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We study the inflationary generation of helical cosmological magnetic fields in a higher-dimensional
generalization of the electromagnetic theory. For this purpose, we also include a parity breaking piece to the
electromagnetic action. The evolution of an extra-dimensional scale factor allows the breaking of
conformal invariance of the effective electromagnetic action in 1þ 3 dimensions required for such
generation. Analytical solutions for the vector potential can be obtained in terms of Coulomb wave-
functions for some special cases. We also present numerical solutions for the vector potential evolution in
more general cases. In the presence of a higher-dimensional cosmological constant there exist solutions for
the scale factors in which both normal and extra dimensional space either inflate or deflate simultaneously
with the same rate. In such a scenario, with the number of extra dimensions D ¼ 4, a scale invariant
spectrum of helical magnetic field is obtained. The net helicity arises, as one helical mode comes to
dominate over the other at the superhorizon scales. A magnetic field strength of the order of 10−9 G can be
obtained for the inflationary scale H ≃ 10−3 Mpl. Weaker fields will be generated for lower scales of
inflation. Magnetic fields generated in this model respects the bounds on magnetic fields by Planck and γ-
ray observations (i.e., 10−16 G < Bobs < 3.4 × 10−9 G).
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I. INTRODUCTION

A fully satisfactory theory that can explain the origin of
cosmic magnetic fields is still elusive. On the observational
front, we find evidence for magnetic fields over a range of
scales including cosmological scales. Coherent magnetic
fields of the strength of about few μG are observed at the
scales of Kpc to 10 Kpc in the nearby disk galaxies and
galaxy clusters [1–4]. Such fields have also been inferred in
galaxies at high redshifts of z≃ 1–2 [5,6]. In the inter-
galactic medium (IGM), on mega-parsec (Mpc) scales,
there are indications of a volume filling field of more than
3 × 10−16 G [7,8]. Several scenarios have been suggested
to explain the origin of these fields over different scales. For
magnetic fields in collapsed structures like galaxies, astro-
physical processes could suffice in providing an explan-
ation [1,2]. On the other hand, a primordial origin appears
the most natural and simplest scenario for very large scale
magnetic fields, especially one that volume fills the IGM.
Primordial magnetic fields with large coherence scales

could possibly originate in the early universe [9–13]. One
promising route to understand the origin of these fields is
via a mechanism in the inflationary context [14,15].
However, to generate large enough fields during inflation,
one also needs to break the conformal invariance of the
electromagnetic action. A simple way by which this has
been implemented is to introduce a coupling of the

electromagnetic Lagrangian density to a scalar function
of some dynamical variables like the inflaton, curvature etc
[14–34]. However, in many models there is no fundamental
reason to introduce this coupling factor other than the fact
that the conformal invariance of the electromagnetic action
needs to be broken.
A natural way to break conformal invariance of the

electromagnetic action, at least in the early universe, can be
envisaged in a cosmology motivated by higher-dimensional
theories [17,20,22,23]. In this approach, one starts with a
higher-dimensional cosmology (in 1þ 3þD-dimensional
space-time). The action contains higher-dimensional gen-
eralization of the electromagnetic gauge field. On dimen-
sional reduction, parameters of the higher dimensions
(more specifically the scale factor of the higher-
dimensional space), naturally appear as multiplicative fac-
tors to the 1þ 3-dimensional electromagnetic Lagrangian.
Since the parameters of the higher dimension evolves with
time, the breaking of conformal invariance is ensured.
Moreover, it was shown in [35], that a natural way to

have both these features (namely, breaking of conformal
invariance of the electromagnetic action as well as an
inflationary phase in the early universe) is by considering
higher-dimensional action with a Gauss-Bonnet term. In
most inflationary scenarios, one needs a scalar field in an
appropriate potential whose parameters have to be suitably
fixed so as to provide a constant energy density for a
sufficiently long period. In this approach the postulate for a
scalar field is neither required for breaking conformal
invariance nor for realizing inflation. In this work we have
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expanded upon the earlier work [35], by adding a helical
term to the action in the context of higher-dimensional
theories. This allows for the potential generation of helical
cosmological magnetic fields. Note that in the context of
1þ 3-dimensional theories possible generation of helical
magnetic fields during inflation is discussed by several
authors [25,36–42].
Large scale primordial helical magnetic fields are also

interesting from another aspect. Note that primordial fields
captured into collapsed objects will be subjected to turbu-
lent diffusion. This can lead to a rapid dissipation of the
field if it was nonhelical [43]. However, it turns out that
large scale helical fields are resilient to such turbulent
diffusion, due to magnetic helicity conservation, and only
decay on the slow resistive time scale [44–46]. This makes
such helical fields more relevant even in collapsed objects
like galaxies and galaxy clusters.
The plan of the paper is as follows. In Sec. II, we

briefly describe the problem of generating electromag-
netic fields in 1þ 3-dimensional theory with standard
electromagnetic action. We also describe there the for-
mulation of the electromagnetic theory in the higher-
dimensional space-time. The background model of
space-time is motivated from Gauss-Bonnet gravity which
is discussed in Sec. III. In Sec. IV we introduce a parity
breaking term to the electromagnetic action which may
lead to the generation of the helical magnetic fields.
The detailed analytical and numerical solutions are dis-
cussed in the Secs. Vand VI.We estimate the strength of the
magnetic fields obtained in our model in Sec. VII before
concluding in Sec. VIII.
The notations and conventions used in this work are as

follows. We work in natural units (i.e., ℏ ¼ G ¼ c ¼ 1).
We chose the metric signature to be (−;þ;þ;þ;þ…).
Lowercase Latin indices run from 1 to 3 while the upper-
case Latin indices take values from 4 to 3þD, where D is
the number of extra dimensions in our model. The Greek
alphabets can take values from 0 to 1þ 3þD.

II. ELECTROMAGNETIC ACTION IN HIGHER-
DIMENSIONAL MODELS

The action for the electromagnetic field in a general
1þ 3 dimensions is given by,

S1þ3
EM ¼ −

Z
1

16π
d4x

ffiffiffiffiffiffi−gp
FμνFμν; ð1Þ

where Fμν is the electromagnetic field tensor given in
terms of the derivatives of vector potential Aμ, as Fμν ¼
∂μAν − ∂νAμ. Here, g is the determinant of the metric
tensor gμν. At any epoch, the spatial part of this metric is
considered to be homogeneous and isotropic. For a
homogeneous and isotropic universe, the space-time metric
is described by the line element,

ds2 ¼ aðηÞ2ð−dη2 þ ηijdxidxjÞ: ð2Þ

Here aðηÞ is the scale factor of the universe and
ηij ¼ diagð1; 1; 1Þ, is the spatial part of the Minkowski
metric tensor. Further, conformal time η is related to the
comoving time t by,

η ¼
Z

dt
aðtÞ : ð3Þ

Since electromagnetic action in Eq. (1) is conformally
invariant, it can be shown in general that in such a
conformally flat background described by the metric in
Eq. (2) electric (E) and magnetic fields (B) will decay as
1=a2. Therefore at the end of inflation such fields will be
negligible in strength. In order to have a significant
generation of electromagnetic fields during inflation, we
necessarily need to break this conformal invariance of
electromagnetic action. Put alternatively, one requires the
amplification of a2B. Several such mechanisms to break
conformal invariance for magnetogenesis have been inves-
tigated in literature [14–16,18–22,24–34]. For example,
the breaking of conformal invariance can be achieved
by introducing a time dependent coupling function prefix-
ing FμνFμν, instead of a constant as in the standard
electrodynamics.
A natural scenario for breaking conformal invariance and

generating primordial magnetic fields arises in the context
of higher-dimensional theories [17,20,22,23]. We have
earlier explored this possibility, where an extra-dimensional
model with a Gauss-Bonnet term provides a coupling
function for breaking of conformal invariance in the
reduced four dimensional action [35]. We now extend this
work by adding a parity breaking piece to the action, which
allows for the generation of helical primordial magnetic
fields. Specifically we consider a higher-dimensional
space-time which has D extra spatial dimensions in
addition to the normal 1þ 3 dimensions. We further
assume that the spatial part of normal as well as extra-
dimensional subspaces are homogeneous, isotropic, and
flat. The line-element for such a universe is be given by,

ds2 ¼ ~gμνdxμdxν

¼ −dt2 þ a2ðtÞηijdxidxj þ b2ðtÞηIJdxIdxJ; ð4Þ

where aðtÞ and bðtÞ are the scale factors of normal and
extra dimensions, respectively, and ~gμν is the higher-
dimensional metric. We take the action for electromagnetic
fields in higher dimensions to be given by,

SEM ¼ −1
16π

Z
d4þDx

ffiffiffiffiffiffi−~g
p

~LEM: ð5Þ

Here, ~LEM is the Lagrangian density of the electromagnetic
field in higher dimensions and is given by,
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L̄EM ¼ l ~Fμν
~Fμν − f̄ ~Fαβ

~F�αβ: ð6Þ

We have introduced two arbitrary time dependent
scalar functions, l and f̄ to keep the action quite general.
Further, ~g is the determinant of higher-dimensional metric,
~gμν. The higher-dimensional electromagnetic field tensor
is expressed in terms of higher-dimensional vector poten-
tials, ~Aμ. We have also defined the dual of the higher-
dimensional electromagnetic tensor ~F�αβ as,

~F�αβ ¼ ~ηαβγδψϕ…4þD ~FγδQψϕ…4þD: ð7Þ

Here, ~ηαβγδψϕ…4þD is the higher-dimensional Levi-Civita
tensor and Qψϕ…4þD is the tensorial field needed to
describe the 4þD dimensional dual that we have defined.
Note that the term f̄ ~Fαβ

~F�αβ in Eq. (6) is a parity breaking
term which could lead to the generation of helical magnetic
fields.

III. GAUSS-BONNET GRAVITY

We assume that the dynamics of the universe is governed
by the action of the form [35,47–49],

S ¼
Z

d4þDx
ffiffiffiffiffiffi−~g

p �
Lmatter − 1

16π
~LEM

−MDþ2

2
ð ~Rþ χ ~GÞ þ Λ̄

�
: ð8Þ

Here, M is the higher-dimensional Planck mass which is
related to 1þ 3-dimensional Planck mass (Mpl) as,

MDþ2bD ¼ M2
pl. ~R is the 1þ 3þD-dimensional Ricci

scalar and χ is the Gauss-Bonnet parameter for the
Gauss-Bonnet term ( ~G) given by,

~G ¼ ~R2 − 4 ~Rμν
~Rμν þ ~Rμνλσ

~Rμνλσ: ð9Þ

A cosmological constant term (Λ̄) has been added in the
above action in order to keep it general, and also because it
leads to some interesting cosmological models [35,49].
While in 1þ 3-dimensional gravity the Gauss-Bonnet term
becomes a total divergence (and hence does not contribute
to the equation of motion), in higher dimensions, it gives a
nonzero contribution. Further, as the Gauss-Bonnet term
varies as square of the curvature, it has no significant
contribution on cosmological scales at the present epoch.
Solutions for scale factors aðtÞ and bðtÞ in this scenario

have been discussed in [35,49]. The asymptotic behavior of
the scale factors are exponential in time. In addition to the
solutions in which normal dimension inflates and extra
dimension deflates or vice-versa, the inclusion of a cos-
mological constant Λ̄ gives interesting solutions in which
both the scale factors (i.e., of normal and extra dimensions)

either increase or decrease, simultaneously. The solutions
in general are given by,

aðtÞ ∝ eαt; bðtÞ ∝ eβt: ð10Þ
Here α and β are the exponents for scale factors aðtÞ and
bðtÞ, respectively. The signs of these exponents determine
which of the spatial dimensions (normal or extra) are
inflating or contracting. A detailed set of acceptable
solutions in this scenario are discussed in [35,49].

IV. HELICAL MAGNETIC FIELDS IN
HIGHER-DIMENSIONAL COSMOLOGY

We have considered the metric given in Eq. (4) to
describe the extra-dimensional universe. We impose gauge
conditions on higher-dimensional vector potential by
adopting, ~AI ¼ 0 and ∂I

~Aμ ¼ 0 [17]. This choice of gauge
ensures that only 1þ 3-dimensional components of the
vector potential ~Aμ are nonzero and further they depend
only on the coordinates of normal dimensions. With these
gauge conditions a dimensional reduction of the electro-
magnetic part of the action in Eq. (8), gives an effective
1þ 3-dimensional electromagnetic action,

Sem ¼ −
Z

1

16π
d4x

ffiffiffiffiffiffi−ḡp �
b
b0

�
D
ΩDbD0 LEM: ð11Þ

Here, ΩD is the coordinate volume of extra dimensions,
which is a constant and assumed to be finite. Further, we
absorb this constant in the definition of metric, and define a
new g given by ðbD0 ΩDÞḡ which is similar to a conformal
transformation of ḡ → 1=ðbD0 ΩDÞg. We call this g as the
determinant of 1þ 3-dimensional metric tensor gμν. Thus,
the action in Eq. (11) transforms into,

Sem ¼ −
Z

1

16π
d4x

ffiffiffi
g

p �
b
b0

�
D
LEM: ð12Þ

for electromagnetic fields in 1þ 3-dimensions From the
definition of ~F�μν in Eq. (7) and the gauge conditions on
vector potential, one sees that indices ψ , ϕ, etc. can take
values purely of the extra-dimensional space. We may note
thatQψϕ…4þD is purely an antisymmetric tensor. These two
conditions imply that there is only one independent
component ofQψϕ…4þD that comes into the reduced action.
We combine this with f̄ to define a new function, f. We can
then write,

~ηαβγδψ…4þDQψϕ…4þD ¼ ηαβγδ;

where ηαβγδ is the usual 1þ 3-dimensional Levi-Civita
tensor. Therefore, LEM is the equivalent 1þ 3-dimensional
Lagrangian density for 1þ 3-dimensional vector potential
Aμ (μ ¼ 0 to 3 henceforth) defined by,
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LEM ¼ ½lFμνFμν − fFαβF�αβ�; ð13Þ

where, Fμν is the 1þ 3-dimensional electromagnetic field
tensor given in terms of derivatives of 1þ 3-dimensional
vector potential Aμ as, Fμν ¼ ∂μAν − ∂νAμ. The reduced
1þ 3-dimensional electromagnetic action is no longer
conformally invariant because of the time dependent
function ðb=b0ÞD in Eq. (12) coupling to LEM (even if l
and f are constants). By varying the 1þ 3-dimensional
electromagnetic action with respect to 1þ 3-dimensional
vector potential we obtain Maxwell’s equations as,

∂μ

� ffiffiffiffiffiffi−gp �
b
b0

�
D
lFμν

�
¼ ∂α

� ffiffiffiffiffiffi−gp �
b
b0

�
D
fϵαβγδFγδ

�
:

ð14Þ

We chose to work in radiation gauge, i.e., A0 ¼ 0,
∂iAi ¼ 0. We also use the fact that Maxwell’s equations
for the dual is the identity ∂α½ϵαβγδFγδ� ¼ 0. Moreover, it is
convenient to work in terms of conformal time coordinate
η. Maxwell’s equation, Eq. (14) then takes the form,

A00
j ðη; xÞ þ

�
D
b0

b
þ l0

l

�
A0
Jðη; xÞ − ∂i∂iAjðη; xÞ

−
�
D
b0

b
f
l
þ f0

l

�
1

2
ϵ0jϕψFϕψ ¼ 0; ð15Þ

where prime is the derivative with respect to η. It can be
seen that the presence of a dynamical extra-dimensional
scale factor as well as time-dependent functions l and f
break the conformal invariance of electromagnetic action in
1þ 3-dimensions which may amplify the electromagnetic
field fluctuations. The formalism till now is for general l
and f. In this work we will explore purely the effects
of extra dimensions, i.e., we chose that l ¼ f ¼ 1. For
this particular case the equation for the vector potential
reduces to

A00
j þD

b0

b
Aj − ∂i∂iAj −D

2

b0

b
ϵ0jψϕFψϕ ¼ 0: ð16Þ

In order to quantize the vector potential we express it in
terms of its Fourier components Ahðk; ηÞ as (cf. [25,36]),

Alðx; tÞ ¼
ffiffiffiffiffiffi
4π

p Z
d3k
ð2πÞ3

X2
h;λ¼1

ϵkhl½bλðkÞAhðk; ηÞeik·x

þ b†λðkÞA�
hðk; ηÞe−ik·x�: ð17Þ

Here, we have defined the helicity basis as,

ϵkh ¼ 1ffiffiffi
2

p ðϵk1 þ hiϵk2 Þ; ð18Þ

with h ¼ �1 denoting positive and negative helicities. Also
ϵk1 and ϵk2 are the two transverse polarization vectors
corresponding to λ ¼ 1 and 2, respectively. These two
polarization vectors along with k̂ form the orthonormal
spatial basis as,

ðϵk1 ; ϵk2 ; k̂Þ; jϵkλ j2 ¼ 1; k̂ ¼ k
k

ð19Þ

Further, bλðkÞ and b†λðkÞ are the annihilation and creation
operators, which satisfy the commutation relations,

½bλðkÞ; b†λ0 ðkÞ� ¼ δλ;λ0δ
3ðk − k0Þ;

½bλðkÞ; bλ0 ðkÞ� ¼ ½b†λðkÞ; b†λ0 ðkÞ� ¼ 0: ð20Þ

The Fourier coefficients for helicity modes, Āhðk; ηÞ
[defined as aAhðk; ηÞ] satisfy the equation

Āh″ðk; ηÞ þD
b0

b
Āh

0ðk; ηÞ þ k2Āhðk; ηÞ

−D
b0

b
hkAhðk; ηÞ ¼ 0: ð21Þ

Here h denotes helicity of the modes depending on signs.

Defining a new variable qðηÞ such that, Db0
b ¼ 2

q0ðηÞ
qðηÞ . We

can rewrite Eq. (21) in terms of Ahðk; ηÞ as,

A00
hðk; ηÞ þ

�
k2 − q″ðηÞ

qðηÞ − 2
q0ðηÞ
qðηÞ hk

�
Ahðk; ηÞ ¼ 0; ð22Þ

where, Ahðk; ηÞ ¼ qðηÞĀhðk; ηÞ. As the solution for the
scale factors are exponential given by, Eq. (10), we have

qðηÞ ∝ η−βD
2α : ð23Þ

Therefore, Eq. (22) takes the form,

A00
hðk; ηÞ þ ½k2 − VðηÞ − VhðηÞ�Ahðk; ηÞ ¼ 0; ð24Þ

where,

VðηÞ ¼
�
βD
2α

��
βD
2α

þ 1

�
1

η2
;

VhðηÞ ¼ −2
�
βD
2α

�
hk
η
: ð25Þ

V. ANALYTICAL SOLUTIONS FOR
VECTOR POTENTIAL

Defining a new variable z ¼ −kη we can transform
Eq. (24) into,
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d2Ahi

dz2
ðzÞ þ

�
1 −miðmi þ 1Þ

z2
− 2nh

z

�
AhiðzÞ ¼ 0: ð26Þ

Here, i ¼ 1 or 2, m1 ¼ βD
2α (for βD

2α > 0) and m2 ¼ − βD
2α − 1

(for βD
2α < −1). Further, we define βD=2α ¼ n. Eq. (26)

represents Coulomb’s equation whenever mi is a positive
integer. For scales much smaller than the horizon size, i.e.,
−kη ≫ 1, we would like to match it with the outgoing wave
solution in the Bunch-Davis vacuum given by,

Aðk; ηÞ ¼ 1ffiffiffiffiffi
2k

p exp−ikη: ð27Þ

The generic solutions for Eq. (26) are given as the linear
combinations of regular and irregular Coulomb wave-
functions, Fmi

ðhn; zÞ and Gmi
ðhn; zÞ, [50]. For z → ∞,

i.e., the subhorizon regime, we have,

Gmi
ðhn; zÞ � iFmi

ðhn; zÞ ∼ e�iz: ð28Þ

The solution for the vector potential with the required sign
of the outgoing wave function is,

Ahi ¼
1ffiffiffiffiffi
2k

p ½Gmi
ðhn; zÞ þ iFmi

ðhn; zÞ� ð29Þ

For modes which go outside the horizon, we have z → 0,
and in this case, the asymptotic behavior of Coulomb
functions is given by [50],

Fmi
ðhn; zÞ → 0; ð30Þ

Gmi
ðhn; zÞ → 2ð2nhÞmi

Cmi
ðnhÞð2mþ 1Þ! ð2nhzÞ

1=2

× K2miþ1½2ð2nhzÞ1=2� ð31Þ

with,

Cmi
ðnhÞ ¼ 2mie−πhn

2 jΓðmi þ 1þ ihnÞj
Γð2mi þ 2Þ : ð32Þ

Here,K2miþ1ð2ð2nhzÞ1=2Þ is the modified Bessel’s function
whose asymptotic form for z → 0 is given by,

K2miþ1ð2ð2nhzÞ1=2Þ ∼
1

2
ð2nhzÞ−ð2miþ1Þ

2 Γð2mi þ 1Þ: ð33Þ

Therefore, the solution obtained for superhorizon modes
can be written as,

Ahiðk; ηÞ ¼
1ffiffiffiffiffi
2k

p Γð2mi þ 1Þ
ð2mi þ 1Þ!Cmi

ðnhÞ ð−kηÞ
−mi : ð34Þ

We can now compute the power spectrum for the
generated magnetic fields. This is given by [36–39],

dρB
dlnk

¼ 1

ð2πÞ2
�
b
b0

�
D
k
k4

a2
Psðk; ηÞdk; ð35Þ

where,

Psðk; ηÞ ¼ jAþðk; ηÞj2 þ jA−ðk; ηÞj2: ð36Þ

Similarly helicity is measured by the antisymmetric com-
bination of power in the different helicity modes. i.e.,

dρh
dlnk

¼ 1

ð2πÞ2
�
b
b0

�
D
k
k4

a2
Paðk; ηÞdk; ð37Þ

where,

Paðk; ηÞ ¼ jAþðk; ηÞj2 − jA−ðk; ηÞj2: ð38Þ

In terms of Ahðk; ηÞ, Eq. (35) & (37) becomes,

dρB
dlnk

¼ 1

ð2πÞ2 k
�
k
a

�
4

½jAþðk; ηÞj2 þ jA−ðkηÞj2�; ð39Þ

dρh
dlnk

¼ 1

ð2πÞ2 k
�
k
a

�
4

½jAþðk; ηÞj2 − jA−ðk; ηÞj2�: ð40Þ

For exponential inflation k=aH ¼ −kη, where H, the
Hubble parameter remains constant. We rewrite the expres-
sion for the power spectrum given in Eq. (39) as,

dρB
dlnk

¼ k
ð2πÞ2 H

4ð−kηÞ4½jAþðk; ηÞj2 þ jA−ðk; ηÞj2�; ð41Þ

On superhorizon scales, with mi being a positive integer,
ratio of the power spectrum in positive helicity mode to that
of modes with negative helicity turns out to be e2nπ .
Therefore, for βD=2α > 0 positive helicity modes dominate
whereas, for βD=2α < 0 the modes with negative helicity
dominate. This is also shown in the numerical solutions
obtained in the next section. Substituting Eq. (34) in Eq. (39)
and neglecting the contribution from the subdominant
helicity mode, the power spectrum is then given by,

dρB
dlnk

¼ 1

ð2πÞ2 H
4ð−kηÞnB

���� 1ffiffiffi
2

p Γð2mi þ 1Þ
ð2mi þ 1Þ!Cmi

ðnhÞ
����
2

:

ð42Þ

Here the spectral index nB is given by,

nB ¼ 4 − 2mi: ð43Þ

We see, from Eq. (42) that for mi ¼ 2, the spectral index,
nB ¼ 0 and hence, this choice leads to a perfect scale
invariant power spectrum for magnetic fields. We getmi ¼ 2
for βD=2α ¼ 2 or βD=2α ¼ −3. Moreover, this scale
invariant spectrum is obtained now for an almost fully
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helical field. Note that for arbitrary α and β,mi may not be a
positive integer. Also the integral values of mi limits the
choice of coupling functions. Thus more general cases are
also considered in the next section by numerically solv-
ing Eq. (24).

VI. NUMERICAL SOLUTION

We first focus on the cases wheremi is indeed an integer,
as in this case analytical results are available to check the
numerics. This includes importantly the case when α ¼ β,
D ¼ 4 (i.e., βD=2α ¼ 2), which as we saw leads to a scale
invariant spectrum for the magnetic field. Because of the
exponential inflation of scale factor we take [35],

aðηÞ ¼ a0

�
η0
η

�
: ð44Þ

For numerical calculations we assume a0 ¼ 1 and η0 ¼ −1
without any loss of generality. The ratios of scales H−1
(Hubble length scale) and a=k (length scales for modes) is
given by, k=aH ¼ −kη. We have written a Mathematica
code to obtain the numerical solution of Eq. (24). Initial

conditions are set for modes well within the horizon (i.e.,
−kη ¼ 10). Solutions are assumed to be plane waves in this
region as in Eq. (27). The solutions are then obtained at the
epoch when these modes are much larger than the horizon
(i.e., −kη ¼ 0.01).
In the top panel of Fig. 1, we have shown the solution for

a mode k ¼ 1=100, βD=2α ¼ 2, which corresponds to
m1 ¼ 2. We see that, as the modes evolve, the positive
helicity mode becomes much larger than the negative
helicity mode. Thus the dominant contribution to the
energy density when kη ≪ 1 comes from positive helicity
modes. This is also seen for example from Eq. (32) and
Eq. (34) that the ratio of power spectrum between h ¼ þ1

to h ¼ −1 is e2πn and for n ¼ 2 this is e4π ≃ 3 × 105. Thus
the generated magnetic field will be significantly helical
with positive helicity.
In the top panel of Fig. 2, we show the corresponding

power spectrum for m1 ¼ 2, in the units of H4 (which
remains constant during inflation). We have considered a
range of modes corresponding to k ¼ 10−15 to k ¼ 10−4.
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FIG. 1 (color online). For k ¼ 10−2 andD ¼ 4 The behavior of
AhðkηÞ=a2 has been shown in the plots. The top panel shows the
evolution for βD=2α ¼ 2, whereas, bottom panel shows the plot
for βD=2α ¼ −0.516. The red solid curve represents positive
helicity mode whereas, the blue dashed curve is for negative
helicity mode.
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FIG. 2 (color online). The behavior of the magnetic field power
spectrum for D ¼ 4 and m1 ¼ 2 (i.e., βD=2α ¼ 2) is shown in
the top panel. The spectrum shows scale invariance for large
variation in k. Also forD ¼ 4 power spectrum for magnetic fields
is shown for βD=2α ¼ −0.516, (bottom panel). This is one of the
cases when normal dimensions inflates while extra dimensions
goes through contraction. The spectrum is no longer scale
invariant and gives a blue spectrum with nB ≃ 4.8.
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The power spectrum is calculated at conformal time η ¼
−0.5 for which all such modes have already crossed outside
the horizon scale. We see from this figure that one obtains a
nearly scale invariant power spectrum for a vast range of k.
This confirms the result from the analytical solution that
taking m1 ¼ 2 will give a scale invariant spectrum. The
condition βD=2α > 0 refers to the cases for which α and β
have the same sign. This implies that both normal dimen-
sions as well as extra dimensions either inflate or contract
simultaneously. Such solutions were shown to exist when a
nonzero Λ̄ is present [35].
On the other hand, several other solutions with Λ̄ ¼ 0

were also obtained in Refs. [35,49]. In these solutions scale
factors of normal and extra dimensions have opposite
behavior, that is when one expands the other contracts
leading to βD=2α < 0. One such solution with D ¼ 4 has
βD=2α ¼ −0.516. The results for this case are shown in the
bottom panel of Fig. 1. The corresponding power spectrum
for the magnetic field is shown in the bottom panel in
Fig. 2. We see that the magnetic field now has a blue
spectrum. A numerical fit to the power spectrum gives a
spectral index nB ≃ 4.8 for the same range of modes. The
field strength however can be seen to be negligible in this
case compared to the one obtained for the scale invariant
scenario. We note in passing that the case with
βD=2α ¼ −3, also corresponds to m2 ¼ 2, and therefore
gives a scale invariant power spectrum for magnetic fields,
now with predominantly negative helicity. However, such
cases are not viable as they lead to unacceptably large
electric fields [33,34].

VII. MAGNETIC FIELD INTENSITY

We now calculate the intensity of a generated magnetic
field at the current epoch. We consider the scale invariant
case (D ¼ 4 and m1 ¼ 2). From Eq. (42) we can write,

dρB
dlnk

¼ 1

ð2πÞ2H
4

���� 1ffiffiffi
2

p Γð2m1 þ 1Þ
ð2m1 þ 1Þ!Cm1

ðnhÞ
����
2

≃ 2.6 × 102H4: ð45Þ

This is in reasonably good agreement with the estimate of
≃4 × 102H4 which we obtain by directly integrating
Eq. (24) numerically; see Fig. 2. Note that in the absence
of helicity the amplitude of the magnetic field spectrum is
ð9=4π2ÞH4 [35]). Therefore in the presence of helicity the
amplitude of the spectrum becomes larger by a factor of
≃103. Note the factor ðb=b0ÞD=2 is similar to a time
dependent coupling functions fðϕÞ or IðηÞ in [33,34,39].
However, the coupling function appears naturally in our
work. As this factor settles to unity we recover the standard
cosmology. The role of extra dimensions is important only
till the end of inflation as extra dimensions are assumed to
be frozen afterwards. Therefore, in the post-inflationary era
the magnetic field energy density evolves as,

ρBð0Þ ¼ ρBðfÞ
�
af
a0

�
4

: ð46Þ

Here, af and a0 are the scale factors and ρBðfÞ and ρBð0Þ
are the energy densities at the end of inflation and present
epoch, respectively. From Eq. (45), the magnetic field
intensity depends on the scale of inflation. Combining
Eqs. (45) and (46), we estimate that helical magnetic fields
with nearly scale invariant spectrum of strength 10−9 G can
be generated for H ≃ 10−3 Mpl (see also Ref. [35] for more
details of the numerical estimation of the field strength).
Further for lower scales of inflation fields weaker than 10−9
G will be generated. The upper limit on primordial
magnetic field strength, from their effects on cosmic
microwave background (CMB) temperature anisotropy is
≃3.4 nG on scale of 1 Mpc [51]. From the constraints on
CMB non-Gaussianity, the strength of the primordial
magnetic field is limited to sub nG level [52–55]. The
lower limit is set by γ-ray observations is of order 10−16 G
[56]. Therefore the magnetic fields that can be generated by
our model are within the permissible range.

VIII. DISCUSSIONS AND CONCLUSIONS

The presence of coherent magnetic fields at large scales
(Mpc), even in the void regions of the IGM, indicates that
these fields could have a primordial origin. One possibility
is that they are generated during the inflationary era.
However, as the background geometry is conformally flat,
conformal invariance of the electromagnetic action needs to
be broken in order to generate a significant magnetic field.
In our earlier work [35], we had investigated such a
possibility in the context of higher-dimensional theories.
In the current work we have extended this consideration to
the possibility of generating magnetic fields which are also
almost fully helical. Our higher-dimensional action
includes the Gauss-Bonnet term which also allows one
to obtain inflationary solutions without the introduction of
scalar fields [49].
In order to study the generation of helical magnetic fields

we have added a parity breaking term to the higher-
dimensional electromagnetic action. Considering a suitable
field configuration and gauge choice [17], we performed a
dimensional reduction of higher-dimensional electromag-
netic action to obtain 1þ 3-dimensional action. This gives
rise to a dynamical coupling term as a function of scale
factors of higher dimensions. The evolution of the extra-
dimensional scale factor naturally provides the requisite
condition for breaking the conformal invariance of electro-
magnetic action, essential for the generation of significant
magnetic fields.
The evolution of the helical modes of vector potential in

1þ 3-dimensions is described by Eq. (24). Analytical
solutions in terms of the Coulomb functions can be
obtained in special cases when mi in the evolution
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Eq. (24) is a positive integer. For other cases in general, one
requires numerical integration of Eq. (24). We have shown
that it is possible to generate not only fully helical fields,
but also one that has a scale invariant spectrum. Such a
situation is obtained when βD=2α ¼ 2 or −3 and corre-
sponds to mi ¼ 2 in Eq. (24). For βD=2α ¼ 2, both
analytical and numerical solutions show that the positive
helicity modes dominate over the negative helicity modes
for the scales which exit the horizon during inflation. The
case βD=2α ¼ −3 is ruled out as it leads to unacceptably
large electric fields. A set of solutions of the higher-
dimensional Einstein equations including Λ̄ can be
obtained with D ¼ 4, having β ¼ α and thus giving
βD=2α ¼ 2. We have shown that helical magnetic fields
of the order of 10−9 G can then be generated in our model
forH ≃ 10−3 Mpl. Weaker magnetic fields can be generated
for further low scale inflationary models. The strength of
magnetic fields generated by this mechanism is consistent
with the constraints from CMB non-Gaussianity and γ-ray
observations. Note that in all the higher-dimensional
models one requires also a mechanism to freeze the
evolution of the extra-dimensional scale factor. This issue
needs to be investigated separately.
Recently, during the course of this work, Refs. [39,40]

have also discussed the generation of helical fields; where a
parity violating term to the 1þ 3-dimensional electromag-
netic action is added with time dependent couplings. Our
work differs by being set in the context of higher dimen-
sional theories. In our models the conformal invariance is
broken naturally by the coupling to the evolving higher-
dimensional scale factor. Our analytical results match with
that of Ref. [39] wherever comparison can be made. In
addition, we have included the numerical treatment of more
general cases. Further Ref. [39] have limited themselves to
low scales of inflation (in order to avoid the strong coupling
problem [30,42]) resulting in weaker fields with blue
spectrum. This needs to undergo inverse cascade to explain
large scale fields.
The strong coupling problem (in most of the models)

arises because a large variation of the coupling function,

say IðϕÞ, (which breaks conformal invariance) is required
to produce strong magnetic fields [30]. However, in our
model the problem of strong coupling could possibly be
circumvented, as the coupling term (which depends on the
extra-dimensional scale factor) appears as an overall
multiplicative factor to the full electromagnetic action
which includes its interaction with matter.
Such a possibility to solve the strong coupling problem

has been suggested in Ref. [57], where IðϕÞ is moved
outside the whole electromagnetic (EM) action, including
the interaction term, say of the form IðϕÞeψ̄γμψ . Here ψ
is a charged fermionic field. However, one could argue
that [58], as both the interaction term and the kinetic term
for ψ are quadratic in ψ , one can canonically normalize
the fermionic field ψ , and eliminate IðϕÞ in the inter-
action term. This would then still leave it in front of the
free EM action, and thus not solve the strong coupling
problem. In our context, the first such canonical nor-
malization of the kinetic term is not possible while bðtÞ is
varying, as this would introduce extra terms in the action
which depend on db=dt. More importantly, when bðtÞ
settles down to a constant b0, it can be instead absorbed
to redefine the 4-d metric tensor, [as was done when
going from Eq. (11) to Eq. (12)], rather than renormaliz-
ing different fields. And this will then leave no trace of
the value of b0 in the entire electromagnetic action, thus
plausibly solving the strong coupling problem. We hope
to elaborate on this possibility in more detail in the
future.
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