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Millimeter-wavelength very-long-baseline-interferometry observations of the supermassive black holes
in Sgr A* and M87 by the Event Horizon Telescope could potentially trace the dynamics of ejected plasma
blobs in real time. We demonstrate that the trajectory and tidal stretching of these blobs can be used to test
general relativity and set new constraints on the mass and spin of these black holes.
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I. INTRODUCTION

The planned Event Horizon Telescope (EHT)1 will
possess angular resolution comparable to the
Schwarzschild radius of the supermassive black holes,
Sgr A* and the one at the center of M87, and temporal
resolution on minute time scales [1]. This is expected to
open a new avenue for studying a multitude of transient
phenomena under extreme gravity.
Sgr A* is known to exhibit variability with a time scale

of tens of minutes corresponding to accretion disk activity
at the innermost stable circular orbit (ISCO) [1,2]. Here we
study a hypothetical class of short time-scale events
corresponding to plasma blobs ejected near the ISCO
radius. Although such blobs were never observed from a
supermassive black hole, they may exist based on the
analogy with microquasars, which are known to propel
blobs at relativistic speeds [3–5].
In addition to microquasars, plasma blob ejection is also

observed in the Sun during coronal mass ejection (CME)
events [6,7]. Microquasars and stars have very different
magnetic field and gas properties, and the presence of blob
ejections in both of them leads us to believe that plasma
blob ejections are a generic phenomenon in magnetized
environments. In particular, it has been suggested that
plasma ejections for both microquasars and CMEs are
caused by magnetic reconnection [6,8], and in the past
CME has been argued to be analogous to blob launching in
microquasars [9]. Since magnetic reconnection is likely
operating in the turbulent accretion disk around both Sgr
A* and M87, plasma blob ejections can be expected to
occur in these environments.
The second target of the EHT is the supermassive black

hole at the center of the elliptical galaxy M87. In contrast to
Sgr A*, M87 possesses a jet, and it is likely that blobs are
ejected along the jet’s symmetry axis.
In this paper, we demonstrate that if ejected plasma blobs

are detected, one could use their dynamics to probe the
spacetime around the black holes. Furthermore, if the mass
and spin of a given black hole are known, one can use

observations of the blob’s dynamics to test general rela-
tivity or infer the presence of nongravitational sources such
as gas pressure or magnetic stress. These constraints
would be complementary to constraints from pulsar timing
[10–14] or observations of the black hole shadow [15–17].
There are two elements of dynamical information: the

trajectory of the blob’s center of mass and its lateral
expansion. Both can be used to independently constrain
the black hole’s spacetime. We discuss the former in
Secs. II and III, and the later in Sec. IV. Throughout the
discussion, we will assume general relativity. Deviations
from our results would indicate the presence of nongravita-
tional forces or corrections to the theory of gravity. We use
units where G ¼ c ¼ 1, and the conversion from these
units to physical units is given in Table I.

II. CENTER-OF-MASS MOTION

First we consider the motion of the blob’s center of mass
(COM). If the blob is ejected above the escape speed from
the ISCO radius, RISCO, its azimuthal velocity will be
negligibly small at r ≫ RISCO, so we focus our discussion
on the radial equation of motion. For a Schwarzschild black
hole [23],

�
dy
dτ

�
2

¼ 2M
r

− ð1 − e2Þ; dt
dτ

¼ e
1 − 2M=r

; ð1Þ

where M is the black hole mass, e the energy per unit rest
mass of the blob, r the black hole-blob distance, t the
coordinate time, and τ the blob’s proper time. These two
equations can be solved for dt=dr and integrated to obtain
the coordinate time as a function of the orbital radius of the
blob’s COM,

tSchðrÞ ¼
Z

r

RISCO

e

ð1 − 2M
r0 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
r0 − ð1 − e2Þ

q dr0: ð2Þ

If the blob is ejected out of a Kerr black hole, a similar set of
equations can be solved to obtain its COM motion in the
equatorial plane,1See http://www.eventhorizontelescope.org.
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tKerrðrÞ ¼
Z

r

RISCO

e
Δ

r02 þ a2 þ 2a2M
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ 2Ma2e2

r03 þ a2e2

r02 − Δ
r02

q dr0; ð3Þ

where a is the black hole’s spin parameter and
ΔðrÞ≡ r2 − 2Mrþ a2. In general, there is no reason for
the blob to be ejected in the equatorial plane of the black
hole, and in fact blobs should preferentially be ejected
along the spin axis. But, as shown in Fig. 1, the effect of the
black hole spin is weak. At t ¼ 10M, the trajectory of a
blob with e ¼ 2 launched from an a ¼ 0.999 black hole is
only 0.36M apart from one launched from an a ¼ 0
black hole.

III. RAY TRACING

In simulating what would be seen by radio interferom-
eters, we project the COM motion of the blob to the sky
plane far from the black hole. We utilize the geokerr code
[24] to trace rays from the observer plane located at infinity
to the position of the blob. The coordinates ðx; yÞ para-
metrize positions in this observer plane. The Fourier
transform of this plane yields the visibility of a radio
interferometer.
The blob itself is modeled as a small sphere that is

emitting isotropically in its rest frame. The result for blobs
with velocity vectors at angles θ ¼ 0 and θ ¼ π=8 away
from the observer are presented in Fig. 2. For a blob
moving along the θ ¼ 0 axis, the image is briefly lensed
into a ring with radius Rring ∼ 5M. Previous calculations by
[25] showed that the eccentricity of this ring is not sensitive
to the spin of the black hole (except for a ≈ 1), but it is very
sensitive to the black hole’s quadrupole moment. Thus, if
detected, the ring can be used as a test of the no-hair
theorem. As the ring only appears when the blob is still
close to the black hole, its lifetime is short (∼40M for a
blob with e ¼ 10, but longer for slower moving blobs). It is
therefore necessary to have temporal resolutions on a
minute time scale to detect the ring.
In addition, if the motion is fast enough and is launched

at a small angle relative to the observer, the apparent
trajectory can appear superluminal (e.g., Ref. [26]). Close
to the black hole, this apparent superluminal motion will be
obscured by the bright photon ring. Thus, the detection of
superluminal motion will require either waiting for the ring
to dim or a manual removal of the ring.

FIG. 1. The radial motion of blobs with e ¼ 2 in the equatorial
plane of a black hole with a ¼ 0 (solid line) and a ¼ 0.999
(dotted line).

TABLE I. The conversion of black hole mass M to units of time, space, and angular size on the sky for Sgr A* and M87 [18–22], for
G ¼ c ¼ 1.

Black hole mass Distance Time Space Angle

Sgr A* ð4.31� 0.36Þ × 106M⊙ 7.94� 0.42 kpc 21 s 0.043 AU 5.3 μas
M87 ð3.5þ0.9

−0.7Þ × 109M⊙ 16.7� 0.9 Mpc 4.8 hr 35 AU 2.1 μas

FIG. 2 (color online). Blobs with e ¼ 10 and radiusM launched with θ ¼ 0 and θ ¼ π=8 as seen in the observer plane with the black
hole located at (0,0). The observer’s time axis (in units of M) is indicated by the color bar. For a blob moving with θ ¼ 0, the image is
briefly lensed into a ring. The eccentricity of this ring can be used to test the no-hair theorem.
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The projected distance as a function of observed times,
shown in Fig. 3, can be compared with observations to
determine the presence of nongravitational forces (e.g., due
to magnetic fields or hydrodynamic friction on background
gas). In addition, it can be used to constrain gravitational
theories that predict changes on the orbit of test particles
close to a black hole (e.g., Ref. [27]).

IV. TIDAL EFFECTS

If the forces holding the blob together are much smaller
than the tidal gravitational forces, the blob will be tidally
sheared. The magnitude of this tidal shear depends on the
black hole’s mass and spin and thus can be used to probe
the black hole metric. Under the approximation that the
force per unit mass keeping the blob together is
≪ð2MR=r3Þ, where R is the radius of the blob, the
elements of the blob can be treated as if they are moving
along geodesics.
If the blob is small, we can define the geodesic deviation

vector ξα between the geodesic followed by the particle at
the center of the blob and the different geodesic followed
by particles at the blob’s edge by

ξα ¼ ∂xα
∂s ; ð4Þ

where s is the parameter indexing neighboring geodesics.
We can calculate the rate of change of ξα with respect to the
affine parameter of the geodesic,

d
dτ

ξα ¼ uβ∇βξ
α − Γα

βγξ
γuβ ð5Þ

¼ ξβ∇βuα − Γα
βγξ

γuβ; ð6Þ

where we have used the identity [28]

uβ∇βξ
α ¼ ξβ∇βuα ð7Þ

which is valid for geodesic deviation vectors. Writing
explicitly

ξβ∇βuα ¼ ξβ
∂uα
∂xβ þ Γα

βγu
γξβ ð8Þ

yields

d
dτ

ξα ¼ ξβ
∂uα
∂xβ : ð9Þ

The four-velocity of a blob ejected from a Schwarzschild
black hole with negligible angular momentum is

uα ¼
�

e
1 − 2M

r

;−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
r

− ð1 − e2Þ
r

; 0; 0

�α

: ð10Þ

For relative motion between particles at the center of the
blob and particles at the edge of the blob in the radial
direction,

ξα ¼ ð0; R; 0; 0Þα: ð11Þ

Plugging Eq. (11) into Eq. (9) gives

1

R
dR
dλ

¼ −
M

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ e2 þ 2M

r

q : ð12Þ

Note that substituting t for λ in Eq. (12) and then taking a
derivative with respect to t with M=r → ∞ reproduces the
tidal acceleration of Newtonian gravity: atidal ∼MR=r3.
Substituting the orbital radius r in place of λ in Eq. (12)

and integrating, we get

Z
R

R0

dR0

R0 ¼ −
Z

r

r0

Mdr0

r02ð−1þ e2 þ 2M
r0 Þ

; ð13Þ

where R0 ≪ r is the initial size of the blob and r0 the
starting orbital radius of the blob. Assuming that the blob is
ejected from the ISCO radius, r0 ¼ 6M for a ¼ 0, we
obtain

R
R0

¼
� ð−2þ 3e2Þr
6M þ 3ðe2 − 1Þr

�
2

: ð14Þ

This change in radius is, in principle, observable and can
therefore be used to find the mass of the black hole if e is
inferred from the COM trajectory. The constant e can be
inferred far away from the black hole where it obeys
e ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2COM

p
, where vCOM is the COM velocity of the

blob at r ≫ M. Figure 4 shows the radial growth factor for
blobs with specific energy e ¼ 1.0001, 1.001, 1.01, and 10.
Because blobs of smaller e spend more time close to the
black hole, the tidal effect is larger the closer e is to unity. In

FIG. 3 (color online). The projected position of blobs with
e ¼ 10 launched at a variety of angles versus observer time.
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the case of e ∼ 1, one can get a growth factor of R=R0 ∼ 10
at r ¼ 1000M. This is a change that is observable by the
EHT. Assuming that the biggest source of uncertainty is in
measuring R=R0, an error propagation calculation implies
that the precision of mass measured using this method is
∼25%=

ffiffiffiffi
N

p
, whereN is the number of blobs observed. This

is competitive with the current measurement precision for
M87 [22]. In general, one can also compute the relative
motion between the center and the edge of the blob in the ϕ̂
and θ̂ directions via an analogous calculation.
We can extend this calculation to the case of a spinning

black hole with a blob moving radially in the equatorial
plane. For this configuration, the relevant components of
uα are

ut ¼ e
Δ

�
r2 þ a2 þ 2a2M

r

�
; ð15Þ

ur ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ 2M

r3
ðaeÞ2 þ a2e2

r2
−
Δ
r2

r
: ð16Þ

Again we adopt

ξα ¼ ð0; R; 0; 0Þα: ð17Þ

Performing an analogous calculation as in the a ¼ 0 case,
we obtain

R
R0

¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð−3þ4e2ÞMþ36ð−2þ3e2ÞM3

p
r3=2

6M3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2½2Mþð−1þe2Þr�þ3a2½−rþe2ð2MþrÞ�

p :

ð18Þ

If themass of the blackhole and the blob energy e are known,
this equation can be used to measure the spin of the black
hole. Figure 5 shows the growth factor R=R0 for blobs with
dimensionless spin parameters a ¼ 0, 0.5, and 1. The effect
of spin is weak, and its measurement would be challenging.
Again, assuming that the biggest uncertainty is in measuring
R=R0, we performed an error propagation calculation to
estimate the precision of the dimensionless spin parametera,
measured using this technique to be ∼0.6=

ffiffiffiffi
N

p
, where N is

the number of blobs observed. The current constraint on the
spin parameter of M87 is a > 0.5 [29].

V. CONCLUSION

We have shown that observations of ejected plasma
blobs from the supermassive black holes Sgr A* and M87
can be used to constrain the spacetime near these black
holes. There are two pieces of information that can be
obtained from these observations: the blob’s trajectory and
the tidal effects on the blob’s shape.
The trajectory of the blob can be used to limit the

presence of nongravitational forces around the black hole
or to constrain theories of gravity that predict anomalies in
the orbit of test particles in the vicinity of black holes (e.g.,
Ref. [27]). If a photon ring is detected, its eccentricity could
be used as a test of the no-hair theorem. Furthermore,
observations of the tidal stretching of the ejected blob can
be used to determine both the mass and spin parameter of
the black hole.
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FIG. 4. The growth factor of the blob radius due to gravitational
tide as a function of distance from the black hole for a blob
moving with negligible angular momentum. The blob’s specific
energy is e ¼ 1.0001, 1.001, 1.01, and 10 for the solid, dashed,
dotted, and dot-dashed lines, respectively.

FIG. 5. The growth factor of the blob radius as a function of
distance from a spinning black hole for a blob trajectory with a
negligible angular momentum. The black hole’s spin is a ¼ 0,
0.5, and 1 for the solid, dashed, and dotted lines, respectively. The
blob energy is e ¼ 1.2 for all curves.
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