of the compact dimensions and can be integrated
over chosen two cycles of the internal geometry giving rise
to axions in the four-dimensional theory. To make this
explicit, consider compactifying on a Calabi-Yau threefold
(CY3); for the form field C2 we make the ansatz [44]

Ruled out by backreaction

Tension with 
non-gaussianity 

Not competitive

FIG. 2. Change in the tensor power spectrum ΔPt ≡ ðΔ2
t −

Δ2
stdÞ=Δ2

std due to (gravitationally coupled) gauge field production
as discussed in the text, with Δ2

std being the contribution from
vacuum fluctuations during inflation. The medium gray region
represents a tension with the Planck upperbound on equilateral-
type non-Gaussianity (jfequilNL j < 42), whereas in the darkest
shaded region gauge field production is not competitive with
the vacuum contribution. The light gray region corresponds to the
constraint coming from the backreaction of the produced gauge
fields on the spectator scalar χ. As plotted, the above graph is
actually conservative as the real constraint requires the kinetic
energy to be much greater than the gauge field energy
_χ2 ≫ ~E2 þ h~B2i. Given this caveat, the two white regions
represent the available parameter space for the choices ϵχ ¼ ϵ
and the more realistic value ϵχ < 0.1ϵ (ϵχ < ϵ < 1 is required for
χ to remain a spectator field).
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C2 ¼
1

2π
cIðxÞωI; ð61Þ

where the cIðxÞ are only functions of the four noncompact
space-time dimensions and I labels the two cycle. We have
introduced the basis forms ωI to describe the internal
geometry and they obey the normalization conditionR
ΣI
ωJ ¼ ð2πÞ2α0δJI with the two cycles ΣI giving a basis

of the dual homology H2ðX;ZÞ. The normalization factors
of 2π are chosen for later convenience. Making a similar
ansatz for B2 and using this in (60) we have

S ¼
Z

d10x
ð2πÞ7α04

ffiffiffiffiffiffiffi
−G

p

×

�
g−2s

�
R½G� − 1

48π2
GnmGlp∂μbI∂μbJωI

nlω
J
mp

�

−
1

48π2
GnmGlp∂μcI∂μcJωI

nlω
J
mp

�
; ð62Þ

where greek indices run over the four noncompact dimen-
sions and lowercase latin indices denote the compact
dimensions. At the classical level, the gauge invariance of
the higher dimensional gauge potential implies that the
axions can only be derivatively coupled and so we have a
shift-symmetric pseudoscalar in the low-energy theory. This
symmetry can be broken in a number of ways, which we
discuss shortly. Denoting both types of axions as aI , upon
dimensional reduction we find

S4 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

p

2
R½g� − 1

2
γIJ∂μaI∂μaJ

�
ð63Þ

where g is the four-dimensional Einstein frame metric and
the four-dimensional reduced Planck mass is

m2
p ¼ 2V

ð2πÞ7g2sα0
; ð64Þ

with V ¼ V6=α03 being the string frame volume of CY3.
Another common convention is to instead work with the
Einstein frame volume. The ten-dimensional string frame is
related to the Einstein frame by the Weyl rescaling Gstring

MN ¼
expðϕ=2ÞGEinstein

MN and working in units of the string length
ls ¼ 2π

ffiffiffiffi
α0

p
the two volumes are related by VE ¼

ð2πÞ6V=g3=2s .
For the RR axion the γIJ provide the axion decay

constants and depend on the internal geometry as [44]

γIJRR ¼ 1

6ð2πÞ9α04
Z

ωI∧⋆ωJ; ð65Þ

whereas for the Neveu-Schwarz (NS) axion one gets the
same resultmultiplied by an extra factor of g−2s . However, for
the remainder of this paperwe restrict our attention to theRR
axion, since (as shown in [20]) the NS axions will suffer

an η problem when moduli stabilization proceeds through
nonperturbative effects.17 Alternatively, one could work
in perturbative (large volume) stabilization scenarios [49].
Once the specifics of the internal geometry are known

one can calculate the γIJ to find the corresponding axion
decay constants. This is a nontrivial task, which requires a
full specification of the compactification geometry in a
Calabi-Yau manifold. Mostly, we will be interested in order-
of-magnitude estimates of this quantity. This is the project
taken up in [44], where the quantity γIJ was calculated in a
variety of string models assuming compactifications suffi-
ciently symmetric to be amenable to estimates.

B. Orientifold compactification data
and axion decay constant

In order to proceed with concrete estimates of the axion
decay constant and the axion potential, it is best to locate
oneself within a orientifold compactification in which these
quantities can be given in terms of the compactification
data.
We consider an N ¼ 2 IIB compactification on CY3,

which has a moduli space Mh ×Mv of exactly flat
directions. Here, Mh denotes the hypermultiplet moduli
space whileMv is the vector multiplet moduli space.Mh is
a quaternionic manifold whereas Mv is a special Kähler
manifold. The dilaton field is a hypermultiplet component,
implying that the geometry of Mh receives both α0 and gs
corrections. The geometry ofMv, on the other hand, is exact
at tree level in both α0 and gs. The hypermultiplet moduli
spaceMh contains a subspaceM0

hwhich is parametrized by
vacuum expectation values of NS-NS fields, with the RR
moduli being set to zero.At string tree levelM0

h has a special
Kahler structure that receives nonperturbative α0 corrections
which can be exactly summed using mirror symmetry.
From this N ¼ 2 compactification, we can construct a

N ¼ 1 theory by gauging a discrete symmetry of the form
ð−1ÞϵFLΩσ where Ω denotes world sheet parity, FL is the
left-moving fermion number and ϵ takes values 0, 1
depending on the model. Note that σ∶X → X is a hol-
omorphic involution of the Calabi-Yau manifold X which
preserves the holomorphic three form ΩX up to sign
σ�ΩX ¼ ð−1ÞϵΩX. For the purposes of this paper, we take
ϵ ¼ 1, which corresponds to theories with O3=O7 planes.
The analysis of [50] tells us that the massless spectrum of

N ¼ 1 orientifold compactifications is naturally organized
in vector and chiral multiplets. For orientifolds with O3=O7
planes, there are h2;1− chiral multiplets which correspond to
invariant complex structure deformations of X, h1;1þ chiral
multiplets that correspond to invariant complexified Kähler
deformations of X, and h1;1− chiral multiplets that

17This is because the NS axion appears explicitly in the Kahler
potential and leads to a Hubble scale mass for the field in the
models we consider. For recent progress on this issue in a
different class of models we refer the reader to [21].
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parametrize the expectation values of the two-form fields
B2 and C2. Moreover, there is a dilaton-axion modulus τ.
The real Kähler deformations of X pair up with expectation
values of the four-form field C4, giving rise to the h1;1þ
complexified Kähler moduli.
The moduli space of the N ¼ 1 theory is a Kähler

manifold. In the limit of small string coupling and large
compactification radius the moduli space is a direct product
of the complex structure moduli, complexified Kähler
moduli and a dilaton-axion factor. The Kähler geometry
of the moduli is determined in this regime by KK reduction
of ten-dimensional supergravity [50]. For more general
values of parameters, however, the geometry receives both
α0 and gs corrections, which does not preserve the direct
product structure. In particular, significant α0 corrections
are expected in nongeometric regions of the Kähler moduli
space such as the Landau-Ginzburg phase [51,52].
In this paper, we stay in the geometric phase. The moduli

space of the theory has a direct product structure

M ×K ð66Þ
where M and K are the complex structure and Kähler
moduli space respectively of the IIB orientifold ðX; σÞ.
To further discuss the geometry of K, it is necessary to

introduce certain geometric data. The Kähler potential is
given as KK ¼ −2 lnVE in terms of the dimensionless
volume VE in the Einstein frame. The Kahler form is given

by J ¼ vαωα and the volume by VE ¼ 1
6

R
J∧J∧J

ð2π
ffiffiffi
α0

p
Þ6 ¼

1
6
vIvJvKcIJK, where the triple intersection numbers are

given by

cIJK ¼ 1

ð2π
ffiffiffiffi
α0

p
Þ6
Z

ωI∧ωJ∧ωK: ð67Þ

The ωI are the basis of the cohomology of H2ðX;ZÞ with
normalization

R
ΣI
ωJ ¼ ð2πÞ2α0δIJ. The two-cycle volumes

vi are functions of the appropriately defined Kähler
coordinates Ti ¼ ð3i=2Þρi þ ð3=4Þcijkvjvk − ð3=2Þζi and
Gi ¼ ð1=2πÞðci − iðbi=gsÞÞ. Here, ζi ¼ −ði=2ðτ − τ̄ÞÞcijk
GjðG − ḠÞk and the ci have been defined in (61), with
similar expressions for bi.
The axion decay constant can now be extracted in terms

of the orientifold data by noticing that γIJ given in (65) is
the Kähler metric KGḠ along the axion direction. For an
axion wrapped on the two cycle Σ we have [22,50]

1

l6s

Z
ωI∧⋆ωJ ¼

2

3
cαΣΣvα ð68Þ

where vα is the dimensionless volume of the two cycle in
string units, the α index runs over the number of two cycles
surviving the orientifold projection, and Σ is the two cycle
wrapped by the axion. Using this and (65) the axion decay
constants are then

�
fΣ
mp

�
2

¼ gs
8π2

�
cαΣΣvα

VE

�
: ð69Þ

As a simple example, if we consider an internal geometry
that is highly symmetric with all two cycles of equal size
Lls then using (64) we have ðf=mpÞ2 ∼ gsV

−2=3
E . Thus, we

see that requiring the string theory completion of the axion
model explicitly connects the compactification scale VE,
the string coupling gs, and the axion decay constant to
the Planck scale. As we will see, theoretical consistency
will lead to requirements such as VE > 1 and gs < 1 (for
validity of the geometric regime) leading to additional
constraints on model building.

C. Stable 5-brane-antibrane systems
and axion potentials

Given the axion decay constants (69), we now turn to the
question of their potential energy. Classically the axions
descending from the compactification enjoy a shift sym-
metry; however there are a number of ways the symmetry
can be broken.
Crucial to our construction will be the presence of either

D5 branes or NS5 branes in the geometry. In this
subsection, we discuss various aspects of such geometric
constructions.
The D-brane configuration will consist of a 5 brane

wrapping a holomorphic curve Σ and an anti–5 brane
wrapping the image curve Σ0 under the orientifold projec-
tion. We take Σ and Σ0 to be rigid cycles that do not intersect
each other. Under the orientifold action, the modulus Tþ of
the even combination Σþ and the modulus G− of the odd
combination Σ− are projected in. The sizes of the cycles are
equal in the covering space: vΣ ¼ vΣ0 ¼ 1

2
vþ, while the odd

volume modulus v− is projected out. By abuse of notation,
we continue to use vΣ to denote the even volume modulus.
In general, one has to be careful about open string fields

in the brane/antibrane sector which may destabilize the
system. In flat space one would expect the system to decay
and give a supersymmetric configuration of space-filling
D3 branes. On a CY3, the curves Σ and Σ0 can be chosen to
be rigid, meaning that the corresponding wrapped branes
have no moduli. For branes that are sufficiently far apart,
the open string spectrum is not expected to contain
tachyons. The attractive force will be weak, resulting in
a metastable state which can only decay through tunnelling
effects.18

18There is an added layer of complication for branes with
magnetic fluxes. There is a tachyonic contribution to the mass of
the lightest open string modes that is proportional to the super-
symmetry breaking parameter, which is given by the relative phase
between the central charges of the D5 and the induced D3 [53].
However, this tachyonic contribution is usually small. We explore
these issues soon for the brane construction of the χ sector.
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The situation is best studied by taking a simple
potential for the system. We will be interested in the
case where Σ and Σ0 are part of a one-parameter family
of holomorphic curves E. The effective dynamics of the
brane system can be described by a single chiral super-
field ζ, which corresponds to normal deformations of
the brane wrapping Σ. This can also be identified as the
normal deformations of the antibrane wrapping Σ0. The
effective dynamics of the system can be described by a
potential of the form

VðrÞ ¼ mðr − r0Þ2 þ c ln

�
r
r0

�
; ð70Þ

where r is the distance between the two branes. The first
term is a quadratic mass term corresponding to normal
deformations of the brane in the ambient CY3. The
second term is a typical two-dimensional brane/antibrane
attractive potential. We expect m; r0 to be approximately
the string scale. Then, if c ∼ 10−2 the attractive force will
be negligible. The well-known logarithmic attractive
potential has been previously pointed out in the case
of axion monodromy inflation in [54].
We will not aim for a greater degree of precision than the

above arguments, and assume that there is a region in
configuration space where the destabilization is small.
From the perspective of the string landscape, this makes
sense; by scanning over fluxes, one can explore all regions
of configuration space, and the vacuum solutions which are
in the regime of instability are discarded.
Branes wrapping the corresponding cycle of the axions

can induce monodromies, which leads to a mechanism
realizing theoretically self-consistent, large field, slow-roll
inflation (see [21] and references within). Let us consider
the potential generated by axion monodromy, again focus-
ing on RR axions descending from C2. For these axions the
symmetry can be broken by considering a NS5 brane with
two directions wrapping the two cycle Σ associated with the
axion. The resulting potential is given by the Born-Infeld
action [20]

VðcaÞ ¼
ϵwarp

ð2πÞ5g2sα02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4 þ ð2πgscaÞ2

q
; ð71Þ

where ϵwarp captures the possible effects of warping, l
ffiffiffiffi
α0

p
is

the size of the two cycle and we see for ca ≫ l2=ð2πgsÞ the
potential is linear in ca: the shift symmetry has been broken
by the presence of the wrapped brane leading to a linear
potential for the axion.
In addition to the monodromy effect, D-brane and world

sheet instantons can break the shift symmetry of the axion.
Such corrections should be generically expected and imply
a contribution to the potential

ΔVðχaÞ ¼
X
i

Λ4
i cosðχa=faÞ; ð72Þ

where we introduce the canonically normalized field
χa ¼ cafa and we must sum over all such contributions
that give a significant contribution to the potential. These
contributions break the continuous shift symmetries to
discrete ones with χa → χa þ 2πfa, and such terms can
lead to additional important contributions to the potential
and so must be checked against (71) and the slow-roll
conditions.
We now turn to the question of D3 charge and tadpole

cancellation in these models. The inducedD3 charge on the
NS5 brane is given by

ND3;induced ¼
1

ð2πÞ2α0
Z
Σ
C2: ð73Þ

This quantity turns out to be given by ND3;induced ¼ ϕ
2πf,

where ϕ denotes a generic field that may be the inflaton.
Thus,ND3;induced can be quite large in the case when ϕ is the
inflaton and ϕ

f ≫ 1.
Suppressing the energy density of the wrapped brane to

match observations will force us to place the branes in
warped throats. Thus, there is a D3 charge contribution
coming from the warping. We denote the D3 charge of the
throat by ND3;throat. The total D3 charge of the system is
then given by

ND3;total ¼ ND3;induced þ ND3;throat: ð74Þ

This will be canceled by the orientifold action that wraps an
anti–5 brane on the cycle Σ0 in a throat with anti-D3 charge
given by −ND3;throat.

VI. A STRING MODEL OF GAUGE FIELD
PRODUCTION

In the last section, we have gathered all the tools required
for our construction. In this section, we give a string
construction that realizes the model of gravity wave
production discussed in Sec. IV.
We begin by sketching how such a setup is achieved

within the string compactification and the model building
constraints that result. Crucial to gauge field production
(for the purposes of our model, and more generally for
realistic reheating in these classes of models) will be the
introduction of magnetized 5 branes in the CY3 geometry.
In the next subsection, we will discuss this topic. We will
then describe the inflaton and spectator field dynamics in
terms of UV data, and give the UV constraints that appear
in our construction.
Recall from Sec. IV that we are interested in an infla-

tionary sector that successfully provides at least 60 e-folds
of inflation, coupled only gravitationally to spectator fields.
The action was
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
m2

pR −
1

2
ð∂φÞ2 − VðφÞ

þ Lhidden½∂μχ; χ; F�
�
; ð75Þ

Lhidden ¼ −
1

2
ð∂χÞ2 −UðχÞ − 1

4
FμνFμν −

χ

4f
Fμν

~Fμν;

ð76Þ

where φ was the inflaton and χ and Fμν were spectator
fields.
Given both the axion decay constant (69) and potential

energy (71) and ensuring that the oscillating contribution
(72) is subdominant, we can construct a slow-roll inflation
model as done in [20,22].
A sketch of our construction is provided in Fig. 3.

We will be interested in a compactification with

h1;1− ≥ 2: ð77Þ

The inflaton sector is engineered by wrapping an NS5
brane on a cycle Σ1 that supports the axion ϕ. Under the
orientifold action, an anti–NS5 brane wraps a cycle Σ0

1 for
tadpole cancellation.
We note that placing the cycles Σ1 and Σ0

1 in warped
throats is necessary to suppress the inflationary potential
energy coming from the wrapped NS5 brane and match the
COBE normalization. The curves Σ1 and Σ0

1 are thus
members of a one-parameter family of holomorphic curves
E1 which extends down a warped throat (we denote this
throat by T1).
Similarly, the sector χ responsible for gauge field

production is engineered on cycles Σ2 and Σ0
2 that are

members of a one-parameter family of holomorphic curves
E2. This family extends down a different warped throat T2,
and we assume that E1 and E2 do not intersect. This enables
our system to satisfy the requirement that the two sectors
are only gravitationally coupled. One can ask how generic

such a setup is. Such multiaxion models that are coupled
only gravitationally can be generically anticipated given the
large number of two cycles within a typical CY3 geometry.
Indeed, this fact helps motivate the notion that monodromy
inflation could proceed via two or more axions—an idea
first pursued in [55].
We need to couple the χ field to gauge fields in our low-

energy Lagrangian. Given a gauge field F on the brane, the
desired operator descends from a Chern-Simon’s term

Z
C2∧F∧F ð78Þ

upon compactification to four dimensions [44]. In the
context of axion monodromy model building such a term
has already been considered for the following: gauge field
production associated with the inflaton sector19 [6], as a
way to reheat at the end of inflation [56], and as a possible
constraint from CMB rotation when the axion corre-
sponds to a quintessence field [57].
We note that phenomenological requirements such as a

visible sector with chiral matter (and/or obtaining accept-
able reheating into visible sector fields) will in general
require us to turn on fluxes on the branes supporting the
inflaton and the gravitationally coupled field χ. To illustrate
this, we consider an example where χ couples to an
appropriately constructed visible sector, and turn on mag-
netic flux on the 5 branes wrapping Σ2 and Σ0

2. We will
prefer to turn on an effective D3-brane charge p:

1

2π

Z
Σ
F ¼ p − 1:

It is important to perform a number of checks when
introducing brane fluxes into the system. We now turn
to a discussion of the subtleties that arise.

A. Magnetized 5 branes in orientifold
compactifications

Magnetized branes in type IIB have a long history in the
context of building semirealistic string vacua with chiral
matter. These models are T dual to models of intersecting
D6 branes in type IIA. Chiral matter is vital in any
phenomenological construction of low-energy physics, as
well as any realistic reheating model based on axion
monodromy inflation. We refer the reader to [58] for a
review of the T-dual intersecting brane models, and to [59]
for the type IIB picture in toroidal models.20

FIG. 3 (color online). A cartoon of the model for gauge field
production from a sector χ that is gravitationally coupled to the
inflaton ϕ.

19In [6] the authors considered gauge field production in the
directly-coupled-to-inflaton case, which as discussed in Sec-
tion III is in tension with existing bounds on non-Gaussianity
from Planck.

20We also refer the reader to [60–63] for a sample of the
literature on toroidal magnetized brane models.
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For our purposes, we require magnetized 5 branes in
CY3, going beyond the simple toroidal picture. We mainly
follow [53] in our treatment. Although we describe every-
thing in the language of D5 branes, it can be adapted to the
case of NS branes as well.
Starting with the N ¼ 2 theory, it is clear that the system

breaks tree level supersymmetry since the brane and
antibrane preserve different fractions of the bulk N ¼ 2.
The N ¼ 1 supersymmetry preserved is determined by the
central charge of a brane. For the brane and antibrane, the
central charges are respectively

Zþ ¼ ZD5 þ pZD3;

Z− ¼ − ZD5 þ pZD3: ð79Þ

The phases of Zþ and Z− are not aligned for any
deformation of the bulk Kahler structure away from the
ZD5 ¼ 0 locus, leading to breaking of brane world-volume
supersymmetry. This breaking can be described by super-
gravity D terms at weak string coupling and in a small
neighborhood of the marginal stability locus ZD5 ¼ 0 in the
Kahler moduli space.21 The Fayet-Iliopoulos couplings in
the low-energy gauge theory have been used to construct de
Sitter vacua in for example [64], where background fluxes
and nonperturbative superpotential contributions fix moduli,
followed by an uplift utilizing D terms from D7-brane
fluxes.
We note that the supersymmetry breaking is best para-

metrized by the parameter θ given by the relative phase
between the charge Zþ ¼ ZD5 þ pZD3 and ZD3,

θ ¼ 1

π
ðIm lnZþ − Im lnZD3Þ: ð80Þ

The parameter θ has a minimum at the Landau-Ginzburg
point in the nongeometric phase [53].
In our case, we will not be interested in studying

supersymmetry breaking effects. We remain strictly in
the geometric phase for our model for the gauge field
production mechanism we are interested in. The super-
symmetry breaking induced by the inflaton sector will in
any case be more dominant thanD-term contributions from
brane flux. However, in a detailed reheating model after the
end of inflation based on this class of models, it would be
necessary to take into account any supersymmetry breaking
effects carefully. It may be useful then to stay near the large
complex structure limit in the complex structure moduli
space, and utilize mirror symmetry to situate the calcu-
lations in the supergravity limit of the mirror type IIA. We
leave these considerations for future work.

As noted before, there is a small subtlety in the brane-
antibrane stability issues we studied earlier. The dynam-
ics of the brane are encoded by fluctuations of the
embedding map i∶Σ ↪ X, which are described by
sections ζ of the normal bundle NΣ=X of Σþ. As described
in (70), a stable system can generally be obtained.
However, according to the Π-stability analysis of [53],
there is a tachyonic contribution to the mass of the
lightest open string modes between the brane-antibrane
pair that is proportional to θ. Since the curves Σ2 and Σ0

2

are isolated, the positive contribution to the mass of the
open strings should be typically much larger than the
tachyonic contribution θ.
We now turn to the issue of moduli stabilization and

superpotential terms in the presence of branes with fluxes.
In the bulk CY3, we will be utilizing a usual background
RR flux compactification [65–66]. However, we now have to
take into account the superpotential contribution from the
magnetized brane. Brane-flux superpotentials have been
studied in [67,68], and in the context of F theory in [69].
For D5 branes, we refer the reader to the detailed work of
[70] and references therein. Here, we summarize the
essential points that are relevant for us. The main point is
that at the level of the superpotential, one should use a
combined brane-RR flux superpotential given by

W ¼
Z
X
F3∧ΩþWD5; ð81Þ

where WD5 is in general a function of the deformation
moduli ζ, the complex structure moduli of the CY3, and the
brane flux F.22 For our purposes, we assume that tuning
the background RR fluxes and brane flux appropriately in
the combined superpotential W will stabilize the complex
structure moduli.
Before moving on, we mention several other caveats to

this analysis. We have not explicitly discussed the case
of turning on flux on the cycles Σ1 supporting the inflaton,
as would ostensibly be required for reheating. It would be
interesting to compute the effect of brane flux on the
slow-roll conditions. Moreover, our inflaton sector is
present in a warped throat with background D3 charge.
Generally, the magnetized D5 and background D3 should
attract each other and the system should decay to a state
where the D3 has been converted to magnetic flux on
the D5. It would be interesting to compute the relevant
stability conditions.
In the next subsection, we discuss the microscopic

parameters in the inflaton and χ sector potentials. We then
go on to a discussion of the consistency of the construction.

21For large deformations from the locus of marginal stability,
string field theory computations are required to accurately
calculate the brane dynamics.

22We note that the superpotential is not generally separable in
the form given in (81). This is possible in special cases, for
example if X contains a connected family of holomorphic curves
interpolating between Σ and Σ0. For simplicity, we assume that
this is the case, and refer the reader to [67] for more details.
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B. Microscopic parameters in the inflaton
and hidden sector

In this subsection, we write down the potential for the
inflaton and χ sectors using the microscopic data we have
developed till now.
The action of the inflationary sector is

Z
d4x

ffiffiffi
g

p �
1

2
ð∂φÞ2 − μ3φφ

�
þ corrections; ð82Þ

where we have labeled the canonical inflaton arising from
the RR axion as φ ¼ fφc with the corresponding decay
constant following from (69),

�
fφ
mp

�
2

¼ gs
8π2

�
cαΣ1Σ1

vα

VE

�
; ð83Þ

with the sum running over the remaining two cycles of the
compactification. Expressing (71) in terms of the canonical
field φ the parameter μ is then

μ3φ ¼ ϵðwarp;φÞ
gsð2π

ffiffiffiffi
α0

p Þ4fφ
: ð84Þ

As shown in [20] adequate inflation and accounting for the
COBE normalization requires μ≃ 6.4 × 10−4. Warping in
the throat T1 can enable enough suppression of the infla-
tionary energy to match observations.
Given the inflationary sector, we now turn to the

spectator field (χ) responsible for the gauge field produc-
tion. Recall from Sec. IV that we require this field to be
slow rolling as well. In our construction, we achieve this by
introducing an additional axion wrapped around a cycle Σ2

belonging to the nonintersecting family E2. The mono-
dromy term, in conjunction with an appropriate choice of
the warping in throat T2, can then be used to ensure that this
field is (a) slow rolling meeting the model building
requirement that ϵχ ≪ ϵ ≪ 1 and (b) subdominant in
energy density to the inflaton sector.23

Denoting the warp factor of the spectator by ϵðwarp;χÞ, and
keeping in mind that we require ϵðwarp;χÞ ≪ ϵðwarp;φÞ, the
spectator sector is then specified by the decay constant

�
fχ
mp

�
2

¼ gs
8π2

�
cαΣ2Σ2

vα

VE

�
; ð85Þ

with the sum running over the remaining two cycles of the
compactification, and the potential from (71) is

μ3χ ¼
ϵðwarp;χÞ

gsð2π
ffiffiffiffi
α0

p Þ4fχ
: ð86Þ

The low-energy description is completed once the brane
flux F is turned on. The Chern-Simon’s term connects χ
and F, with an action given by

Sgauge ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
F2 −

1

4
αbraneχFμν

~Fμν

�
: ð87Þ

The coupling α is given by

αNS5 ¼
C0g2s

ð2πÞ2fχ
; ð88Þ

αD5 ¼
2πg1=2s

vΣ2
fχ

; ð89Þ

depending on whether we use D5 or NS5 branes.
We note that the coupling matches the notation of [44] up

to factors of 2π coming from how the four-dimensional
gauge kinetic term is defined.

C. Consistency conditions

In this subsection, we take the most important conditions
on the microscopic data required to build the specific model
in Sec. IV. We must ensure that the low-energy constraints
outlined in Sec. IV are satisfied, and also that the string
construction is under control.
The microscopic data that determine the model by fixing

the values of the quantities ðfφ; fχ ; μφ; μχÞ in the low-
energy Lagrangian are given by

Microscopic data∶ ðcαΣ1Σ1
;cαΣ2Σ2

;ϵðwarp;φÞ;ϵðwarp;χÞ;vα;VEÞ:
ð90Þ

In the appendix, we list the possible corrections to slow
roll and backreaction effects on moduli stabilization, and
the methods employed in the literature to build consistent
inflationary models in these scenarios. These conditions are
not particularly specific to the model we are building;
rather, they must generally hold in axion monodromy
models in type IIB compactifications. Before we proceed,
lacking a full-fledged CY3 construction, we make the
simplifying assumption that all intersection numbers satisfy

cαΣ1Σ1
; cαΣ2Σ2

∼Oð1Þ: ð91Þ

A statistical analysis following the work of Kreuzer-Skarke
is also possible (we refer the reader to [72] for an accessible
recent review).
The first condition we require is that the χ sector energy

density is subdominant to the inflaton sector. This can be
satisfied by choosing

23Strong warping can lead to additional corrections to the
monodromy potential [57], as well as altering expressions like the
Planck mass in (64). Here we will be interested in mild warping
and work in the approximation utilized in [71], where it was
shown that in the region of interest warping effects can be safely
ignored.

HOW WELL CAN WE REALLY DETERMINE THE SCALE OF … PHYSICAL REVIEW D 91, 103509 (2015)

103509-17



ϵðwarp;χÞ ≪ ϵðwarp;φÞ: ð92Þ

The second condition that we found in Sec. IV is that the
axion decay constant fχ should lie in the range given by
(59). As it turns out, the condition on the axion decay
constant is intimately connected to the question of keeping
α0 corrections under control, so that we remain in the
supergravity regime as outlined in Sec. V B. This condition
reduces to keeping the volume of the CY3, and in particular,
the volumes of the two cycles, large enough to remain in the
geometric regime.
The issue is not only one of computability in the geometric

regime. In principle, one has to check whether D5 and D3
branes are stable Bogomol'nyi-Prasad-Sommerfield states in
the nongeometric regime. The stability of Bogomol'nyi-
Prasad-Sommerfield states in noncompact CY3 has been
studied in [73–75]. The situation is less clear in compact
CY3 manifolds. We avoid this problem by remaining close to
the large radius limit. This condition can be placed in a
number of ways. For example, following the classic work of
[76], the α0 corrections to the volume in the Einstein frame
can be obtained in terms of the Hodge numbers of the
CY3, which will translate into a condition on fχ . We find it
more useful to use the approximation outlined in [22].
Controlling world sheet instanton corrections, the limit
obtained is

vα >
1

π
ffiffiffiffi
gs

p : ð93Þ

This will give a lower bound on fχ , thus giving us

g1=4s

ð2πÞ3=2 ffiffiffiffiffiffi
VE

p < fχ=mpl < 1: ð94Þ

We note that there is a constraint on fχ coming from
requiring that the induced D3-brane charge ND3;induced
[which depends on fχ through (73)] be small enough to
keep our model local and not distort the throat geometry.
This is outlined in the appendix. However, this condition is
milder than (94).
To agree with the lower bound in (59), we require from

(94) that

VE > 106 ×
g1=2s

ð2πÞ3 : ð95Þ

Taking gs ∼ 0.1, one obtains VE ≳ 1000. Even without
going into the details of moduli stabilization, it is clear that
this is a sensible condition which should be easy to satisfy
in a typical compactification. We thus reach the conclusion
that there is no general obstacle to realizing the model in a
string construction.

VII. CONCLUSIONS

In this paper we have considered whether particle
production and nonadiabaticity during inflation can lead
to a competitive source of primordial gravity waves during
inflation. In all of the examples we considered, we found
that even when these events lead to a detectable level of B
modes the scale of inflation must be quite high. Stated
another way, polarization observations would still be
teaching us about the scale of inflation. We identified
the most promising case as models where the spectator
fields are gravitationally coupled. We then considered the
UV completion of these models in the context of type IIB
flux compactifications with axion monodromy. The embed-
ding served two purposes. First, although we saw that the
range in which the axion decay constant leads to phenom-
enologically interesting results is quite narrow, there seems
to be no obvious obstruction to realizing the setup in string
theory. Indeed, for weakly coupled constructions the
primary model building requirements are mild warping
and requiring the overall volume to be about 1000 times
the string scale—both conditions easily accommodated
in typical compactifications. Second, through the UV
completion we have argued that it is possible to suppress
dangerous sinusoidal terms that are known to spoil the
gauge field production. Although a more detailed inves-
tigation is needed, this provides further support for the
gauge production models that have been considered in the
literature. As we note in the text, these models could also
provide an interesting approach to reheating at the end of
inflation in models of axion monodromy.
In summary, we find that although there can be com-

petitive sources to the quasi–de Sitter background for the
origin of primordial B modes, it seems challenging to vastly
separate the scale of inflation from that implied by CMB
polarization measurements. In other words, we can really
determine the scale of inflation.
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APPENDIX: MICROSOPIC CONDITIONS FOR
SLOW ROLL AND BACKREACTION

In this section, we list the conditions for making sure that
the slow-roll potential is not ruined during inflation, or that
moduli stabilization is not lost due to backreaction effects.
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We also list the methods in which these issues are solved in
the literature.

(i) Possible correction: Destabilization of moduli dur-
ing inflation.
Resolution: For the RR axion the shift in the

moduli potential during inflation was shown to be
negligible as long as one requires 1 ≫ vþ ≫ cgs,
where vþ is the two-cycle volume, c is the axion and
gs is the string coupling [20].

(ii) Possible correction: Backreaction of the NS5 brane
on the geometry and renormalization of Planck mass
by new light species.
Resolution: Wrapped NS5 on a two cycle induces

an effect D3-brane charge ND3. To avoid back-
reaction we require ND3 ≪ R4⊥=ð4πgsα02Þ where R⊥
is the smallest curvature radius transverse to the
brane—this is easily satisfied [20].

(iii) Possible correction: Moduli stabilizing fluxes can
generate potential for the axions.
Resolution: Giddings Kachru Polchinski [65]

orientifold stabilization in warped type IIB use
imaginary self-dual flux, which does not contribute
to the axion potential.

(iv) Possible correction: Inflation could destabilize
moduli resulting in runaway to weak coupling or
large volume (Kallosh-Linde problem [77]).
Resolution: Focusing on the RR axion allows for

Vinf < Vmoduli where Vmoduli sets the height of the
barrier for escape. Also, in [20] it was demonstrated
that shifts in the moduli from inflation are also

benign—this is not the case for the NS axion b,
which suffers an η problem.

(v) Possible correction: Nonperturbative stabilization of
Kahler moduli implies an η problem for b-type
axions since they mix with each other due to the
appearance of b in the Kahler potential.

Resolution: One can focus on c-type axions
which do not mix with the volume; alternatively
one could use perturbative methods to stabilized the
volume [20].

(vi) Possible correction: Moduli stabilization and Euclid-
ean D-brane instanton corrections to the Kahler
potential.

Resolution: Exponentially suppressed by the
size of the two cycles vα if taken larger than string
scale.

(vii) Possible correction: Moduli stabilization and Euclid-
eanD-braneinstantoncorrectionstothesuperpotential.

Resolution: One can focus on stabilization of the
volume using gaugino condensation on D7 branes.
The combined holomorphy of the gauge coupling and
thesuperpotential implies that the instantoncorrections
areexponentially suppressedby the four-cyclevolume.

(viii) Possible correction: NS5 brane wrapped on a two
cycle induces a tadpole through an effectiveD3-brane
charge.

Resolution: Introduce D3 on a nearby two cycle to
cancel (where nearby means at a distance that is small
compared to the D7 used to stabilize the volume via
Kachru Kallosh Linde Trivedi).

[1] D. Baumann et al. (CMBPol Study Team Collaboration),
CMBPol mission concept study: probing inflation with
CMB polarization, AIP Conf. Proc. 1141, 10 (2009).

[2] P. Ade et al. (BICEP2 Collaboration), Detection of B-Mode
Polarization at Degree Angular Scales by BICEP2, Phys.
Rev. Lett. 112, 241101 (2014).

[3] L. Senatore, E. Silverstein, and M. Zaldarriaga, New sources
of gravitational waves during inflation, J. Cosmol.
Astropart. Phys. 08 (2014) 016.

[4] N. Barnaby, J. Moxon, R. Namba, M. Peloso, G. Shiu, and
P. Zhou, Gravity waves and non-Gaussian features from
particle production in a sector gravitationally coupled to the
inflaton, Phys. Rev. D 86, 103508 (2012).

[5] N. Barnaby, R. Namba, and M. Peloso, Observable non-
Gaussianity from gauge field production in slow-roll in-
flation, and a challenging connection with magnetogenesis,
Phys. Rev. D 85, 123523 (2012).

[6] N. Barnaby, E. Pajer, and M. Peloso, Gauge field production
in axion inflation: consequences for monodromy, non-
Gaussianity in the CMB, and gravitational eaves at inter-
ferometers, Phys. Rev. D 85, 023525 (2012).

[7] N. Barnaby, R. Namba, and M. Peloso, Phenomenology of a
pseudoscalar inflaton: naturally large non-Gaussianity,
J. Cosmol. Astropart. Phys. 04 (2011) 009.

[8] N. Barnaby and Z. Huang, Particle production during
inflation: observational constraints and signatures, Phys.
Rev. D 80, 126018 (2009).

[9] J. L. Cook and L. Sorbo, An inflationary model with small
scalar and large tensor non-Gaussianities, J. Cosmol.
Astropart. Phys. 11 (2013) 047.

[10] J. L. Cook and L. Sorbo, Particle production during
inflation and gravitational waves detectable by ground-
based interferometers, Phys. Rev. D 85, 023534 (2012);
86, 069901(E) (2012).

[11] C. Caprini and L. Sorbo, Adding helicity to inflationary
magnetogenesis, J. Cosmol. Astropart. Phys. 10 (2014) 056.

[12] L. Sorbo, Parity violation in the cosmic microwave back-
ground from a pseudoscalar inflaton, J. Cosmol. Astropart.
Phys. 06 (2011) 003.

[13] D. Carney, W. Fischler, E. D. Kovetz, D. Lorshbough, and
S. Paban, Rapid field excursions and the inflationary tensor
spectrum, J. High Energy Phys. 11 (2012) 042.

HOW WELL CAN WE REALLY DETERMINE THE SCALE OF … PHYSICAL REVIEW D 91, 103509 (2015)

103509-19

http://dx.doi.org/10.1063/1.3160885
http://dx.doi.org/10.1103/PhysRevLett.112.241101
http://dx.doi.org/10.1103/PhysRevLett.112.241101
http://dx.doi.org/10.1088/1475-7516/2014/08/016
http://dx.doi.org/10.1088/1475-7516/2014/08/016
http://dx.doi.org/10.1103/PhysRevD.86.103508
http://dx.doi.org/10.1103/PhysRevD.85.123523
http://dx.doi.org/10.1103/PhysRevD.85.023525
http://dx.doi.org/10.1088/1475-7516/2011/04/009
http://dx.doi.org/10.1103/PhysRevD.80.126018
http://dx.doi.org/10.1103/PhysRevD.80.126018
http://dx.doi.org/10.1088/1475-7516/2013/11/047
http://dx.doi.org/10.1088/1475-7516/2013/11/047
http://dx.doi.org/10.1103/PhysRevD.85.023534
http://dx.doi.org/10.1103/PhysRevD.86.069901
http://dx.doi.org/10.1088/1475-7516/2014/10/056
http://dx.doi.org/10.1088/1475-7516/2011/06/003
http://dx.doi.org/10.1088/1475-7516/2011/06/003
http://dx.doi.org/10.1007/JHEP11(2012)042


[14] E. Pajer and M. Peloso, A review of axion inflation in the
era of Planck, Classical Quantum Gravity 30, 214002
(2013).

[15] M. A. Fedderke, E. W. Kolb, and M. Wyman, Irruption of
massive particle species during inflation, Phys. Rev. D 91,
063505 (2015).

[16] P. Ade et al. (Planck Collaboration), Planck 2013 Results.
XXIV. Constraints on primordial non-Gaussianity, Astron.
Astrophys. 571, A24 (2014).

[17] L. Kofman, A. D. Linde, X. Liu, A. Maloney, L. McAllister,
and E. Silverstein, Beauty is attractive: moduli trapping at
enhanced symmetry points, J. High Energy Phys. 05 (2004)
030.

[18] S. Watson, Moduli stabilization with the string Higgs effect,
Phys. Rev. D 70, 066005 (2004).

[19] D. Green, B. Horn, L. Senatore, and E. Silverstein, Trapped
inflation, Phys. Rev. D 80, 063533 (2009).

[20] L. McAllister, E. Silverstein, and A. Westphal, Gravity
waves and linear inflation from axion monodromy, Phys.
Rev. D 82, 046003 (2010).

[21] L. McAllister, E. Silverstein, A. Westphal, and T. Wrase,
The powers of monodromy, J. High Energy Phys. 09 (2014)
123.

[22] R. Flauger, L. McAllister, E. Pajer, A. Westphal, and G. Xu,
Oscillations in the CMB from axion monodromy inflation,
J. Cosmol. Astropart. Phys. 06 (2010) 009.

[23] N. Kaloper and L. Sorbo, A Natural Framework for Chaotic
Inflation, Phys. Rev. Lett. 102, 121301 (2009); N. Kaloper,
A. Lawrence, and L. Sorbo, An ignoble approach to large
field inflation, J. Cosmol. Astropart. Phys. 03 (2011) 023;
N. Kaloper and A. Lawrence, Natural chaotic inflation and
UV sensitivity, Phys. Rev. D 90, 023506 (2014).

[24] F. Marchesano, G. Shiu, and A. M. Uranga, F-term axion
monodromy inflation, J. High Energy Phys. 09 (2014) 184.

[25] A. Hebecker, S. C. Kraus, and L. T. Witkowski, D7-brane
chaotic inflation, Phys. Lett. B 737, 16 (2014).

[26] Z. Kenton and S. Thomas, D-brane potentials in the warped
resolved conifold and natural inflation, J. High Energy Phys.
02 (2015) 127.

[27] R. Z. Ferreira and M. S. Sloth, Universal constraints on
axions from inflation, J. High Energy Phys. 12 (2014) 139.

[28] C.W. Misner, K. Thorne, and J. Wheeler, Gravitation
(Macmillan, New York, NY, 1973).

[29] V. F. Mukhanov, H. Feldman, and R. H. Brandenberger,
Theory of cosmological perturbations. Part 1. Classical
perturbations. Part 2. Quantum theory of perturbations. Part
3. Extensions, Phys. Rep. 215, 203 (1992).

[30] D. Baumann and L. McAllister, Inflation and String Theory
[Cambridge University Press (to be published)].

[31] A. Ashoorioon, K. Dimopoulos, M. M. Sheikh-Jabbari, and
G. Shiu, Reconciliation of high-energy scale models of
inflation with Planck, J. Cosmol. Astropart. Phys. 02 (2014)
025.

[32] J. F. Dufaux, A. Bergman, G. N. Felder, L. Kofman, and
J.-P. Uzan, Theory and numerics of gravitational waves from
preheating after inflation, Phys. Rev. D 76, 123517 (2007).

[33] L. Kofman, A. D. Linde, and A. A. Starobinsky, Towards
the theory of reheating after inflation, Phys. Rev. D 56, 3258
(1997).

[34] S. S. Gubser, String production at the level of effective field
theory, Phys. Rev. D 69, 123507 (2004).

[35] S. Cremonini and S. Watson, Dilaton dynamics from
production of tensionless membranes, Phys. Rev. D 73,
086007 (2006).

[36] B. Greene, S. Judes, J. Levin, S. Watson, and A. Weltman,
Cosmological moduli dynamics, J. High Energy Phys. 07
(2007) 060.

[37] X. Dong, B. Horn, E. Silverstein, and A. Westphal, Simple
exercises to flatten your potential, Phys. Rev. D 84, 026011
(2011).

[38] E. Silverstein and D. Tong, Scalar speed limits and
cosmology: acceleration from D-cceleration, Phys. Rev.
D 70, 103505 (2004).

[39] A. Avgoustidis, S. Cremonini, A.-C. Davis, R. H. Ribeiro,
K. Turzynski, and S. Watson, Decoupling survives inflation:
a critical look at effective field theory violations during
inflation, J. Cosmol. Astropart. Phys. 06 (2012) 025.

[40] S. Weinberg, Gravitation and Cosmology (John Wiley &
Sons, New York, 1972).

[41] K. Enqvist, A. Jokinen, A. Mazumdar, T. Multamaki, and A.
Vaihkonen, Non-Gaussianity from Preheating, Phys. Rev.
Lett. 94, 161301 (2005); Non-Gaussianity from instant and
tachyonic preheating, J. Cosmol. Astropart. Phys. 03 (2005)
010; A. Jokinen and A. Mazumdar, Very large primordial
non-Gaussianity from multifield: application to massless
preheating, J. Cosmol. Astropart. Phys. 04 (2006) 003.

[42] K. Freese, J. A. Frieman, and A. V. Olinto, Natural Inflation
with Pseudo-Nambu-Goldstone Bosons, Phys. Rev. Lett.
65, 3233 (1990).

[43] F. C. Adams, J. R. Bond, K. Freese, J. A. Frieman, and A. V.
Olinto, Natural inflation: particle physics models, power law
spectra for large scale structure, and constraints from
COBE, Phys. Rev. D 47, 426 (1993).

[44] P. Svrcek and E. Witten, Axions in string theory, J. High
Energy Phys. 06 (2006) 051.

[45] N. Barnaby andM. Peloso, Large Non-Gaussianity in Axion
Inflation, Phys. Rev. Lett. 106, 181301 (2011).

[46] S. Mukohyama, R. Namba, M. Peloso, and G. Shiu, Blue
tensor spectrum from particle production during inflation,
J. Cosmol. Astropart. Phys. 08 (2014) 036.

[47] I. P. Neupane, Natural braneworld inflation in light of recent
results from Planck and BICEP2, Phys. Rev. D 90, 123502
(2014); I. P. Neupane, Gauss-Bonnet assisted braneworld
inflation in light of BICEP2 and Planck, Phys. Rev. D 90,
123534 (2014).

[48] J. Polchinski, String Theory, Vol. 2, Superstring theory and
beyond (Cambridge University Press, Cambridge, England,
1998).

[49] M. Cicoli, M. Goodsell, and A. Ringwald, The type IIB
string axiverse and its low-energy phenomenology, J. High
Energy Phys. 10 (2012) 146.

[50] T. W. Grimm and J. Louis, The effective action of N ¼ 1

Calabi-Yau orientifolds, Nucl. Phys. B699, 387 (2004).
[51] E. Witten, Phases of N ¼ 2 theories in two dimensions,

Nucl. Phys. B403, 159 (1993).
[52] D.-E. Diaconescu, A. Garcia-Raboso, R. L. Karp, and K.

Sinha, D-brane superpotentials in Calabi-Yau orientifolds,
Adv. Theor. Math. Phys. 11, 471 (2007).

OGAN ÖZSOY, KUVER SINHA, AND SCOTT WATSON PHYSICAL REVIEW D 91, 103509 (2015)

103509-20

http://dx.doi.org/10.1088/0264-9381/30/21/214002
http://dx.doi.org/10.1088/0264-9381/30/21/214002
http://dx.doi.org/10.1103/PhysRevD.91.063505
http://dx.doi.org/10.1103/PhysRevD.91.063505
http://dx.doi.org/10.1051/0004-6361/201321554
http://dx.doi.org/10.1051/0004-6361/201321554
http://dx.doi.org/10.1088/1126-6708/2004/05/030
http://dx.doi.org/10.1088/1126-6708/2004/05/030
http://dx.doi.org/10.1103/PhysRevD.70.066005
http://dx.doi.org/10.1103/PhysRevD.80.063533
http://dx.doi.org/10.1103/PhysRevD.82.046003
http://dx.doi.org/10.1103/PhysRevD.82.046003
http://dx.doi.org/10.1007/JHEP09(2014)123
http://dx.doi.org/10.1007/JHEP09(2014)123
http://dx.doi.org/10.1088/1475-7516/2010/06/009
http://dx.doi.org/10.1103/PhysRevLett.102.121301
http://dx.doi.org/10.1088/1475-7516/2011/03/023
http://dx.doi.org/10.1103/PhysRevD.90.023506
http://dx.doi.org/10.1007/JHEP09(2014)184
http://dx.doi.org/10.1016/j.physletb.2014.08.028
http://dx.doi.org/10.1007/JHEP02(2015)127
http://dx.doi.org/10.1007/JHEP02(2015)127
http://dx.doi.org/10.1007/JHEP12(2014)139
http://dx.doi.org/10.1016/0370-1573(92)90044-Z
http://dx.doi.org/10.1088/1475-7516/2014/02/025
http://dx.doi.org/10.1088/1475-7516/2014/02/025
http://dx.doi.org/10.1103/PhysRevD.76.123517
http://dx.doi.org/10.1103/PhysRevD.56.3258
http://dx.doi.org/10.1103/PhysRevD.56.3258
http://dx.doi.org/10.1103/PhysRevD.69.123507
http://dx.doi.org/10.1103/PhysRevD.73.086007
http://dx.doi.org/10.1103/PhysRevD.73.086007
http://dx.doi.org/10.1088/1126-6708/2007/07/060
http://dx.doi.org/10.1088/1126-6708/2007/07/060
http://dx.doi.org/10.1103/PhysRevD.84.026011
http://dx.doi.org/10.1103/PhysRevD.84.026011
http://dx.doi.org/10.1103/PhysRevD.70.103505
http://dx.doi.org/10.1103/PhysRevD.70.103505
http://dx.doi.org/10.1088/1475-7516/2012/06/025
http://dx.doi.org/10.1103/PhysRevLett.94.161301
http://dx.doi.org/10.1103/PhysRevLett.94.161301
http://dx.doi.org/10.1088/1475-7516/2005/03/010
http://dx.doi.org/10.1088/1475-7516/2005/03/010
http://dx.doi.org/10.1088/1475-7516/2006/04/003
http://dx.doi.org/10.1103/PhysRevLett.65.3233
http://dx.doi.org/10.1103/PhysRevLett.65.3233
http://dx.doi.org/10.1103/PhysRevD.47.426
http://dx.doi.org/10.1088/1126-6708/2006/06/051
http://dx.doi.org/10.1088/1126-6708/2006/06/051
http://dx.doi.org/10.1103/PhysRevLett.106.181301
http://dx.doi.org/10.1088/1475-7516/2014/08/036
http://dx.doi.org/10.1103/PhysRevD.90.123502
http://dx.doi.org/10.1103/PhysRevD.90.123502
http://dx.doi.org/10.1103/PhysRevD.90.123534
http://dx.doi.org/10.1103/PhysRevD.90.123534
http://dx.doi.org/10.1007/JHEP10(2012)146
http://dx.doi.org/10.1007/JHEP10(2012)146
http://dx.doi.org/10.1016/j.nuclphysb.2004.08.005
http://dx.doi.org/10.1016/0550-3213(93)90033-L
http://dx.doi.org/10.4310/ATMP.2007.v11.n3.a5


[53] D.-E. Diaconescu, A. Garcia-Raboso, and K. Sinha,
A D-brane landscape on Calabi-Yau manifolds, J. High
Energy Phys. 06 (2006) 058.

[54] J. P. Conlon, Brane-antibrane backreaction in axion mono-
dromy inflation, J. Cosmol. Astropart. Phys. 01 (2012) 033.

[55] M. Berg, E. Pajer, and S. Sjors, Dante’s inferno, Phys. Rev.
D 81, 103535 (2010).

[56] R. Blumenhagen and E. Plauschinn, Towards universal
axion inflation and reheating in string theory, Phys. Lett.
B 736, 482 (2014).

[57] S. Panda, Y. Sumitomo, and S. P. Trivedi, Axions as
quintessence in string theory, Phys. Rev. D 83, 083506
(2011).

[58] R. Blumenhagen, M. Cvetic, P. Langacker, and G. Shiu,
Toward realistic intersecting D-brane models, Annu. Rev.
Nucl. Part. Sci. 55, 71 (2005).

[59] R. Blumenhagen, D. Lust, and T. R. Taylor, Moduli stabi-
lization in chiral type IIB orientifold models with fluxes,
Nucl. Phys. B663, 319 (2003).

[60] J. F. Cascales and A. M. Uranga, Chiral four-dimensional
string vacua with D branes and NSNS and RR fluxes,
J. High Energy Phys. 05 (2003) 011.

[61] A. Font and L. Ibanez, SUSY-breaking soft terms in a
MSSM magnetized D7-brane model, J. High Energy Phys.
03 (2005) 040.

[62] M. Cvetic, T. Li, and T. Liu, Standardlike models as type IIB
flux vacua, Phys. Rev. D 71, 106008 (2005).

[63] F. Marchesano and G. Shiu, Building MSSM flux vacua,
J. High Energy Phys. 11 (2004) 041.

[64] C. Burgess, R. Kallosh, and F. Quevedo, De Sitter string
vacua from supersymmetric D terms, J. High Energy Phys.
10 (2003) 056.

[65] S. B. Giddings, S. Kachru, and J. Polchinski, Hierarchies
from fluxes in string compactifications, Phys. Rev. D 66,
106006 (2002).

[66] S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, De
Sitter vacua in string theory, Phys. Rev. D 68, 046005
(2003).

[67] W. Lerche, P. Mayr, and N. Warner, N ¼ 1 special
geometry, mixed Hodge variations and toric geometry,
arXiv:hep-th/0208039.

[68] W. Lerche, P. Mayr, and N. Warner, Holomorphic N ¼ 1
special geometry of open-closed type II strings, arXiv:hep-
th/0207259.

[69] T. W. Grimm, T.-W. Ha, A. Klemm, and D. Klevers,
Computing brane and flux superpotentials in F-theory
compactifications, J. High Energy Phys. 04 (2010)
015.

[70] T. W. Grimm, T.-W. Ha, A. Klemm, and D. Klevers, The
D5-brane effective action and superpotential in N ¼ 1
compactifications, Nucl. Phys. B816, 139 (2009).

[71] S. Kachru, R. Kallosh, A. D. Linde, J. M. Maldacena, L. P.
McAllister, and S. P Trivedi, Towards inflation in string
theory, J. Cosmol. Astropart. Phys. 10 (2003) 013.

[72] Y.-H. He, Calabi-Yau geometries: algorithms, databases,
and physics, Int. J. Mod. Phys. A 28, 1330032
(2013).

[73] M. R. Douglas, B. Fiol, and C. Romelsberger, The spectrum
of BPS branes on a noncompact Calabi-Yau, J. High Energy
Phys. 09 (2005) 057.

[74] T. Bridgeland, Stability conditions on triangulated catego-
ries, arXiv:math/0212237.

[75] T. Bridgeland, Stability conditions on noncompact Calabi-
Yau threefold, arXiv:hep-ph/0509048.

[76] K. Becker, M. Becker, M. Haack, and J. Louis, Supersym-
metry breaking and alpha-prime corrections to flux induced
potentials, J. High Energy Phys. 06 (2002) 060.

[77] R. Kallosh and A. D. Linde, Landscape, the scale of
SUSY breaking, and inflation, J. High Energy Phys. 12
(2004) 004.

HOW WELL CAN WE REALLY DETERMINE THE SCALE OF … PHYSICAL REVIEW D 91, 103509 (2015)

103509-21

http://dx.doi.org/10.1088/1126-6708/2006/06/058
http://dx.doi.org/10.1088/1126-6708/2006/06/058
http://dx.doi.org/10.1088/1475-7516/2012/01/033
http://dx.doi.org/10.1103/PhysRevD.81.103535
http://dx.doi.org/10.1103/PhysRevD.81.103535
http://dx.doi.org/10.1016/j.physletb.2014.08.007
http://dx.doi.org/10.1016/j.physletb.2014.08.007
http://dx.doi.org/10.1103/PhysRevD.83.083506
http://dx.doi.org/10.1103/PhysRevD.83.083506
http://dx.doi.org/10.1146/annurev.nucl.55.090704.151541
http://dx.doi.org/10.1146/annurev.nucl.55.090704.151541
http://dx.doi.org/10.1016/S0550-3213(03)00392-4
http://dx.doi.org/10.1088/1126-6708/2003/05/011
http://dx.doi.org/10.1088/1126-6708/2005/03/040
http://dx.doi.org/10.1088/1126-6708/2005/03/040
http://dx.doi.org/10.1103/PhysRevD.71.106008
http://dx.doi.org/10.1088/1126-6708/2004/11/041
http://dx.doi.org/10.1088/1126-6708/2003/10/056
http://dx.doi.org/10.1088/1126-6708/2003/10/056
http://dx.doi.org/10.1103/PhysRevD.66.106006
http://dx.doi.org/10.1103/PhysRevD.66.106006
http://dx.doi.org/10.1103/PhysRevD.68.046005
http://dx.doi.org/10.1103/PhysRevD.68.046005
http://arXiv.org/abs/hep-th/0208039
http://arXiv.org/abs/hep-th/0207259
http://arXiv.org/abs/hep-th/0207259
http://dx.doi.org/10.1007/JHEP04(2010)015
http://dx.doi.org/10.1007/JHEP04(2010)015
http://dx.doi.org/10.1016/j.nuclphysb.2009.03.008
http://dx.doi.org/10.1088/1475-7516/2003/10/013
http://dx.doi.org/10.1142/S0217751X13300329
http://dx.doi.org/10.1142/S0217751X13300329
http://dx.doi.org/10.1088/1126-6708/2005/09/057
http://dx.doi.org/10.1088/1126-6708/2005/09/057
http://arXiv.org/abs/math/0212237
http://arXiv.org/abs/hep-ph/0509048
http://dx.doi.org/10.1088/1126-6708/2002/06/060
http://dx.doi.org/10.1088/1126-6708/2004/12/004
http://dx.doi.org/10.1088/1126-6708/2004/12/004

