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Among the different methods to derive particle creation, finding the quantum stress tensor expectation
value gives a covariant quantity which can be used for examining the backreaction issue. However this
tensor also includes vacuum polarization in a way that depends on the vacuum chosen. Here we review
different aspects of particle creation by looking at energy conservation and at the quantum stress tensor. We
show that in the case of general spherically symmetric black holes that have a dynamical horizon, as occurs
in a cosmological context, one cannot have pair creation on the horizon because this violates energy
conservation. This confirms the results obtained in other ways in a previous paper [J. T. Firouzjaee and
G. F. R. Ellis, Gen. Relativ. Gravit. 47, 6 (2015)]. Looking at the expectation value of the quantum stress
tensor with three different definitions of the vacuum state, we study the nature of particle creation and
vacuum polarization in black hole and cosmological models, and the associated stress-energy tensors. We
show that the thermal temperature that is calculated from the particle flux given by the quantum stress
tensor is compatible with the temperature determined by the affine null parameter approach. Finally, we
show that in the spherically symmetric dynamic case, we can neglect the backscattering term and only
consider the s-wave term near the future apparent horizon.
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I. INTRODUCTION

Studying Hawking radiation for cosmological black
holes, which are embedded in a cosmological background,
is not trivial [1]. One of the main problems is that due to the
dynamical nature of the infalling matter in this case, we
have to consider dynamical black hole horizons in the real
expanding Universe [2], which have different properties
than stationary event horizons.
Although about 40 years have passed since Hawking’s

paper showed that Schwarzschild black holes emit thermal
radiation, some aspects of this process are not understood
totally. Hawking used quantum field theory in a curved
spacetime to calculate the expectation value of the particle
number operator [3]. However the expectation value of this
operator does not expresses pure particle creation in a curved
spacetime. We will discuss how quantum vacuum polari-
zation may also be included in this quantity. Usually in the
case that the spacetime is asymptotically Minkowskian in
both the far past and future we can use the Bogoliubov
transformation relating the future and past vacua to read off
the pure particle creation in the spacetime: h0jNkj0i ¼
h0ja†kakj0i ¼ Σjjβjkj2. However the real Universe is not
asymptotically flat in either the future or the past.
Hawking’s quantum field theory approach to black hole

radiation, which applies to late time stationary black holes,
is not a suitable method for calculating the Hawking
temperature in the case of a fully dynamical black hole,
where one has to solve the field equations in a changing
background. There are alternative approaches allowing one

to calculate Hawking radiation in a Schwarzschild space-
time without using the field equations, such as finding the
related vacuum via the tunneling method [4]. One can
extend these methods to calculating quantum fields in the
dynamical case [5,6], giving us the ability to determine
Hawking radiation for dynamical black holes in a cosmo-
logical context [7,8]. However differentiating the different
quantum effects, like vacuum polarization and particle
creation, needs careful study of the expectation value for
the quantum stress tensor hψ jTμνjψi.
It is known that the particle concept in quantum field

theory is a global concept. The particle modes are defined
on the whole spacetime, so that particular observers specify
them by a field mode decomposition. There is also the
number operator describing the response of a particle
detector, which depends on an observer’s past history.
To get a more usable definition of the particle state, one
needs to construct locally defined quantities. The best
candidate for studying particle creation and other quantum
effects locally is the expectation stress tensor value
hψ jTμνjψi [9], which assumes a particular value at each
point x of spacetime. This stress tensor is objective in the
sense that for a fixed state jψi, the results of different
measuring devices can be related in the familiar fashion by
the usual tensor transformation rules. For example if
hψ jTμνjψiðxÞ ¼ 0 for one observer, it will vanish for all
observers. However this term does not express pure particle
creation, it includes also vacuum polarization, and the way
it does so depends on the choice of vacuum.
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There are several effects in quantum field theory
one might take into account in a curved spacetime: zero-
point energy, the static Casimir effect, the dynamical
Casimir effect (which is like a moving mirror), and the
Schwinger effect. Particle creation can be attributed to
the Hawking effect, the dynamical Casimir effect, and the
Schwinger effect. Basically, Hawking particle creation is
thermal radiation due to the black hole apparent horizon,
which is observed at a large distance (or alternatively is due
to an adiabatic condition between affine coordinates on past
and future null infinity [10]), and the apparent horizon is
the event horizon in the static case, so then the radiation is
associated with the event horizon. On the other hand, the
dynamical Casimir effect is the production of particles and
energy from an accelerated moving mirror, so it is due to
dynamical boundary conditions (see [11] for a compre-
hensive review). Finally, the Schwinger effect is a non-
perturbative QED phenomenon. It is the spontaneous
production of eþ and e− pairs in the presence of strong
(usually constant) electric fields.
To include all particle creation effects in the dynamical

case of black hole collapse, we first need to solve the wave
equation with s suitable boundary condition in the presence
of any electromagnetic field; second, find an appropriate
vacuum corresponding to the collapsing model (like the
Unruh vacuum); last, read off the general particle creation
from the number density operator hψ jN ¼ a†kakjψi and
expectation stress tensor hψ jTμνjψi. We consider that the
Schwinger and dynamical Casimir particle creation effects
are beyond the scope of this paper. Here we just discuss
quantum effects due to the curved classical spacetime
background.
The basic point of this work is that it gives a compact

review of different aspects of particle creation, particularly
in terms of deriving the quantum stress tensor, in ways
which can be applied to nonstationary metrics as well as the
stationary case. This is what is needed for backreaction
studies in the dynamic black hole case.
This paper is organized as follows: We will show the

relation between energy conservation for the particle
creation mechanism and the type of horizon in Sec. II.
In Sec. III, we discuss the particle creation concept via
expectation values of the stress tensor. Section IV considers
particle creation concepts in cosmological models. In
Sec. V we discuss different aspects of these quantum
effects for compact stars and black hole models. We then
conclude in Sec. VI.

II. ENERGY CONSERVATION FOR VACUUM
CREATION AND ANNIHILATION

As is known, if the total energy change for particle
production does not vanish, this process is forbidden by
energy conservation. We consider here necessary condi-
tions so that energy conservation is obeyed for virtual
particle pair creation and annihilation. This puts constraints

on particle creation in dynamical black hole spacetimes.
Although semiclassical physics breaks the energy conser-
vation law up to the fluctuations allowed by Heisenberg’s
uncertainty principle ΔtΔE ¼ ℏ, for long-lived real par-
ticles we cannot neglect energy conservation violation, so
we must demand ΔE ≪ ℏ

Δt.
It can be shown that if there is a Killing horizon, one does

not have to generate energy for particle pair creation; thus
there is no problem in the static case. But in the dynamic
context, for example when matter and radiation fall into the
black hole, there is no Killing horizon; instead there is an
apparent horizon that is spacelike when such infall is
significant [8]. We show here that this makes pair pro-
duction inconsistent with energy conservation, and so
Hawking radiation is then prohibited. However at late
times it becomes an isolated horizon; then, one can again
have particle pair creation without violating energy con-
servation. This confirms the results of [8].

A. The stationary case

Consider the possibility of particle creation by a sta-
tionary gravitational field. The energy of a particle in such a
field is E ¼ −pμξ

μ where pμ is the four-momentum of the
particle, and ξμ is the Killing vector field. The energy E of a
particle is always positive outside the black hole horizon,
where the Killing vector is timelike. The Killing vector is
spacelike inside the Killing horizon ξ2 ¼ 0, and the energy
is negative there. Therefore, this allows particle pair
creation just around the Killing horizon. On the other
hand, we know that a Killing horizon in a stationary
spacetime is necessarily an event horizon (see Hawking
and Ellis [12], Proposition 9.3.6). Hence, one can expect
particle creation in a stationary spacetime which contains a
black hole [13].

B. The dynamical case

Now the question is how does energy conservation work
for pair creation around a dynamical black hole? It is not
possible to define a conserved quantity E for an evolving
spacetime, as it does not have a Killing vector field. But
locally for a vector field UμðxÞ that is timelike outside the
black hole, we can define the particle’s energy relative to an
observer with 4-velocity Uμ as E ¼ −pμUμ. For instance,
in a general spherical symmetry spacetime, one can define
the energy E ¼ −pμKμ of the particle relative to the
Kodama vector Kμ [14], which in the stationary case
becomes the same as the Killing vector.
Consider pair creation around the OMOTS (outer mar-

ginally trapped 3-surface) when there is infalling radiation
or matter, so this surface is spacelike [2]. Since the particle-
antiparticle pair will be located inside the horizon (point B
in Fig. 1) and will each have energy defined relative to the
same timelike vector, the energy E for both particles will
have the same sign. As a result, any long-lived particle
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creation violates the energy conservation around the
OMOTS. Hence Hawking radiation will not occur there [8].

C. The isolated horizon case

When the matter flux becomes very small, the black hole
apparent horizon becomes an isolated horizon [16] where
its tangent vector becomes a null vector lμ and it becomes a
null surface. Note that a Killing horizon assumes the
existence of a Killing vector field in some neighborhood
of the horizon, but the isolated horizon is defined only in
terms of the intrinsic and extrinsic geometry of the horizon
itself, where lμ is a Killing vector for the intrinsic geometry
of the horizon [16]. To consider energy conservation for
pair creation around the isolated horizon, we limit ourselves
to the general spherically symmetric dynamic black hole.
Consider that the collapsing fluid within a compact spheri-
cally symmetric spacetime region will be described by the
following metric in the comoving coordinates ðt; r; θ;φÞ:

ds2 ¼ −e2νðt;rÞdt2 þ e2ψðt;rÞdr2 þ Rðt; rÞ2dΩ2: ð1Þ

The Kodama vector for this metric is

Kμ ¼ e−ðνþψÞðR0;− _R; 0; 0Þ: ð2Þ
Using the Einstein equations one can show that the norm of
the Kodama vector is

KμKμ ¼
�
2M
R

− 1

�
; ð3Þ

where M is the Misner-Sharp mass for the spherically
symmetric model [17]. This vector is spacelike inside the

apparent horizon and timelike outside it. Using the energy
definition E ¼ −pμKμ, one can show that the energy of the
particle outside the isolated horizon [16] is positive and the
energy of the particle inside is negative (point A in Fig. 1).
Hence, one can have pair particle creation for isolated
horizons without violating energy conservation. While we
have shown this using the Kodama vector for reference, that
is for convenience and is not essential; some other timelike
vector field could be used for general spacetime.

III. DISTINGUISHING PARTICLE CREATION
FROM OTHER QUANTUM EFFECTS

This section is devoted to studying the discrimination
between particle creation and vacuum polarization by
choosing suitable coordinates, which cover different parts
of the global spacetime.
The excellent book by Frolov and Novikov [13]

(Chap. 10) identifies three relevant quantum effects when
discussing black holes: namely (i) particle creation, (ii) vac-
uum polarization, and (iii) quantum fluctuations of the
metric. As long as we consider a spacetime with curvature
smaller than the Planck curvature R ¼ c3

ℏG ∼ 4 � 1069m−2,
we can neglect quantum fluctuations of the metric, so we
need only take the other two into account.
As is known [13], quantum field theory constructed on a

curved spacetime experiences gravitationally induced vac-
uum polarization, which is a deformation of the vacuum
fluctuations by the external gravitational field at a given
time (similar to the Schwinger deformation by an electric
field). Hence, it is described by terms that depend only on
the local curvature characterizing the gravitational field at a
given location. This effect typically induces a nonzero
vacuum expectation value for the stress-energy tensor; it is
a local effect, in contrast to the nonlocal nature of particle
production. However the vacuum is not a local quantity, it
must be determined from global properties; the polarization
is local once the vacuum has been chosen. Thus because
there are alternative definitions of the vacuum, induced
vacuum polarization depends on the vacuum, and there is
no unique way to distinguish the particle creation and
vacuum polarization contributions to the total energy-
momentum tensor. In this section we discuss how we
can sensibly separate quantum particle creation represented
in hTμνi, from vacuum polarization, also represented
in hTμνi.

A. Vacuum polarization and particle creation

At a first glance, it seems that the expectation value for
the quantum stress is a local quantity and hence we can
straightforwardly describe particle creation by the local
quantum stress tensor. But finding coordinates that either
cover all spacetime, or that cover only the observer’s
region, forces us to know global properties of the spacetime
(even a particle detector that records the existence of the

FIG. 1 (color online). Particle creation and annihilation around
theapparenthorizon for thecaseofan influx that decaysawayat late
times. IfapairparticlecreatesatpointB, theywillhavethesamesign
energy and they cannot live long because they violate the energy
condition.Butwhen theyare createdon the isolatedhorizonatpoint
A the two particles have different sign energy which keeps
the energy conservation. Note that we did not include radiation
backreaction in this figure, which is adapted from [15].
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particle by transition to an excited state has to know about
this interaction with the particle along the entire world line,
which is nonlocal [18]). For instance, if one has a
coordinate that covers all spacetime in a case when the
observer cannot see the black hole interior, the correspond-
ing vacuum defined in terms of those coordinates will have
a mixed state relative to the observer.
If observers are sitting outside the black hole, coordi-

nates that only cover the exterior region of the black
hole, like tortoise light cone coordinates ðu; vÞ in the
Schwarzschild metric, are suitable coordinates for stress-
energy examination. Here are some points that help us to
specify the vacuum polarization and particle production:

(i) If we choose a coordinate (vacuum) that only covers
outside the horizon, the quantum expectation value
of the stress tensor in this coordinate system only
describes vacuum polarization.

(ii) One test of the vacuum polarization term is that it
must be zero in flat regions of spacetime.

(iii) Another test for the vacuum polarization term is that
it must be zero in local inertial coordinates.

(iv) For the case of particle creation, there is at least one
nonzero component of the quantum stress tensor for
all observers in the flat region of the spacetime,
provided our vacuum contains the black hole interior
region and not only outside the black hole.

(v) An important test for having particle creation is that
there is a nonzero flux, F , at the horizon.

B. The two-dimensional general case

We write a two-dimensional general metric as

ds2 ¼ −dξþdξ− ¼ −e2ρdxþdx−; ð4Þ

where the ξ�’s are local null coordinates associated with
inertial coordinates, while the x�’s are general null coor-
dinates. Notionally this is a two-dimensional section of a
four-dimensional spherical spacetime. Here our analysis is
for a massless scalar field, which gives the main features of
the radiation (in the static case, 81% of the radiation is
massless [19]). The general expression for the stress tensor
in the two-dimensional black hole case can be written as
[see Eq. (5.23) in [20]]

hψ jT��ðxÞjψi ¼ hψ j∶T��ðxÞ∶jψi þ
ℏ
24π

fξ�; x�g; ð5Þ

where the second term is the Schwarzian derivative

fx̄�; x�g ¼ d3x̄�

dðx�Þ3
�

dx̄�

dx�
−
3

2

�
d2x̄�

dðx�Þ2
�

dx̄�

dx�

�
2

: ð6Þ

A direct calculation shows this term is

ℏ
24π

fξ�; x�g ¼ −
ℏ
12π

ð∂�ρ∂�ρ − ∂2
�ρÞ: ð7Þ

If we go to the case where the x� coordinates cover outside
the black hole (they are associated with the observer’s
location) and the jψi vacuum covers all spacetime includ-
ing the black hole region, the term ℏ

24π fξ�; x�g describes
vacuum polarization, and the term hψ j∶T��ðxÞ∶jψi gives
the real particle creation part. If jψi is expressed in terms of
the coordinates ðx̄þ; x̄−Þ, the real particle creation flux
relative to an observer with time coordinate t ¼ x−þxþ

2
is

equal to

F ¼ hψ j∶TþþðxÞ∶jψi − hψ j∶T−−ðxÞ∶jψi

¼ −
ℏ
24π

�
d3x̄þ

dðxþÞ3
�

dx̄þ

dxþ
−
3

2

�
d2x̄þ

dðxþÞ2
�

dx̄þ

dxþ

�
2

−
d3x̄−

dðx−Þ3
�

dx̄−

dx−
−
3

2

�
d2x̄−

dðx−Þ2
�

dx̄−

dx−

�
2
�
: ð8Þ

These equations are general. Their interpretation depends
on the vacuum chosen.

C. The four-dimensional spherical case

Similar for a four-dimensional spherically symmetric
black hole we have [see Eq. (5.157) in [20]]

hψ jT��ðxÞjψi ¼ hψ j∶T��ðxÞ∶jψi

−
ℏ
12π

ð∂�ρ∂�ρ − ∂2
�ρÞ

þ ℏ
2π

ð∂�ρ∂�ϕþ ρð∂�ϕÞ2Þ; ð9Þ

where the two-sphere radius is R ¼ e−ϕ (ϕ is the dilaton
field) and

ds2 ¼ −e2ρdxþdx− þ e−2ϕdΩ2: ð10Þ
Similar to the two-dimensional case if the coordinates

ðxþ; x−Þ only cover the exterior of the black hole and the
jψi vacuum covers all spacetime including the black hole
region, the term

−
ℏ
12π

ð∂�ρ∂�ρ − ∂2
�ρÞ þ

ℏ
2π

ð∂�ρ∂�ϕþ ρð∂�ϕÞ2Þ
ð11Þ

is the vacuum polarization and hψ j∶T��ðxÞ∶jψi is the pure
particle creation part. Therefore the particle flux relative to
an observer with time coordinate t ¼ x−þxþ

2
is described by

F ¼ hψ j∶TþþðxÞ∶jψi − hψ j∶T−−ðxÞ∶jψi: ð12Þ
Covariantly, the created particle energy density and flux

[21] are
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ρp ¼ uμuνhψ j∶Tμν∶jψi; F ¼ uμnνhψ j∶Tμν∶jψi ð13Þ

respectively where uμ is the 4-velocity of the observer and
nν is a unit vector normal to uμ. On choosing the 4-velocity
of an observer (detector), we can find the related radiation
flux and find the effective temperature for this
observer [22]).

D. The Unruh effect

Regarding the Unruh effect, the normal ordered form of
the quantum stress tensor, ∶Tuu∶, for an accelerated
observer in the Minkowski vacuum, gives the energy that
the accelerated detector absorbs and then makes a transition
to the excited state: it is hMj∶Tuu∶jMi ¼ ℏa2

48π. Here the
tortoise coordinates ðu; vÞ are the same as the ð−;þÞ
coordinates above. This is neither particle creation nor
vacuum polarization, because it is in Minkowski spacetime.
It is just an excited state due to acceleration (a “fictitious
particle”).

E. The Schwarzschild case

The case of a static black hole is given by Schwarzschild
spacetime and its vacuums. There are two well-known null
coordinates for the Schwarzschild metric. The first is the
tortoise light cone coordinates

u ¼ t − r�; v ¼ tþ r�; ð14Þ

where r� ¼ r − 2mþ 2m lnð r
2m − 1Þ. These coordinates for

r > 2m vary on the range −∞ < u, v < þ∞. The second
coordinates are Kruskal-Szekeres null coordinates ðU;VÞ
defined by

U ¼ −4m exp

�
−

u
4m

�
; V ¼ 4m exp

�
v
4m

�
: ð15Þ

There are three vacuums for the Schwarzschild metric,
which are defined below [23].

(i) The Boulware vacuum jBi defined by requiring
normal modes to be positive frequency with respect
to the Killing vector ∂

∂t, with respect to which the
exterior region is static. This vacuum is defined only
in the exterior region. The expectation value of the
stress tensor in this vacuum only describes vacuum
polarization.

(ii) The Unruh vacuum jUi defined by taking modes
that are incoming from I− to be positive frequency
with respect to ∂

∂t, while those that emanate from the
past horizon are taken to be positive frequency with
respect to U, the canonical affine parameter on the
past horizon. This vacuum is defined on the exterior
region together with the interior region associated
with particles infalling from that exterior region. The
expectation value of the stress tensor for this vacuum
contains both particle creation and vacuum polari-
zation parts, and has a nonzero flux [24].

(iii) The Hartle-Hawking vacuum jHi defined by taking
incoming modes to be positive frequency with
respect to V, the canonical affine parameter on
the future horizon, and outgoing modes to be
positive frequency with respect to U. This covers
the entire maximally symmetric vacuum Schwarzs-
child solution. The expectation value of the stress
tensor in this vacuum contains both particle creation
and vacuum polarization parts. This has zero flux
(12), showing this is thermal equilibrium of a black
hole with its emitted radiation.

A summary of the expectation values of the energy-
momentum tensor for two-dimensional Schwarzschild
spacetime is shown in Fig. 2.
Conceptually, the radiation flux appears for an observer

that cannot see parts of the spacetime. Since the Hartle-
Hawking vacuum and Unruh vacuum cover inside the

FIG. 2 (color online). The expectation value of the energy-momentum tensor for different vacuums in two-dimensional Schwarzschild
spacetime. The left number in each column was calculated at the horizon and the right number is at the infinity. The last column
represents the radiation flux. By Eq. (5), vacuum polarization is given by subtracting the third column from the first, and the second
column from the fourth (there is another component not shown here).

PARTICLE CREATION FROM THE QUANTUM STRESS TENSOR PHYSICAL REVIEW D 91, 103002 (2015)

103002-5



horizon, which cannot be seen by external observers, the
related states for these vacuums are mixed states.

IV. PARTICLE CREATION IN COSMOLOGICAL
MODELS

In this section we investigate particle creation in
Friedmann-Lemáitre-Robertson-Walker (FLRW) metrics
using the quantum stress tensor. In particular we discuss
de Sitter spacetime in stationary and cosmological coor-
dinates and define the related vacua for these cases. Other
aspects of radiation production like the affine parameter
approach and the relation to the inflationary epoch are
discussed.
Particle creation in cosmological models is substantially

different from that in black hole models. The key difference
is that in the cosmological case, if event horizons exist for
an observer, which will be the case for de Sitter spacetime
and for expanding universes with a cosmological constant,
every observer can at very late times receive thermal
radiation associated with their cosmological event horizon
(note that different observers will have different event
horizons). Hence, thermal radiation will in principle appear
for observers everywhere. However for the black hole case,
there is a unique event horizon for all external observers
and only a distant observer outside the black hole will see
such radiation at late times. Therefore, we have well-
defined observers in the black hole case for whom the
thermal temperature and backreaction can be calculated,
but in the case of cosmological models, defining the
temperature and backreaction of the radiation has ambi-
guities that must be solved.
One should note here that there are various calculations

of the vacuum energy of zero-point quantum fluctuations,
which in principle is one of the main potential candidates
for cosmological dark energy [25,26]. This zero-point
energy of a quantum field diverges, and so is calculated
up to a cutoff scale in the case of both flat and curved
spacetimes, and turns out to be hugely larger than the
observed cosmological constant, which is a major problem
for cosmology if this field gravitates (which need not
necessarily be the case [27]). This however is an essentially
local effect that can occur in cosmology as well as in the
black hole case, but is not directly related to either particle
creation or vacuum polarization effects, which are confined
to curved spacetime backgrounds. We will not consider this
further here.
The standard model in cosmology is based on a

homogeneous and isotropic expanding universe. The
metric which best describes the early accelerating expan-
sion (inflation era) and late time acceleration phase (dark
energy dominated) is the de Sitter spacetime in nonsta-
tionary coordinates given by the metric (35). These
coordinates only cover half of the de Sitter manifold
−Z2

0 þ Z2
1 þ Z2

2 þ Z2
3 ¼ 3

Λ, Λ > 0. However because it is
a spacetime of maximal symmetry, one can also use static

coordinates with the metric given by (16). These also only
cover part of the de Sitter manifold. The matter-dominated
and radiation-dominated stages of the Universe after
inflation are well described by a flat FLRW model. In
contrast to the de Sitter spacetime, this does not have a
cosmological event horizon.
A full cosmological model will have three epochs: an

initial inflationary era with metric close to de Sitter,
followed by a matter- and radiation-dominated era, and
finally a late time dark-energy-dominated era that is again
like de Sitter. In this section, we discuss particle creation in
these various metrics. But one should note the following:
the event horizon in cosmology only refers to the far future
of the Universe. If creation occurs relative to that horizon, it
has nothing to do with anything we can observe at the
present day.

A. Particle creation in FLRW spacetime

The first prominent work to calculate particle creation in
a FLRW metric is Parker’s work in 1969 [28], which
calculated the probability of finding a particle at the time t
according to the Bogoliubov coefficients. Being a con-
formally flat spacetime, one has the ability to specify a
well-defined conformal vacuum and determine the mean
particle creation rate in conformal time. As discussed
above, such nonzero particle creation, which is calculated
by comparing the different vacuums according to the
Bogoliubov coefficients, cannot be considered as pure
particle creation: it can be fictitious or quasiparticles. To
study the real particle creation rate, one needs to determine
that rate “from hψ jTμνjψi.”
Using Eq. (A4), it can be shown that the radiation flux

(12) for the minimally conformally coupled massless scalar
field is zero for two-dimensional FLRW models. For four-
dimensional FRLW metrics, using Eq. (B9) to calculate
hTtxi, one can show that the radiating particle flux is zero
for conformally coupled massless scalar fields. The non-
zero component from (A4) and (B9) can be interpreted as
vacuum polarization.
One can define a cosmological apparent horizon as

follows. H is a hypersurface in a four-dimensional space-
time that is foliated by 2-surfaces such that θðnÞ∣H ¼ 0,
θðlÞ∣H ≠ 0, and £lθðnÞ∣H ≠ 0. This separates regions where
either future or past null geodesics going either both
inwards or both outwards converge, from where this is
not the case. An apparent horizon is called outer if
£lθðnÞ∣H < 0, inner if £lθðnÞ∣H > 0, past if θðlÞ∣H < 0,
and future if θðlÞ∣H > 0. They are trapping horizons; that is,
they are related to spacetime regions where particles are
causally trapped in the sense that they cannot reach infinity,
if they are future directed, but not if they are past directed.
Past-directed apparent horizons occur in all realistic cos-
mologies and are related to the existence of the singularity
at the start of the Universe [12]. Future-directed apparent
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trapping horizons occur in cosmology only in universes
that recollapse to a second singularity in the future, when
they are related to the existence of that singularity. The
most relevant case in the context of an ever-accelerating
expanding cosmology is the inner future apparent horizon
which can occur if the cosmological constant is positive.
The physical intuition for this horizon is that it is the
boundary of the region so that to the future, the cosmo-
logical expansion is so strong that even the future-directed
ingoing null geodesic cannot converge. For de Sitter
spacetime this cosmological horizon coincides with the
de Sitter event horizon. It is not a trapping horizon because
it is future directed; however it can be associated with
Hawking radiation.
Recently some workers have applied the particle

tunneling method to show that there is particle thermal
radiation from the FLRW apparent horizon (cosmological
horizon) in the dynamic case [29]. They have neglected a
basic point. Their calculation is based in the WKB
approximation assumed for the light coming from the
apparent horizon to the observer. As discussed in [8,30],
the WKB approximation cannot hold for light passing the
FLRW apparent horizon, except in the case of de Sitter
spacetime. As a result, there is no particle creation in
the FLRW metric in the matter- and radiation-dominated
eras.

B. Particle creation in de Sitter spacetime

Here, we consider particle creation in the stationary and
cosmological versions of de Sitter spacetime.

1. Particle creation in the stationary de Sitter spacetime

Historically, by using the path integral method Gibbons
and Hawking [31] showed that any observer will see
thermal radiation in de Sitter spacetime. Let us start
our calculation from de Sitter spacetime in stationary
coordinates:

ds2 ¼ −
�
1 −

Λ
3
R2

�
dT2 þ

�
1 −

Λ
3
R2

�
−1
dR2 þ R2dΩ2:

ð16Þ

This metric has a timelike Killing vector field ∂=∂T, and
R ¼

ffiffiffi
3
Λ

q
is a comoving observer’s event horizon with

surface gravity κc ¼
ffiffiffi
Λ
3

q
. These coordinates cover only

part of the de Sitter hyperboloid [12]: they cover the
triangle on the left in Fig. 3 that stretches from i− to iþ.
The null coordinates.—Defining the new variable r�ðrÞ

by dr� ¼ dR
ð1−Λ

3
R2Þ we get

r� ¼ 1

2
ffiffiffi
Λ
3

q ln

0
B@1þ

ffiffiffi
Λ
3

q
R

1 −
ffiffiffi
Λ
3

q
R

1
CA: ð17Þ

Similar to the Schwarzschild coordinate we define tortoise
light cone coordinates ðu; vÞ by

u ¼ t − r�; v ¼ tþ r�: ð18Þ

These coordinates are defined for 0 < R <
ffiffiffi
3
Λ

q
, and vary

over the range −∞ < u, v < þ∞. The second coordinate
definition is Kruskal-Szekeres-like null coordinates ðU;VÞ
given by [32]

U ¼
ffiffiffiffi
3

Λ

r
expðκcuÞ; V ¼ −

ffiffiffiffi
3

Λ

r
expð−κcvÞ: ð19Þ

In this coordinate system, the metric becomes

ds2 ¼ −
4

ð1 − Λ
3
UVÞ2 dUdV þ R2dΩ2: ð20Þ

As shown in Fig. 3, light coming from past null infinity, I−,
and passing near the event horizon is stretched infinitely.
The difference with the black hole case is that here we must
consider ingoing null geodesics instead of outgoing ones.
The observer coordinates ðu; vÞ cannot see outside the
event horizon while the ðU;VÞ coordinates cover both
outside and inside the horizon.
The various vacua.—Like the Schwarzschild case, the

stationary de Sitter spacetime has three vacua.

FIG. 3 (color online). Particle creation in the stationary de Sitter
spacetime.
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(i) We define the jBi vacuum state (which is like the
Boulwarevacuum) for thewave solution in terms of the
mode functions ðu; vÞ. The corresponding modes are

1ffiffiffiffiffiffiffiffiffi
4πw

p e−iwu;
1ffiffiffiffiffiffiffiffiffi
4πw

p e−iwv: ð21Þ

It is not suitable as a vacuum for the stationary de Sitter
spacetime with particle production because it covers
only the inside of the horizon.

(ii) We define the jHi vacuum state (which is like the
Hawking-Hartle vacuum [33]) for the wave solution
in terms of the mode functions ðU;VÞ. The corre-
sponding modes are

1ffiffiffiffiffiffiffiffiffi
4πw

p e−iwU;
1ffiffiffiffiffiffiffiffiffi
4πw

p e−iwV: ð22Þ

It is not suitable as a vacuum for the stationary de
Sitter spacetime because it covers the inside and
outside of the horizon in a time symmetric way. It
can be shown that

hHj∶TvvðxÞ∶jHi ¼ hHj∶TuuðxÞ∶jHi ¼ ℏΛ
144π

ð23Þ

at the center, and hence the matter creation flux is
zero. It describes a thermal equilibrium universe
with temperature T ¼ ℏκc

2π .
(iii) We define the jUi vacuum state (which is like Unruh

vacuum ) for the wave solution in terms of the mode
functions ðu; VÞ. This mode function only covers the
upper triangle in Fig. 3, and it can be a suitable
vacuum for particle production in the stationary de
Sitter spacetime because it covers both inside and
outside the horizon in a time asymmetric way. The
corresponding modes are

1ffiffiffiffiffiffiffiffiffi
4πw

p e−iwu;
1ffiffiffiffiffiffiffiffiffi
4πw

p e−iwV: ð24Þ

As we attribute the jUi vacuum to the ðu; VÞ coordinates,
we can calculate the matter creation flux from Eq. (8):

hUj∶TvvðxÞ∶jUi ¼ ℏ
24π

�
κ2c
2

�
¼ ℏΛ

144π
; ð25Þ

where the thermal temperature in this case is

T ¼ ℏκc
2π

: ð26Þ

From the energy conservation point of view (Sec. II), a
Killing horizon exists, the Kodama vector changes sign on

the event horizon, and hence energy conservation is valid
for the created pair.
Affine parameter approach.—We can also derive this

temperature from the affine null parameter approach [10].
The metric in this case is stationary and the adiabatic
condition is satisfied for null geodesics which come from
near the event horizon. Assume that we consider the upper
triangle in Fig. 3, which is covered by the de Sitter space
coordinates ðV; uÞ. It can be shown that the v parameter is
the affine null parameter at future null infinity where the
observer receives the radiation, and the V coordinate is the
past null infinity affine parameter. Therefore, we can write
the equation

V ¼ pðvÞ ¼ −
ffiffiffiffi
3

Λ

r
expð−κcvÞ ð27Þ

for the null geodesic which comes from past null infinity
and arrives at the observer’s point in future null infinity.
The adiabatic condition will be held for the light passing
near the de Sitter spacetime horizon [30] and it can be
shown that the spectrum of the radiation is Planckian [10].
Assuming the adiabatic approximation for the null geodesic
near the event horizon, we get

T ¼ −
1

2π

p̈ðvÞ
_pðvÞ : ð28Þ

Using Eq. (19) we get the temperature T ¼ κc
2π. This

temperature is consistent with the temperature (26) from
the expectation value of the quantum stress tensor (25).
Note however a key feature this derivation makes clear:

the observer only experiences particle creation at the end of
her history where relation (27) diverges, and hence will not
experience it at any finite time before then. Hence static de
Sitter spacetime regions are not filled with blackbody
radiation everywhere: it comes into being for an observer
only at very late times.
Vacuum polarization.—The pure vacuum polarization

effect for the two-dimensional de Sitter spacetime can be
calculated in the tortoise coordinate ðu; vÞ by the terms

hBjTuujBi; hBjTuvjBi; hBjTvvjBi; ð29Þ

where the jBi state is like the Boulware state for the tortoise
coordinate. The de Sitter metric in the tortoise coordinates is

ds2 ¼ −4
e

ffiffi
Λ
3

p
ðu−vÞ

ð1þ e
ffiffi
Λ
3

p
ðu−vÞÞ2

dudv: ð30Þ

Here comparing with Eq. (4) we get ρ ¼ ln ð2 e
1
2

ffiffi
Λ
3

p
ðu−vÞ

1þe

ffiffi
Λ
3

p
ðu−vÞ

Þ.
According to Eq. (7), the different components of the
vacuum polarization are
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hBjTuujBi ¼−
ℏ
12π

ð∂uρ∂uρ− ∂2
uρÞ

¼−
ℏ
12π

�
Λ
3

�
1

2
−

e
ffiffi
Λ
3

p
ðu−vÞ

1þ e
ffiffi
Λ
3

p
ðu−vÞ

�
2

þΛ
3

�
e
1
2

ffiffi
Λ
3

p
ðu−vÞ

1þ e
ffiffi
Λ
3

p
ðu−vÞ

�
2
�

¼−
ℏΛ
144π

; ð31Þ

hBjTvvjBi¼−
ℏ
12π

ð∂vρ∂vρ−∂2
vρÞ

¼−
ℏ
12π

�
Λ
3

�
1

2
−

e
ffiffi
Λ
3

p
ðu−vÞ

1þe
ffiffi
Λ
3

p
ðu−vÞ

�
2

þΛ
3

�
e
1
2

ffiffi
Λ
3

p
ðu−vÞ

1þe
ffiffi
Λ
3

p
ðu−vÞ

�
2
�

¼−
ℏΛ
144π

; ð32Þ

hBjTuvjBi¼−
ℏ
12π

ð∂uρ∂vρ−∂2
uvρÞ

¼−
ℏ
12π

�
−Λ
3

�
1

2
−

e
ffiffi
Λ
3

p
ðu−vÞ

1þe
ffiffi
Λ
3

p
ðu−vÞ

�
2

−
Λ
3

�
e
1
2

ffiffi
Λ
3

p
ðu−vÞ

1þe
ffiffi
Λ
3

p
ðu−vÞ

�
2
�

¼þ ℏΛ
144π

: ð33Þ

These equations show that the vacuum polarization flux
relative to an observer with time coordinate t ¼ uþv

2
is zero.

The vacuum polarization is homogeneous for the de Sitter
spacetime, and it reduces to zero in the Minkowski limit
Λ → 0, which shows these results are due to gravitational
effects in quantum field theory. The energy density of the
vacuum polarization for the observer who is sitting in the
center r ¼ 0 ⇔ u − v ¼ 0 is zero:

ρVP ¼ hBjTuujBi þ hBjTvvjBi þ 2hBjTuvjBi ¼ 0: ð34Þ

The total effects.—A summary of the expectation values
of the energy-momentum tensor for two-dimensional static
de Sitter spacetime is given in Fig. 4. Here we see that
particle creation flux occurs only for the Unruh-like

vacuum and the expectation value for the Boulware vacuum
state represents pure vacuum polarization.

2. Particle creation in the cosmological de
Sitter spacetime

The cosmological de Sitter spacetime is described by the
metric

ds2 ¼ −dt2 þ e2
ffiffi
Λ
3

p
tðdr2 þ r2dΩ2Þ: ð35Þ

These coordinates only cover half the de Sitter manifold
−Z2

0 þ Z2
1 þ Z2

2 þ Z2
3 ¼ 3

Λ, Λ > 0; consequently as shown
in Fig. 5, this spacetime covers the upper half of the total de
Sitter manifold. Like the case of stationary coordinates, this

spacetime has an event horizon at r ¼
ffiffiffi
3
Λ

q
e−

ffiffi
Λ
3

p
t and the

ðt; rÞ coordinates cover both inside and outside the horizon.
Using the coordinate transformation,

R ¼ e
ffiffi
Λ
3

p
tr;

T ¼ tþ
Z ffiffiffi

Λ
3

q
R

1 − Λ
3
R2

dR ¼ t −
3

2Λ
ln

�
1 −

Λ
3
R2

�
; ð36Þ

we can relate stationary de Sitter coordinates ðT; RÞ with
metric (16) to the cosmological coordinates ðt; rÞ with
metric (35).
This coordinate transformation changes the particle

creation effects discussed above in the static case for an
observer who is located at r ¼ 0 in the expanding case.
Particle creation for the cosmological de Sitter spacetime
can be seen by other methods as well [6,34,35]. Again the
effect only occurs at late times when the affine parameter
relation diverges. It does not manifest for an observer at a
finite time in her history (because no matter what that finite
time is, there is still an infinite time to run before the event
horizon is reached).
Vacuum polarization.—Using Eq. (A4), the expectation

value of the quantum stress tensor for a general FLRW
metric is

FIG. 4 (color online). The expectation value of the energy-momentum tensor in different vacua for two-dimensional de Sitter
spacetime observed at the center. The meaning is as in the case of Fig. 2.
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hTuui ¼ hTvvi ¼
ℏðaä − _a2Þ

48π
;

hTuvi ¼
−ℏðaäÞ
48π

: ð37Þ

This shows that the FLRW model has no flux of Hawking
radiation and no vacuum polarization. Thus in the case of
de Sitter spacetime we get

hTuui ¼ hTvvi ¼ 0; hTuvi ¼
−ℏΛe2

ffiffi
Λ
3

p
t

144π
: ð38Þ

We can calculate the energy density of vacuum polarization
(VP) for the comoving observer uμ ¼ ð1; 0Þ inside the
horizon as

ρVP ¼
1

a2
ðhx̄�jTuujx̄�i þ hx̄�jTvvjx̄�i þ 2hx̄�jTuvjx̄�iÞ

¼ −ℏΛ
72π

: ð39Þ

Like in the case of stationary coordinates, the vacuum
polarization in a cosmological de Sitter spacetime is
homogenous. The comoving cosmological observer will
see a constant vacuum polarization energy density which is
smaller in magnitude than the cosmic fluid by order ℏ.
The Kodama vector (2) changes sign on the event

horizon, which is a null surface, so particles and anti-
particles have different signs for their energy and hence
energy conservation is obeyed for any particles created
there; hence particle creation is possible. One might think
that such particles created at the event horizon are diluted

away by a cosmological infinite redshift, 1þ Zc ¼ e

ffiffi
Λ
3

p
t0

e

ffiffi
Λ
3

p
t∞
,

but this argument is not true. This is like the black hole case
where the created particles near the horizon get infinitely
redshifted when it reaches future infinity.

3. The expanding de Sitter era in standard cosmology

The standard model of cosmology uses the expanding de
Sitter metric (35) for describing both the early inflationary
era and the late dark-energy-dominated era, but with
different values of the constant Λ in these two phases,
which are separated by a matter- and radiation-dominated
era. Since there is both a start time and an end time for the
inflationary era, this phase of the Universe’s history is only
covered by the small part of the de Sitter spacetime which is
located between times ti and tf in Fig. 5. The late dark-
energy-dominated phase starts at a time tDE and (assuming
it is a cosmological constant) lasts forever, and so it has an
associated event horizon as t → ∞.
Late time particle creation.—Observers have an event

horizon when vacuum energy dominates at late times (so
future infinity is spacelike) so one might expect Hawking
radiation to be associated with this horizon at very late

times. Note that the event horizon for the late time
accelerating phase is the same as the cosmological apparent
horizon. Overall, the initial state (the vacuum choice at the
start) and state at the event horizon of the Universe need
knowledge of the preinflation era and final fate of our
Universe respectively. If we have a finite time for an
exponentially accelerating era, it is hard finding the particle
creation term from the quantum stress tensor when we do
not know the initial state. We can however use the tunneling
method [6] to calculate the flux of radiation at very late
times. However since any particles created near the
cosmological event horizon would arrive at the center at
very late times, in practice a comoving cosmological
observer cannot see any associated created particles at
the present time in an expanding universe. They will arrive
at her world line only in the very far future. Thus particle
creation in the late dark-energy-dominated phase will have
no present-day observational effects in cosmology, because
the event horizon for any observer only exists in the far
future of the Universe.
Inflationary particle creation.—Note that the de Sitter

horizon for the inflationary era is not a cosmological event
horizon, because the inflationary era comes to an end and is
replaced by the radiation-dominated era. There is however
a cosmological apparent horizon (an antitrapping surface),
and this can lead to particle creation (because Hawking
radiation can be associated with apparent horizons rather
than event horizons [5]).
To study particle creation in the inflationary era, we have

to notice these points:
(i) The standard choice of the vacuum state is the

Minkowski vacuum of a comoving observer in the

FIG. 5 (color online). Particle creation in the cosmological de
Sitter spacetime.
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far past t ¼ −∞ (when all comoving scales were far
inside the Hubble horizon), which is called the
Bunch-Davies (B-D vacuum), and is shown in Fig. 5.
There are some discussions about the suitability of
choosing this vacuum [36] because it is defined at
past time infinity, which is not applicable to standard
big-bang cosmology where inflation started a finite
time ago. Changing the vacuum will result in a
different power spectrum of the quantum fluctua-
tions and expectation value of the stress tensor. For
example as we saw in the last subsection, if we
choose another vacuum like the vacuum related to
the maximally extended de Sitter spacetime, there is
no matter creation flux. Even observational param-
eters like the primordial power spectrum and bis-
pectrum in the cosmic microwave background
change on choosing another vacuum [37]. To know
the correct vacuum, we have to know the preinfla-
tionary models to calculate the initial state. Since the
initial state of the big-bang cosmology is directly
connected to quantum gravity problems, we cannot
know the initial state at present. It seems that
effective field theory can be a tool to estimate the
effective initial state for preinflationary models.

(ii) The unrenormalized expectation value for the stress
tensor has ultraviolet (UV) divergences in the B-D
vacuum which cannot be renormalized by the usual
counterterm. Recently, people have applied different
renormalization methods for UV divergences in
cosmological models [38]. This UV divergency
comes from choosing the B-D vacuum, or is
generated by the unphysical procedure of sudden
matching between different cosmological eras [39].

(iii) The expectation value of the quantum stress tensor in
the B-D vacuum according to the observable coor-
dinates describes vacuum polarization, particle cre-
ation, and vacuum energy effects (in the case that we
consider the background wave number renormalized
by the cutoff); see [39]. As shown in Fig. 5, choosing
a vacuum like the B-D vacuum, which represents the
initial state of the field at far past infinity (deep
inside the horizon), generates a particle creation term
in the expectation value of the field in inflationary
models. However inflation starts from an initial time,
not from infinity.

(iv) When we change coordinates from the cosmological
frame to the stationary frame, the cosmological
redshift changes to a gravitational redshift because
of that transformation. The point is that the attributed
temperature (or wave frequency) is calculated by
comparing the vacuum at future and past infinities,
giving the temperature at the observer’s point in the
future. To see this, consider the Kodama vector given
by Eq. (2). For the stationary de Sitter spacetime this
is ð− 2

3
ΛR; 0; 0; 0Þ and for the cosmological de Sitter

spacetime it is ð1;−
ffiffiffi
Λ
3

q
r; 0; 0Þ). One can argue that

Kodama observers who lie inside the horizon and
have 4-velocity vector K̂ ¼ K

jKj see the divergence in
frequency measured by such observers at the horizon
ν̂ ¼ ν

jKj . Therefore, such observers measure a ther-

mal spectrum with temperature T̂ ¼ T
jKj (see [7] for

more discussion) which has a divergence at the
cosmological apparent horizon.

(v) An applicable method for this era is the tunneling
method. The advantage of this method is that we do
not need to know the initial state of the preinflation
era or the global event horizon. We just need the
WKB approximation [30] for ingoing waves near
the de Sitter horizon (the cosmological apparent
horizon). In contrast to the black hole case where we
have an apparent horizon for outgoing null geo-
desics, which is a trapping horizon, here we have a
cosmological apparent horizon for ingoing null
geodesics, which is an antitrapping horizon (it is
a time-reversed trapping horizon). In black hole
cases, outgoing null geodesics are received by the
observer; here ingoing null geodesics are received
by the observer. For the case of a de Sitter era that
comes to end we have a finite burst of Hawking
radiation flux associated with the apparent horizon
which reaches the observer at very late times and is
diluted by cosmological expansion by a factor ð 1

1þzÞ2
(the reason for power 2 is that one factor 1

1þz is due to
the cosmological Doppler redshift of the photon and
second is because the arrival rate of the photons is
also reduced by the same factor) where z is the
cosmological redshift. The resulting Planckian spec-
tral flux is

ρðwÞ ¼ dw
2π

ΓðwÞ
e
2πw
κc − 1

; ð40Þ

where ΓðwÞ is the frequency-dependent (gray-body)
transmission coefficient for the outgoing particle
to reach future infinity without backscattering. The
total luminosity for this radiation is L ¼ Rþ∞

0 ρðwÞ.
As a result of the redshift factors, this particle
creation term does not give a significant contribution
to the total matter in the Universe or to its expansion
rate, nor does it affect any observations we might
make at the present time.

But in any case, one does not need any concept of
horizons or particle pair creation in order to derive the
quantum fluctuations that lead to structure formation in an
inflationary universe; see e.g. [40]. The basis of the
inflationary model perturbations is a mechanism that
generates quantum fluctuation of the matter field because
of the noncommutativity of the field state and momentum;
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these become classical after horizon exit and then become
seeds for cosmological structure formation [40].

V. DIFFERENT ASPECTS OF THE
SEMICLASSICAL QUANTUM EFFECT FOR
COMPACT STARS AND BLACK HOLES

In this section, we discuss the different aspects of
quantum vacuum, like vacuum polarization, for compact
stars and asymptotically flat spacetimes. For the black hole
case we consider the effect of applying the adiabatic
condition on the quantum stress tensor, looking at the
spectrum of negative energy particles which fall into the
black hole and considering the backscattering of radiation.

A. Quantum stress tensor for compact stars

If the spacetime does not possess an event or apparent
horizon (the case of stars and planets) then the above
complications go away and we only have one vacuum state
to deal with, the Boulware vacuum, which encompasses the
entire space. There is no event horizon, and so there are no
processes associated with an event horizon.
The vacuum solution around the compact star can be

described by a Schwarzschild exterior solution in tortoise
coordinates:

ds2 ¼ −
�
1 −

2m
r

�
dudvþ r2dΩ2; ð41Þ

where r > 2m. In these coordinates, the vacuum polariza-
tion for the compact star is the same term hBjTμνjBi as
discussed before [41]. One can take the vacuum solution
before the star collapses, jini, and calculate the quantum
stress tensor after the star collapses according to this
prescription. On the other hand we can read the
Bogoliubov coefficients and find the particle number
operator, hinjNijini ¼ hinjaout†i aouti jini ¼ P

jjBijj2. Both
of these methods calculate the same vacuum polarization
effect (not particle creation). Note that Fabbri et al. [42]
have shown that the particle number operator is propor-
tional to total quantum energy in two-dimensional
spacetime.
As an example, consider a static star with a spherically

symmetric distribution of perfect fluid. The line element
can be written as

ds2 ¼ −e2αðrÞdt2 þ e2βðrÞdr2 þ r2dΩ2: ð42Þ
One can define double null coordinates ðu; vÞ for this
metric by du ¼ dt − dr� and dv ¼ dtþ dr� where
dr� ¼ eβðrÞ−αðrÞdr. For these coordinates, or any other null
coordinate ðUðuÞ; VðvÞÞ, we have ∂u

∂r ¼ − ∂v
∂r. Therefore

from Eqs. (7) and (11) the vacuum polarization components
give the equation hTuuðxÞi ¼ hTvvðxÞi. Therefore, like in
the Schwarzschild case, the flux of vacuum polarization for

a comoving observer is zero. As a result, in the static
spherically symmetric metric the general matter flux
relative to the comoving observer, given by
F ¼ FVP þ FPC, is equal to only the particle creation
flux, i.e. FVP ¼ 0. But there is no particle creation flux as
there is no event horizon for compact stars
so FPC ¼ 0 ⇒ F ¼ 0.
If a central object in asymptotically flat spacetime is

sufficiently noncompact, 2m ≪ r, then the spacetime is
closely Minkowskian and there are no horizons. In this case
the quantum vacuum polarization effect is proportional to
the two factors ℏ and 2m

r [41,42]. The first factor shows that
this effect is a small quantum correction. The second factor
shows that such a vacuum state will be virtually indistin-
guishable from the Minkowski vacuum state. Hence, the
expectation value of the (renormalized) quantum stress
tensor will be negligible throughout the entire spacetime. In
other words, this case is the weak field limit, and since the
linear relation between two coordinates ξ� and x� is
dominant in Eqs. (7) and (11), the vacuum polarization
term is zero.

B. Black hole spacetimes

Here we want to find the trace of the adiabatic condition
[10] in the quantum stress tensor when black holes occur.
Let the affine parameters on the null generators of past and
future null infinity, I− and Iþ, be U and u. Null geodesics
from past null infinity pass through the center and reflect
off the center at r ¼ 0. We express the relation between
these two affine parameters provided by the null curves as
U ¼ pðuÞ and define the function

κ ¼ −
p̈ðuÞ
_pðuÞ ; ð43Þ

where · ¼ d
du. With this definition we can show that

pðuÞ
_pðuÞ ¼ −_κ þ κ2. The nonzero term in the particle flux

equation (8) in the two-dimensional case becomes

hψ j∶T−−ðxÞ∶jψi ¼
ℏ
24π

�
_κ þ κ2

2

�
; ð44Þ

where U ¼ x̄− and u ¼ x−. Now assuming the adiabatic
condition j_κðu�Þj ≪ κðu�Þ2 along the u� reference null
curve completely traversing the body, we get a nonzero
term for particle flux. For the stationary case κ ¼ 1

4M, so we
get the standard thermal flux

hψ j∶T−−ðxÞ∶jψi ¼
ℏ

768πM2
: ð45Þ

This calculation can be extended to four-dimensional
spacetime using Eq. (12) [Eq. (5.155) in [20]]. As discussed
in [10], the adiabatic condition (eikonal approximation) is
equivalent to the statement that a photon emitted near the
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peak of the Planckian spectrum should not see a large
fractional change in the peak energy of the spectrum over
one oscillation of the electromagnetic field (that is, the
change in spacetime geometry is adiabatic as seen by a
photon near the peak of the Hawking spectrum). This
condition on the tunneling method for black holes’ radi-
ation gives a constraint on black holes that can emit
radiation [8].

C. Black hole radiation from quantum stress tensor

Let us discuss the following important question: Can we
recognize particle creation from the local character of the
quantum stress tensor, or do we need some global
information about the spacetime?
Generally the final fate of gravitational collapse is a

black hole or compact star. For compact stars, only the
vacuum polarization contributes to the quantum stress. For
asymptotically flat or conformally flat spacetime like
FLRW, since the affine parameters Uin (we drop the in
index in the formulas) and u on the null generators of past
and future null infinity are linearly related, the particle
creation flux part is zero from Eq. (8). But gravitational
collapse that has its final fate as a black hole has two affine
parameters exponentially related near the horizon. This
exponential relation gives a nonzero term for the created
matter flux.

1. Collapse to a Schwarzschild black hole: Event horizons

For more clarification, consider a collapse to a black hole
so that a Schwarzschild black hole forms finally. Following
the calculation in [43] [Eq. (4.24)], if λ is an affine
parameter which separates the outgoing null geodesic at
future null infinity and the ingoing null geodesics at past
null infinity, and u ¼ t − r�, we get

u ¼ 2Eλ − 4m ln

�
λ

k1

�
ð46Þ

at future infinity and

U −U0 ¼ −k2λ ð47Þ
at past infinity (k1 and k2 are constants). Therefore, we can
write

u ¼ −
2E
k2

ðU −U0Þ − 4m ln

�
−
U −U0

k1k2

�
: ð48Þ

The quantity U0 determines the last ingoing null ray that
can come out of the black hole, as shown in Fig. 6. Far from
the horizon, the relation between two affine parameters is
linear, and according to relation (1) there is no particle
creation. In addition, in the zero limit for the black hole
mass we have zero particle creation. Only near the black
hole horizon do we get the exponential relation between

parameters and on using Eq. (1) we get a nonzero particle
flux. Using the affine relation (48), we get the Bogoliubov
coefficients:

αww0 ¼ −C
Z

0

−∞
ds
�w0

w

�1
2eiðw

0−w2E
k2
Þseiw0U0

× exp½iw4m lnðs=k1k2Þ� ð49Þ

and

βww0 ¼ −C
Z

0

−∞
ds

�
w0

w

�1
2

eiðw
0þw2E

k2
Þseiw0U0

× exp½iw4m lnð−s=k1k2Þ� ð50Þ

[this is an extension of Eqs. (4.75) and (4.76) in [43]].
In the case jαww0 j2 ≠ expð8πmwÞjβww0 j2 we have

deviation from thermal radiation at a distance from the
horizon. All observer paths will end at iþ as shown in
Fig. 6. Hence, all observers will see thermal radiation
coming from near the horizon at late times. Note that all the
above calculations are related to the case when we know the
final (global) scenario to be a collapse to a black hole and
can use Eq. (48) for the Schwarzschild geometry. If the
final fate of the collapse is a star, the linear relation between
affine parameters gives no particle creation. We are also
here assuming no infalling matter or radiation. Note that
one can calculate the expectation value of the stress tensor
in terms of the past null infinity affine parameters

FIG. 6 (color online). Null trajectory for the spherical black
hole collapse.
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ðUin; VinÞ, which are related to the future affine parameter
by Eq. (48). This vacuum state is called the “in” vacuum
state, and the resulting expectation values of stress tensor
are calculated for the Schwarzschild metric in Chap. 5
of [20].

2. Collapse to a Schwarzschild black hole:
Apparent horizons

For calculating particle creation at the point O on the
apparent horizon (MOTS), we need to consider two ingoing
null rays c and d and their affine distance at past null
infinity and at the future singularity (since these two null
rays end at the singularity). We compare the affine distance
of these two null rays before falling into the singularity with
their affine distance at past null infinity. Since we are inside
the event horizon the t and r coordinates change their
character. We define new coordinates dr�

dr ¼ −ð2mr − 1Þ−1
and u0 ¼ r� − t. Then the affine distance relation gives

u0 ¼ 2Eλþ 4m ln

�
λ

k1

�
ð51Þ

at future infinity where E < 0 and k1; λ > 0 and

U −U0 ¼ k2λ ð52Þ

at past infinity where k2 > 0. Therefore, we can write

u ¼ 2E
k2

ðU −U0Þ þ 4m ln

�
−
U −U0

k1k2

�
: ð53Þ

We see that similar relations will hold between the affine
parameters. With the same reasoning as in the case of
outside the horizon, the second exponential part gives a
nonzero term for particle creation in Eq. (1), which is
significant for outgoing null rays which pass near the event
horizon. The important point is that the − sign behind the
second term in the above equation causes the thermal
radiation near the horizon but inside the horizon it has
negative energy. Calculation of the Bogoliubov coefficient
near the horizon and inside the black hole gives

jαww0 j2 ¼ e−8πmwjβww0 j2: ð54Þ

Hence the number of created particles at late time near and
inside the horizon is

hNi ¼ ΓðwÞ
e−8πmw − 1

; ð55Þ

where ΓðwÞ is the backscattering factor for the wave packet.
Since the expectation value of the quantum stress tensor

has an internal integration over the wave frequency, we
cannot read the spectrum of the radiation from it. As is
discussed in [10], the adiabatic condition is the necessary

physical condition for having a Planckian spectrum. For a
collapsing model that terminates in a Schwarzschild black
hole, the Planckian spectrum comes from the logarithmic
term (48) which means that only waves that pass near the
event horizon have a Planckian spectrum.

D. An example: Two-dimensional Schwarzschild
black holes

As is known, the tensor hTμνi has two advantages in
determining particle creation effects: the first is that it gives
a covariant definition of real particle creation, and the
second is that if it becomes zero in one coordinate system, it
remains zero in all other coordinates. To calculate the
quantum stress tensor in the Openheimer-Snyder collapse
case, consider the interior FLRW metric as

ds2F ¼ −dt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2dΩ2

�
; ð56Þ

where aðtÞ is the scale factor, k is the spatial curvature, r is
the comoving radius, and t is the proper time of the
comoving observer, that is, the cosmological time. The
double null form of the metric is given by

ds2F ¼ −a2dudvþ R2dΩ2; ð57Þ

where

dη ≔
dt
a
; dχ ≔

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p ; ð58aÞ

u ≔ η − χ; v ≔ ηþ χ: ð58bÞ

Assume the light which comes from past null infinity where
the metric is Minkowski space time and passes through the
center and reaches a point inside the FLRW spacetime. Let
u ¼ x− and v ¼ xþ be a null coordinate inside the FLRW
part and ū ¼ x̄− and v̄ ¼ x̄þ be initial null coordinates at
past null infinity which we denote by jx�i and jx̄�i. As
shown in [20]

hx̄�jT��jx̄�i ¼ hx�jT��jx�i −
ℏ
24π

fx̄�; x�g: ð59Þ

The observer’s radiation flux at the observation moment
η0 is given by

hx̄�jTχ
ηjx̄�i ¼ 1

a20
hx̄�jTηχ jx̄�i ¼

1

a20
hx̄�jðTuu − TvvÞjx̄�i:

ð60Þ

Substituting Eq. (59) into the above equation one gets
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hx̄�jTχ
ηjx̄�i ¼ ℏ

24πa20

�
3

2

�
d2ū
du2

�
dū
du

�
2

−
d3ū
du3

�
dū
du

�
:

ð61Þ
Without giving the details of the calculation, the ū which
comes from the Minkowski part at past null infinity and
passes through the center to arrive at an inner marginally
trapped 3-surface (IMOTS) point inside the FLRW part
varies as

ū ¼ cuþ c1; ð62Þ
where c and c1 are constants. As a result hx̄�jTχ

ηjx̄�i ¼ 0,
which says no quantum particle creation occurs from the
IMOTS in a two-dimensional Oppenheimer-Snyder black
hole. Any other collapsing models which keep the linear
function (62) between the two affine parameters also give a
zero term for quantum particle creation. Note that we have
ignored the reflection of the star surface. This result is
compatible with the result in [8] where the authors show
that by the tunneling method the IMOTS does not have any
radiation.

E. Backscattering in dynamic black holes

In this subsection, we will show that like in the case
of the Schwarzschild stationary black hole, the two-
dimensional dynamic black hole and s-wave approximation
for a four-dimensional dynamic black hole can describe the
main features of black hole radiation.
We write the metric in the form ds2 ¼ −2fðu; vÞdudvþ

Rðu; vÞ2dΩ2 where u ¼ x− and v ¼ xþ only cover outside
the horizon where the observer is. Without giving the
details, the Klein-Gordon equation for a general wave
equation becomes

∂þ∂−φþ ½∂þR∂−φþ ∂−R∂þφ�
R

þ lðlþ 1Þf
2R2

φ ¼ 0:

ð63Þ
Defining the function φ ¼ Φ

R, we get this form for the
general wave equation:

∂þ∂−Φ
R

−
∂þ∂−R
R2

Φþ lðlþ 1Þf
2R3

Φ ¼ 0: ð64Þ

We call Vl ¼ − ∂þ∂−R
R2 þ lðlþ1Þf

2R3 the effective potential in
the general spherically symmetric spacetime, and the wave
equation reduces to this simple form

�∂þ∂−

R
þ Vl

�
Φ ¼ 0: ð65Þ

In the special s-wave case, l ¼ 0 and the Klein-Gordon
equation is

∂þðR2∂−φÞ þ ∂−ðR2∂þφÞ ¼ 0; ð66Þ

which can be written as

∂þ∂−φþ ½∂þR∂−φþ ∂−R∂þφ�
R

¼ ∂þ∂−φþ ½θþ∂−φþ θ−∂þφ�
2

¼ 0; ð67Þ

where θ� ¼ 2 R�
R .

Defining the Misner-Sharp mass for this metric as M ¼
R
2
ð1þ 2

∂þR∂−R
f Þ [44], the apparent horizon for this metric is

located in

R ¼ 2M ⇒ ∂þR∂−R ¼ 0: ð68Þ
The future and past apparent horizon are distinguished by
θþ ¼ 0 and θ− ¼ 0. In the case of gravitational collapsing
models we consider the future apparent horizon. If we write
the general spherically symmetric matter tensor in the
double null coordinates ðu; vÞ as

Tμν ¼ pr2dΩ2 þ Tþþduduþ Tþ−dudvþ T−−dvdv;

ð69Þ

then Einstein’s equation gives

R∂þ∂−Rþ f=2þ ∂þR∂−R ¼ 4πR2Tþ−: ð70Þ

Using this result in the general wave equation we get

∂þ∂−Φ
R

−
�
4πR2Tþ−−f=2−∂þR∂−R

R3
−
lðlþ1Þf

2R3

�
Φ¼0:

ð71Þ

We can change the coordinates to ðU;VÞ where metric
becomes

ds2 ¼ −2FdUdV þ R2dΩ2; ð72Þ

which like the Kruskal coordinates are regular at the
horizon and cover all spacetime. The coordinate trans-
formation between these two coordinates gives

f ¼ F

�
dU
du

dV
dv

þ dU
dv

dV
du

�
: ð73Þ

Without loss of generality we take U ¼ pðuÞ and
V ¼ qðvÞ. Since the ðu; vÞ coordinates only cover the
exterior of the horizon and u goes to infinity at the future
apparent horizon, we get

dU
du

→ 0 ⇒ f → 0: ð74Þ

An easier way to see this is that one can write the general
spherically symmetric metric in the Kodama foliation [45]

PARTICLE CREATION FROM THE QUANTUM STRESS TENSOR PHYSICAL REVIEW D 91, 103002 (2015)

103002-15



ds2 ¼ −eψðt;rÞ
�
1 −

2Mðt; rÞ
R

�
dt2 þ dr2

ð1 − 2Mðt;rÞ
R Þ

þ Rðt; rÞ2dΩ2: ð75Þ

Here M is the Misner-Sharp mass and these coordinates
cover outside the horizon. This metric can be written as

ds2 ¼ −eψðt;rÞ
�
1 −

2Mðt; rÞ
R

�
2
�
dt2 þ dr2

ð1 − 2Mðt;rÞ
R Þ2

�

þ Rðt; rÞ2dΩ2:

ð76Þ
Then we have

f ¼ Iðt; rÞeψðt;rÞ
�
1 −

2Mðt; rÞ
R

�
2

;

dudv ¼ 1

Iðt; rÞ
�
dt2 þ dr2

ð1 − 2Mðt;rÞ
R Þ2

�
; ð77Þ

where Iðt; rÞ is an integration factor to ensure that the
second term is a perfect differential. One can easily see that
f is zero on the horizon. Therefore, even in the general
spherical symmetric model we can neglect the backscatter-
ing, l ≠ 0 term in Eq. (71), and only consider the
s-wave term near the future apparent horizon, given by
θþ ¼ 2

Rþ
R ¼ 0.

Unlike the Schwarzschild black hole where the general
wave equation near the apparent horizon reduces to the
two-dimensional wave equation and only the first term in
Eq. (71) takes part, generally nonzero matter terms cause
that the two-dimensional wave equation can be different
from the four-dimensional wave equation near the future
apparent horizon for generally spherically symmetric mod-
els. As a result of the above calculation, in the case that we
have a zero matter term, we can neglect the effective
potential term, the four-dimensional general wave equation
reduces to the two-dimensional wave equation, and the
general features of the radiation like its thermal character
and temperature are the same. On the other hand we have
discussed above that only isolated black holes (black holes
which already have no flux or matter on the horizon) can
radiate. Therefore, we can infer that the backscattering term
can be neglected for all radiating black holes, and s-waves
and the two-dimensional wave equation can well describe
the general features of the radiating black hole near the
horizon even in the nonstatic case.

VI. CONCLUSION AND DISCUSSION

We have shown that energy conservation required for
virtual pair creation to be real gives a strict limitation on
which black holes can be radiative. It was shown that
general black holes that have a dynamical horizon [15]

cannot have pair creation on the horizon, because they
violate energy conservation. Only isolated horizons and
quasi-isolated horizons (slowly evolving horizon) can
create real pairs which are not forbidden.
Next, we have considered how the expectation value for

the quantum stress tensor carries information about quan-
tum effects in curved spacetime. Besides the zero-point
energy there are two important quantum effects, namely
particle creation and vacuum polarization, which can be
studied through the expectation value of the quantum stress
tensor in curved spacetime. Generally there is no way to
distinguish these two effects in curved spacetime, but
having a horizon and choosing suitable coordinates help
us to identify these two effects in the expectation value of
the quantum stress tensor. Existence of an event horizon so
that the observer cannot see a part of the spacetime is one
criterion for having particle creation in a spacetime. To
identify particle creation in the quantum stress tensor, one
must choose a vacuum state that covers both inside and
outside the horizon; this is a mixed state for the observer.
In this way, we have studied particle creation and

vacuum polarization in cosmological models. We have
defined three different vacuum states for the de Sitter
spacetime which are like the Boulware, Hawking-Hartle,
and Unruh vacua in the black hole case. It has been
discussed that the Boulware-like vacuum state describes
the vacuum polarization in the expectation value of the
energy-momentum tensor. The Hawking-Hartle vacuum
state is the state of a thermal equilibrium universe with the
temperature T ¼ ℏκc

2π . The calculation of the particle creation
term by the expectation value of the quantum stress tensor
gives the same thermal radiation that Gibbons and Hawking
have calculated [31] for the de Sitter stationary spacetime.
It has been shown that this thermal temperature is com-
patible with the temperature that is calculated by the affine
null parameter approach. In addition, the different compo-
nents of the vacuum polarization tensor have been calcu-
lated in this frame.
Different aspects of particle creation in the cosmological

de Sitter have been discussed. Since we are only able to see
the events which are inside our past light cone, the
observable quantities must be written for that region. For
example in the de Sitter static spacetime we have to
calculate the quantities for a coordinate that just covers
inside the horizon (like the cosmological tortoise coordi-
nate). For the cosmological de Sitter model, the Unruh-like
vacuum that we have proposed is interesting for cosmo-
logical application because, like the Bunch-Davies vac-
uum, it covers also the eternally expanding cosmological
part (upper triangle) of the de Sitter hyperboloid and gives
quantities which an observer can measure.
For the black hole case, the global nature of the vacuum

states has been discussed and it has been shown that it is not
possible to study the vacuum polarization and particle
creation locally by using the expectation value of the
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quantum stress tensor. We have shown that particle flux
from the quantum stress tensor gives the same temperature
that the affine null parameter approach [6] gives for the
asymptotically flat spacetime. We have also investigated
the nature of the particle term via Bogoliubov coefficients
in the case that the event horizon has formed. The
exponential relation between affine parameters in future
and past null infinity implies thermal radiation properties
for particles with positive energy and antiparticles with
negative energy. This shows that the created particles are
confined near the event horizon. We have shown that the
vacuum polarization flux for a comoving observer (relative
to the t ¼ uþv

2
coordinate) in the case of a spherically

symmetric static compact star or black hole and de Sitter
spacetime is zero.
As an example, using the expectation value for the

quantum stress tensor, we have shown that the particle
creation surface cannot be attributed to the IMOTS surface
in Oppenheimer-Snyder collapse. Finally, it has been
shown that we can neglect backscattering l ≠ 0 terms
and only consider the s-wave term near the future apparent
horizon; the s-wave term gives the important part of
Hawking radiation in general spherically symmetric black
holes.
This paper has introduced ways for choosing good

coordinates for separating particle creation from vacuum
polarization in the case of general nonstationary metrics.
This will be of practical use in examining the black hole
backreaction problem [46].
In the Appendixes we summarize the nice presentation of

quantum stress tensors given by Saida et al. [47] that is
used in what is presented in previous sections. Appendix A
gives the two-dimensional case and Appendix B the
four-dimensional case.
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APPENDIX A: TWO-DIMENSIONAL CASE

It has already been recognized for a few decades that
many different methods of renormalization give equivalent
results (see for example, Chaps. 6 and 7 in [48]). We look
at a minimally coupled massless scalar field ϕ, whose
stress-energy tensor is

Tμν ¼ ϕ;μϕ;ν −
1

2
gμνϕ;αϕ

;α: ðA1Þ

The background spacetime is described in double null
coordinates ðu; vÞ as

ds2 ¼ −Dðu; vÞdudv: ðA2Þ

The field ϕ satisfies the Klein-Gordon equation□ϕ ¼ 0.
When a coordinate system (not necessarily null) is speci-
fied to describe the differential operator □, we can find a
complete orthonormal set ffωg for arbitrary solutions of
□ϕ ¼ 0, where ω denotes the frequency of the mode
function. The positive frequency mode is the mode function
fω which is constructed to satisfy the conditions, ω > 0,
ðfω; fω0 Þ ¼ δðω − ω0Þ, ðfω; f�ω0 Þ ¼ 0, and ðf�ω; f�ω0 Þ ¼
−δðω − ω0Þ, where ðf; gÞ is the inner product defined from
the Noether charge of time translation of ϕ and f�ω is
complex conjugate to fω called the negative fre-
quency mode.
In two-dimensional spacetimes, the positive frequency

modes can be decomposed with respect to the direction of
propagation. In the double null coordinates, they are
fωðuÞ ¼ expð−iωuÞ= ffiffiffiffiffiffiffiffiffi

4πω
p

and fωðvÞ ¼ expð−iωvÞ=ffiffiffiffiffiffiffiffiffi
4πω

p
. Then, the quantum operator ϕ is expanded by

the complete orthonormal set of the positive and negative
frequency modes as

ϕðu; vÞ ¼
Z

∞

0

dω½aωfωðuÞ þ a†ωf�ωðuÞ

þ bωfωðvÞ þ b†ωf�ωðvÞ�: ðA3Þ

The canonical quantization presumes the simultaneous
commutation relation between ϕ and its conjugate momen-
tum, so that faωg and fbωg are harmonic operators
satisfying the commutation relations ½aω; a†ω0 � ¼
δðω − ω0Þ and ½bω; b†ω0 � ¼ δðω − ω0Þ and all others vanish.
They define the Fock space of quantum states and give
particle interpretation. The vacuum state jvaci is defined as
a quantum state satisfying aωjvaci ¼ bωjvaci ¼ 0 for all ω.
If we choose different coordinates ðū; v̄Þ, a natural

orthonormal set of mode functions is ff̄ωg, where f̄ωðūÞ ¼
expð−iωūÞ= ffiffiffiffiffiffiffiffiffi

4πω
p

and f̄ωðv̄Þ ¼ expð−iωv̄Þ= ffiffiffiffiffiffiffiffiffi
4πω

p
. Then

the expansion (A3) gives different harmonic operators
fāωg and fb̄ωg. These harmonic operators define another
vacuum state j ¯vacið≠ jvaciÞ if there arises a mixing of
positive and negative frequency modes ðfω; f̄�ω0 Þ ≢ 0

between the two coordinate systems. Thus, even if a
quantum state is initially set to be a vacuum state, this
does not remain vacuum but corresponds to an excited state
associated with the coordinate system natural to an
observer at the final time if the mixing of positive and
negative modes arises. This will be interpreted as quantum
particle creation in curved spacetimes.
The quantum expectation value of the stress-energy

tensor h ¯vacjTμνj ¯vaci is calculated by substituting the
quantum operator (A3) (after replacing aω and bω with
āω and b̄ω) into the stress-energy tensor (A1). However,
h ¯vacjTμνj ¯vaci diverges even for flat background cases.
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Therefore, we need to renormalize the stress-energy tensor.
We do not go into the details of the regularization method
but only quote the result of Sec. 6.4 in [48],

hT μ̄ ν̄i ¼ θμ̄ ν̄ þ
ℏR
48π

gμ̄ ν̄; ðA4Þ

where hT μ̄ ν̄i is the renormalized expectation value of
h ¯vacjT μ̄ ν̄j ¯vaci, R is the Ricci scalar of the background
spacetime, and θμ̄ ν̄ is a symmetric tensor whose compo-
nents in the coordinate system ðū; v̄Þ on which the vacuum
j ¯vaci is defined is given by

θū ū ≔ −
ℏ
24π

�
3

2

�
D;ū

D

�
2

−
D;ū ū

D

	
; ðA5aÞ

θv̄ v̄ ≔ −
ℏ
24π

�
3

2

�
D;v̄

D

�
2

−
D;v̄ v̄

D

	
; ðA5bÞ

θū v̄ ¼ θv̄ ū ≡ 0; ðA5cÞ

where Dðū; v̄Þ ¼ −2gū v̄. The renormalized expectation
value hTμνi of h ¯vacjTμνj ¯vaci in the other coordinates
ðu; vÞ is calculated from the above components through
the usual coordinate transformation for tensor components,

hTμνi ¼
∂xμ̄
∂xμ

∂xν̄
∂xν hT μ̄ ν̄i: ðA6Þ

APPENDIX B: FOUR-DIMENSIONAL CASE

The renormalized vacuum expectation value of the
stress-energy tensor hTμνi of matter field in four dimen-
sions may also be calculated via the canonical quantization
formalism as shown for the two-dimensional case in the
previous section. However the path integral quantization
formalism is more convenient to summarize hTμνi on a
four-dimensional conformal spacetime.
The effective action W of a quantum matter field ϕ on a

spacetime of metric gμν gives the vacuum expectation value
of a quantum stress-energy tensor. W can be evaluated by
the path integral method and the vacuum state jvaci is
specified by the Green function of ϕ used in calculating the
path integral. However the precise path integral form of W
is not important here. W is decomposed into two parts as
W ¼ Wren þWdiv, whereWren is the renormalized part and
Wdiv is the divergent part. The functional differentiation
of Wren gives the renormalized vacuum expectation
value hTμνi,

hTμνi ¼
2ffiffiffiffiffiffi−gp δWren

δgμν
: ðB1Þ

We consider the case where the metric gμν is conformal to
the other one as

gμν ¼ Ω2 ~gμν; ðB2Þ

and the matter field ϕ is a conformally coupled massless
scalar field satisfying ð□ −R=6Þϕ ¼ 0. On the other hand,
we get from the definition of functional differentiation,

Wren − ~Wren ¼
Z

δWren

δgαβ
δgαβd4x; ðB3Þ

where ~Wren is the renormalized effective action obtained
from Wren on replacing gμν by ~gμν. Then considering
functional differentiation only by the conformal trans-
formation, δgμν ¼ −2gμνΩ−1δΩ, the effective action is
expressed as

Wren ¼ ~Wren −
Z

gαβhTαβi
δΩ
Ω

ffiffiffiffiffiffi
−g

p
d4x: ðB4Þ

Substituting this into Eq. (B1), we get

hTμνi ¼
1

Ω2
h ~Tμνi −

2ffiffiffiffiffiffi−gp δ

δgμν

Z
gαβhTαβi

δΩ
Ω

ffiffiffiffiffiffi
−g

p
d4x;

ðB5Þ

where ~δνμ ¼ ~gμα ~gαν, gμσ ~gσα ¼ Ω2 ~δαμ, and the general relation

gμα
δ

δgαν
¼ ~gμα

δ

δ~gαν
ðB6Þ

is used to get the first term of the right-hand side of
Eq. (B5). The trace gαβhTαβi is usually called the conformal
anomaly or the trace anomaly, and it is well known that the
divergent part Wdiv gives the conformal anomaly as (see
Sec. 6.3 in [48] for example)

gαβhTαβi ¼
Ωffiffiffiffiffiffi−gp δWdiv

δΩ
: ðB7Þ

Hence substituting this expression of the conformal
anomaly into Eq. (B5) and using Eqs. (B6) and (B3), on
replacing Wren by Wdiv we obtain

hTμνi ¼
1

Ω2
h ~Tμνi −

2ffiffiffiffiffiffi−gp δWdiv

δgμν
þ 2Ω2ffiffiffiffiffiffi−gp δ ~Wdiv

δ~gμν
: ðB8Þ

The divergent partWdiv can be evaluated from the Green
function of the matter field ϕ. We do not present the details
of the calculation of Wdiv, but quote only the result for
hTμνi for the conformally coupled massless scalar field ϕ
on the spacetime of metric (B2) (see Secs. 6.2 and 6.3 in
[48] for details),
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hTμνi ¼
ℏ
Ω2

h ~Tμνi −
ℏ

2880π2

�
1

6
Xμν − Yμν

�

þ ℏ
2880π2Ω2

�
1

6
~Xμν − ~Yμν

�
; ðB9Þ

where

Xμν ≔ 2∇μ∇νR − 2gμν□Rþ 1

2
R2gμν − 2RRμν; ðB10aÞ

Yμν ≔ −Rα
μRαν þ

2

3
RRμν þ

1

2
RαβRαβgμν −

1

4
R2gμν;

ðB10bÞ

and Rμν and R are the Ricci tensor and scalar with respect
to gμν respectively, and ~Xμν and ~Yμν are defined similarly
with respect to the metric ~gμν. Equation (B9) is the
generalization of Eq. (6.141) in [48] to the general
conformal spacetimes of metric (B2).
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