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We revisit the phenomenology of n-n̄ oscillations in the presence of external magnetic fields,
highlighting the role of spin. We show, contrary to long-held belief, that the n-n̄ transition rate need
not be suppressed, opening new opportunities for its empirical study.
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I. INTRODUCTION

Searches for processes that violate standard model (SM)
symmetries are of particular interest because their discov-
ery would serve as unequivocal evidence for dynamics
beyond the SM. The gauge symmetry and known particle
content of the SM implies that its Lagrangian conserves
baryon number B and lepton number L, though it is the
combination B − L that survives at the quantum level. Thus
the observation of neutron-antineutron (n-n̄) oscillations, a
jΔBj ¼ 2 process, would show that B − L symmetry is
broken and ergo that dynamics beyond the SM exists.
The current constraints on jBj ¼ 1 operators from the
nonobservation of nucleon decay are severe, with the
strongest limits coming from searches for proton decay
to final states that respect B − L symmetry, such as
p → eþπ0, for which the partial half-life exceeds 8.2 ×
1033 yr at 90% C.L. [1]. Although particular jΔBj ¼ 1
operators, such as those that mediate n → e−πþ, e.g.,
can also give rise to n-n̄ oscillations, Mohapatra and others
[2–9] have emphasized that the origin of nucleon decay and
n-n̄ oscillations can be completely different. Recently,
moreover, simple models that give rise to n-n̄ oscillations
but not nucleon decay have been enumerated [8].
The seminal papers on free n-n̄ oscillations have

employed a 2 × 2 effective Hamiltonian matrix [10,11],
familiar from the analysis of meson mixing [12], though
this choice explicitly suppresses the role of spin—unlike
neutral mesons and neutrinos, the neutron and antineutron
each have a significant magnetic moment. We note the
neutron and antineutron are themselves distinguished by
the sign of the lepton charge in semileptonic decay, and
their respective interactions with atomic nuclei are strik-
ingly different as well [13,14]. The n-n̄ system thus has 4
physical degrees of freedom because the spin projection
of a neutron or an antineutron can either be parallel or
antiparallel to a quantization axis. In this paper we develop a
suitable 4 × 4 effective Hamiltonian framework for its study.
Since previous studies of n-n̄ oscillations have been realized
in the context of a 2 × 2 effective Hamiltonian matrix, we
discuss this framework before turning to our generalization.

The neutron magnetic moment is empirically well known,
yielding an interaction with an external magnetic field B
of form −μnSn ·B=Sn, where μn is the magnitude of the
magnetic moment and Sn is the neutron spin. Supposing the
neutron spin to be in the direction of the applied B field and
employing charge-conjugation–parity–time-reversal (CPT)
invariance, the mass matrix M takes the form [10]

M ¼
�
Mn − μnB δ

δ Mn þ μnB

�
; ð1Þ

where CPT invariance guarantees not only that the neutron
and antineutron masses are equal but also that the projections
of the neutron and antineutron magnetic moments on B
are equal in magnitude and of opposite sign. We work in
units ℏ ¼ c ¼ 1 and ignore the finite neutron and antineu-
tron lifetimes throughout. DiagonalizingM yields the mass
eigenstates juii, namely,

ju1i ¼ cos θjni þ sin θjn̄i;
ju2i ¼ − sin θjni þ cos θjn̄i: ð2Þ

Since the energy scale μnB naturally dwarfs that of δ,
we note that the eigenvalue difference is ΔE≃ 2μnB and
that θ is small: θ≃ δ=ΔE. The n-n̄ transition probability
becomes [15]

Pn̄ðtÞ≃ 2θ2½1 − cos ðΔEtÞ�: ð3Þ
This result can be considered in two different limits: either
(a) ΔEt ≫ 1 or (b) ΔEt ≪ 1. In case (a) the second term
oscillates to zero, yielding Pn̄ðtÞ≃ 2ðδ=ΔEÞ2 whereas in
case (b),

Pn̄ðtÞ≃
�

δ

ΔE

�
2

ðΔEtÞ2 ¼ ðδtÞ2: ð4Þ

Evidently unless t ≪ 1=ΔE, the energy splitting of the
neutron and antineutron in a magnetic field “quenches” the
appearance of n-n̄ oscillations. Thus the strategy in past and
proposed searches for n-n̄ oscillations has been to minimize
the magnetic field [15–17], so that t ≪ 1=ΔE, as well as to
maintain a vacuum in the neutron flight volume [11], so that*gardner@pa.uky.edu
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the neutrons are quasifree over the neutron observation
time t.
Motivated by the realization that a neutron and an

antineutron of opposite spin projection have the same
energy in a magnetic field, we consider the spin depend-
ence of n-n̄ oscillations explicitly and thus develop a 4 × 4
effective Hamiltonian framework for its analysis. Spin
dependence can arise from effects either within or beyond
the SM. As long known from the theory of magnetic
resonance, applied magnetic fields can mitigate, or even
remove, the energy splitting of spin states in a static
magnetic field; note, e.g., Refs. [18,19]. In this paper we
show that such SM effects can remove the magnetic-field
“quenching” noted in the usual 2 × 2 Hamiltonian frame-
work and yield new experimental possibilities for the
study of n-n̄ mixing. It is also possible to have new,
spin-dependent B − L violating operators, yielding a “new
physics”mechanism to evade the magnetic-field quenching
we have noted. Although we consider both of these distinct
possibilities in this paper, our primary focus is the role of
spin-dependent SM effects in mediating n-n̄ oscillations.

II. EFFECTIVE HAMILTONIAN FOR n-n̄
TRANSITIONS WITH SPIN

To realize the most general form of a low-energy,
phenomenological Hamiltonian for n-n̄ oscillations with
spin, we develop a mass matrix M to this purpose. Its
entries Mij with i; j ¼ 1;…4 correspond to bras and kets
containing nðp;þÞ, n̄ðp;þÞ, nðp;−Þ, and n̄ðp;−Þ, respec-
tively, with þð−Þ denoting a spin-up (-down) state, relative
to a quantization axis z. We impose the constraint of
Hermiticity, as well as those of charge-conjugation–parity
(CP) and time-reversal (T) invariance, on the resulting mass
matrix, to determine its model-independent form under
these assumptions.
We can implement the discrete symmetry transforma-

tions in relativistic quantum field theory and translate them
to quantum mechanics by noting [12]

b†ðp; sÞj0i ¼ jnðp; sÞi; d†ðp; sÞj0i ¼ jn̄ðp; sÞi; ð5Þ
where b½b†�ðp; sÞ and d½d†�ðp; sÞ denote annihilation
[creation] operators for neutrons [antineutrons] of momen-
tum p and spin projection s, for which s ¼ �1≡� with
respect to the quantization axis z. We determine the
transformation properties of these operators under CP
andT as follows. Wework in the Dirac-Pauli representation
for the γμ matrices and note that the Dirac field operator
ψðxÞ has a plane-wave expansion of the form

ψðxÞ ¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffi
2E

p

×
X
s¼�

fbðp; sÞuðp; sÞe−ip·x þ d†ðp; sÞvðp; sÞeip·xg;

ð6Þ

with spinors defined as

uðp; sÞ ¼ N
�

χðsÞ
σ·p
EþM χðsÞ

�
;

vðp; sÞ ¼ N
� σ·p

EþM χ0ðsÞ

χ0ðsÞ

�
; ð7Þ

noting χ0ðsÞ ¼ −iσ2χðsÞ,

χþ ¼
�
1

0

�
;

χ− ¼
�
0

1

�

and N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EþM

p
. This yields

CPbðp; sÞðCPÞ† ¼ dð−p; sÞ;
CPdðp; sÞðCPÞ† ¼ −bð−p; sÞ ð8Þ

and

Tbðp; sÞðTÞ−1 ¼ sbð−p;−sÞ;
Tdðp; sÞðTÞ−1 ¼ sdð−p;−sÞ ð9Þ

for the transformation properties under CP and T,
respectively.1 In what follows we assume that the ground
(vacuum) state remains invariant under CP and T:
CPj0i ¼ j0i and Tj0i ¼ j0i.
Under an assumption of CP- and T-invariance relation-

ships between the matrix elements of M follow. For
example, under CPT invariance we have

hnðp; s1ÞjHjnðp; s2Þi ¼ s1s2hn̄ðp;−s2ÞjHjn̄ðp;−s1Þi;
ð10Þ

noting H is the Hamiltonian and T is an antiunitary
operator. Thus under CPT and Hermiticity we find M
has ten parameters, and it is of the form

0
BBB@

A1 δ M1 ε1

δ� A2 ε2 −M1

M�
1 ε�2 A2 −δ

ε�1 −M�
1 −δ� A1

1
CCCA; ð11Þ

where A1 and A2 are real constants. Under CP invariance we
have, e.g., hnðp;s1ÞjHjnðp;s2Þi¼ hn̄ð−p;s1ÞjHjn̄ð−p;s2Þi
yielding relationships between Mij in the low-energy limit,
i.e., as jpj → 0. Thus under Hermiticity and CP and CPT
invariance we have in this case

1These results differ from those in Ref. [12] because that work
uses a different choice of antiparticle spinor.
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0
BBB@

A1 iδ 0 ε1

−iδ A1 −ε1 0

0 −ε�1 A1 −iδ
ε�1 0 iδ A1

1
CCCA; ð12Þ

where both A1 and δ are real—and only four parameters
suffice to characterize the mass matrix. In Eq. (12), two
distinct n-n̄ transition operators appear: δ that describes the
transition between states of the same spin nðsÞ↔n̄ðsÞ and ε1
that describes the transition between states of opposite spin
nðsÞ↔n̄ð−sÞ. Note that since the neutron and antineutron
are of opposite intrinsic parity, we have under CP,
hnðp; s1ÞjHjn̄ðp; s2Þi ¼ −hn̄ð−p; s1ÞjHjnð−p; s2Þi yield-
ing, e.g., terms in �iδ. If, rather, the relevant piece of H
is odd under CP, the δ terms become real, as chosen in
Eq. (1). Previous analyses [15] have only considered the
possibility of nðsÞ↔n̄ðsÞ. We will show that the second
process can occur through the application of magnetic fields,
both within and beyond the SM. The parameters δ and ε1,
however, characterize n-n̄ mixing en vacuo. Since we have
chosen the antiparticle spinors in a manner consistent with
Dirac hole theory, the underlying two-component spinor of a
particle with spin s has the same orientation as that of an
antiparticle with spin −s; in the presence of baryon-number
violation it would seem that both pathways could occur.
Indeed there are two Lorentz-invariant, leading-mass-
dimension n-n̄ operators: inTCn and nTγ5Cn, where
C ¼ iγ2γ0 and T denotes transpose. The latter operator
nTγ5Cn can potentially yield a spin flip. The leading-mass-
dimension operators that yield n-n̄ transitions have been
analyzed in quantum chromodynamics (QCD) [20,21], and
they incorporate both possibilities at the quark level. Our
detailed analysis of their n-n̄ matrix elements reveals,
however, that nðsÞ↔n̄ð−sÞ does not occur (at zero momen-
tum transfer) [22], as one might expect from angular
momentum conservation. Indeed only the nðsÞ → n̄ðsÞ
transition occurs for a free neutron in vacuum. The associated
n-n̄ matrix elements have been computed in models [20,23]
and in lattice QCD [24]. Thus we set ε1 ¼ 0 henceforth,
though such could be nonzero in the presence of a hidden U
(1) sector with a “dark photon” and an associated magnetic
field Bhidden. Returning to the operators inTCn and nTγ5Cn,
the first is CP odd, whereas the second is CP even—and both
are CPT invariant. We assumed the second case in determin-
ing Eq. (12), and this will prove useful in what follows.
However, since n-n̄ transitions in the absence of a magnetic
field are, in effect, mediated by inTCn, we use

0
BBB@

A1 δ 0 0

δ A1 0 0

0 0 A1 −δ
0 0 −δ A1

1
CCCA; ð13Þ

with δ real for our Hamiltonian matrix in this case.

These parametrizations also allow us to generalize our
effective Hamiltonian framework to include external mag-
netic fields. For example, the interaction of an electrically
neutral particle with an electromagnetic field is character-
ized at low energies by −μ ·B if T and P are not broken;
this comes from the nonrelativistic limit of ψ̄σμνψFμν,
where Fμν ≡ ∂μAν − ∂νAμ is the usual electromagnetic-
field strength tensor. Under CP or T the fermion bilinear
ψ̄σμνψ transforms to −ψ̄σμνψ , and Fμν transforms to −Fμν.
Thus their scalar product is itself both CP and T invariant.
However, the explicit CPT and CP constraints we have
investigated operate on the fermion and antifermion
degrees of freedom only; the terms in H resulting from
the overall minus sign associated with Fμν under CP are
revealed by comparing the parametrizations under
Hermiticity and CPT with and without a CP constraint,
Eqs. (11) and (12). We can also combine magnetic-field
interactions with n-n̄ oscillations through the operator
ψTσμνCψFμν and its Hermitian conjugate; this operator
is even under CP and T. Thus through these comparisons
we see how Fμν terms, i.e., those with external magnetic
fields, can enter both within and beyond the SM. We now
turn to concrete expressions for these terms.

III. EFFECTIVE HAMILTONIAN FOR n-n̄
TRANSITIONS IN EXTERNAL

MAGNETIC FIELDS

The operator ψTσμνCψFμν and its Hermitian conjugate
yield n → n̄ and n̄ → n transitions, respectively.
Computing these matrix elements using the free Dirac
field operator of Eq. (6) yields

hn̄ð0; s0ÞjψTσμνCψFμνjnð0; sÞi
¼ −χ0ðs0Þ†2σ · Bχ0ðsÞ − χðsÞ†2σ ·Bχðs0Þ; ð14Þ

where we recall χ0ðsÞ ¼ −iσ2χðsÞ, and

hnð0; s0Þj − ψ�TCðσμνÞ†ψ�Fμνjn̄ð0; sÞi
¼ −χ0ðs0Þ†2σ · Bχ0ðsÞ − χðsÞ†2σ ·Bχðs0Þ: ð15Þ

Although these expressions vanish for elementary fer-
mions, we note that since both n and n̄ possess anomalous
magnetic moments compositeness could make these
matrix elements nonzero if operators of the form ψTCψ
exist. We leave a detailed study to a subsequent publica-
tion [22]. Nevertheless, these expressions correspond to
nonrelativistic operators containing n-n̄ transition mag-
netic moments. Thus we suppose the n and n̄ interactions
in the presence of external magnetic fields, under CPT
invariance, to be of the form
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HB ¼ −μn
Sn

Sn
·Bþ μn

Sn̄

Sn̄
· B − μ�nn̄

Sn̄n

Sn̄n
·B − μnn̄

Snn̄

Snn̄
· B;

ð16Þ

where μn is the neutron magnetic moment, the first two
terms being the usual neutron and antineutron interactions
in a magnetic field, and μnn̄ is the n-n̄ transition magnetic
moment. The last two terms correspond to Eqs. (14) and
(15), respectively. The spin operators each act in a 2 × 2
subspace. With ðSnÞi;j such that ði; jÞ ∈ ðnðþÞ; nð−ÞÞ, we
choose ðSn̄Þi;j with ði; jÞ ∈ ðn̄ðþÞ; n̄ð−ÞÞ, as well as ðSnn̄Þij
and ðSn̄nÞji with i ∈ nðþÞ; nð−Þ and j ∈ n̄ðþÞ; n̄ð−Þ.
Within a given subspace, we compute S ·B=S ¼ σ ·B.
We also suppose that magnetic fields both longitudinal
and transverse to the quantization axis exist, and we
introduce B0 ¼ B0ẑ and B1 ¼ B1x̂, respectively. Defining
ω0 ≡ −μnB0, ω1 ≡ −μnB1, δ0 ≡ −μnn̄B0, δ1 ≡ −μnn̄B1,
and employing the usual Pauli matrices, we find that
the matrix HB corresponding to Eq. (16) is

HB ¼

0
BBB@

ω0 δ0 ω1 δ1

δ�0 −ω0 δ�1 −ω1

ω1 δ1 −ω0 −δ0
δ�1 −ω1 −δ�0 ω0

1
CCCA; ð17Þ

a form consistent with the comparison of Eqs. (11) and
(12). Moreover, we see that CPT invariance guarantees
that a neutron and an antineutron of opposite spin in
vacuum are always degenerate irrespective of the size of
the magnetic field: the presence of external magnetic
fields cannot quench transitions between these states.
Additional constraints on the form factors follow because

in the presence of n-n̄ oscillations the weak interaction
eigenstates can be expressed in terms of Majorana states.
AMajorana state jΨMi transforms into itself underC, up to a
global phase. Since Cbðp; sÞC† ¼ dðp; sÞ,

jΨ�
Mðp; sÞi ¼

1ffiffiffi
2

p ðjn̄ðp; sÞi � jnðp; sÞiÞ: ð18Þ

As we have noted, the neutron and antineutron are distin-
guished by the sign of the lepton charge upon semileptonic
decay, so that the Majorana basis has 4 degrees of freedom.
There are no γμ, σμν, or σμνγ5 form factors associated with a
Majorana state [25–30]; thus the constraint hΨ�

Mðp; s0Þi
jHBjΨ�

Mðp; sÞi ¼ 0 or, equivalently, ηTHBη ¼ 0, where
η ¼ fa; a; b; bg and a and b are arbitrary constants, yields
Reðδ0Þ ¼ 0 and Reðδ1Þ ¼ 0. With these supplemental con-
straints, Eq. (17) becomes

HB ¼

0
BBB@

ω0 iδ0 ω1 iδ1
−iδ0 −ω0 −iδ1 −ω1

ω1 iδ1 −ω0 −iδ0
−iδ1 −ω1 iδ0 ω0

1
CCCA; ð19Þ

where δ0 and δ1 are real constants. This bears comparison to
studies of resonant spin-flavor neutrino precession in matter,
such as in the Sun [31–33], though the neutrino transition
magnetic moment in that work is associated with the
transverse magnetic field and is flavor changing. The final
Hamiltonian matrix M for low-energy, n-n̄ oscillations in
applied magnetic fields thus takes the form

H ¼

0
BBB@

M þ ω0 ðδþ iδ0Þ ω1 iδ1
ðδ − iδ0Þ M − ω0 −iδ1 −ω1

ω1 iδ1 M − ω0 −ðδþ iδ0Þ
−iδ1 −ω1 −ðδ − iδ0Þ M þ ω0

1
CCCA:

ð20Þ

The transition magnetic moment terms δ0 and δ1 are of
higher mass dimension and ought to be much smaller in
effect than δ, despite the appearance of an external magnetic
field. This follows because the energy scales associated
with magnetic fields are naturally so small—note that
jμnj ≈ 60 neV=T. We employ naive dimensional analysis
to flesh out our assessment. That is, we estimate the n-n̄
matrix element associated with the leading operator, of
mass dimension nine, as κΛ6

QCD=M
5
nn̄ [15], where κ is a

dimensionless constant presumably of Oð1Þ, Mnn̄ is the
scale of n-n̄mixing, andΛQCD ∼ 200 MeV.Writing μnn̄B ¼
ðμnn̄=jμnjÞjμnjB, noting μnn̄=jμnj ∼ κ0ðΛQCD=Mnn̄Þ7 with κ0

a dimensionless constant, we estimate μnn̄B=δ∼
ðκ0=κÞΛQCDjμnjB=M2

nn̄. Even in the environment of a pulsar,
for which B ∼ 108 T is possible, we see that jμnjB is many
orders of magnitude smaller than ΛQCD—so that μnn̄B is
negligible relative to δ if we assume κ0=κ ∼Oð1Þ.
Before closing this section we note that it is also possible

to have an n-n̄ transition electric dipole moment as well,
though this would certainly require an additional new
physics mechanism to generate an appreciable effect.
The n-n̄ matrix elements of ψTγ5σ

μνCψFμν and its
Hermitian conjugate yield terms of the form given in
Eqs. (14) and (15), but with −B replaced with iE.
These operators are CP and T even but P odd.

IV. EXAMPLES

In what follows we consider concrete examples of how
applied magnetic fields can be used to evade the quenching
of n-n̄ oscillations found in earlier work [10,11]. We
consider the leading n-n̄ transition operator matrix element
exclusively, so that we rely on SM effects to realize this. To
compute the transition probabilities, we must first find the
normalized eigenvectors of the Hamiltonian matrix in terms
of our chosen fjnþi; jn−i; jn̄þi; jn̄−ig basis; we denote a
state of the latter by jnii and a normalized eigenvector by
juii with associated eigenvalue λi, noting i ∈ 1;…; 4. The
time evolution of a state of the Hamiltonian is thus given by
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jψðtÞi ¼
X4
i¼1

e−iλthuijψð0Þijuii: ð21Þ

Letting jψð0Þi ¼ jnki and defining aij ≡ hnjjuii, we find

Pnk→nj ¼
����
X4
i¼1

e−iλitaija�ik

����
2

: ð22Þ

For reference, we find in the absence of magnetic fields that
Pn→n̄ ¼ sin2ðδtÞ, identical to that found using Eq. (1) [10].
As a first example, we consider a system with a static

magnetic fieldB0 serving as the quantization axis, to which
a static transverse field B1 is suddenly applied at t ¼ 0.
For t > 0 the mass matrix has the form of Eq. (20) with
δ0 ¼ δ1 ¼ 0. Noting that jδj ≪ jω0j; jω1j, we find that the
probability of a neutron in an s ¼ þ state transforming to n̄
of fixed spin is

Pnþ→n̄þðtÞ ¼ δ2
�

ω4
1t

2

ðω2
0 þ ω2

1Þ2
cos2

�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ω2

1

q �

þ ω4
0

ðω2
0 þ ω2

1Þ3
sin2

�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ω2

1

q �

þ ω2
0ω

2
1t

ðω2
0 þ ω2

1Þ5=2
�
þOðδ3Þ; ð23Þ

Pnþ→n̄−ðtÞ ¼ δ2
�

ω2
1t

2

ω2
0þω2

1

−
ω4
1t

2

ðω2
0þω2

1Þ2
cos2

�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0þω2

1

q �

þ ω2
0ω

2
1

ðω2
0þω2

1Þ3
sin2

�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0þω2

1

q �

−
ω2
0ω

2
1t

ðω2
0þω2

1Þ5=2
sin

�
2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0þω2

1

q ��
þOðδ3Þ:

ð24Þ
If jω0j ∼ jω1j, we see that the last two terms of Eqs. (23)
and (24) are of Oðδ2=ω2

0Þ and Oðtδ2=ω0Þ, respectively, so
that they are indeed quenched in a magnetic field. The other
terms, however, are of Oð1Þ. We note that Pnþ→n̄−ðtÞ is
larger, since ω2

1=ðω2
0 þ ω2

1Þ > ðω2
1=ðω2

0 þ ω2
1ÞÞ2 in this

limit—we had anticipated this because the two states are
of the same energy. We note that Pnþ→n̄−ðtÞ ¼ Pn−→n̄þðtÞ
and Pnþ→n̄þðtÞ ¼ Pn−→n̄−ðtÞ, so that the unpolarized
transition probability is

Pn→n̄ðtÞ ¼ δ2
�

ω2
1t

2

ω2
0 þ ω2

1

þ ω2
0

ðω2
0 þ ω2

1Þ2
sin2

�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ω2

1

q 	

þ ω2
0ω

2
1t

ðω2
0 þ ω2

1Þ5=2
�
1 − sin

�
2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ω2

1

q 		�

þOðδ3Þ; ð25Þ

and the first term is of Oð1Þ. For reference, Pnþ→n−ðtÞ ¼
ðω2

1=ðω2
0 þ ω2

1ÞÞ sinðt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ω2

1

p
Þ þOðδ2Þ.Theexacteigen-

values and eigenstates for t > 0 are

E1 ¼ M1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ðδ − ω1Þ2

q
;

E2 ¼ M1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ðδ − ω1Þ2

q
;

E3 ¼ M1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ðδþ ω1Þ2

q
;

E4 ¼ M1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ðδþ ω1Þ2

q
; ð26Þ

and

u1 ¼
1ffiffiffiffiffiffi
N1

p


1;

ðδ − ω1Þ
ω0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ðδ − ω1Þ2

p ;

−ðδ − ω1Þ
ω0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ðδ − ω1Þ2

p ; 1

�
;

u2 ¼
1ffiffiffiffiffiffi
N2

p


1;

ðδ − ω1Þ
ω0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ðδ − ω1Þ2

p ;

−ðδ − ω1Þ
ω0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ðδ − ω1Þ2

p ; 1

�
;

u3 ¼
1ffiffiffiffiffiffi
N3

p


−1;

−ðδþ ω1Þ
ω0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ðδþ ω1Þ2

p ;

−ðδþ ω1Þ
ω0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ðδþ ω1Þ2

p ; 1

�
;

u4 ¼
1ffiffiffiffiffiffi
N4

p


−1;

−ðδþ ω1Þ
ω0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ðδþ ω1Þ2

p ;

−ðδþ ω1Þ
ω0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ðδþ ω1Þ2

p ; 1

�
; ð27Þ

with

N1
2
¼ 2

�
1þ ðδ − ω1Þ2

ω0∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ðδ − ω1Þ2

p
�
;

N3
4
¼ 2

�
1þ ðδþ ω1Þ2

ω0∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ðδþ ω1Þ2

p
�
: ð28Þ

If δ ¼ 0 orω0 ¼ ω1 ¼ 0, we see thatE1 ¼ E3 andE2 ¼ E4.
In the former case, u1 þ u3 and u2 þ u4 yield linear combi-
nationsof n̄ðþÞand n̄ð−Þ, andu1 − u3 andu2 − u4 yield linear
combinations of nðþÞ and nð−Þ. In contrast, in the latter case,
we find Majorana states; that is, u1 � u3 ∝ Ψ�

Mð∓Þ and
u2 � u4 ∝ Ψ∓

Mð∓Þ.
As long known, the spin of a macroscopic sample of

fermions can be made to flip through the use of magnetic
resonance techniques. Indeed, supposing the spins are
aligned (or antialigned) with a static magnetic field, and
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an oscillatory magnetic field is applied transverse to it, we
can tune the frequency of the transverse field in such a way
that the probability of flipping the neutron spin is of Oð1Þ
irrespective of the size of the applied magnetic fields—this
is the famous Rabi formula [18,19]. Thus as a second
example we study n-n̄ oscillations in such a magnetic-field
arrangement [19], replacing B1 with a time-dependent
magnetic field B1ðtÞ, so that the SM Hamiltonian for a
neutron becomes HðtÞ ¼ ω0σz þ ω1ðcosωtσx þ sinωtσyÞ.
The resulting n-n̄ Hamiltonian matrix is of the form

HðtÞ ¼

0
BBB@

M þ ω0 δ ω1e−iωt 0

δ M − ω0 0 −ω1e−iωt

ω1eiωt 0 M − ω0 −δ
0 −ω1eiωt −δ M þ ω0

1
CCCA:

ð29Þ

To compute the transition probabilities in this case, we
solve the time-dependent Schrödinger equation i∂tψ ¼
Hψ with ψ ¼ faþðtÞ; āþðtÞ; a−ðtÞ; ā−ðtÞg through the

change of variable a�
ð−Þ ¼ b�

ð−Þ
expð∓iωt=2Þ. This yields

i∂t ~ψ ¼ ~H ~ψ with ~ψ ¼ fbþðtÞ; b̄þðtÞ; b−ðtÞ; b̄−ðtÞg and

~H ¼

0
BBB@

M − Δω− δ ω1 0

δ M − Δωþ 0 −ω1

ω1 0 M þ Δω− −δ
0 −ω1 −δ M þ Δωþ

1
CCCA

ð30Þ

with Δω� ≡ ω=2� ω0, noting that the transition proba-
bilities of interest follow immediately from its solution

because ja�
ð−Þj2 ¼ jb�

ð−Þ
j2. The oscillatory transverse field

needed for magnetic resonance experiments is typically
realized, however, through the application of a radio
frequency (rf) field with linear polarization, so that if
Δωþ ¼ 0, then Δω− ¼ 0 also. Thus under usual exper-
imental conditions the largest contributions have Δωþ ¼
−Δω−, and the n-n̄ transition probabilities can be estimated
from Eqs. (23) and (24) upon the replacement ω0 → Δωþ.
On resonance, for which Δω� ¼ 0, we have

Pnþ→n̄þðtÞ ≈ δ2t2 cos2
�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ω2

1

q 	
þOðδ3Þ; ð31Þ

Pnþ→n̄−ðtÞ ≈ δ2t2 sin2
�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ω2

1

q 	
þOðδ3Þ; ð32Þ

where we have neglected contributions controlled by
jωj=2þ ω0 as per standard practice [34]. Finally, we find,
similarly, that the unpolarized transition probability
is Pn→n̄ðtÞ ≈ δ2t2 þOðδ3Þ.

V. NEW EXPERIMENTAL PROSPECTS

We have shown through explicit example that the
removal of magnetic fields is not necessary for the
observation of n-n̄ oscillations; this opens new possibilities
for their experimental discovery. For example, it becomes
possible to study n-n̄ oscillations by confining neutrons in
magnetic traps, or bottles; such are under development for
improved measurements of the neutron lifetime [35–37].
In a gravitomagnetic trap a single spin state is confined; we
suppose, in addition, that a transverse rf field at resonance is
applied. If the spin-flip time is short compared to the time
for a confined neutron to be lost from the trap, we suppose
that the storage time determined under these conditions
can be used to set a limit on n-n̄ oscillations. That is, an
experimental limit on n-n̄ oscillations can be defined by
writing the transition probability as Pn→n̄ ≃ ðt=τnn̄Þ2 and
bounding τnn̄. A crude estimate of the oscillation lifetime is
given by ðτnn̄Þbottle ∼ ðNfillNtrialht2i=N̄Þ1=2, whereNfill is the
number of neutrons (i.e., nV with n the neutron number
density and V the volume of the trap) added to the bottle at
one time, Ntrial is the number of times the trap is filled, N̄ is
the limit on the number of antineutrons detected, and
ht2i1=2 is the storage time in the trap. EstimatingNfill ∼ 107,
Ntrial ∼ 105, and ht2i1=2 ∼ 400 s and using N̄ ≤ 2.3 at
90% C.L. [16] yields τnn̄ ∼ 2 × 108 s, so that the gain
seems modest over the existing limit of τnn̄ ≥ 0.86 × 108 s
at 90% C.L. [16], though one can expect further improve-
ments with bettered ultracold neutron sources.

VI. SUMMARY

As long recognized, the discovery of B − L violation
would speak to the existence ofMajorana dynamics in nature.
This would not imply, however, that the neutron is its own
antiparticle, but, rather, that the weak interaction eigenstates
of the n-n̄ system in vacuum transform into themselves under
the charge conjugation operator C. Although many authors
[38–42] have studied the impact of external magnetic fields
on n-n̄ oscillations within the context of the 2 × 2 phenom-
enological framework [10], our work is the first to incorpo-
rate spin in a fundamental way. The results that emerge are
remarkably different from earlier studies—in particular,
magnetic-field mitigation is not required to observe n-n̄
mixing, as had been previously thought [15,17].
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