### PHYSICAL REVIEW D 91, 095016 (2015)

# Consistency of the recent ATLAS $Z + E_T^{\text{miss}}$ excess in a simplified general gauge mediation model

Ben Allanach, Are Raklev, and Anders Kvellestad<sup>2</sup>

<sup>1</sup>DAMTP, CMS, Wilberforce Road, University of Cambridge, Cambridge CB3 0WA, United Kingdom

<sup>2</sup>Department of Physics, University of Oslo, N-0316 Oslo, Norway

(Received 21 April 2015; published 20 May 2015)

ATLAS recently reported a  $3\sigma$  excess in a leptonic- $Z+E_T^{miss}$  channel. This was interpreted in the literature in a simplified general gauge mediation model containing a gluino, a Higgsino next-to-lightest supersymmetric particle and a gravitino lightest supersymmetric particle. We test the consistency of this explanation in lieu of the results of the corresponding search in CMS, and other LHC searches for new physics. Due to nondecoupling effects from squarks the parameter space of these models is split into two regions; in one region additional leptons via top quark production are expected, while the other region sees a large probability for zero-lepton events. After combining the relevant constraints we find that these models cannot explain the ATLAS excess.

DOI: 10.1103/PhysRevD.91.095016 PACS numbers: 12.60.Jv, 14.80.Ly

### I. INTRODUCTION

A recent ATLAS search for beyond the standard model physics in a channel with two leptons, consistent with the production of a Z-boson, large missing transverse momentum  $(E_T^{\text{miss}})$ , and at least two jets, reports a  $3\sigma$  excess [1] for 20.3 fb<sup>-1</sup> of integrated luminosity at a center of mass energy of 8 TeV. The other general purpose LHC experiment, CMS, has reported on a similar search, also with the full Run-I data set [2], seeing no excess. However, the cuts used in the two searches are different, and the observed ATLAS excess may a priori be consistent with the CMS results. Also, because the cuts are different, for some particular interpretation in terms of a new physics model one expects the predicted signal rates in each analysis to depend upon the signal kinematics. Hence, the relative number of predicted signal events in ATLAS as compared to CMS will depend in general upon the assumed interpretation, as well as on its parameters.

In this article we investigate the consistency of the ATLAS excess with the CMS analysis, and with other searches at the LHC, for a general gauge mediation (GGM) model with a gravitino lightest supersymmetric particle (LSP) [3]. The simplified model used here is inspired by [4], and contains only three free parameters: the gaugino mass  $M_3$ , fixing the gluino mass, tan  $\beta$ , the ratio of the two Higgs field vacuum expectation values, and  $\mu$ , the superpotential parameter, giving the mass of the Higgsino next-to-lightest supersymmetric particle (NLSP), as well as one additional neutralino and one chargino, both dominantly Higgsino. The excess can then be interpreted as stemming from gluino pair production and the decay chain  $\tilde{g} \to qq\tilde{\chi}_1^0 \to qqZ\tilde{G}$ , depicted in Fig. 1, with a leptonic Z-decay. In doing so we follow the model chosen by ATLAS to interpret the results of their analysis.

As the leptonic branching ratio of the Z is small, this model may also come into conflict with recent searches for supersymmetry (SUSY) via jets and missing energy channels. This was briefly commented on in [5], but no detailed analysis of the parameter space was performed, and the article goes on to interpret the ATLAS results in an alternative model with Z's coming from the decay  $\tilde{\chi}_2^0 \rightarrow Z\tilde{\chi}_1^0$ . The ATLAS excess was also interpreted in [6], using two benchmark points in a GGM model with properties very similar to the model used by ATLAS, and in [7], in the context of a composite Higgs/Randall Sundrum model, with heavy Kaluza-Klein gluon resonances decaying to vectorlike quarks.

## II. MODEL

For the model used in the ATLAS interpretation the remaining minimal supersymmetric standard model (MSSM) parameters were set as follows: the gaugino soft masses  $M_1 = M_2 = 1$  TeV, the sfermion soft masses  $m_{\tilde{f}} = 1.5$  TeV, and a gravitino mass light enough for the NLSP decays to be prompt. With  $m_{\tilde{q}} = 1.5$  TeV, squark-gluino production dominates over gluino pair production for gluino masses above ~1 TeV. Squark-squark production would dominate sparticle production for high enough gluino masses. Also, with  $M_1 = M_2 = 1$  TeV more complicated decay chains open up for gluinos in this mass range, and the NLSP will no longer be dominantly Higgsino for values of  $\mu$  close to 1 TeV.

<sup>&</sup>lt;sup>1</sup>Alternatively, MSSM scenarios with a wino (or bino) NLSP could be considered, however, they have  $\mathrm{BR}(\tilde{\chi}^0_1 \to \gamma \tilde{G}) > 0.23(0.77)$  [8], which should be easy to exclude from  $\gamma + E_T^{\mathrm{miss}}$  searches.

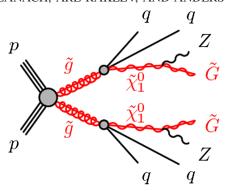


FIG. 1 (color online). Hypothesized GGM decay mode contributing to the ATLAS excess.

In order to explore a wider range of  $\mu$  and  $M_3$  values without introducing such complications in the phenomenology we adopt a simpler model with  $M_1 = M_2 = 1.5$  TeV and sfermions completely decoupled at  $m_{\tilde{f}} = 4.5$  TeV, keeping in mind that lowering the squark mass scale generally will lead to stronger bounds on the model. The mass parameters are defined at a scale of  $\sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} \sim 4.5$  TeV.

The gravitino mass is given by the scale of SUSY breaking, but must be very light for the NLSP to decay promptly; we set it to be effectively zero for the collider simulation. All results are presented for  $\tan \beta = 1.5$  and  $\tan \beta = 30$ . The choice of low  $\tan \beta$  is made in order to maximize the branching ratio  $\tilde{\chi}_1^0 \to Z\tilde{G}$ , which is in competition with  $\tilde{\chi}_1^0 \to h\tilde{G}$ , and to a smaller extent  $\tilde{\chi}_1^0 \to \gamma \tilde{G}$ . For low values of  $\tan \beta$ ,  $\mu > 0$  and a Higgsino NLSP, this is approximately 100% [8–10]. Increasing  $\tan \beta$  will decrease the signal. The two values used thus explore different parts of the parameter space.

The lightest Higgs mass is simply set to the experimentally measured value of  $m_h = 125.09 \pm 0.24$  GeV [11] by assuming extra operators in the Higgs sector, e.g. by using dimension-5 operators as proposed in [12].

The relative squark masses (and to a smaller extent the value of  $M_1$  and  $M_2$ ) determine the branching ratio of the gluino decay into the various quark flavors. Since the NLSP is dominantly Higgsino there will necessarily be large branching ratios into third generation quarks. When these are kinematically forbidden, the loop induced decays  $\tilde{g} \to g \tilde{\chi}_{1,2}^0$  become important. Due to the importance of decays involving third generation quarks,  $\tan \beta$  also affects the gluino branching ratios. Further complicating matters is the existence of multiple Higgsinos at roughly the same mass  $(\tilde{\chi}_1^0, \tilde{\chi}_2^0 \text{ and } \tilde{\chi}_1^\pm)^2$  In Fig. 2 we show the branching ratios of the gluino calculated using SUSYHIT 1.4 [15], as

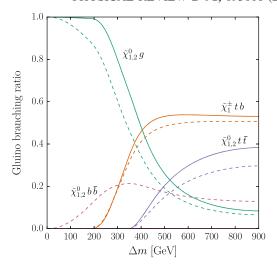


FIG. 2 (color online). Branching ratios for the gluino as a function of the gluino-neutralino mass difference with  $\tan \beta = 1.5$  (solid lines)  $\tan \beta = 30$  (dashed lines). The gluino mass is fixed at  $m_{\tilde{g}} = 900$  GeV. Some lines are not visible because they are at very low values of the gluino branching ratio

a function of  $\Delta m = m_{\tilde{g}} - m_{\tilde{\chi}_1^0}$  for  $\tan \beta = 1.5$  (solid lines) and  $\tan \beta = 30$  (dashed lines). The gluino mass is fixed at  $m_{\tilde{g}} = 900$  GeV and the other parameters are as given above.

We see that at least one top quark will be produced per event on average even down to  $\Delta m \sim 350$  GeV, where the proximity of the  $\tilde{g} \to tb\chi_1^\pm$  threshold becomes important. For  $\tan\beta=30$  we get a sizeable contribution from the decays  $\tilde{g} \to b\bar{b}\tilde{\chi}_{1,2}^0$ , reducing somewhat the production of top quarks at high  $\Delta m$ . We find that lowering  $M_1$  and/or  $M_2$  down to the gluino mass changes little: there is a slight increase in the first and second generation quark decays versus the gluino loop decay below the  $tb\chi_1^\pm$  threshold, but no significant impact above  $\Delta m \sim 350$  GeV. This ensures the presence of a significant number of events with additional leptons from leptonic top decays, which we will see have an impact on the allowed parameter space of the model. The decays to first and second generation quarks are heavily suppressed.

The ATLAS analysis assumed equal branching fractions of  $\tilde{g} \to qq\tilde{\chi}_1^0$  for q=u,d,c,s, ignoring the heavy quark decays. This simplifying assumption has relatively little impact on their analysis and the bounds set because of the focus on leptons from the *Z*-boson. However, the structure of GGM predicts generic sum rules on the sfermion soft masses [3],

$$m_Q^2 - 2m_U^2 + m_D^2 - m_L^2 + m_E^2 = 0 (1)$$

$$2m_Q^2 - m_U^2 - m_D^2 - 2m_L^2 + m_E^2 = 0, (2)$$

<sup>&</sup>lt;sup>2</sup>We note that a co-NLSP scenario is unlikely for Higgsinos. This would require relatively small but negative  $M_1$  values and large  $M_2$ , see [13,14].

which makes decoupling only the third generation squarks challenging. One is faced with the choice of either making the phenomenological assumption that the sum rules are broken somehow, increasing the number of free soft sfermion mass parameters in the model, and requiring an explanation of why the third generation masses are significantly heavier, e.g. one could speculate that something along the lines of Higgsed gauge mediation [16] could work. Or, to reduce the number of top quarks produced, one can at best decouple all squarks except the lightest bottom squarks by an appropriate choice of the soft masses, however, the decay  $\tilde{g} \to tb\chi_1^{\pm}$  remains. Neither seems very consistent with the simple model of ATLAS. As a result we will here include gluino decays to top and bottom quarks in the model.

### III. SCAN AND SIMULATIONS

We perform a grid scan over the range 0–1500 GeV in  $\mu$ and  $M_3$ , using a step size of 15 GeV in both directions. At each step we calculate the resulting sparticle spectrum using SOFTSUSY 3.5.1 [17] and the sparticle branching ratios with SUSYHIT 1.4 [15]. Spectrum and decay information is communicated via the SUSY Les Houches Accord [18], using PySLHA [19]. For all parameter points we check that  $m_{\tilde{g}} > m_{\tilde{\chi}_1^0}$ , and that the NLSP is mostly Higgsino (more than 0.90). At each point we generate 100 000 SUSY Monte Carlo events with gluino pair production using PYTHIA 8.186 [20,21]. The cross sections used are based on Prospino [22], using the NLLfast software including also next-to-leading log resummation of soft gluon emission [23–26]. These events are then propagated through our implementations of several collider analyses, detailed below.

The ATLAS analysis with the excess requires two leading opposite-sign same-flavor (OSSF) leptons with  $p_T > 25,10\,\mathrm{GeV}$  and invariant mass  $81 < m_{II} < 101\,\mathrm{GeV}$ , a minimum missing transverse energy of  $E_T^{\mathrm{miss}} > 225\,\mathrm{GeV}$ , at least two jets, and total transverse energy  $H_T > 600\,\mathrm{GeV}$ , where  $H_T$  is given as the scalar sum of the transverse momenta of the two leading leptons and all accepted jets. Jets are reconstructed with the anti- $k_T$  algorithm [27] using FastJet [28], with a jet radius parameter of R=0.4, and are required to have  $p_T > 35\,\mathrm{GeV}$  and lie within  $|\eta| < 2.5$ . In the following we will denote the signal region with the sum of ee and  $\mu\mu$  events as ATLAS\_onZ. We summarize the ATLAS measurements in Table I. In order to calculate a constraint upon the number

TABLE I. Summary of ATLAS\_onZ constraints, showing the observed number of events, the number of expected Standard Model events inferred from data, the number of sigma the excess corresponds to and the 95% CL constraint upon a putative number of signal events s. The first three data are taken from Ref. [1], whereas we infer the bound on s ourselves (see text).

| Observed        | 29             |
|-----------------|----------------|
| Background      | $10.6 \pm 3.2$ |
| Number of sigma | 3.0            |
| s (95% CL)      | 7.1–31.8       |

of non-Standard-Model signal events *s*, we profile over a Gaussian background rate, see Sec. IV, but otherwise use Poisson statistics. If other combined constraints predict an ATLAS\_onZ signal rate outside of this range, we shall conclude that they are incompatible with the signal at the 95% CL.

The on-Z CMS analysis [2], here called CMS\_onZ, requires a leading pair of opposite-sign same-flavor leptons satisfying  $p_T > 20$  GeV and  $81 < m_{ll} < 101$  GeV. Three signal regions are constructed, covering the ranges 100-200 GeV, 200-300 GeV and > 300 GeV in  $E_T^{\text{miss}}$ , all requiring at least three jets with  $p_T > 40 \text{ GeV}$  and  $|\eta|$  < 3.0. For jet reconstruction the anti- $k_T$  algorithm with R = 0.5 is used. A notable difference with respect to the event selection in ATLAS\_onZ is that no cut on  $H_T$  is applied. While there are some details of the original analysis which are difficult to reproduce outside of the experimental collaborations, e.g. trigger efficiencies, by simulating models similar to those used for interpretation in ATLAS\_onZ and CMS\_onZ we have checked that our implementations reproduce the observed limits to within theoretical uncertainties, under the assumptions made.

In addition to the leptonic- $Z + E_T^{\rm miss}$  analyses from CMS and ATLAS, the scenario used here could be constrained by other searches involving leptons. This includes three and four lepton final states where extra leptons are produced in leptonic top decays, or from two chains with Zs. The latter is heavily suppressed by the leptonic branching ratio of the Z, down to  $\sim$ 7% of the number of events with a single leptonically decaying Z, thus of the order of two events could be expected for the given luminosity, depending on the exact cuts of such an analysis.

We check the most relevant searches which are the ATLAS stop search with leptons ATLAS\_stop\_L100 [29], and the CMS multilepton search with three or four leptons, CMS\_multilepton [30]. From the analysis in ATLAS\_stop\_L100 we include the signal region L100 requiring exactly two opposite-sign leptons with  $p_T > 25$ , 10 GeV, at least two jets with  $p_T > 100$ , 50 GeV, a "stransverse mass"  $m_{T2} > 100$  GeV and an invariant mass  $m_{Il}$  for the two leptons outside the range 71–111 GeV. For the GGM model studied here, the cut on  $m_{Il}$  means that ATLAS\_stop\_L100 is mainly sensitive to events where neither of the two Zs decay leptonically.

<sup>&</sup>lt;sup>3</sup>Technically the ATLAS model does not fulfill these sum rules, however, a slight modification of the soft mass parameters would.

<sup>&</sup>lt;sup>4</sup>With first and second generation sfermions at 1.5 TeV, the third generation sfermions must be raised to ∼5 TeV for the gluino branching ratios to light quarks to equal those to third generation quarks.

The CMS multilepton search requires at least three isolated leptons with  $p_T > 20, 10, 10$  GeV within  $|\eta| < 2.4$ . Jets are subject to the requirements  $p_T > 30 \text{ GeV}$  and  $|\eta|$  < 2.5. Accepted events are divided into a large number of signal regions based on the number of opposite-sign same-flavor lepton pairs,  $E_T^{\text{miss}}$ , the presence of an OSSF lepton pair with an invariant mass in the 75-105 GeV range, the scalar sum of jet  $p_T$ s and the number of tagged b-jets. Due to an overlap between CMS\_onZ and the most relevant signal regions in CMS\_multilepton, in the combination we use CMS\_multilepton for parameter regions where the gluino-neutralino mass difference  $\Delta m$  is larger than 500 GeV and CMS onZ for mass differences smaller than this. A choice like this is necessary in order to have statistically independent signal regions when we do not have the information to take into account the correlations. As can be seen from Fig. 2, the choice ensures that CMS\_multilepton is only applied in the region of parameter space where additional leptons can be expected due to a sizeable production of top quarks.

Given the small leptonic branching ratios of W and Z, the GGM scenario studied can also be constrained from searches for zero-lepton final states. We include the signal region 3j from the ATLAS search for final states with jets and missing energy [31], here called ATLAS\_jMET\_3j. Besides a lepton veto, this signal region requires at least three jets with  $p_T > 130, 60, 60$  GeV and  $|\eta| < 2.8$ , missing energy  $E_T^{\rm miss} > 160$  GeV and an "effective mass"  $m_{\rm eff} > 2200$  GeV. Also, the missing energy is required to account for at least 30% of the effective mass combination of  $E_T^{\rm miss}$  and the three leading jet  $p_T$ s.

No significant excesses are seen in either of these searches. For all three searches we have checked, as above, that we can reproduce the relevant limits on SUSY interpretations presented by the experiments.

#### IV. STATISTICS

In order to combine the results from all the analyses, each independent signal region i is assigned a likelihood  $\mathcal{L}_i$  consisting of a Poisson factor for the total event count and a Gaussian for modeling the background uncertainty:

$$\mathcal{L}_i(s_i, b_i) = \text{Pois}(n_i | s_i + b_i) \times \text{Gauss}(b_{m_i} | b_i, \sigma_{b_i}).$$
 (3)

Here  $n_i$  is the observed number of events,  $s_i$  and  $b_i$  are the expected number of signal and background events, and  $b_{m_i}$  is the observed background measurement with an expected standard deviation  $\sigma_{b_i}$ . Inserting the observed values for  $n_i$ ,  $b_{m_i}$  and  $\sigma_{b_i}$  we are left with a likelihood function for the two parameters  $s_i$  and  $b_i$ . While  $s_i$  will be a function of the SUSY parameters  $\mu$  and  $M_3$ ,  $b_i$  is an unknown nuisance parameter which we eliminate by profiling  $\mathcal{L}_i$  over  $b_i$ . With all the  $\mathcal{L}_i$  coming from independent signal regions, the combined likelihood is then simply given by

$$\mathcal{L}(\mathbf{s}) = \prod_{i} \mathcal{L}_{i}(s_{i}, \hat{b}_{i}), \tag{4}$$

where the double hat indicates that we have maximized  $\mathcal{L}_i(s_i, b_i)$  over  $b_i$  subject to a fixed value of  $s_i$ .

For any given parameter point in  $\mu$  and  $M_3$ , the signal expectation values s are in principle fully determined. In order to set limits in the model parameter space we introduce a common signal strength parameter  $\mu_s$  such that the expected signal yield in signal region i is  $\mu_s s_i$ . Points in the SUSY parameter space for which the upper limit on  $\mu_s$  is found to be less than 1 will be excluded at the confidence level chosen for the test.

For every choice of the SUSY parameters we now have a single-parameter likelihood function  $\mathcal{L}(\mu_s) \equiv \mathcal{L}(\mu_s \mathbf{s})$ . From the likelihood ratio

$$\lambda(\mu_s) = \frac{\mathcal{L}(\mu_s)}{\mathcal{L}(\hat{\mu}_s)},\tag{5}$$

we construct a test statistic q given by

$$q = \begin{cases} -2\ln\lambda(\mu_s) & \hat{\mu}_s \le \mu_s \\ 0 & \hat{\mu}_s > \mu_s, \end{cases}$$
 (6)

where  $\hat{\mu}_s$  is the value of  $\mu_s$  that maximizes  $\mathcal{L}(\mu_s)$ , i.e. the signal strength value preferred by the observed data. Higher values of q correspond to increasing disagreement between data and the hypothesized value of  $\mu_s$ , but only in the direction of  $\mu_s > \hat{\mu}_s$ . For a given  $\mu_s$  the observed value  $q_{\text{obs}}$  of q is calculated from the data. The p-value for this observation is then found from

$$p_{\mu_s} = \int_{q_{ss}}^{\infty} f(q|\mu_s) dq, \tag{7}$$

where  $f(q|\mu_s)$  is the probability density function of q. To determine  $p_{\mu_s}$  we make use of the asymptotic limit in which  $f(q|\mu_s)$  is given by a "half chi-square" distribution, i.e. an equally weighted sum of a delta function at zero and a chi-square distribution for 1 degree of freedom [32]. The 95% CL<sub>s</sub> [33] upper limit on  $\mu_s$  is the highest value of  $\mu_s$  satisfying

$$\frac{p_{\mu_s}}{1 - p_0} \ge 0.05,\tag{8}$$

where  $p_0$  is the p-value for the test statistic

$$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu}_s \ge 0\\ 0 & \hat{\mu}_s < 0, \end{cases} \tag{9}$$

used to test the level of disagreement between data and the background-only hypothesis.

#### V. RESULTS

We show the 95% CL allowed region for the  $3\sigma$  ATLAS\_onZ excess in Fig. 3 for  $\tan\beta=1.5,30$  as the lighter band. The 95% CL<sub>s</sub> excluded regions from the other searches are overlaid, and for reference the two ATLAS benchmark points at  $(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (700, 200)$  GeV and (900,600) GeV,  $\tan\beta=1.5$ , are indicated with white diamond markers. It is clear from the figure that all points explaining the ATLAS\_onZ excess for either value of  $\tan\beta$  fall afoul of at least one of the other searches. Indeed, CMS\_onZ alone is already incompatible with the excess at the 95% CL<sub>s</sub> level except for two small regions. One region, around  $m_{\tilde{\chi}_1^0} \approx 950$  GeV,  $m_{\tilde{g}} \approx 980$  GeV which is anyway well excluded by the ATLAS\_iMET searches. The

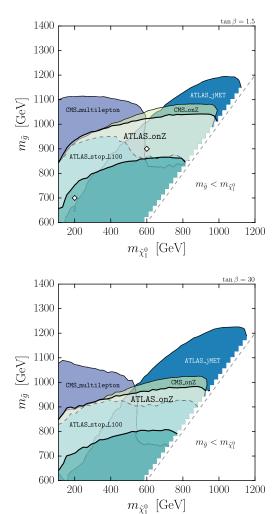


FIG. 3 (color online). The band in the  $(m_{\tilde{\chi}_1^0}, m_{\tilde{g}})$ -plane preferred by ATLAS\_onZ at 95% CL (lighter region), compared to the colored 95% CL<sub>s</sub> exclusion contours from CMS\_onZ, ATLAS\_stop\_L100, CMS\_multilepton and ATLAS\_jMET for tan  $\beta=1.5$  (top), tan  $\beta=30$  (bottom). The ATLAS\_stop\_L100 exclusion region boundary is shown as a dashed line. Two ATLAS benchmark points are indicated with white diamond markers.

other region, including the point  $m_{\tilde{\chi}_1^0} = 190 \text{ GeV}$ ,  $m_{\tilde{g}} = 930 \text{ GeV}$  is excluded by CMS\_multilepton. When  $\tan \beta$  is changed, the exclusion contours move somewhat in gluino and lightest neutralino mass, but the qualitative conclusions remain unchanged.

Given the tension between the other searches and the ATLAS\_onZ excess, we now combine the CMS\_onZ exclusion with various other searches to see what the combined data set predicts for the number of signal events in the excess. The 95% CL<sub>s</sub> bound in the  $(m_{z_0}, m_{\tilde{a}})$ -plane resulting from combining ATLAS\_onZ and CMS\_onZ is shown in Fig. 4. Here the white contour depicts the limit obtained for  $\tan \beta = 1.5$ , while the black contour is for  $\tan \beta = 30$ . Also shown are the bounds given a 20% systematic uncertainty on the cross section. The color map shows the predicted number of signal events for the ATLAS\_onZ analysis in the scenario with  $\tan \beta = 1.5$ . Since the squarks are decoupled from gluino production here, the production cross section for the model is lower than the original ATLAS scenario. Still, both ATLAS benchmark points are excluded at the 95% confidence level from the combination of ATLAS\_onZ and CMS\_onZ alone. On the other hand, there are still some points left allowed at the 95% CL that predict an ATLAS on Z signal rate of up to 13(12) for  $\tan \beta = 1.5(30)$ . These are within the 95% CL signal rate region of 7.1-31.8 and so are still compatible with the ATLAS\_onZ signal at the 95% CL.

If we add on the contributions from ATLAS\_stop\_L100 and CMS\_multilepton the resulting 95% CL<sub>s</sub> bound is

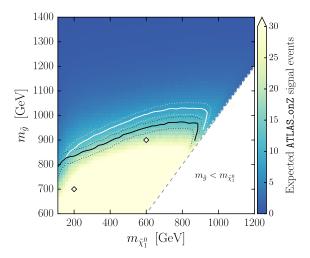


FIG. 4 (color online). The 95% CL<sub>s</sub> exclusion curves in the  $(m_{\tilde{\chi}_1^0}, m_{\tilde{g}})$ -plane for  $\tan \beta = 1.5$  (white) and  $\tan \beta = 30$  (black), using both the ATLAS\_onZ and CMS\_onZ signal regions. The color map shows the expected number of ATLAS\_onZ signal events for the  $\tan \beta = 1.5$  scenario. The two ATLAS benchmark points are indicated with white diamond markers. The region below each curve is excluded by the combination. ATLAS\_onZ signal events are constrained to be below 13(12) at the 95% CL for  $\tan \beta = 1.5(30)$ .

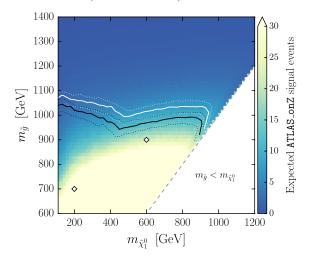


FIG. 5 (color online). The 95% CL<sub>s</sub> exclusion curves in the  $(m_{\tilde{\chi}_1^0}, m_{\tilde{g}})$ -plane from combining ATLAS\_onZ, CMS\_onZ, ATLAS\_stop\_L100 and CMS\_multilepton. The color map shows the expected number of ATLAS\_onZ signal events for the  $\tan \beta = 1.5$  scenario. The two ATLAS benchmark points are indicated with white diamond markers. The region below each curve is excluded by the combination. ATLAS\_onZ signal events are constrained to be below 13(11) at the 95% CL for  $\tan \beta = 1.5(30)$ .

shown in Fig. 5. As expected, the exclusion limits are improved in the regions of large gluino-neutralino mass difference, where the production of additional leptons through top quarks is significant. The slight dip in the contour at  $(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) \sim (1000, 500)$  GeV is where the domains of the CMS\_multilepton and CMS\_onZ analyses meet. In the region of small gluino-neutralino mass difference the limit remains approximately unchanged, and the combined allowed region predicts up to 13(11) ATLAS\_onZ signal events for tan  $\beta = 1.5(30)$ , still consistent with the 7.1–31.8 95% CL constraint.

The final exclusion limit, obtained after including also ATLAS\_jMET\_3j, is shown in Fig. 6. Due to the lepton veto in this analysis, the exclusion limit is mainly strengthened in the region with gluino-neutralino mass differences less than 400 GeV, where the main source of leptons is through the small leptonic branching ratio of the Zs. With  $\tan \beta = 30$  this effect is further enhanced by the reduced branching ratio into Zs. We note that gluino masses below 1 TeV are fully excluded for both values of  $\tan \beta$ , and the remaining allowed parameter space has a maximum of 6 expected signal events for ATLAS\_onZ, which is far from explaining the observed excess.

The observed excess in ATLAS\_onZ was also recently interpreted within a GGM framework in [6], where two new benchmark points are presented. The main difference with respect to the ATLAS scenario is heavier squarks, and that the lightest neutralino is a wino-bino mixture. The first point, referred to as GGM1, has  $m_{\tilde{g}} = 1088$  GeV,  $m_{\tilde{\chi}_1^0} = 428$  GeV and squark masses around 2800 GeV. The second

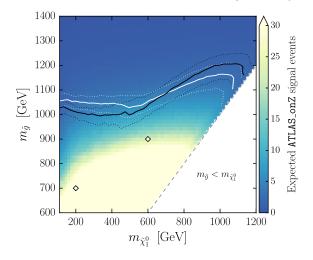


FIG. 6 (color online). The 95% CL<sub>s</sub> exclusion curves in the  $(m_{\tilde{\chi}_1^0}, m_{\tilde{g}})$ -plane from combining all collider searches detailed in the text. The color map shows the expected number of ATLAS\_ onZ signal events for the tan  $\beta=1.5$  scenario. The two ATLAS benchmark points are indicated with white diamond markers. The region below each curve is excluded by the combination. ATLAS\_onZ signal events are constrained to be below 6(5) at the 95% CL for tan  $\beta=1.5(30)$ .

point, GGM2, has a higher production cross section due to lighter gluinos and squarks, at 911 GeV and ~2400 GeV, respectively. Combining the collider constraints considered here we find that GGM2 is excluded at the 95% confidence level, while GGM1 escapes exclusion. However, it should be noted that GGM1 predicts only ~3 signal events for ATLAS\_onZ.<sup>5</sup>

One may ask, can one tweak the simplified model in order to squeeze around the constraints? In our analysis, we have set the simplified model up in order to maximize the ATLAS on Z region compared to the other constraining searches. If  $\tan \beta$  is increased further, the ATLAS\_onZ signal decreases for the same gluino/lightest neutralino masses. Thus, these would have to be lowered in order to get a signal to fit, and such lighter sparticles would suffer more from the other searches. If we were to make squarks lighter, although the ATLAS\_onZ signal would increase for the same gluino/lightest neutralino masses, the ATLAS\_iMET constraints would become much stronger. In any case, CMS onZ is in tension with nearly all of the ATLAS on Z parameter space, and this is unlikely to change. The CMS\_multilepton constraint is mainly due to events with one leptonically decaying Z-boson plus additional leptons from decaying top quarks, predicted by the signal model due to the Higgsino nature of the neutralino. If the model is manipulated to reduce the

<sup>&</sup>lt;sup>5</sup>We note that this is in slight disagreement with the simulation in [6], which finds  $6 \pm 1$  predicted signal events for GGM1. However, this discrepancy does not change the conclusion.

production of such additional leptons, the weakening of the CMS\_multilepton constraint will be compensated by a corresponding strengthening of ATLAS\_jMET as more events will pass the lepton veto. Thus, although we have not exhaustively covered the full multidimensional MSSM plus light gravitino space, there are good grounds for expecting that our conclusions—that the ATLAS\_onZ excess is incompatible with other searches at the 95% CL for GGM-type models—also apply to the full MSSM space.

## VI. CONCLUSIONS

In conclusion, we have seen that a simplified GGM model with only  $M_3$  and  $\mu$  as free parameters, and with  $\tilde{g}$ , Higgsino  $\tilde{\chi}_1^0$ ,  $\tilde{\chi}_2^0$  and  $\tilde{\chi}_1^{\pm}$ , and a gravitino LSP as the only sparticles produced at the LHC, cannot explain the ATLAS excess reported in [1] when faced with results from other current new physics searches. Strong bounds on the model that can be set from other leptonic searches are due to the Higgsino nature of the NLSP, leading to the production of top quarks with leptonic decays. Zero-lepton searches also provide strong constraints in the parameter regions where

leptons are mainly produced through the small leptonic branching ratio of the Z. Tension between ATLAS\_onZ and the other relevant searches is evident in Fig. 3. A combined fit to all constraints, *including the excess*, at the 95% CL predicts less than 6 signal events in the ATLAS\_onZ search region, compared to 7.1–31.8 being inferred from the ATLAS onZ search region alone.

### **ACKNOWLEDGMENTS**

This work has been partially supported by STFC Grant No. ST/L000385/1. We thank the Cambridge SUSY Working Group for stimulating discussions. The CPU intensive parts of this work were performed on the Abel Cluster, owned by the University of Oslo and the Norwegian metacenter for High Performance Computing (NOTUR), and operated by the Research Computing Services group at USIT, the University of Oslo IT-department. The computing time was given by NOTUR allocation NN9284K, financed through the Research Council of Norway.

<sup>[1]</sup> G. Aad et al. (ATLAS Collaboration), arXiv:1503.03290.

<sup>[2]</sup> V. Khachatryan et al. (CMS Collaboration), arXiv:1502.06031.

<sup>[3]</sup> P. Meade, N. Seiberg, and D. Shih, Prog. Theor. Phys. Suppl. **177**, 143 (2009).

<sup>[4]</sup> J. T. Ruderman and D. Shih, J. High Energy Phys. 08 (2012)

<sup>[5]</sup> U. Ellwanger, arXiv:1504.02244.

<sup>[6]</sup> G. Barenboim, J. Bernabeu, V. Mitsou, E. Romero, E. Torro *et al.*, arXiv:1503.04184.

<sup>[7]</sup> N. Vignaroli, arXiv:1504.01768.

<sup>[8]</sup> P. Meade, M. Reece, and D. Shih, J. High Energy Phys. 05 (2010) 105.

<sup>[9]</sup> S. Ambrosanio, G. L. Kane, G. D. Kribs, S. P. Martin, and S. Mrenna, Phys. Rev. D 54, 5395 (1996).

<sup>[10]</sup> S. Dimopoulos, S. D. Thomas, and J. D. Wells, Nucl. Phys. B488, 39 (1997).

<sup>[11]</sup> G. Aad *et al.* (CMS Collaboration), arXiv:1503.07589 [Phys. Rev. Lett. (to be published)].

<sup>[12]</sup> M. Dine, N. Seiberg, and S. Thomas, Phys. Rev. D 76, 095004 (2007).

<sup>[13]</sup> G.F. Giudice and A. Pomarol, Phys. Lett. B **372**, 253 (1996).

<sup>[14]</sup> N.-E. Bomark, A. Kvellestad, S. Lola, P. Osland, and A. Raklev, J. High Energy Phys. 05 (2014) 007.

<sup>[15]</sup> A. Djouadi, M. Muhlleitner, and M. Spira, Acta Phys. Pol. B 38, 635 (2007).

<sup>[16]</sup> N. Craig, M. McCullough, and J. Thaler, J. High Energy Phys. 03 (2012) 049.

<sup>[17]</sup> B. Allanach, Comput. Phys. Commun. 143, 305 (2002).

<sup>[18]</sup> P. Z. Skands, B. Allanach, H. Baer, C. Balazs, G. Belanger *et al.*, J. High Energy Phys. 07 (2004) 036.

<sup>[19]</sup> A. Buckley, arXiv:1305.4194.

<sup>[20]</sup> T. Sjostrand, S. Mrenna, and P. Z. Skands, J. High Energy Phys. 05 (2006) 026.

<sup>[21]</sup> T. Sjostrand, S. Mrenna, and P. Z. Skands, Comput. Phys. Commun. **178**, 852 (2008).

<sup>[22]</sup> W. Beenakker, R. Hopker, M. Spira, and P. Zerwas, Nucl. Phys. **B492**, 51 (1997).

<sup>[23]</sup> A. Kulesza and L. Motyka, Phys. Rev. Lett. **102**, 111802 (2009).

<sup>[24]</sup> A. Kulesza and L. Motyka, Phys. Rev. D 80, 095004 (2009).

<sup>[25]</sup> W. Beenakker, S. Brensing, M. Kramer, A. Kulesza, E. Laenen, and I. Niessen, J. High Energy Phys. 12 (2009) 041.

<sup>[26]</sup> W. Beenakker, S. Brensing, M. Kramer, A. Kulesza, E. Laenen, L. Motyka, and I. Niessen, Int. J. Mod. Phys. A **26**, 2637 (2011).

<sup>[27]</sup> M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.

<sup>[28]</sup> M. Cacciari, G. P. Salam, and G. Soyez, Eur. Phys. J. C **72**, 1896 (2012).

<sup>[29]</sup> G. Aad *et al.* (ATLAS Collaboration), J. High Energy Phys. 06 (2014) 124.

<sup>[30]</sup> S. Chatrchyan *et al.* (CMS Collaboration), Phys. Rev. D 90, 032006 (2014).

<sup>[31]</sup> G. Aad *et al.* (ATLAS Collaboration), J. High Energy Phys. 09 (2014) 176.

<sup>[32]</sup> G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Eur. Phys. J. C 71, 11554 (2011).

<sup>[33]</sup> A. L. Read, J. Phys. G 28, 2693 (2002).