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We study the conditions required to make the two-Higgs-doublet-model (2HDM) scalar potential stable
up to the Planck scale. The lightest CP-even scalar is assumed to have been found at the LHC and the
alignment limit is imposed in view of the LHC Higgs data. We find that ensuring stability up to scales
≳1010 GeV necessitates the introduction of a soft breaking parameter in the theory. Even then, some
interesting correlations between the nonstandard masses and the soft breaking parameter need to be
satisfied. Consequently, a 2HDM becomes completely determined by only two nonstandard parameters,
namely, tan β and a mass parameter, m0, with tan β ≳ 3. These observations make a 2HDM, in the stable
alignment limit, more predictive than ever.
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I. INTRODUCTION

With the discovery of a Higgs-like particle at the Large
Hadron Collider (LHC) [1,2], all the parameters of the
Standard Model (SM) are now known and the fate of the
SM is sealed. Taking all the uncertainties of the current
experimental data into account, it has been found that the
SM scalar potential becomes unstable somewhere within
108–1010 GeV [3–6]. In fact, it has been shown that for the
SM scalar potential to be stable all the way up to the Planck
scale ðMP ¼ 1019 GeVÞ the Higgs mass ðmhÞ needs to be
in the following range [5]:

mh > 129.6 GeVþ 2.0ðMt½GeV� − 173.34 GeVÞ

− 0.5 GeV

�
αsðMZÞ − 0.1184

0.0007

�
� 0.3 GeV; ð1Þ

where Mt denotes the top quark pole mass and αsðMZÞ
is the strong coupling constant at the Z-boson mass
scale. Hence, a SM Higgs boson with mass in the range
124–126 GeV certainly disfavors the possibility of having
an absolutely stable vacuum up toMP. As a way out of this
vexing situation, it has been suggested that while absolute
stability of the SM potential might be a tall ask, a
metastable vacuum is entirely consistent with the current
experimental value of the Higgs mass [4,7]. Nevertheless,
the problem of vacuum stability in the SM remains one of
the most discussed topics after the Higgs discovery and
often has been taken as a hint for the intervention of some
new physics.
Our objective in this paper is to investigate whether the

two-Higgs-doublet models (2HDMs) [8] can do better in

this respect. 2HDMs extend the scalar potential of the
SM by adding one extra scalar doublet and therefore, rank
amongst the simplest of beyond the Standard Model (BSM)
constructions. For decades, 2HDMs have attracted a lot of
attention because the minimal supersymmetry relies on a
2HDM scalar structure. Another attractive feature of
2HDMs is that the value of the electroweak ρ-parameter
remains unity at the tree level. But one ominous conse-
quence of introducing one additional scalar doublet is that
now we will have two Yukawa matrices for each type of
fermion and diagonalization of the fermion mass matrix
will not guarantee the simultaneous diagonalization of the
Yukawa matrices. As a result, there will be flavor changing
neutral currents (FCNC), at the tree level, mediated by
neutral scalars. This problem was addressed by Glashow
and Weinberg [9] and independently by Paschos [10].
According to the Glashow-Weinberg-Paschos theorem,
tree level FCNC can be avoided altogether if suitable
arrangements are made such that fermions of a particular
charge receive their masses from a particular scalar doublet.
Usually, a Z2 symmetry, under which ϕ1 → ϕ1 and
ϕ2 → −ϕ2, is employed to achieve this. Proper assignments
of the Z2 charge to different fermions then complete the
purpose. Labeling as ϕ2 the doublet that couples to the
up-type quarks, the following four conventional variants of
2HDMs emerge from the Z2 charge assignments to the
fermions:
(a) Type I: All quarks and leptons couple only to the

doublet ϕ2;
(b) Type II: ϕ2 couples to the up-type quarks and ϕ1

couples to down-type quarks and charged leptons;
(c) Type X or lepton specific: All quarks couple to ϕ2,

while ϕ1 couples to the charged leptons;
(d) Type Y or flipped: Up-type quarks and charged

leptons couple to ϕ2 and all down-type quarks
couple to ϕ1.
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Currently the measured values of Higgs signal strengths
into different decay channels are consistent with the
corresponding SM expectations. In anticipation that the
data will continue to agree with the SM with increasing
accuracy in the upcoming experiments, those BSM scenar-
ios which can deliver a SM-like Higgs in some limiting
case will hold the upper hand in the future survival race. It
is quite well known that 2HDMs promise an alignment
limit [11–13] when a SM-like Higgs can be recovered in
the form of the lightest CP-even scalar in the 2HDM
particle spectrum. Although vacuum stability constraints in
2HDMs have been studied previously both before [14] and
after [15] the Higgs discovery, the distinct implications
of the alignment limit in this context have never been
emphasized before. Motivated by the LHC Higgs data, in
this paper we concentrate exclusively on the alignment
limit and explore the consequences of demanding
the stability of the 2HDM potential all the way up to the
grand unified theory (GUT) and Planck scales. In the
process we have uncovered many new and interesting
features. We have found that the requirement of stability of
the 2HDM scalar potential compels us to introduce a soft
breaking parameter and, at the same time, entails a strong
correlation between the soft breaking parameter and the
other nonstandard masses. Accordingly, in this “stable
alignment limit” a 2HDM is completely determined by
only two nonstandard parameters: (i) tan βð¼ v2=v1Þ,
which is the ratio of the two vacuum expectation values
(vev’s) and, (ii) a mass parameter (m0). How the require-
ment of high scale stability of the 2HDM scalar potential in
the alignment limit leads us to this intriguing conclusion
constitutes the central theme of our paper.
The paper is organized in the following way: in Sec. II

we describe the model and the various constraints that we
use in our study. We present our results in Sec. III. In
Sec. IV we summarize important findings and draw our
conclusions.

II. THE SCALAR POTENTIAL

The general 2HDM potential with Z2 symmetry under
which ϕ1 → ϕ1 and ϕ2 → −ϕ2 is usually written as

V ¼ m2
11ϕ

†
1ϕ1 þm2

22ϕ
†
2ϕ2 − ðm2

12ϕ
†
1ϕ2 þ H:c:Þ

þ λ1
2
ðϕ†

1ϕ1Þ2 þ
λ2
2
ðϕ†

2ϕ2Þ2 þ λ3ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ

þ λ4ðϕ†
1ϕ2Þðϕ†

2ϕ1Þ þ
�
λ5
2
ðϕ†

1ϕ2Þ2 þ H:c:

�
; ð2Þ

where the term proportional tom2
12 breaks the Z2 symmetry

softly. For simplicity, we assume that all the parameters of
the potential are real so that CP symmetry is not explicitly
broken in the scalar sector. To minimize the potential, we
express the doublets as

ϕi ¼
� χþi

1ffiffi
2

p ðhi þ iηiÞ
�
; ð3Þ

and define the minimum as follows:

hϕiimin ¼
�

0
viffiffi
2

p

�
≡

�
0

ðxiþiyiÞffiffi
2

p

�
: ð4Þ

Note that, although the potential of Eq. (2) is explicitly CP
conserving, the vev’s can, in general, be complex [16,17].
Now the minimization conditions will read as follows:

∂V
∂h1

����
min

¼ 2ðm2
11x1 −m2

12x2Þ þ λ1x1ðx21 þ y21Þ

þ x1ðλ3 þ λ4Þðx22 þ y22Þ
þ λ5ðx1x22 þ 2x2y1y2 − x1y22Þ ¼ 0; ð5aÞ

∂V
∂h2

����
min

¼ 2ðm2
22x2 −m2

12x1Þ þ λ2x2ðx22 þ y22Þ

þ x2ðλ3 þ λ4Þðx21 þ y21Þ
þ λ5ðx2x21 þ 2x1y1y2 − x2y21Þ ¼ 0; ð5bÞ

∂V
∂η1

����
min

¼ 2ðm2
11y1 −m2

12y2Þ þ λ1y1ðx21 þ y21Þ

þ y1ðλ3 þ λ4Þðx22 þ y22Þ
þ λ5ðy1y22 þ 2x1x2y2 − x22y1Þ ¼ 0; ð5cÞ

∂V
∂η2

����
min

¼ 2ðm2
22y2 −m2

12y1Þ þ λ2y2ðx22 þ y22Þ

þ y2ðλ3 þ λ4Þðx21 þ y21Þ
þ λ5ðy2y21 þ 2x1x2y1 − x21y2Þ ¼ 0: ð5dÞ

It can be easily checked that the choice y1 ¼ y2 ¼ 0, which
implies the vev’s are real, satisfies Eqs. (5c) and (5d)
trivially. In this case, Eqs. (5a) and (5b) will take the
following simpler forms:

∂V
∂h1

����
min

¼ 2ðm2
11v1 −m2

12v2Þ

þ v1fλ1v21 þ ðλ3 þ λ4 þ λ5Þv22g ¼ 0; ð6aÞ

∂V
∂h2

����
min

¼ 2ðm2
22v2 −m2

12v1Þ

þ v2fλ2v22 þ ðλ3 þ λ4 þ λ5Þv21g ¼ 0: ð6bÞ

Thus the assumption of real v1 and v2 is consistent with the
minimization conditions of Eq. (5) and, in what follows, we
shall work under this assumption.

DIPANKAR DAS AND IPSITA SAHA PHYSICAL REVIEW D 91, 095024 (2015)

095024-2



When both the doublets receive vev’s, the Z2 symmetry
is broken spontaneously too and we can rewrite the 2HDM
potential in the following form [18]:

V ¼ β1

�
ϕ†
1ϕ1 −

v21
2

�
2

þ β2

�
ϕ†
2ϕ2 −

v22
2

�
2

þ β3

�
ϕ†
1ϕ1 þ ϕ†

2ϕ2 −
v21 þ v22

2

�
2

þ β4fðϕ†
1ϕ1Þðϕ†

2ϕ2Þ − ðϕ†
1ϕ2Þðϕ†

2ϕ1Þg

þ β5

�
Reϕ†

1ϕ2 −
v1v2
2

�
2

þ β6ðImϕ†
1ϕ2Þ2: ð7Þ

In comparison with the previous case, in this notation β5
plays the role of the soft breaking parameter. For easy
understanding of the future results, we will often switch
between the parametrizations of Eqs. (2) and (7). Therefore,
a comparison between the parameters of Eqs. (2) and (7)
will be in order. It should be emphasized that unlike Eq. (2),
Eq. (7) manifestly assumes that both the doublets acquire
vev’s so thatm2

11 andm
2
22 in Eq. (2) can be traded for v1 and

v2 [using Eqs. (6a) and (6b)] followed by suitable rear-
rangements of the quartic parameters to obtain Eq. (7).
Since, in this paper, we restrict ourselves only to the
noninert cases where tan β is nonzero and finite, the above
two parametrizations are equivalent to us. The connections
between the two sets of parameters are given by the
following relations:

m2
11 ¼ −ðβ1v21 þ β3v2Þ; λ1 ¼ 2ðβ1 þ β3Þ;

m2
22 ¼ −ðβ2v22 þ β3v2Þ; λ2 ¼ 2ðβ2 þ β3Þ;

m2
12 ¼

β5
2
v1v2; λ3 ¼ ð2β3 þ β4Þ;

λ4 ¼
β5 þ β6

2
− β4; λ5 ¼

β5 − β6
2

: ð8Þ

At this point, it is interesting to note that in the para-
metrization of Eq. (2), the combination m2

12=ðsin β cos βÞ
instead of m2

12 itself controls the nonstandard masses [11].
Thus the relation between m2

12 and β5 in Eq. (8) suggests
that β5 is a better parameter for tracking the effect of soft
breaking. In passing, we note that in the limit λ5 ¼ 0 [in
Eq. (2)] or equivalently β5 ¼ β6 [in Eq. (7)], the symmetry
of the 2HDM potential is enhanced from softly broken
Z2 to softly broken Uð1Þ, under which ϕ1 → ϕ1 and
ϕ2 → eiθϕ2. This Uð1Þ symmetry will be relevant in our
future discussions.
To get the mass eigenstates, we expand the scalar

doublets around their vev’s as follows:

ϕi ¼
� χþi

1ffiffi
2

p ðvi þ hi þ iηiÞ
�
: ð9Þ

Our assumption that CP is a good symmetry of the scalar
potential actually allows us to define neutral scalar eigen-
states that are also eigenstates of CP. In total, there are
five physical eigenstates: two CP-even scalars ðh;HÞ, one
CP-odd scalar ðAÞ and a pair of charged scalars ðH�Þ along
with three Goldstones ðG�; G0Þ which will be absorbed
to give masses to the SM gauge bosons ðW�; ZÞ. The
rotations that lead us to the mass eigenstates are given
below:

�
G�

H�

�
¼

�
cβ sβ
−sβ cβ

��
χ�1
χ�2

�
; ð10aÞ

�
G0

A

�
¼

�
cβ sβ
−sβ cβ

��
η1

η2

�
; ð10bÞ

�
h

H

�
¼

�
cα sα
−sα cα

��
h1
h2

�
; ð10cÞ

where cβðαÞ ≡ cos βðαÞ and sβðαÞ ≡ sin βðαÞ. The mixing
angle of the CP-even sector is defined through the
following relation:

tan 2α ¼ 2ðβ3 þ β5
4
Þv1v2

β1v21 − β2v22 þ ðβ3 þ β5
4
Þðv21 − v22Þ

: ð11Þ

It is now instructive to count the number of free
parameters in the scalar potential. Note that Eqs. (2) and
(7) both contain eight free parameters. In the notation of
Eq. (7), these are v1, v2 and six βi couplings. We can trade
v1 and v2 for v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
and tan β. Except for β5, all

other β parameters may be traded for four physical scalar
masses (mh;mH;mA and mHþ) and the angle, α. The
equivalence of these two sets of parameters is demonstrated
by the following relations:

β1 ¼
1

2v2c2β

�
m2

Hc
2
α þm2

hs
2
α −

sαcα
tan β

ðm2
H −m2

hÞ
	

−
β5
4
ðtan2β − 1Þ; ð12aÞ

β2 ¼
1

2v2s2β
½m2

hc
2
α þm2

Hs
2
α − sαcα tan βðm2

H −m2
hÞ�

−
β5
4
ðcot2β − 1Þ; ð12bÞ

β3 ¼
1

2v2
sαcα
sβcβ

ðm2
H −m2

hÞ −
β5
4
; ð12cÞ

β4 ¼
2

v2
m2

Hþ ; ð12dÞ
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β6 ¼
2

v2
m2

A: ð12eÞ

Among the eight redefined parameters that appear on the
rhs of Eq. (12), not all are unknown. We already know
v ¼ 246 GeV and, under the assumption that the lightest
CP-even Higgs is what has been found at the LHC,
mh ≈ 125 GeV is also known.
As a next level of simplification, we recall that the

experimental values of the Higgs signal strengths into
different decay modes are showing increasing affinity
towards the SM expectations [19,20]. This encourages
us to work in the alignment limit [11]:

β − α ¼ π

2
; ð13Þ

which means h will have the exact SM-like tree level
couplings with the fermions and the vector bosons. The
recent global fits of the LHC data in the 2HDM context
[21–27] certifies that Eq. (13) is indeed a reasonable
assumption. In what follows, we will work exclusively
in the alignment limit. Therefore, in this limit, we are left
with five unknown parameters (mH;mA,mHþ , β5 and tan β)
which will be constrained from the requirement of high
scale stability of the 2HDM potential. We will see that this
requirement in association with the constraints from the
electroweak T-parameter entail strong correlations between
most of the remaining parameters, making the 2HDMmore
constrained than ever.

A. Theoretical constraints from vacuum
stability and unitarity

First we have to ensure that there is not any direction in
the field space along which the potential becomes infinitely
negative. In the parametrization of Eq. (2), the necessary
and sufficient conditions for the potential to be bounded
from below read [28–31]

VSC1∶ λ1 > 0; ð14aÞ

VSC2∶ λ2 > 0; ð14bÞ

VSC3∶ λ3 þ
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
> 0; ð14cÞ

VSC4∶ λ3 þ λ4 − jλ5j þ
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
> 0: ð14dÞ

The S-matrix eigenvalues that will be constrained from
unitarity of the scattering amplitudes are also listed below
[32–35]:

a�1 ¼ 3

2
ðλ1 þ λ2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
ðλ1 − λ2Þ2 þ ð2λ3 þ λ4Þ2

r
; ð15aÞ

a�2 ¼ 1

2
ðλ1 þ λ2Þ �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ2Þ2 þ 4λ24

q
; ð15bÞ

a�3 ¼ 1

2
ðλ1 þ λ2Þ �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ2Þ2 þ 4λ25

q
; ð15cÞ

b�1 ¼ λ3 þ 2λ4 � 3λ5; ð15dÞ

b�2 ¼ λ3 � λ5; ð15eÞ

b�3 ¼ λ3 � λ4: ð15fÞ

The requirement of tree unitarity then restricts the above
eigenvalues as follows:

ja�i j; jb�i j ≤ 16π: ð16Þ

We impose that the inequalities (14) and (16) should be
satisfied at all energies between the electroweak and Planck
scales. The renormalization group (RG) equations that we
use to calculate the lambdas at any intermediate energy
scale are given in the Appendix.
Additionally it is also important to check whether the

minimum defined by v1 and v2 is a global minimum or not.
The condition for the global minimum, in the notation of
Eq. (2), is given by [36,37]

D ¼ m2
12

0
@m2

11 −m2
22

ffiffiffiffiffi
λ1
λ2

s 1
A
0
@tan β −

ffiffiffiffiffi
λ1
λ2

4

s 1
A > 0: ð17Þ

B. Experimental constraints

In addition to the theoretical constraints mentioned
above, we also take the following experimental facts into
account.
(a) There is a very strong lower limit on mHþ , for type II

models, arising mainly due to the excellent agreement
of the b → sγ branching ratio with the SM prediction.
Because of this we take mHþ > 300 GeV [38,39] for
type II models. However, if tan β > 1, there is no such
bound for type I models from flavor data [38].
Therefore, for type I models, we only consider the
direct search limit mHþ > 80 GeV [40]. At this stage,
it should be noted that since the Yukawa couplings in
the quark sector are the same for type II and Y models
and the top Yukawa gives the dominant fermionic
contribution in the RG equations, whatever we com-
ment on type II models in this paper will eventually
hold for type Y models too. The same is true for type I
and X models.

(b) The oblique T-parameter can restrict the splitting
between the heavy scalar masses. In the 2HDM
alignment limit, the expression for the new physics
contribution to the T-parameter can be expressed
as [41,42]
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ΔT ¼ 1

16πsin2θwM2
W
½Fðm2

Hþ ; m2
HÞ þ Fðm2

Hþ ; m2
AÞ

− Fðm2
H;m

2
AÞ�; ð18Þ

with Fðx; yÞ ¼
(

xþy
2

− xy
x−y ln



x
y

�
for x ≠ y;

0 for x ¼ y:

ð19Þ

Taking the new physics contribution to the T-parameter
as [43]

ΔT ¼ 0.05� 0.12; ð20Þ

we use the 2σ uncertainty range around the mean value
for our numerical constraints. Note that the function
Fðx; yÞ is symmetric under x ↔ y and is sensitive only
to the difference jx − yj. Thus ΔT ¼ 0 when either
mHþ ¼ mH or mHþ ¼ mA. In these cases ΔT puts no
constraints on the heavy scalar masses. But if, for some
reason, mH ≈mA then ΔT severely restricts the split-
ting between charged and neutral scalar masses.

III. NUMERICAL ANALYSIS AND RESULTS

For the purpose of analysis, we choose the set
fv; tan β; α; mh;mH;mA;mHþ ; β5g which appears on the
rhs of Eq. (12) to be our independent set of eight parameters
to describe the 2HDM scalar potential. Among them, we set
v ¼ 246 GeV and α ¼ β − π=2. In the case of an exact Z2

symmetry we also set β5 ¼ 0 and perform a random scan
for the rest of the parameters in the following ranges:

tan β ∈ ½0.1; 10�; mh ∈ ½124; 126� GeV;
mH ∈ ½mh; 1500� GeV; mA ∈ ½0; 1500� GeV;
mHþ ∈ ½80; 1500� GeV ðfor type I modelsÞ;
mHþ ∈ ½300; 1500�GeV ðfor type II modelsÞ: ð21Þ

When the Z2 symmetry is softly broken, we find it
convenient to introduce the mass parameter

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
β5v2

r
; ð22Þ

and vary m0 in the range ½0; 1500� GeV. In the case of a
softly broken Uð1Þ symmetry, we impose m0 ¼ mA.
Next we use Eq. (12) to convert our set of parameters

into the set of βi ’s followed by Eq. (8) to convert the βi’s
again into λi’s. We then use the RG equations for λi’s given
in the Appendix to compute them at any intermediate
energy scale and check that the unitarity and stability
conditions hold all the way up to the Planck scale. We set
the top quark pole mass at 173.3 GeV [44] for our

numerical analysis. Our observations for different cases
appear in the following subsections.

A. Exact Z2

In this case setting β5 ¼ 0, we scan the rest of the
parameters in the range specified previously. The result has
been displayed in Fig. 1. A couple of noteworthy features
that emerge from this figure are given below:

(i) The value of tan β is bounded and the bound depends
on the energy scale, ΛUV, up to which stability is
demanded. As we increase ΛUV, the allowed param-
eter space shrinks continuously. It should be noted
that a limit on tan β for exact Z2 symmetry is not
surprising at all and is a direct consequence of
unitarity and stability at the electroweak
scale [45,46].

(ii) It is found that, for the noninert cases, neither type I
nor type II models can be absolutely stable all the
way up to the Planck scale when the Z2 symmetry is
exact in the potential. This result is in agreement
with the previous analysis of Ref. [15] in the context
of exact Z2 symmetry. We have checked for each
order of magnitude in ΛUV and have noticed that
type I models can remain stable up to a maximum of
108 GeV whereas type II models can be stable only
up to 104 GeV. This difference between type I and
type II models may be understood by noting that
stability up to 108 GeV for type I models requires a
light charged scalar, mHþ ∼ 180 GeV (see lower left
panel of Fig. 1), which is not allowed for type II
models from b → sγ.

Now that we know 2HDMs with exact Z2 symmetry fail
to maintain stability up to the Planck scale, it is time to
investigate whether the introduction of a soft symmetry
breaking parameter can improve the situation.

B. Softly broken Z2

Here we study the effects of nonzero β5. For convenience
we have encoded the information of β5 into the mass
parameter, m0, through Eq. (22). The same analysis as in
the case of exact Z2 symmetry is then performed for three
representative choices of ΛUV, namely, 1010, 1016 and
1019 GeV. We exhibit our results in Figs. 2 and 3. Some
intriguing features that emerge from these figures are
listed below.
(a) From Figs. 2 and 3, we note that it is indeed possible

for a 2HDM potential to remain stable all the way up
to the Planck scale in the presence of a soft symmetry
breaking parameter. But certain conditions need to be
satisfied for this to happen. These conditions, which
we describe below, together define the stable align-
ment limit for 2HDMs.

(b) From Fig. 2 we see that for the 2HDM potential to be
stable up to ΛUV, there must exist a lower bound on
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tan β. For example, when ΛUV ¼ 1019 GeV this bound
reads tan β ≳ 3. We also note from Fig. 2 that there is a
lower limit on m0 (or equivalently β5) too. For type I
models we read m0 ≳ 120 GeV whereas for type II
models we obtain m0 ≳ 280 GeV. For the energy
scales that we are concerned with, we observe that
these limits on m0 for type I and II models are
essentially independent of ΛUV. We emphasize that
this is one of the important differences between our
result and that of Ref. [15], where the stability of
2HDMs with softly broken Z2 symmetry was analyzed
including tan β ¼ 2 without realizing that such a low
value of tan β is forbidden when the alignment limit
is exact.

(c) From Fig. 3 we notice that the requirement of absolute
stability up to ΛUV entails a strong correlation between
m0 and the other nonstandard masses. In fact, a closer

scrutiny of the plots reveals that all the nonstandard
scalar masses have to be nearly degenerate with m0.

(d) Observations (b) and (c) together lead us to the con-
clusion that, in the stable alignment limit, a 2HDM
becomes completely determined by only two nonstand-
ard parameters, namely, tan β and amass parameter (m0).
Additionally, both of them are bounded from below:

tan β ≳ 3; m0 ≳ 120 GeV ðtype IÞ;
m0 ≳ 280 GeV ðtype IIÞ: ð23Þ

(e) We have also checked to see that the above conclu-
sions do not crucially depend on the input parameters,
especially the top quark mass. To be quantitative,
instead of the central value of 173.3 GeV, if we
consider the 2σ lower limit of the top quark pole

FIG. 2 (color online). Softly broken Z2. Allowed points in tan β–m0 plane for the 2HDM potential to be stable up to ΛUV. The points in
different colors correspond to different choices for ΛUV which appear in the legends.

FIG. 1 (color online). Exact Z2. Allowed points in the Log10ðtan βÞ–mH andmA-mHþ planes for the 2HDM potential to be stable up to
ΛUV. The points in different colors correspond to different choices for ΛUV which appear in the legends.
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mass, 171.8 GeV [44], the lower limit on tan β changes
to tan β ≳ 2.8.

We feel that an a posteriori explanation of most of the
above features is possible, at least on a qualitative level. In
the following we present, one by one, the steps of our
argument that help us apprehend different characteristics of
Figs. 2 and 3.
(1) First we note from Eq. (A7) in association with

Eqs. (A8e), (A9e), (A10e) and (A11e) that the
evolution of λ5 is proportional to itself. This is
not surprising because, as mentioned earlier, in the
absence of λ5 the symmetry of the scalar potential
is enhanced to a global Uð1Þ. Thus if we start with
λ5 ¼ 0 at the electroweak scale, it will remain zero at
all energy scales. But any initial nonzero value
of λ5 will cause it to grow with energy. This may
eventually jeopardize the vacuum stability condition
(14d) at high energy scales. Therefore, it will be no
wonder if, by demanding high scale stability of the
2HDM potential, we are led to the Uð1Þ limit,
λ5 ≈ 0. Evidently, this limit will have the following

implication on the masses [using Eq. (12e) and
remembering that λ5 ≈ 0 implies β5 ≈ β6]:

m2
A ≈m2

0; ð24Þ

which has been clearly depicted by the first row of
plots in Fig. 3.

(2) The next important thing to note is that unitarity and
stability conditions at the electroweak scale imply,
among other things [46,47],

0<ðm2
H−m2

0Þðtan2βþcot2βÞþ2m2
h<

32πv2

3
: ð25Þ

This inequality has been plotted in Fig. 4 for three
different values of tan β. It is obvious that for tan β
away from unity, the inequality (25) renders a
degeneracy between mH and m0. This explains
the second row of Fig. 3.

(3) Collecting (1) and (2) together we get
m2

H ≈m2
A ≈m2

0. Feeding this information to

FIG. 3 (color online). Softly broken Z2. Allowed points in the m0-mH,m0-mHþ ,m0-mA planes for the 2HDM potential to be stable up
to ΛUV. The points in different colors correspond to different choices for ΛUV which appear in the legends.
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Eq. (19), we obtain the following expression
for ΔT:

ΔT ¼ 1

8π sin2 θwM2
W
Fðm2

Hþ ; m2
0Þ: ð26Þ

Since Fðm2
Hþ ; m2

0Þ restricts the splitting jm2
Hþ −m2

0j,
the experimental limit on ΔT will impart the
degeneracy betweenmHþ andm0 as shown in Fig. 5.
This explains the third row of Fig. 3.
Thus, up to this point, we have

m2
0 ≈m2

A ≈m2
H ≈m2

Hþ ; ð27Þ

which summarizes the essential features of Fig. 3
that the 2HDM can be described by a single
nonstandard mass parameter. Equation (27) also
explains the lower bounds on m0 in Fig. 2. Since
mHþ > 300 GeV for type II 2HDMs, the degeneracy
of Eq. (27) destroys the possibility of having a light

pseudoscalar for type II models. This result is
apparent from the upper right panel of Fig. 3.

(4) To understand the lower limit on tan β we turn our
attention to the RG evolution equation of λ2 which is
given by Eq. (A7) in association with Eqs. (A8b),
(A9b), (A10b) and (A11b). Since we have assumed
ϕ2 to be the doublet that gives masses to the up-type
quarks, λ2 will face the negative pull of the top
Yukawa (ht). Note that in the limit of exact degen-
eracy, m2

0 ¼ m2
A ¼ m2

H ¼ m2
Hþ , we have at the

electroweak scale [using Eq. (12) followed by
Eq. (8) in the alignment limit],

λ1 ¼ λ2 ¼ λ3 ¼
m2

h

v2
; and λ4 ¼ λ5 ¼ 0: ð28Þ

Using these, we may simplify the RG equation for
λ2, at the electroweak scale, as follows:

Dλ2 ¼ 16λ22 − 3ð3g2 þ g02Þλ2
þ 3

4
ð3g4 þ g04 þ 2g2g02Þ

þ 12h2t λ2 − 12h4t : ð29Þ

Notice the striking similarity between the above
equation and the SM running of λ that appears in
Eq. (A1). One difference is that Dλ2 receives addi-
tional contributions on the positive side (compare
16λ22 with 12λ2 in the SM case) due to the presence
of extra quartic couplings. On the contrary, ht in the
2HDM case is ∼

ffiffiffi
2

p
mt=ðv sin βÞ, which is larger

than the SM value of ht ∼
ffiffiffi
2

p
mt=v. Therefore,

compared to the SM case the negative drag of ht
is enhanced in 2HDMs. This effect drives λ2 to
negative values violating vacuum stability condition
(14b) at high energies unless sin β is large enough to
dilute the effect of the term, −12h4t , sufficiently. This
is the origin of the lower limit on tan β. Choosing
tan β ¼ 8.5 for illustration, we have displayed this
effect in Fig. 6. There we see how the evolution of
the dotted (blue) line marked as VSC2 (which is
nothing but λ2) marginally survives becoming neg-
ative at an intermediate energy scale. Take tan β too
low and this line goes below zero spoiling the
stability condition, λ2 > 0. It is worth noting that
when all the nonstandard masses are exactly degen-
erate, evolutions of the λis depend only on tan β and
not on the mass parameter, m0.

(5) With exact degeneracy, the lower bound on tan β
turns out to be tan β ≳ 8 for ΛUV ¼ 1019 GeV. But
from Fig. 2 we see that even lower values of tan β are
allowed. To understand this, we need to investigate
the evolution of λ2 in greater detail. Instead of exact
degeneracy, we now consider the following limit:

FIG. 4 (color online). Allowed regions in the m0-mH plane
from the inequality (25) for three different values of tan β.

FIG. 5 (color online). Allowed region at 95% C.L. from the
experimental limit on ΔT under the assumption mH ¼ mA ¼ m0.
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m0 ¼ mA ¼ mH; and m2
Hþ ¼ m2

0 þ Δ: ð30Þ

In this limit,

λ1 ¼ λ2 ¼
m2

h

v2
; λ3 ¼ λ2 þ

2Δ
v2

;

λ4 ¼ −
2Δ
v2

; λ5 ¼ 0: ð31Þ

Using these, we can rearrange the terms that appear
on the rhs in the RG equation for λ2 to obtain

Dλ2 ¼ 14λ22 þ 2

�
λ2 þ

2Δ
v2

�
2

− 3ð3g2 þ g02Þλ2

þ 3

4
ð3g4 þ g04 þ 2g2g02Þ þ 12h2t λ2 − 12h4t :

ð32Þ

Comparing this with Eq. (29) we see that a positive
value of Δ aids in the positive terms allowing lower
values of tan β. But the fact that only very small
values of Δ can be permitted from unitarity [46] and
the T-parameter puts a lower limit on tan β anyway.
In Fig. 7 we have illustrated how the difference
δ≡mHþ −m0 ≈ Δ=ð2m0Þ depends on tan β. There
we can see that to allow tan β ≲ 8 we will need
δ > 0, i.e., mHþ > m0.

We have summarized our arguments above compactly in
the form of a flowchart in Fig. 8. Before moving on, we
intend to make some remarks on the structure of the
potential in the stable alignment limit. We note that in
the limit, m2

0 ¼ m2
A ¼ m2

H ¼ m2
Hþ , the potential of Eq. (2)

takes the following simple form1:

V ¼ m2
11ϕ

†
1ϕ1 þm2

22ϕ
†
2ϕ2 −m2

12ðϕ†
1ϕ2 þ H:c:Þ

þ λ1
2
ðϕ†

1ϕ1 þ ϕ†
2ϕ2Þ2: ð33Þ

This potential now contains four parameters among which
two, disguised as v andmh, have been measured. Two other
parameters, in the form of tan β and m0, remain to be
determined to fix the model completely. Note that the
symmetry in the quartic terms of Eq. (33) is more than a
mere Uð1Þ, in fact, the symmetry is enhanced to a global
Uð2Þ under which ðϕ1;ϕ2ÞT → Uð2Þðϕ1;ϕ2ÞT . But this
Uð2Þ symmetry is explicitly broken in the Yukawa terms.
Due to this, the structure of the potential in Eq. (33) is not

FIG. 7 (color online). Softly broken Z2. Allowed points in the
tan β–δ plane for ΛUV ¼ 1019 GeV in a type I 2HDM with
mH ¼ mA ¼ m0, and mHþ ¼ m0 þ δ.

FIG. 8. Chain of arguments that helps us make sense of the
main features of Figs. 2 and 3.

FIG. 6 (color online). Softly broken Z2. Running of stability
conditions of Eq. (14) in the exactly degenerate scenario
assuming mh ¼ 126 GeV. In this scenario, these runnings are
independent of m0.

1Similar potential can also be motivated from an SOð5Þ
symmetry [48].
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stable under RG. Neither the correlation λ1 ¼ λ2 ¼ λ3 nor
the equality λ4 ¼ 0 is maintained at higher energies. What
remains valid at any scale is the equality λ5 ¼ 0 because the
Uð1Þ symmetry that prevails in the quartic part of the scalar
potential in the absence of λ5 is also preserved in the
Yukawa sector by construction. Therefore, we conclude
that when high scale stability of the 2HDM potential needs
to be ensured, softly broken Uð1Þ symmetry should be a
more natural choice, to tackle tree level FCNC, than the
conventional Z2 symmetry.
Now we want to check to see whether the condition (17)

for the global minimum holds in the stable alignment limit
or not. First we remember that, in this limit, m0 is positive
(see Fig. 2) which implies m2

12 > 0. We have also found
λ1 ≈ λ2 ≈ λ3 with tan β ≳ 3. These imply0

@tan β −

ffiffiffiffiffi
λ1
λ2

4

s 1
A > 0: ð34aÞ

The remaining factor in Eq. (17) can be evaluated, in the
stable alignment limit, as follows:

m2
11 −m2

22

ffiffiffiffiffi
λ1
λ2

s
≈m2

11 −m2
22

¼ β2v22 − β1v21 ½using Eq: ð8Þ�; ð34bÞ

¼ m2
Aðsin2β − cos2βÞ ½using Eq: ð12Þwithm0 ≈mA�;

ð34cÞ

¼ m2
Acos

2βðtan2β − 1Þ > 0 ½∵ tan β ≳ 3�: ð34dÞ

Therefore we conclude that, in the stable alignment limit,
condition (17) is satisfied automatically and hence, exist-
ence of the global minimum is guaranteed.

C. Softly broken Uð1Þ
Here we will have mA ¼ m0 from the beginning.

Evidently, when the Uð1Þ symmetry is exact in the
potential, i.e.,m0 ¼ 0, A will become the Goldstone boson.
We present the result of our analysis, for type I models, in

Fig. 9. Although these plots do not provide any new insights,
we include them just for completeness. The interpretation
of Fig. 9 will be similar to that of the corresponding plots in
the case of softly broken Z2 symmetry.

IV. SUMMARY AND CONCLUSIONS

In this paper we have studied the consequences of
demanding absolute stability of the 2HDM potential all
the way up to the Planck scale. In view of the fact that the
LHC Higgs data are in conformity with the SM expect-
ations, we decided to work in the alignment limit where the
lightest CP-even scalar (h) possesses SM-like tree level
couplings with the standard particles. Although we have
explicitly demonstrated our results for type I and II models
only, they are equally applicable to type X and Y models
also. We have found that, in the alignment limit, require-
ment of high scale stability puts some remarkable restric-
tions on the 2HDM parameter space. This set of restrictions
defines the stable alignment limit for 2HDMs. Some of our
most important observations are summarized below:
(a) The 2HDM scalar potential with an exact Z2 sym-

metry is unable to maintain stability after 108 GeV
(104 GeV) in the type I (II) case. To ensure stability up
to the Planck scale, Z2 symmetry needs to be broken
softly.

(b) By demanding high scale stability in the presence of
a soft breaking, we are led to a situation where the
symmetry of the potential is enhanced from softly
broken Z2 to softly broken Uð1Þ.

(c) To have stability up to very high energies
(≳1010 GeV), all the nonstandard masses need to
be nearly degenerate: m0 ≈mA ≈mH ≈mHþ . Thus,
there is only one nonstandard mass parameter that
governs the 2HDM in the stable alignment limit.

(d) The value of tan β is bounded from below.
Therefore, in the stable alignment limit, a 2HDM can be
fully described by only two new parameters, namely, tan β
and m0 with tan β ≳ 3 and m0 ≳ 120 GeV (280 GeV) for
type I (II) models.
Finally, we end the paper on a pessimistic note. One

should remember that, in the alignment limit, even the

FIG. 9 (color online). Softly broken Uð1Þ. Allowed points in the tan β–mA, mA-mH , mA-mHþ planes for the 2HDM potential to be
stable up to ΛUV. Three different colors correspond to three different choices of ΛUV which appear in the legends.
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self-couplings of h are identical to the SM at tree level. This
means, in this limit, any measurement involving the
standard particles can smell the presence of nonstandard
physics only through loop effects. But then the nonstandard
particles can be made heavy enough to dilute these effects
sufficiently. Thus, our only hope to detect the presence of
nonstandard scalars beyond the reaches of the direct search
experiments is via some nondecoupling effects in certain
loop induced processes like Higgs to diphoton decay [49].
But with the degeneracy, m2

0 ≈m2
Hþ , this possibility is also

eliminated. Therefore, it appears that even if the LHC data
continues to agree with the SM predictions, a 2HDM in the
stable alignment limit which is very difficult, if not
impossible, to probe experimentally, can serve as an
alternative to the SM for many years to come.
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APPENDIX: ONE LOOP RG EQUATIONS

Let us first write down the one loop RG equation (RGE)
of the SM quartic coupling ðλÞ [50,51] as follows:

Dλ ¼ 12λ2 − 3ð3g2 þ g02Þλþ 3

4
ð3g4 þ g04 þ 2g2g02Þ

þ 12h2t λ − 12h4t ; ðA1Þ

where ht denotes the top Yukawa which dominates over
the other Yukawa couplings. For convenience, we have
introduced the shorthand D≡ 16π2 d

dðln μÞ.
Now we will present the one loop RGEs of all the

relevant couplings (gauge, Yukawa and scalar quartic
couplings) of the 2HDM [8,52–54].

1. Gauge couplings

RGEs for the gauge couplings,

Dgs ¼ −7g3s ; ðA2aÞ

Dg ¼ −3g3; ðA2bÞ

Dg0 ¼ 7g03: ðA2cÞ

2. Yukawa couplings

The initial values of top ðhtÞ, bottom ðhbÞ and tau ðhτÞ
Yukawa couplings at electroweak scale ðMtÞ for the
different Yukawa structures are given by

type I∶

(
htðMtÞ ¼

ffiffi
2

p
Mt

v sin β f1 − 4
3π αsðMtÞg;

hb;τðMtÞ ¼
ffiffi
2

p
mb;τ

v sin β ;
ðA3aÞ

type II∶

8<
:

htðMtÞ ¼
ffiffi
2

p
Mt

v sin β f1 − 4
3π αsðMtÞg;

hb;τðMtÞ ¼
ffiffi
2

p
mb;τ

v cos β ;
ðA3bÞ

where αsðMtÞ denotes the strong coupling constant at top
quark pole mass. The corresponding RGEs for the type I
Yukawa structure are given by

Dht ¼ ht

�
au þ

9

2
h2t þ

3

2
h2b þ h2τ

�
; ðA4aÞ

Dhb ¼ hb

�
ad þ

3

2
h2t þ

9

2
h2b þ h2τ

�
; ðA4bÞ

Dhτ ¼ hτ

�
ae þ 3h2t þ 3h2b þ

5

2
h2τ

�
: ðA4cÞ

For the type II Yukawa structure, the RGEs take the
following form:

Dht ¼ ht

�
au þ

9

2
h2t þ

1

2
h2b

�
; ðA5aÞ

Dhb ¼ hb

�
ad þ

1

2
h2t þ

9

2
h2b þ h2τ

�
; ðA5bÞ

Dhτ ¼ hτ

�
ae þ 3h2b þ

5

2
h2τ

�
; ðA5cÞ

where

au ¼
�
−8g2s −

9

4
g2 −

17

12
g02

�
; ðA6aÞ

ad ¼
�
−8g2s −

9

4
g2 −

5

12
g02

�
; ðA6bÞ

ae ¼
�
−
9

4
g2 −

15

4
g02

�
; ðA6cÞ

for both type I and II models.

3. Scalar quartic couplings

The RGEs for the five quartic couplings that appear in
Eq. (2) are given by

Dλi ¼ βλi þ Gi þHi; ði ¼ 1; 2; 3; 4; 5Þ; ðA7Þ

where βλi and Gi are independent of the Yukawa structure
of the model and are as follows:

βλ1 ¼ 12λ21 þ 4λ23 þ 4λ3λ4 þ 2λ24 þ 2λ25; ðA8aÞ

SEARCH FOR A STABLE ALIGNMENT LIMIT IN TWO- … PHYSICAL REVIEW D 91, 095024 (2015)

095024-11



βλ2 ¼ 12λ22 þ 4λ23 þ 4λ3λ4 þ 2λ24 þ 2λ25; ðA8bÞ

βλ3 ¼ ðλ1 þ λ2Þð6λ3 þ 2λ4Þ þ 4λ23 þ 2λ24 þ 2λ25; ðA8cÞ

βλ4 ¼ 2λ4ðλ1 þ λ2Þ þ 8λ3λ4 þ 4λ24 þ 8λ25; ðA8dÞ

βλ5 ¼ λ5ð2λ1 þ 2λ2 þ 8λ3 þ 12λ4Þ; ðA8eÞ

and

G1 ¼
3

4
ð3g4 þ g04 þ 2g2g02Þ − 3λ1ð3g2 þ g02Þ; ðA9aÞ

G2 ¼
3

4
ð3g4 þ g04 þ 2g2g02Þ − 3λ2ð3g2 þ g02Þ; ðA9bÞ

G3 ¼
3

4
ð3g4 þ g04 − 2g2g02Þ − 3λ3ð3g2 þ g02Þ; ðA9cÞ

G4 ¼ 3g2g02 − 3λ4ð3g2 þ g02Þ; ðA9dÞ

G5 ¼ −3λ5ð3g2 þ g02Þ: ðA9eÞ

The expressions for the Hi’s, however, depend on the
Yukawa structure of the model. For type I models, these are
given by

H1 ¼ 0; ðA10aÞ

H2 ¼ 4λ2ð3h2t þ 3h2b þ h2τÞ − ð12h4t þ 12h4b þ 4h4τÞ;
ðA10bÞ

H3 ¼ 2λ3ð3h2t þ 3h2b þ h2τÞ; ðA10cÞ

H4 ¼ 2λ4ð3h2t þ 3h2b þ h2τÞ; ðA10dÞ

H5 ¼ 2λ5ð3h2t þ 3h2b þ h2τÞ: ðA10eÞ

For the type II Yukawa structure, we have

H1 ¼ 4λ1ð3h2b þ h2τÞ − ð12h4b þ 4h4τÞ; ðA11aÞ

H2 ¼ 12λ2h2t − 12h4t ; ðA11bÞ

H3 ¼ 2λ3ð3h2t þ 3h2b þ h2τÞ − 12h2t h2b; ðA11cÞ

H4 ¼ 2λ4ð3h2t þ 3h2b þ h2τÞ þ 12h2t h2b; ðA11dÞ

H5 ¼ 2λ5ð3h2t þ 3h2b þ h2τÞ: ðA11eÞ
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