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We present the first attempt to use a combination of CMB, LIGO, and Pulsar Timing Array (PPTA) data
to constrain both the tilt and the running of primordial tensor power spectrum through constraints on the
gravitational wave energy density generated in the early universe. Combining measurements at different
cosmological scales highlights how complementary data can be used to test the predictions of early
universe models including the inflationary consistency relation. Current data prefer a slightly positive tilt
(nt ¼ 0.06þ0.63

−0.89 ) and a negative running (nt;run < −0.22) for the tensor power spectrum spectrum.
Interestingly, the addition of direct gravitational wave detector data alone puts strong bounds on the
tensor-to-scalar ratio r < 0.2 since the large positive tensor tilt preferred by the Planck temperature power
spectrum is no longer allowed. Adding the recently released BICEP2/KECK and Planck 353 GHz
polarization cross-correlation data gives an even stronger bound r < 0.1. We comment on possible effects
of a large positive tilt on the background expansion and show that depending on the assumptions regarding
the UV cutoff (kUV=k� ¼ 1024) of the primordial spectrum of gravitational waves, the strongest bounds on
nt ¼ 0.07þ0.52

−0.80 are derived from this effect.
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I. INTRODUCTION

The detection of B-mode polarization on large angular
scales by the Background Imaging of Cosmic Extragalactic
Polarization II (BICEP2) [1] Collaboration, and its possible
primordial origin as the result of relic gravitational waves
has invigorated the cosmological community. There has
been much debate about the interpretation of the BICEP2
data, and this is an important issue that will be resolved
with independent measurements and multifrequency obser-
vations. The recent BICEP2/KECK and Planck 353 GHz
polarized map joint analysis has shown that at least a part of
the BICEP2 and KECK signal is due to polarized dust [2].
However, more importantly the observations have yielded
renewed interest in constraining models of the early
universe through their predictions of the spectrum of
primordial gravitational waves and the testability of the
inflationary scenario.
Fortunately, at least for a simple class inflationary

models in which a single scalar field drove a period of
inflation more or less directly preceding the radiation-
dominated era of hot big bang expansion of our Universe,
positive predictions can be used to test the inflationary
paradigm. The primordial power spectrum of tensor modes
is typically parametrized as a power law [3]:

PtðkÞ ¼ Atðk�Þ
�
k
k�

�
nt
; ð1Þ

where At is the tensor amplitude, k is the wave number, k�
is some reference wave number, and nt is the tensor spectral

index, or tilt. While there are, in general, deviations from
this simple expression, it serves to parametrize a host of
scenarios. For the simplest single field models of inflation
there is a relation between the tensor spectral tilt and the
tensor-to-scalar ratio r, sometimes referred to as the infla-
tionary consistency condition [4].
At leading order in slow roll, this relation is given

by [5,6]

r≡ At

As
¼ −8nt; ð2Þ

where As is the amplitude of the scalar power spectrum. In
more complicated models with, for example, a nontrivial
sound speed or multiple dynamical fields, this relation is
modified to be r ≤ −8nt (see e.g. [7–9] for recent dis-
cussions of some of these issues). In all models of inflation
where the tensor perturbations originate as vacuum fluc-
tuations, the tensor amplitude At is set only by the
expansion rate which is nearly constant during inflation
and always decreases when the null energy condition holds:
inflation always predicts a small negative tensor tilt. The
specific value of the tilt nt may depend on the details of the
model, but a negative tensor tilt is a generic prediction of
inflation when the null energy condition holds. There are
however, other early universe models which make different
predictions for the tensor spectrum [10–12]. Hence we take
a phenomenological point of view and do not restrict our
analysis to negative values of nt. If the data provide
evidence for a positive tensor tilt, we should further explore
alternatives to inflation. A detection of a positive tensor tilt
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would suggest at the very least that the primordial gravi-
tational waves were not produced as vacuum fluctuations
during inflation.1

The aim of this paper is to perform the first joint analysis
of cosmic microwave background (CMB), Laser
Interferometer Gravitational Wave Observatory (LIGO)
[16], and Parkes Pulsar Timing Array (PPTA) [17] data
to put a constraint on both the tilt nt and and the running
nt;run of the primordial tensor power spectrum. Previous
studies have shown that such combinations of data would
improve the available lever arm of the data [18]. BICEP2
data alone yields only a weak constraint on the tensor tilt nt
as the polarization signal of gravitational waves drops
rapidly as a function of multipole; hence the CMB alone
provides a limited lever arm to constrain the tensor power
spectrum. We will show that the constraint on nt is
dominated by the Planck temperature power spectrum data,
which prefers lower power on large angular scales,2

resulting in a preference for positive tensor tilt. The addi-
tional data extend our lever arm significantly by increasing

the scales over which we can measure the gravitational
wave energy density by 18–20 orders of magnitude.
Although the constraints at the small scales probed by
LIGO and PPTA are only upper limits on the gravitational
wave energy density, earlier estimates have shown [20,21]
that these experiments are particularly sensitive to the tilt of
the primordial tensor mode power spectrum, assuming a
detection of a tensor-to-scalar ratio r≳ 0.01. The results
presented in this paper are relevant for constraining the
details of the gravitational wave power spectrum, indepen-
dent of the current interpretation of the BICEP2 data. We
will perform each analysis with and without BICEP2 data,
and show that one can get meaningful results even without
constraints from BICEP2 on r. In addition, we will include
the recent released cross analysis data of BICEP2/KECK
and the 353 GHz Planck polarization data [2].
The paper is organized as follows. In Sec. II we briefly

review the relevant physics. In Sec. III we present our
results on the bounds on nt and nt;run from a variety of data
combinations, including in Sec. III B a discussion of the
observational constraints derived from the impact of the
primordial gravitational wave energy density on the back-
ground expansion of the Universe not included in the initial
analysis. We summarize some future prospects and con-
clude in Sec. IV. A summary of the derived parameter
constraints using various combinations of data sets can be
found in Table I. All bounds quoted in the paper are 95%
bounds. A discussion of the definition of gravitational wave
energy density is included in the Appendix.

TABLE I. Summary of parameter constraints using various combinations of data sets. “All” refers to Planck (2013), WMAP low l
polarization, HST and BAO data. In all studied cases a positive nt is preferred over a negative nt, but the significance is small when you
remove any BICEP2/KECK data. Recall that we use a pivot scale k� ¼ 0.01 Mpc−1.

Parameter

nt r0.01 nt;run

Data set Best fit Mean, 95% limits Best fit 95% limits Upper, 95% limits

All 2.66 2.08þ1.79
−1.95 0.24 <1.0 � � �

Allþ LIGO 0.51 0.13þ0.54
−0.75 0.06 <0.2 � � �

Allþ PPTAþ LIGO (running) 2.99 2.21þ2.02
−1.85 1.06 <1.7 <−0.32

All ðNeff ; kUV=k� ¼ 1020Þ 0.52 0.12þ0.61
−0.97 0.01 <0.21 � � �

All ðNeff ; kUV=k� ¼ 1024Þ 0.44 0.05þ0.44
−0.9 0.01 <0.17 � � �

Allþ BKxPþ PPTA 0.65 0.32þ0.71
−0.92 0.04 <0.1 � � �

Allþ BKxPþ LIGO 0.26 0.06þ0.63
−0.89 0.02 <0.1 � � �

Allþ BKxPþ PPTAþ LIGO (running) 3.96 1.67þ2.94
−2.77 0.02 <0.11 <−0.22

Allþ BKxP ðNeff ; kUV=k� ¼ 1020Þ 0.49 0.15þ0.55
−0.80 0.05 <0.09 � � �

Allþ BKxP ðNeff ; kUV=k� ¼ 1024Þ 0.39 0.07þ0.52
−0.80 0.04 <0.09 � � �

Allþ BICEP2 1.42 1.30þ1.36
−1.03 0.18 0.18þ0.1

−0.09 � � �
Allþ BICEP2þ PPTA 0.66 0.55þ0.29

−0.49 0.22 0.19þ0.09
−0.08 � � �

Allþ BICEP2þ LIGO 0.56 0.35þ0.20
−0.39 0.18 0.18þ0.07

−0.06 � � �
Allþ BICEP2þ PPTAþ LIGO (running) 0.56 1.15þ1.36

−1.21 0.19 0.19þ0.1
−0.1 <−0.05

Allþ BICEP2 ðNeff ; kUV=k� ¼ 1020Þ 0.47 0.4þ0.09
−0.35 0.187 0.17þ0.07

−0.06 � � �
Allþ BICEP2 ðNeff ; kUV=k� ¼ 1024Þ 0.41 0.33þ0.12

−0.25 0.16 0.17þ0.07
−0.06 � � �

1That being said, counterexamples do exist even in the context of
inflation [13–15], but fortunately these models tend to make addi-
tional predictions for other observables such as non-Gaussianity
which would allow additional checks of these scenarios.

2To put any reasonable constraints one has to take a pivot scale
that is within the observable window. In this paper we chose the
slightly unconventional k� ¼ 0.01 Mpc−1. See e.g. Ref. [19] for a
discussion of pivot scale in the context of constraining gravita-
tional waves with B-mode polarization.
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II. GRAVITATIONAL WAVE SPECTRUM
AND ENERGY DENSITY

While measurements of the B-mode polarization of the
CMB constrain the tensor mode power spectrum directly,
observations from gravitational wave observatories and
pulsar timing arrays instead place limits on the energy density
of gravitational waves at specific wave numbers [22,23]

ΩGWðkÞ ¼
PtðkÞ
12H2

0

½ _T ðη0; kÞ�2; ð3Þ

where η0 is the conformal time in the current epoch,T ðη; kÞ is
the tensor transfer function, and an overdot refers to a
derivativewith respect to cosmic time t. The transfer function
projects the primordial signal from early to late times and is
obtained by solving the Klein-Gordon equation for the tensor
fluctuations in an expanding universe.3 See the Appendix for
a derivation of this formula.
In the case of single field slow-roll inflation, the power

spectrum of the tensor modes, PtðkÞ, is well described by
Eq. (1) with nt ≃ 0. The leading deviation from the simple
power law equation (1) expected in some models is
parametrized by allowing the tilt to vary with scale:

PtðkÞ ¼ Atðk�Þ
�
k
k�

�
ntðk�Þþ1

2
nt;run lnðk=k�Þ

; ð4Þ

where nt;run ¼ dnt=d ln k is the running of the tensor
spectral index and again At is the amplitude of the tensor
power spectrum. Single field slow-roll inflation makes a
model-dependent prediction for the tensor-to-scalar ratio,
i.e. r≡ At=As ¼ 16ϵ [3]. The (single field slow-roll)
inflationary consistency condition also tells us that
nt ¼ −r=8, and similar relations can be derived for the
running and higher order terms which are generally slow-
roll suppressed [25]. As a result, the scale dependence of
tensor fluctuations is described by a limited number of
parameters, and should be uniquely determined by a limited
number of measurements. Despite being slow-roll sup-
pressed, higher order terms can become quite significant in
determining the spectrum far from the pivot scale k� [26].
We are not yet in the data-driven regime, however, and with
only upper limits from PPTA and LIGO on the gravitational
wave energy density, the data are not yet capable of
falsifying the consistency conditions with high signifi-
cance. Hence, we include the running but leave a treatment
of higher order corrections to future work.
In this paper we assume that the power law form of the

tensor power spectrum holds all the way up to some fixed
ultraviolet cutoff, which we will discuss in more detail
below. Physically, this means that we are assuming an

instantaneous transition from the phase of the early uni-
verse responsible for producing the primordial spectrum to
the phase of radiation domination. This instant reheating
assumption is likely to be violated in a realistic model of the
early universe where one would expect modifications to the
power spectrum at wave numbers near the cutoff (see [24]
for an excellent review). Other effects, such as the late
production of entropy can also modify the spectrum and
weaken the constraints derived below. Hence our con-
straints apply to a phenomenological model with the
simplest assumptions: a simple power law primordial
spectrum (including the possibility of running), instanta-
neous reheating, and a standard thermal history. Any
specific model which violates one or more of these features
is likely to be subject to different observational constraints.
We use a pivot scale of k� ¼ 0.01 Mpc−1, particularly

because the BICEP2 experiment is insensitive to smaller
scales [19]. We use an analytic solution for the gravitational
wave transfer function valid at late times, which has an
accuracy of about 1% in a flat universe and is relevant for
very small scales k ≫ keq and late times η ≫ ηeq [27]. We
modified the publicly available Markov chain Monte Carlo
sampler cosmomc [28] and the Boltzmann code CAMB [29],
by adding a module4 that computes the gravitational wave
energy density as a function of wave number k, which can
be converted to frequency using the relationship

f ¼ k
2πaðη0Þ

: ð5Þ

The observations of pulsar timing arrays correspond
to frequencies of f ∈ ð10−9 Hz; 10−7 HzÞ, while gravita-
tional wave observatories probe f ∈ ð0.1 mHz; 5000 HzÞ
[30]. The constraint from LIGO5 is ΩGW < 5.6×
10−6ð68=H0Þ2 [31] at 2σ, while the upper limit from
PPTA is ΩGW<1.5×10−9ð68=H0Þ2 [32] at 2σ where
H0 ¼ 100 h kms−1 Mpc−1.
For each value of the gravitational wave energy density, a

likelihood is computed based on the upper limits from
PPTA and LIGO (χ2 ¼ 4.0, corresponding to 2σ at 95%
confidence level) from a truncated, logarithmic distribution.
We use an analytic solution to obtain the conformal time η
as a function of scale factor [33].

III. RESULTS

A. Combining CMB measurements
with low-redshift constraints

In all runs we include temperature data from the Planck
satellite [34] with the polarization prior on the optical depth

3In general a nonstandard thermal history will affect the form
of the transfer function. See for example [21,24].

4Code will be made publicly available through http://www
.astro.princeton.edu/~meerburg/coding/.

5We have approximated the constraints from LIGO by taking a
constant upper limit over the frequency range considered. For the
purpose of this analysis, this approximation is sufficient.
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from WMAP [27], WMAP low l polarization, a prior on
the Hubble parameter from the Hubble space Telescope
(HST) key project [35] and baryon acoustic oscillation
(BAO) measurements from the Sloan Digital Sky Survey
[36]. We then include a variety of other probes, including
the recent measurements of large-scale polarization from
the BICEP2 team [1], and constraints on ΩGW from the
PPTA or from LIGO data. In order to be insensitive to
lensing effects in polarization data, we restrict the BICEP2
data to the four lowest multipole bins. Last, we include an
analysis combining the previous data sets with the BICEP2/
KECK and Planck cross-correlation likelihood [2]. Here we
fit for the lensing amplitude and the dust contribution.
Our results are presented in Fig. 1 and Table I. As

expected, we get a weak constraint on the 95% limit value
of nt of 1.64 < nt < 2.63 when using only BICEP2 data.
The constraint on nt is improved significantly by adding
LIGO, lowering the 95% upper limit by roughly a factor of
5 from 2.63 to 0.59. The mean value we get for the tensor
tilt at CL 95% is nt ¼ 0.394þ0.209

−0.288 . The upper limit is a very
hard cut, because of the exponential drop off. Our results
reflect the knowledge that it is very difficult to measure nt
from CMB data alone (see e.g. Refs. [26,37]) and small
scale GW experiments are necessary to test the inflationary
consistency condition. We are also aware that a detection of

gravitational waves by LIGO will not be particularly useful
for determining the primordial tensor spectrum as the signal
on scales to which LIGO is sensitive is dominated by
astrophysical sources of GW, such as binary mergers. Since
current constraints are mainly upper limits on the gravita-
tional wave energy density and any signal which is detected
at LIGO is expected to be of nonprimordial nature, what we
present here are conservative constraints on nt.
When we replace the BICEP2 data with the cross data

[2], there is a very strong upper bound on the tensor-to-
scalar ratio from BICEP2/KECK data, as shown in Fig 2.
We find nt ¼ 0.06þ0.63

−0.89 and r0.01 < 0.1.
Even after cross checking Planck with BICEP2/KECK

data, there is still significant uncertainty in the total fraction
due to dust. For completeness, we also considered con-
straints using only Planck temperature data and WMAP
polarization, as shown in Fig. 3. In principle, no bound can
be put on nt when r ¼ 0, but r ¼ 0 is as likely as any other
small value.6 It is interesting to note that Planck drives the
value of nt, not the BICEP2 data. In fact, allowing nt to
vary freely, leads to the best-fit value r0.01 ¼ 0.24. We show
the contributions from the best-fit spectra to the TT power
spectrum at low multipoles in Fig. 4. For very positive
tensor tilt, the TT data can be made more consistent with

FIG. 1 (color online). Themarginalized 2D posterior constraints
on nt and r. The large grey contour shows the constraints of using
BICEP2 in conjunction with CMB data from Planck [34], the HST
prior on the Hubble constant [35], and the constraints on the
acoustic scale from BAO [36] measurements (the latter three
combined in the name “All”). Adding in data from the PPTA
constraints on the gravitational wave energy density improves the
constraints threefold on nt, while the constraint on r is largely
unchanged. Using data from LIGO instead tightens this even
further, highlighting the constraining power of LIGO on
the primordial tensor power spectrum. All contours agree on
the value of r announced by the BICEP2 team, confirming that the
LIGO and PPTA data are not particularly sensitive to the value of r
directly, but they are sensitive to the tilt nt, as shown in Eq. (3).

FIG. 2 (color online). The marginalized contours in the r–nt
plane comparing BICEP2 to the BKP data. If all the signal in
BICEP2 is primordial, we obtain strong bounds on nt, with a 2σ
preference for nt > 0. The upper limit is driven by the LIGO
constraint. From the BICEP2/KECK cross Planck analysis r is
lowered and therefore in combination with the constraints from
Planck TT power spectrum leads to a shift in the peak value of nt.
With a small value of r, constraints on nt are weakened. However,
including LIGO puts a strong upper bound on nt as before.

6We do not encounter serious issues with convergence. An
alternative procedure is to constrain r at two different scales and
to treat the tilt as a derived parameter. Note that additional scales
would be required for constraints on the running and higher order
scale dependence.
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the theory by providing a possibility to lower the power on
large scales. This is also the reason why Planck alone
prefers a large value of r (to increase the overall contri-
bution from the tensors to the TT spectrum) and with a
large positive tensor tilt (to mimic suppression of the power
on large scales). When LIGO data is added to the like-
lihood, such preference completely disappears, since nt
cannot be too large for most values of r. As a result, a very
large value of r is no longer allowed and we actually get a
constraint on r that is comparable to the constraint from r
without adding the tilt and the constraints after adding the
BICEP2/KECK and Planck cross data. As such, in the

scenario that even a larger fraction in the BICEP2 patch is
due to dust, simply adding LIGO puts a very strong bound
on r. That being said, obviously if all measured signal in
BICEP2/KECK is due to dust, this puts a very strong bound
on r. It is interesting to see that even without BICEP2/
KECK data one could have put a constraint on r when
allowing nt to vary; adding LIGO tells us that r < 0.2,
which is consistent with the BICEP2/KECK cross
Planck data.
Next, we consider the running of the tensor tilt. Because

the PPTA and LIGO measurements are at different scales
we can use both PPTA and LIGO in our analysis. The
results are presented in the right-hand panel of Fig. 5.
Without small scale constraints on the gravitational wave
energy density data are incapable of putting any bound on
the nt;run. As is shown in the right-hand panel of Fig. 5, the
running is exclusively confined to negative values and this
constraint comes solely from PPTA and LIGO. Naturally,
as nt increases, nt;run decreases in order to compensate for
the large values of the tilt. This causes the constraint on nt
to worsen as one moves to lower values of the running. For
values above nt ∼ 3 (with BICEP2) or nt ∼ 6 (with
BICEP2/KECK cross Planck), the CMB measurements
control the constraint, and the joint data do not allow for
larger values of the tilt. Since LIGO and PPTA do not
provide lower limits, there is no useful constraints on the
lower limit of the running. The constraints on the tensor-to-
scalar ratio r are weakened, since running adds another free
parameter that allows the fit to improve on large scales in
the TT power spectrum.

B. Gravitational wave contribution to the massless
degrees of freedom

Our analysis has shown that the inclusion of small
scale gravitational wave constraints results in a bound on
nt ≲ 0.5 (at 1σ). Since gravitational waves also contribute
to the total radiation energy density of the Universe, a
consistent analysis must take into account their effect on the
background expansion, as was considered in [21] and [38].

FIG. 3 (color online). The marginalized contours in the r–nt
plane without using BICEP2 data. When r0.01 ¼ 0 there is no
constraint on nt in principle, however Planck TT can be best fit
with r0.01 ¼ 0.24, hence there exists some constraint on nt.
Planck prefers a very blue tensor spectrum, in order to create an
artificial running of the temperature data on large scales. From
this analysis it is also apparent that Planck drives the value of nt,
not BICEP2 data. Interestingly, by adding LIGO, such large
values of nt are ruled out, which has the effect that r is
significantly constrained r0.01 < 0.2 at 95%.
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FIG. 4 (color online). The contribution from the tensors to the TT power spectrum. Avery large positive tilt leads to a rescaling of the
spectrum, except on very large scales, where the spectrum is suppressed. This suppression is what Planck prefers (though not
significantly) over no tensor modes at all.
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The increased radiation energy density alters the peak
structure of the CMB as explained in e.g. [39] and [40] and
also affects the prediction for the primordial abundance of
light elements, see for example [41]. Rossi et al. [42]
recently presented constraints from Lyman-α forest mea-
surements in conjunction with a variety of probes.
The energy density of gravitational waves is given by

(see the Appendix for details)

ρGW ¼
Z

kUV

kIR

d log k
PtðkÞ

32πGa2
½T 0ðk; ηÞ�2

¼ Asr
32πGa2

Z
kUV

kIR

kdk

�
k
k�

�
nT
j21ðkηÞ: ð6Þ

Here we used that the conformal time derivative of the
transfer function during radiation domination is given by
T 0ðηhηeq; kikeqÞ ¼ −kj1ðkηÞ [43]. We cannot simply inte-
grate over all wave numbers, since this integral diverges in
the IR for nt ≤ −4 and in the UV for nt ≥ −2. Physically,
one expects [44] that superhorizon modes should not
contribute to the local energy density (note that even this
itself is an ambiguous statement in the sense that the total
energy density could only be measured after averaging over
several wavelengths [22]) and this behavior is captured by
the fact that small wave numbers make a negligible
contribution to the integral. Furthermore, we do not expect
that the physics of the early universe generated primordial

gravitational waves at arbitrarily small scales. The largest
conceivable wave number at which primordial gravitational
waves could have been produced in the early universe is
given by the Planck scale at the beginning of the hot big
bang expansion of the Universe, since modes with larger
wave numbers would have been super-Planckian at some
point in the history of the Universe. If we assume that the
mechanism which is responsible for solving the flatness
and horizon problems is also responsible for generating the
primordial spectrum of gravitational waves, then we would
expect that the spectrum should extend over a range of
scales equivalent to the amount of expansion required to
solve those problems. Below we give results for the case
where the spectrum extends only to LIGO scales and also
for the case where the UV scale is 60 e-folds smaller than
the present horizon size. It is also worth mentioning that
although the scaling of the energy for each mode k is
equivalent to that of radiation, if there is some comoving IR
bound, this scaling is (weakly) broken by the large-scale
modes which enter the horizon and begin to oscillate. For
our purposes, we are only interested in positive nt, for
which the UVmodes dominate the total energy density. It is
natural then to introduce a new variable q ¼ k=kUV, dk ¼
kUVdq and kIR=kUV ¼ ε. In the cases we consider, we can
safely take the limit ε → 0, but our results will still depend
on the choice of kUV, which we leave unspecified for the
moment.

FIG. 5 (color online). Constraints allowing for more freedom in the GW power spectrum. Left panel: The marginalized 2D constraints
in the r–nt plane for the cases including BICEP2 (bottom) and BICEP2/KECK cross Planck (top) data. Right panel: Constraints on the
nt − nt;run for the same cases. Allowing for running in the tensor spectral index does not change the constraint on the tilt significantly, as
the errors on the running are large and there is no significant correlation between the two parameters. BICEP2 data improve constraints
on nt as expected. The addition of nt;run generally weakens the constraint on r. Note the different ticks in the figures on the right.
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We can then perform the integral for positive nt

k2UV

�
kUV
k�

�
nt
Z

1

0

qntþ1dqj21ðqkUVηÞ

¼
�
kUV
k�

�
nt 1

2nt

1

η2
þOð1=ðkUVηÞÞ: ð7Þ

Hence for the gravitational wave energy density we find (up
to corrections of order ε)

ρGWðηÞ≃ Asr
32πG

�
kUV
k�

�
nt 1

2nt

1

ðaηÞ2 : ð8Þ

It is useful to relate this energy density to quantities which
may be more familiar (for a similar analysis, see [45]).
Deep in the radiation-dominated era, after big bang
nucleosynthesis (BBN) but well before matter-radiation
equality, total energy density of the Universe is given by

ρtot ¼ ργ þ ρν þ ρGW

≡ ργ

�
1þ 7

8

�
4

11

�
4=3

Neff

�
; ð9Þ

where Neff ¼ 3.046 in the standard model in the absence of
gravitational waves [46]. Using the fact that during this
period, 1=ðaηÞ2 ¼ H2 ¼ 8πGρtot=3, and also assuming
that the gravitational waves are not the dominant source
of energy density, we can write the fraction of total energy
density in gravitational waves as

ρGW
ρtot

¼ Asr
24nt

�
kUV
k�

�
nt

¼
7
8
ð 4
11
Þ4=3ðNeff − 3.046Þργ

ð1þ 7
8
ð 4
11
Þ4=3NeffÞργ

ð10Þ

which can be solved for Neff

Neff ¼
8
7
ð11
4
Þ4=3½ Asr

24nt
ðkUVk� Þ

nt � þ 3.046

1 − ½ Asr
24nt

ðkUVk� Þ
nt � : ð11Þ

This expression breaks down when the gravitational wave
energy density becomes comparable to the total energy
density of the Universe. A fully consistent analysis for
larger values of the gravitational wave energy density
would require deriving a new transfer function which
does not assume radiation domination, but instead incor-
porates the backreaction of the gravitational waves on the
expansion history. Luckily, the data are sufficient to
constrain the gravitational wave energy density to a level
significantly below the regime where this presents a
problem. An alternative approximation for Neff which does
not have a singularity can be found by neglecting the
contribution of ρGW to H in Eq. (8) which gives the same

result as the first order Taylor expansion of Eq. (11) about
ρGW=ρtot ¼ 0,

Neff ≈ 3.046þ
�
3.046þ 8

7

�
11

4

�
4=3

�
Asr
24nt

�
kUV
k�

�
nt
:

ð12Þ

Both Eq. (11) and Eq. (12) should only be trusted in the
regime ρGW=ρtot ≪ 1. We use Eq. (11) in our analysis since
it gives more conservative constraints on nt, though the
difference is small with current data (see right panel of
Fig. 6 for a comparison of these approximations in the
parameter range of interest).
Since the energy density of gravitational waves redshifts

as radiation (so long as we can neglect the contribution of
the long wavelength modes) the relative energy density of
gravitational waves compared to that of photons, and thus
the gravitational wave contribution to the value of Neff ,
remains constant for all times of interest.
In order to estimate the size of the effect of the additional

radiation energy density, we will calculate the change in the
redshift of matter-radiation equality. At the instant of
matter-radiation equality, we have by definition

ρmðaeqÞ ¼ ρrðaeqÞ: ð13Þ

This can be written as an equation for aeq as follows:

3H2
0Ωm

8πG

�
1

aeq

�
3

¼ aBT4
γ;0

�
1þ 7

8

�
4

11

�
4=3

Neff

��
1

aeq

�
4

;

ð14Þ

where aB is the radiation constant, Tγ;0 is the CMB
temperature today, Neff is given by Eq. (11), and we have
fixed a0 ¼ 1.
In order to place constraints on r and nt we have to make

an assumption about the ratio kUV=k�. In our analysis of the
data we chose a pivot scale k� ¼ 0.01 Mpc−1. For LIGO
we do not have to make an assumption on the UV cutoff,
however we do assume the scaling is power law all the way
up to kLIGO. The minimum for this is ratio would then be
kUV=k� ≃ 1020, while if we assume that the power law
spectrum extends over ∼60 e-folds7 the ratio is given by
kUV=k� ≃ 1024. We estimate the contribution of primordial
gravitational waves to the total energy density at the time of
equality between matter and the relativistic components of
the Universe. Shifts in the redshift of matter-radiation
equality by roughly a percent will be constrained by the
CMB power spectrum, since this is the accuracy with which

7This value is chosen not due to some particular mechanism for
generating the gravitational waves in the early universe, but
instead to roughly correspond to the maximum amount of hot big
bang expansion.
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the redshift of equality is measured. In Fig. 6 we plot the
relative change of the aeq as a function of nt for these two
numbers. It can be seen from this estimate that even for the
lower value of kUV, the observational constraint from
the modified expansion history will be at a level similar
to the best constraint from the CMBþ LIGO data.
For consistency we include this effect in our CMB

analysis. We add the gravitational wave contribution to the
total the massless degrees of freedom in Neff as computed
above. The way the sampler usually scans the likelihood is
to sample the densities and the optical depth independently
(slow parameters) of the primordial parameters (fast
parameters); this scheme obviously does not work in case
one of the densities depends explicitly on the primordial

parameters. For that reason we changed the sampling.
Unfortunately this makes the scanning of the likelihood
slower, as one adds three additional parameters to the slow
part of the code (namely the computation of the radiation
transfer functions). In order to speed up the convergence,
we therefore fix the foregrounds to their best-fit values.
The approximations we have used are valid for a positive

tensor tilt, and only for small values or negative values of the
tilt would we have to worry about IR corrections. However,
from the analytical analysis, the background will not be
affected in that limit and hence the total energy density from
gravitational waves will be negligible. The code does not
compute a correction to Neff when nt < 0. For very large
values ofnt, Eq. (11) breaks downpredicting negativevalues

FIG. 7 (color online). The constraints on the gravitational wave spectrum when adding in the change in Neff from gravitational waves.
Allowing for the Neff contribution cuts off the distribution on nt to more positive values. Adding in BICEP2 data again moves the
constraints to more positive values of r, as expected. When considering the BKxP data in addition to Planck, the upper limits on nt are
hardly affected as can been see in the figure on the right. We also show the effect of changing the cutoff scale from k�=kUV ¼ 1020 to
k�=kUV ¼ 1024. The overall effect is to limit the upper bound on nt.
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FIG. 6 (color online). Left: The relative change in the scale of matter-radiation equality as a function of the tensor tilt nt, assuming
r ¼ 0.2. The simple analytical estimate suggests that nt ∼ 0.4 would be modifying the scale of equality at the 5% level, which is close to
current bounds from WMAP and Planck. Obviously, for smaller r, this constraint weakens accordingly. Right: The change in Neff as a
function of nt for r ¼ 0.2 using the two approximations given in Eqs. (11) and (12). The difference is very small up until the energy
density in gravitational waves becomes of the order of the total energy density in the Universe. Our constraints are derived using
Eq. (11). A detailed explanation of both curves and how these are derived can be found in the text.
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ofNeff , and so in that case, we replaceNeff with a very large
number. The results are shown in Fig. 7 for two assumptions
about the UV cutoff, one in which the cutoff is set at the
LIGO scale and one in which we assume the maximal cutoff
kUV=k� ≃ 1024. The constraints are summarized in Table I.
Compared to our analytical estimate, we find the constraints
to be slightly weaker. Although zeq is constrained quite
strongly, H0 and the matter density tend to vary as nt
increases in order to keep zeq fixed, which therefore gives a
weaker constraint than our naive prediction. This is shown in
Fig. 8. The strongest bound, as expected, is derivedwhenwe
include BICEP2 data (which drives r to large values) and
kUV=k� ≃ 1024. We find nt ¼ 0.33þ0.12

−0.25 . This stronger
bound is driven by a nonzero r. Without the addition of
BICEP2 data constraints are weaker and are found to be
remarkably close to LIGO bounds.
The change in the expansion history due to the gravi-

tational wave background energy density also affects BBN.
The presence of extra massless degrees of freedom during
BBN increases the primordial helium fraction by increasing
the expansion rate and thus decreasing the time during
which free neutrons can decay before becoming bound into
light nuclei [41]. In [47] and recently in [48] it was claimed

that BBN puts an upper limit (with unknown confidence)
on nt ≤ 0.15. However, this constraint is derived under the
assumption that kUV=k� ≃ 1061, which would suggest the
power law spectrum of gravitational waves extends over
more than 120 e-folds and that many modes would have
certainly been super-Planckian during the hot big bang
expansion of the Universe. Without a consistent theory of
quantum gravity, it is unclear how to treat the evolution of
such high energy gravitons. If one repeats the analysis with
more sensible numbers, we find nt ≤ 0.4 for r ¼ 0.2, in line
with [21] and [24]. This bound again is very close to the
bound from LIGO and from the CMB, and for complete-
ness it should be taken into account. However, we expect
based on a very similar analysis in [38] that the modified
expansion history leads to effects for which the CMB
provides a stronger constraint, given the same UV cutoff.
That being said, the BBN constraint depends on the value
of both Yp and Ωb and it would be possible to include this
fully self consistently inside CAMB. In this analysis we have
fixed the value of Yp ¼ 0.24, and we leave a full treatment
including these effects to future work.
When considering the constraints derived from the

contribution of gravitational waves to the massless degrees

FIG. 8 (color online). A scatter plot showing the relation between the tensor tilt nt, the Hubble rate H0 and the redshift of equality zeq,
including the contribution from gravitational waves to Neff . The top panel shows the case where the data are combined with BICEP2,
while the middle and lower panels replace the BICEP2 data with the BICEP2/KECK-Planck cross spectrum for two different values of
the cutoff. In all cases, zeq is fairly well constrained, hence in order to accommodate large nt (and hence a large Neff , H0 is increased by
adding more matter to the Universe. Because of the steep increase of Neff as a function of nt there is a very strong turn in degeneracy
between nt and H0. There is a shift in the upper bound of nt allowed by BICEP2 compared to the cross spectrum, and this limit also
shifts with different values of the cutoff, as can be seen by comparing the middle to lower panels of the figure.
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of freedom, there are two important things to remember.
Firstly, the total energy density in gravitational waves
depends on the entire primordial spectrum, which we have
assumed here to be a power law all the way up to some UV
cutoff. A more gradual transition to the reheating phase, or
production of additional gravitational waves during reheat-
ing could alter the constraints derived here. In addition,
since the constraints on modified expansion history are
from “indirect” measures, the effect of gravitational waves
would be degenerate with modifications to the neutrino
sector or the addition of dark radiation which would have
the same phenomenological effect on the measured CMB
[38]. As such, this constraint is less robust than actually
putting upper bounds on direct gravitational wave detec-
tion. In our analysis we have assumed that beyond photons
and three families of standard model neutrinos, all of the
radiation energy density is made up of gravitational waves,
with no additional massless degrees of freedom making
a significant contribution to the energy density of the
Universe.

IV. CONCLUSION

In this paper we performed the first joint analysis of
CMB data and late time measures of gravitational waves.
This study is interesting for the following reasons. First, a
combined analysis allowed us to put a bound on both the tilt
and the running of the primordial tensor power spectrum.
Secondly, even without BICEP2 data or the BICEP2/
KECK and Planck cross data, we can put a bound on
the tensor-to-scalar ratio r that is close to the constraint
without allowing for the tensor tilt to vary. This is
especially important given the recent conclusion that dust
could be responsible for all of the detected B-mode power.
While additional sources of gravitational waves could
explain the detection of r (even without considering dust),
this gives interesting bounds on the energy scale of inflation
[49], of the detailed perturbation physics in this early epoch
[9], and of other early universe physics [50]. Thirdly, it has
shown that all possible constraints on the tilt (and the
running) are of the same order, and a full analysis should
consider all these effects at the same time.
Current data prefer the tilt to be positive and the running

to be negative. The posterior parameters ranges in the
combined analysis are reduced by factor 5 for the tilt and
infinitely for the running (there is no constraint from the
CMB). As expected, the data are not yet capable of putting
the inflation consistency condition to the test, but this work
suffices as a confirmation that such an analysis is possible
and that the combined data are already much more
constraining than the CMB alone. A true test of the
inflation consistency condition requires improved CMB
data and measurement of gravitational waves at frequencies
that are not dominated by foregrounds.
We also showed that for large positive values of the

tensor tilt, one expects the background evolution to be

modified, altering the peak structure of the CMB. There are
some caveats in this analysis, since it requires an explicit
assumption about the UV cutoff of the tensor spectrum and
one could in principle introduce other ingredients with
degenerate cosmological effects, i.e. this measure is not as
“clean” as direct constraints obtained with gravitational
wave detectors. For that reason, one should be careful
interpreting these results. Although analytical results indi-
cated that the constraints would be better, performing the
actual analysis showed that parameter degeneracies lead to
bounds on the tilt that are slightly worse (kUV=k� ¼ 1020)
or only marginally better (kUV=k� ¼ 1024) than constraints
from direct gravitational wave detectors.
Constraints on nt from direct CMB measurements are

obviously dependent on a nonzero detection of r, and are
unlikely to greatly improve with future measurements
given the large foregrounds and the limited lever arm for
B-modes. On the other hand, direct measures place useful
upper bounds on nt which are not particularly sensitive to
the value of r. In the near future we expect LIGO to
improve its bound on gravitational waves and as such on nt.
At the same time, the background expansion will also be
measured more accurately, with an expected error on the
number of massless degrees of freedom of order a percent
(see for example [51]). Hence, we expect both measures to
be equally important. In the long term however, testing the
consistency condition would require a more ambitious
direct detection experiment with a much higher level of
precision. For that reason alone, we anticipate the analysis
presented in this paper to be of interest in the future,
especially if the value of r is constrained at the percent
level.
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APPENDIX: ON THE GRAVITATION WAVE
ENERGY DENSITY

In this appendix we consider the definition of the energy
density of gravitational waves, following the treatment of
[22,43,52,53]. We are ultimately interested in how gravi-
tational waves curve the background spacetime and impact
the expansion rate. We begin by splitting the metric into a
smooth background and a perturbation
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gμν ¼ ḡμν þ δgμν; ðA1Þ

where we take the background to be given by the flat
Friedmann-Robertson-Walker metric and the perturbation
is defined in terms of the gauge invariant tensor perturba-
tion as

δgij ¼ a2ðtÞhij; ðA2Þ

with hij;j ¼ 0 and hii ¼ 0. Understanding the impact of the
gravitational waves on the evolution of the background
requires that we consider only fluctuations for which
k=aðtÞ ≫ HðtÞ, modes which are deep inside the horizon.
This might seem to pose a problem for the case we are
considering, where there exist gravitational waves with
wavelengths comparable to and larger than the horizon size
at the epochs of interest. We will show below, however, that
such modes give a negligible contribution to the energy
density and can be safely neglected for the cases we
consider.
Now let us expand the Einstein equations around the

background metric. There exist two small expansion
parameters; the first is the amplitude of the gravitational
waves δg≡OðjδgμνjÞ, and the second is k=aH. The Ricci
tensor can be expanded up to second order in δgμν as

Rμν ¼ R̄μν þ Rð1Þ
μν þ Rð2Þ

μν þ � � � : ðA3Þ

Now the key point is that R̄μν is constructed purely from ḡμν
and therefore only contains only low frequency modes (by
which we mean variations on scales comparable to H−1),

while Rð1Þ
μν is linear in δgμν and therefore contains only high

frequency modes. However, Rð2Þ
μν is quadratic in δgμν and

therefore contains both high and low frequency modes. We
can therefore split the Einstein equations into low and high
frequency parts

R̄μν ¼ −½Rð2Þ
μν �Low þ 8πG

�
Tμν −

1

2
gμνT

�
Low

; ðA4Þ

and

Rð1Þ
μν ¼ −½Rð2Þ

μν �High þ 8πG

�
Tμν −

1

2
gμνT

�
High

: ðA5Þ

Equation (A5) is a wave equation which governs the
propagation of δgμν on the background and is not of
immediate interest for us. Equation (A4) describes how
the presence of gravitational waves curves spacetime and
allows us to define the energy momentum tensor for
gravitational waves.
Since we are considering only perturbations which vary

on scales much smaller than the horizon size, we can
project onto low frequency modes by performing an

average over a region which contains several wavelengths
of the gravitational waves (or equivalently over a time in
which the gravitational waves undergo many oscillations).
We therefore find

R̄μν ¼ −hRð2Þ
μν i þ 8πGhTμν −

1

2
gμνTi; ðA6Þ

and we can see that gravitational waves have an effective
energy momentum tensor which is given by

TGW
μν ¼ −

1

8πG
hRð2Þ

μν −
1

2
ḡμνRð2Þi þOðδg3Þ: ðA7Þ

This quantity can be computed explicitly in the transverse
traceless gauge as

TGW
μν ¼ 1

32πG
ḡαρḡβσhδgαβjμδgρσjνi þOðδg3Þ; ðA8Þ

where a vertical bar indicates a covariant derivative with
respect to the background metric. The energy density of
gravitational waves is then given by

ρGW ¼ TGW
00

¼ 1

32πGa4
δikδjlhð∂0 − 2HÞδgijð∂0 − 2HÞδgkli

þOðδg3Þ

¼ 1

32πG
δikδjlh _hij _hkli þOðδg3Þ: ðA9Þ

With the power spectrum Δ2
hðη; kÞ defined as

hhijðη;xÞhijðη;xÞi≡
Z

d log kΔ2
hðη; kÞ; ðA10Þ

and the transfer function T ðη; kÞ defined as

Δ2
hðk; ηÞ ¼ PtðkÞ½T ðη; kÞ�2; ðA11Þ

the energy density of gravitational waves can be written as

ρGW ¼ 1

32πGa2

Z
d log kPtðkÞ½T 0ðη; kÞ�2; ðA12Þ

where a prime refers to a derivative with respect to
conformal time η.
Constraints on direct detection of gravitational waves

tend to be quoted in terms of the normalized energy density
per logarithmic scale

ΩGWðkÞ≡ 1

ρcrit;0

dρGW
d log k

¼ PtðkÞ
12H2

0a
2
½T 0ðη0; kÞ�2; ðA13Þ

where we have used the fact that the critical energy density
today is given by ρcrit;0 ¼ 3H2

0=8πG.
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Now let us briefly comment on the limits of the integral
over wave number appearing in Eq. (A12). In order to be
consistent, we should fix the lower limit to be at a scale for
which kIR=aðtÞ ≫ HðtÞ since we restricted ourselves in this
derivation to modes which were deep inside the horizon.
On the other hand, the derivative of the transfer function
scales as k2 in the limit that k → 0 [43]. This behavior
ensures that the integral will converge in the limit kIR → 0
for nt > −4. Furthermore the long wavelength modes

(those for which k=a≲ 1
10
H) will make a negligible

contribution to the total energy density for nt ≳ −2.
Since we are mostly interested in cases where nt > 0,
we can safely take kIR ¼ 0 without introducing a large
error. The upper limit on the integral generally depends on
the mechanism by which the gravitational waves were
produced in the early universe. We consider a few cases in
the main text and discuss how our constraints depend on
this choice.
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