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We examine a simple composite Higgs model (CHM) with vector resonances in addition to the Standard
Model (SM) fields in perturbation theory by using the K-matrix method to implement unitarity constraints.
We find that the WLWL scattering amplitude has an additional scalar pole (analogous to the σ meson of
QCD) as in generic strongly interacting extensions of the SM. The mass and width of this dynamically
generated scalar resonance are large and the mass behaves contrary to the vector one, so that when the
vector resonance is lighter, the scalar one is heavier, and vice versa. We also attempt an interpretation of this
new resonance. Altogether, the presence of the vector state with the symmetries of the CHM improve the
low-energy unitarity behavior also in the scalar-isoscalar channel.
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I. INTRODUCTION

The recent discovery of a Higgs boson [1] has revived
interest in the electroweak symmetry breaking (EWSB)
sector of the Standard Model (SM) and beyond. If this
Higgs boson is confirmed to have exactly the couplings
expected in the SM, a renormalizable theory of the EW
interactions will be a closed chapter of physics history.
Nevertheless, for several reasons, the particle physics
community feels that there could be further new particles
beyond the newly discovered Higgs boson. It is then
interesting that its reported mass, about 125 GeV, is of
the same magnitude as the EW gauge bosons, MW ≃
82 GeV and MZ ≃ 91 GeV, while no new particles have
been seen up to 600–700 GeV. Particularly stringent are the
bounds on possible furtherW0 or Z0 vector bosons and other
particles coupling to WW and WZ pairs below about
1.5 TeV [2].
A natural scenario that theoretically fits this insight is

that of a composite Higgs model (CHM) in which the Higgs
state is a naturally light quasi-Nambu-Goldstone boson
(qNGB) stemming, like the longitudinal components of the
gauge bosons WL and ZL, from the spontaneous breaking
of a higher energy symmetry [3].
While we do not really know what that symmetry might

be like, Occam’s razor dictates to examine first those
models with the minimum number of ingredients. In the
EWSB sector, this means the four Goldstone bosons that
seem to be the low-energy content of the theory. A minimal
such choice is the SOð5Þ → SOð4Þ breaking, proposed in
[4], that we spell out in Sec. II. A key ingredient of these
models is the presence of relatively low-mass W0, Z0
vector resonances. In certain dynamical strongly coupled
theories, e.g., technicolor, they correspond to spin-1

diquark condensates whereas in the minimal CHM context
they simply appear as gauge bosons in the hidden sym-
metry SOð5Þ. In the cases where the vector resonance
mass is relatively low and accessible at the LHC, they are
prominent in the scalar-scalar scattering amplitudes that we
will address.
Since our goal is to look forward to the TeV and multi-

TeV region where such new vector resonances may hide,
and this is high energy compared with the EW scale, we can
profit from the equivalence theorem (ET) [5] between the
longitudinal WL components and the π qNGB’s. The
Lagrangian density that controls their low-energy inter-
actions is discussed in Sec. II B.
We then dedicate Sec. III to the extraction of the

scattering amplitudes among the low-energy particles in
leading order (LO) chiral perturbation theory, extended by
new vector resonances, which would correspond to the first
accessible states [at the Large Hadron Collider (LHC)] of
the CHM considered here. The amplitudes therefore
include contact chiral interactions that are a polynomial
in s and beyond the SM (BSM) gaugelike interactions
ρ-π-π entering through t- and u-channel vector exchanges,
with ρ representing the accessible (spin-1 gauge) resonan-
ces.1 The polynomial terms imply strong interactions in

1Recently, a paper discussing the potential of characterizing
the underlying CHM through ππ scattering in the presence of
such a ρ state has appeared [6]. Technically, we use a para-
metrization of the scattering amplitude that is unitary, as they do,
but ours is extended to the complex s-plane and has the
correct analytic structure, so the model is somewhat more
sophisticated and allows one to detect, in addition to the narrow
vector resonance, the scalar one, which is deep in the complex
plane.
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spite of the Higgs being light [7,8]. We calculate three
relevant scattering processes πiπj → πkπl, πiπj → hh, and
πiπj → π3h (this last one vanishes due to a cancellation
between vector resonances with degenerate masses). While
the hh → hh scattering vanishes at LO since h is a singlet
under the custodial SUð2Þ symmetry, nevertheless it will
enter at the one-loop level (and in our computation, upon
unitarizing the coupled-channel problem).
The amplitudes are projected over the few lowest partial

waves in Sec. IV, where we check the good convergence of
the expansion at low energy. While the vector channel is
well behaved due to the new spin-1 resonances introduced
in the CHM scenario, this is not the case for the scalar-
isoscalar partial wave: we note the breakdown of unitarity
by perturbation theory in the 2 TeV region for values of the
parameters that are still compatible with current LHC
bounds. It is well known, and continues being reinstated
[9] that, generically, if the couplings of the Higgs boson
do not perfectly match the SM ones, unitarity violations
in perturbation theory are expected (see [10] for an
exception).
A traditional way out is to restrict the analysis to those

values of the parameters f, gs, the ‘compositeness’ (energy)
scale and the new gauge coupling, respectively (that couple
the new vector boson(s) to the longitudinal EW gauge
sector), which allow perturbative unitarity to extend to
relatively high scales [11], requiring for example partial
ultraviolet (UV) completion so the couplings cannot be
arbitrarily strong [12].
Instead, in this paper, we focus Sec. V on a non-

perturbative model treatment of the partial waves by means
of the K-matrix method, irrespective of the value of the
coupling. The unitarization methods start with rational
instead of polynomial approximations to scattering func-
tions and thus have no problem in incorporating strong
resonant poles in the complex plane that limit the con-
vergence of the polynomial ones. They introduce some
model dependence acceptable for exploratory analysis,
which can however be reduced, at an increased level of
sophistication, by basing them on dispersion relations or by
directly working with the latter. A generic feature that we
expose in detail is that unitarity in the presence of strong
interactions implies a scalar pole in the two-body scattering
amplitudes.
Since there are two relevant channels with distinct

amplitudes, πiπj ≃WLWL, ZLZL, and π4π4 ≡ hh, we
employ a 2 × 2 coupled-channel reaction matrix. Then in
Sec. VI we take a preliminary look at the ρρ threshold
region, where the approach will require to be extended to
include a third channel. Since at those energies, above
2–3 TeV, the particle content of the theory typically
becomes richer by a maze of new resonances, we refrain
from performing an analysis beyond such energy point.
Our conclusions are wrapped up in Sec. VII.

II. GOLDSTONE BOSONS AND NEW VECTOR
FIELDS IN A TWO-SITE MODEL

A. Particle and field content

Let us, for simplicity, refer to the minimal SOð5Þ=SOð4Þ
construct of a CHM, which offers the minimum
number of qNGBs filling the low-energy multiplet
ðWþ

L ; W
−
L; ZL; hÞ ∼ ~πT ≡ ðπ1; π2; π3; π4Þ, and use it as

a template to construct a typical effective Lagrangian
coupling vector resonances and qNGBs. The theoretical
assumption is that π4 ¼ h can be identified as the light
Higgs candidate and, as it becomes a qNGB, its couplings
become predictable.
A convenient framework to implement spontaneous

EWSB to LO in a chiral expansion is the nonlinear sigma
field formalism. The fifth “σ”-like field that will
acquire a high-energy vacuum expectation value (VEV)
breaking the symmetry is traded for a function of
π ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π21 þ π22 þ π23 þ π24
p

.
The exponential representation U ¼ expði ffiffiffi

2
p

πâTâ=fÞ
naturally exposes the multiplet transformation under the
global symmetry. [The BSM generators of the coset space
SOð5Þ=SOð4Þ are denoted with a hat over the adjoint index,
Tâ with â ¼ 1; 2; 3; 4.] Explicitly, in terms of the qNGBs,

U ¼
 
14×4 − ~π~πT

π2

�
1 − cos πf

�
~π
π sin

π
f

− ~πT
π sin π

f cos πf

!
: ð1Þ

Although we will not work with transverse gauge bosons in
this contribution, soon setting their coupling to vanish,
g0 ¼ 0, let us momentarily keep the covariant gauge
derivative for completeness,

Dμ ¼ ∂μ − ig0Aa
μTa: ð2Þ

We will work with a so-called “two-site model,” where
there are two sets of vector fields coupled to qNGBs. The
fields of the first site are the elementary gauge fields Aμ

with

Aμ ¼ Wa
μTa

L þ Bμδ
3aTa

R; ð3Þ

where Ta
L, T

a
R, a ¼ 1; 2; 3 are the respective generators of

SUð2ÞL and SUð2ÞR. The SUð2Þ × SUð2Þ≃ SOð4Þ sym-
metry remaining at this site is spontaneously broken to the
custodial SUð2Þ symmetry of the SM.
At the second, higher-energy site, there are additional

vector fields

ρμ ¼ ρaL;μT
a
L þ ρaR;μT

a
R þ aâμTâ: ð4Þ

The SOð5Þ=SOð4Þ coset gauge resonances are aâμ and the
ρaL=R;μ are those associated to SUð2ÞL;R (we will refer to
them simply as vector resonances). They could be detected
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by means of the Drell-Yan or di-boson processes [13–15],
since they are expected to couple to two fermions in an
s-wave.2 But here we will focus on their couplings to two
vector bosons intervening in (longitudinal) gauge boson
scattering.
We may explicitly spell out the matrix representation of

Eq. (4) as

iρAμTA ¼

0
BB@

1
2
ϵijkðρkL;μ þ ρkR;μÞ 1

2
ðρiL;μ − ρiR;μÞ 1ffiffi

2
p aîμ

− 1
2
ðρjL;μ − ρjR;μÞ 0 1ffiffi

2
p a4̂μ

− 1ffiffi
2

p aĵμ − 1ffiffi
2

p a4̂μ 0

1
CCA:

ð5Þ

In the unitary gauge, at low energy and after EWSB has
occurred, one can set π1 ¼ π2 ¼ π3 ¼ 0, since they provide
the WL and ZL components. At high energy it is more
convenient to work with the Goldstone fields and extract
from them the WLWL scattering amplitude via the ET.
We thus employ all these pionlike fields and group them

in a tensor parametrization

Π ¼
ffiffiffi
2

p
πâTâ ¼ −i

�
04×4 ~π

−~πT 0

�
ð6Þ

that is useful to construct couplings to the vector
resonances.
The unitary representation in Eq. (1) may be expressed as

a product of two matrices of fields, one at each site,
U ¼ Ω1 ·Ω2. These two matrices Ωn, n ¼ 1; 2, are con-
structed from the Π tensor in Eq. (6) by the expressions

Ωn ¼ 1þ i
sn
π
Πþ cn − 1

π2
Π2;

sn ¼ sinðfπ=f2nÞ; cn ¼ cosðfπ=f2nÞ; ð7Þ

where

f2 ¼ f21f
2
2=ðf21 þ f22Þ; ð8Þ

with f1;2 being the “pion decay constants” associated to
each of the two sites respectively.
The larger symmetry is spontaneously broken

at the second site SOð5Þ2 → SOð4Þ2 by a field ϕT
0 ¼

ð0; 0; 0; 0; 1Þ that acquires a VEV. The SOð5Þ matrix Ω2

can be used to arbitrarily orient the direction of symmetry
breaking, Φ2 ¼ Ω2ϕ0, and this second-site field is then
calculated using Eqs. (6) and (8) to yield

ΦT
2 ¼ 1

π
sinðfπ=f22Þðπ1; π2; π3; π4; π cotðfπ=f22ÞÞ: ð9Þ

B. Effective Lagrangian

The coupling between the pion fields and the vector
fields active at each of the two theory sites is determined
by a minimum-coupling principle introducing covariant
derivatives,

DμΩ1 ¼ ∂μΩ1 − ig0AμΩ1 þ igsΩ1ρμ;

DμΦ2 ¼ ∂μΦ2 − igsρμΦ2; ð10Þ

where gs is the coupling strength associated with the new
resonances.
Likewise, we introduce a field-strength tensor for the

new vector fields that allows the construction of a
gauge-invariant Lagrangian density (in the philosophy
that there is a hidden gauge symmetry) as ρμν ¼ ∂μρν−∂νρμ − igs½ρμ; ρν�. In our application to “low-energy”
WLWL scattering, the ρ self-interaction is considered in
the inelastic scattering ππ → ρρ at a higher energy scale,
where the trilinear vertex ρ-ρ-ρ will enter into the s-channel
of this process.
The resulting σ-model Lagrangian is then

L2−site ¼
f21
4
TrðDμΩ1Þ†DμΩ1 þ

f22
2
ðDμΦ2ÞTDμΦ2

−
1

4
Trρμνρμν: ð11Þ

We should immediately acknowledge that the effective
Lagrangian in Eq. (11) does not contain the most possible
general interactions. First, it is built under the principle of a
hidden gauge symmetry (using gauge theory as a template
for the interaction of the new vector fields, when it is clear
that new resonances may or may not be gauge bosons
themselves). Second, higher derivative, nonrenormalizable
counterterms should be added if further new physics lied at
yet higher energy scales, though only relevant operators
remain at low energy. Additionally, we could mix the fields
of the first site and the second site into a “theory-space”
nonlocal term [19–21] which is allowed by the symmetries.
This would be accomplished by defining Φ ¼ Ω1Ω2ϕ0 or

ΦT ¼ 1

π
sinðπ=fÞðπ1; π2; π3; π4; π cotðπ=fÞÞ ð12Þ

in analogy with Eq. (9), which provides the additional
two-derivative term

Lð2Þ ¼ f20
2
ðDμΦÞTDμΦ: ð13Þ

In the rest of this paper we will not pursue Eq. (13)
further but rather limit ourselves to the low-energy

2A bound on their mass can be derived from LHC run-I data by
rescaling the limits from di-lepton [16] and di-boson [17]
searches. It results to be around 2 TeV depending on the choice
of f and gs, the coupling strengths. Following the extrapolation
procedure proposed in [18], this bound can be pushed up to 4
(5) TeV by LHC-14 (HL-LHC) data.
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consequences of Eq. (11) in the presence of relatively
strongly coupled new vector fields. This allows us to
neglect the transverse gauge bosons WT , ZT , turning off
the EW interaction, i.e., g0 → 0.
We then consider WLWL (through the ET, pion-pion)

scattering. To reveal the gs content of Eq. (11) we expand
the two Ω fields, yielding

Ω1 ¼

0
BB@

14×4 −
f2

2f4
1

~π~πT f
f2
1

~π
�
1− f2

6f4
1

π2
�

− f
f2
1

~πT
�
1− f2

6f4
1

π2
�

1− f2

2f4
1

π2

1
CCAþOðπ4Þ;

ð14Þ

Ω2 ¼

0
B@ 14×4 −

f2

2f4
2

~π~πT f
f2
2

~π
�
1− f2

6f4
2

π2
�

− f
f2
2

~πT
�
1− f2

6f4
2

π2
�

1− f2

2f4
2

π2

1
CAþOðπ4Þ:

ð15Þ

In the unitary gauge both the first and second terms in the
Lagrangian density L2−site of Eq. (11) contribute to the
vertex ρππ. In particular, the L and R vector couplings are
unequal and separately listed. On the contrary, the coset
resonances âμ defined in (4), have only a small coupling to
πa induced after EWSB [19].
From the first term in L2−site we obtain, with i, j, k,

taking the values 1,2,3,

LρLππ
ð1Þ ¼ f2gs

4f21
½εijkπi∂μπ

jρkLμ þ ðπk∂μπ
4 − π4∂μπ

kÞρkLμ�;

ð16Þ

LρRππ
ð1Þ ¼ f2gs

4f21
½εijkπi∂μπ

jρkRμ − ðπk∂μπ
4 − π4∂μπ

kÞρkRμ�;

ð17Þ

and, from the second term in L2−site,

LρLππ
ð2Þ ¼ f2gs

2f22
½εijkπi∂μπ

jρkLμ þ ðπk∂μπ
4 − π4∂μπ

kÞρkLμ�;

ð18Þ

LρRππ
ð2Þ ¼ f2gs

2f22
½εijkπi∂μπ

jρkRμ − ðπk∂μπ
4 − π4∂μπ

kÞρkRμ�;

ð19Þ

while the 4π vertices, with indices a, b ¼ 1; 2; 3; 4, are
collected as

f21
4
Trð∂μΩ1Þ†∂μΩ1 þ

f
2
ð∂μΦ2Þ†∂μΦ2

⇒ L4π ¼
f4

24f61
½ðπa∂μπ

aÞ2 − ðπa∂μπ
bÞ2�

þ f4

6f62
½ðπa∂μπ

aÞ2 − ðπa∂μπ
bÞ2�: ð20Þ

The resulting effective interaction Lagrangian that com-
bines Eq. (16) through (20) can be employed in an energy
range that is sufficiently above 2mW ≃ 2mh so that the ET
applies and SM couplings are weaker than BSM couplings.
Since ρ pair production is not described by the terms that
we have kept in the ππ → ππ amplitudes, we also need to
satisfy

ffiffiffi
s

p
< 2mρ, and we expect this scale to be similar to

that intrinsic to the chiral expansion 4πf, above which
further derivative terms should also be included in the ππ
amplitude. Thus, the model Lagrangian can be of use in the
energy range (0.4,3) TeV for mρ ≃ 2 TeV. At the LHC, the
low-energy end of this range is accessible and the polari-
zation combination WLWL can be activated.
The independent BSM parameters in the above

Lagrangian density are three, namely f1, f2 and gs, and
they are related by the mass relations

m2
ρL ¼ m2

ρR ¼ g2sf21=2; ð21Þ

m2
â ¼ g2sðf21 þ f22Þ=2; ð22Þ

which hold true before the acquisition of a VEV by the
Higgs field h upon EWSB. Equation (21) is the so-called
KSFR relation [22]. This is not generally valid for BSM
theories with an additional vector resonance but it is a
consequence of the high symmetry imposed when the
vector resonance is coupled to the Goldstone bosons as a
gauge boson. Therefore, Eq. (21) is a prediction of the
theory in Eq. (11). Notice also that the degeneration
between ρL and ρR holds for g0 ¼ 0. Since we work in
this approximation, we will take mρL ¼ mρR ≡mρ.

III. SCATTERING AMPLITUDES

A. Tree-level amplitudes

We now extract the πiπj → πkπl scattering amplitude
according to the Feynman diagrams in Fig. 1. This we
denote as Aðππ→ππÞ or A for short. Likewise we can obtain
the inelastic Mðππ→hhÞ, Nðππ→πhÞ, as well as the elastic
Tðhh→hhÞ amplitudes, also shortened to M, N and T,
respectively. The elastic hh scattering amplitude T is not
readily accessible at the LHC, since Higgs production rates
are quite small and the final state reconstruction is quite
poor, so that the final state hh is rather unlikely and the
initial state hh does not abound either (owing to small
Yukawa couplings to the proton content). Additionally, in
the considered CHM setup the hh elastic amplitude
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vanishes in leading order in s, so that the BSM low-energy
production must proceed from the WLWL channel in the
CHM. (Nevertheless, the virtual re-scattering WLWL →
hh → WLWL can bring this dynamics into the visible
WLWL sector and some experimental information might
be provided by the LHC, though a CLIC-type machine
would be needed for a better study [23]).
Concentrating now on the elastic ππ amplitude, we note

the following well-known isospin structure:

Aðπiπj → πkπlÞ ¼ Aðs; t; uÞδijδkl þ Aðt; s; uÞδikδjl
þ Aðu; t; sÞδilδjk: ð23Þ

Standard calculation for the “two-site” model, consid-
ering the exchanges of ρL;R (see [24] for a related work in
an other construction), with mρL;R ¼ mρ and neglecting
terms Oðm2

h=sÞ, leads to

Aðs; t; uÞ ¼
�
f4

4f61
þ f4

f62

�
s

−
g2s
2

�
f2

2f21
þ f2

f22

�
2
�
s − u
t −m2

ρ
þ s − t
u −m2

ρ

�
: ð24Þ

Notice that ρL and ρR contribute to this amplitude with
equal amounts, because the different sign in the Lagrangian
densities of Eqs. (16) and (18) affects only vertices with
π4 ¼ h that do not appear in tree-level πiπj → ρL;R → πkπl.
Since, in virtue of the co-called BRST identities [25], the

interacting bosons are effectively spinless, an efficient low-
energy representation of the amplitude is obtained in terms
of a few partial-wave projections. We first project to
definite isospin

A0ðs; t; uÞ ¼ 3Aðs; t; uÞ þ Aðt; s; uÞ þ Aðu; t; sÞ; ð25Þ

A1ðs; t; uÞ ¼ Aðt; s; uÞ − Aðu; t; sÞ; ð26Þ

A2ðs; t; uÞ ¼ Aðt; s; uÞ þ Aðu; t; sÞ; ð27Þ

and then to definite J ¼ l,

aIJðsÞ ¼
1

64π

Z þ1

−1
d cos θPJðcos θÞAIðs; tðs; cos θÞÞ; ð28Þ

with cos θ ¼ 1þ 2t=s.
The resulting partial waves consist of two parts: a power

expansion, coming from the purely ππ Lagrangian density,
and terms due to ρ exchange (at the lowest end of the

ffiffiffi
s

p
interval these could also be projected into low-energy
derivative terms, but since we are exploring the model
with additional vector resonances, we keep the ρ propa-
gator explicitly).
Next, let us quote the inelastic scattering amplitude,

which has weak isospin 0 by necessity, Mðπiπj → hhÞ ¼
Mðs; t; uÞδij,

Mðs; t; uÞ ¼
�
f4

4f61
þ f4

f62

��
s −

2

3
m2

h

�

−
g2s
2

�
f2

2f21
þ f2

f22

�
2
�
s − u
t −m2

ρ
þ s − t
u −m2

ρ

�

−
g2s
2

�
f2

2f21
þ f2

f22

�
2 m4

h

m2
ρ

�
1

t −m2
ρ
þ 1

u −m2
ρ

�
:

ð29Þ

Here the charged resonances ρ�L;R, which are degenerate
with the neutral ones before EWSB and in the g0 → 0 limit,
are exchanged in the t and u channel. This amplitude entails
probability leak from the entry WLWL channel to the
(rather uncommon) hh one. If, surprisingly, a large number
of hh events were visible at the LHC, this would point
out to strong dynamics coupling this channel to WLWL.
Notice that, for values of mρ around 2 TeV or larger, mh

and thus the last term in Eq. (29) are negligible and
Mðs; t; uÞ≃ Aðs; t; uÞ. Finally, let us consider the inelastic
scattering amplitude Nðπiπj → πkhÞ ¼ Nðs; t; uÞδijδk3,

Nðs; t; uÞ ¼ g2s
2

�
f2

2f21
þ f2

f22

�
2
�

u − t
s −m2

ρL

þ s − u
t −m2

ρL

þ s − t
u −m2

ρL

�
− ðL → RÞ: ð30Þ

Note that, since we have mρL ¼ mρR , in the limit
g0=gs → 0, this amplitude vanishes in this simple CHM.
The reason for this is twofold. First, the ρL and ρR exchange
contributions to the amplitude are equal and with opposite
sign, so they cancel due to the different sign in the
Lagrangian densities of Eqs. (16) and (18) which affects
vertices with π4 ¼ h. Second, the chiral pion interactions
for this process are known to start at order p6 (we have only
the low-energy p2 terms plus those coming from vector
boson exchange) and they require a violation of discrete

FIG. 1. Feynman diagrams that produce the tree-level ampli-
tudes for pion (WL) scattering in the energy range 2mW;h ≪ffiffiffi
s

p
≪ 4πf∼ several TeV.
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parities, as discussed in [12]. We thus ignore this channel in
the following.

B. Parameters

To shorten notation in Eqs. (24) and (29), and in view of
the standard factor in the partial wave projection in
Eq. (28), it is useful to employ two constants K1 and K2

defined as

K1 ¼
1

16π

�
f4

4f61
þ f4

f62

�
;

K2 ¼
g2s
16π

�
f2

2f21
þ f2

f22

�
2

ð31Þ

(notice that K1 is dimensionful).
For the minimal CHM to have only the ρL;R and no

further resonances in the low-energy region, we need to
split up the coset resonances: this is achieved by requiring
f2 → ∞. This simplifies Eq. (31), since from Eq. (8)
f → f1, to read

K1 ¼
1

32π

1

2f2
; ð32Þ

K2 ¼
g2s
64π

¼ 1

32π

m2
ρ

f2
: ð33Þ

In this limit, the model has only two parameters, f and gs
[or equivalently f and mρ after using Eq. (21)], which can
be immediately obtained once the amplitudes (functions of
K1 and K2) become known, by solving gs ¼ 8

ffiffiffiffiffiffiffiffiffi
πK2

p
and

f ¼ 1
8
ffiffiffiffiffiffi
πK1

p . Nevertheless, there is a third parameter, neces-

sary to regulate the pole of the vector resonance, Γρ, which
is generally independent of the other two, f and mρ.
Because of Eq. (38) below, K2 could be traded for the

common partial ππ widths of the new vector particles Γρππ

[in fact ρL;R have the same mass in the degenerate limit and
the same couplings to ππ as it is clear from Eqs. (16)–(18)].
Note that Γρ ≃ Γρππ if there were no extra strongly coupled
fermions to which the vector particles could have a sizable
decay amplitude, for example, because they would be as
heavy as or heavier than the ρ itself. But, if instead there
were such fermions, what would appear in the propagators
is the total width Γρ as opposed to the partial ππ width in
Eq. (38) [15]. It is also true that in CHMs, the top quark has
a composite component (via the partial compositeness
mechanism) and, as a consequence, it is sizably coupled
to the new vector resonances leading to a non-negligible tt̄
decay channel. Thus we have Γρ as a free parameter of our
analysis but, for moderate values of the order a few percent,
it does not make a large difference except in the vector-
isovector channel itself (of course, in other channels the

vector state is exchanged in t and u diagrams, where its
width just slightly modifies low-energy potentials).
In our plots, both f and mρ will be taken as relatively

small, for which the effects we are describing are relevant at
the LHC run II but are not yet discarded by LHC run-I
studies. Particularly on f there are somewhat more strin-
gent bounds from LEP, but these are based on loop
computations that are to be taken with a grain of salt
because they (currently) cut off the virtual effects of any
new high-energy physics.
We contrast this three-parameter scenario with a more

complete one, e.g., the four-dimensional CHM (4DCHM)
of Ref. [19], with a finite f2 corresponding to nonde-
coupled coset resonances but sufficiently heavy to be
undetected by the LHC. Even if the coset resonances are
only smoothly coupled to ππ so that we can neglect their
contribution in the tree level amplitudes, their presence is
indirectly manifest by the dependence of K1 and K2 on f2.
In this second scenario there are up to four free parameters
that can be taken as f, gs, mρ and Γρ.
With one or the other scenario we should have enough

flexibility to describe in an effective way many models that
just have vector resonances at low energy in addition to the
already known EWSB sector including a SM-like Higgs
state. For example, the Higgs-like boson under study would
be a dilaton (so that there are further strong interactions in
the EWSB sector) and there is an additional vector boson.
Another possibility would be that the B-L seemingly
accidental symmetry was actually a gauge symmetry,
which would bring about an additional vector boson but
without the relation in Eq. (8).
For convenience, the parameter content for the two

scenarios is summarized in Table I.

IV. ELASTIC PARTIAL WAVES

We now quote the lowest nonvanishing partial waves for
each isospin channel from Eq. (28). These are

TABLE I. Dependent and independent parameters in the two
scenarios considered in our numeric computations. K1, K2, mρ

and gs directly appear in our amplitudes and could thus be
reconstructed from experiment in principle.

Parameter Scenario 1 Scenario 2

(âμ decoupled) (complete 4DCHM)
f1 ¼ f ¼ ffiffiffi

2
p

mρ=gs
f2 ∞ 1

f2
2

¼ 1
f2 −

1
f2
1

f Independent variable Independent variable
mρ Independent variable Independent variable
gs ¼ ffiffiffi

2
p

mρ=f Independent variable

Γρ Independent variable Independent variable
K1 ¼ 1

16π
1
4f2

K1ðf;mρ; gsÞ
K2 ¼ 1

16π
m2

ρ

2f2
K2ðf;mρ; gsÞ
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a00ðsÞ ¼ K1sþ K2

��
m2

ρ

s
þ 2

�
log

�
1þ s

m2
ρ

�
− 1

�
; ð34Þ

a11ðsÞ ¼
K1

6
sþ K2

6s2ðm2
ρ − sÞ

�
−sð6m4

ρ þ 6m2
ρs − 13s2Þ

þ 3ð2m6
ρ þ 3m4

ρs − 3m2
ρs2 − 2s3Þ log

�
1þ s

m2
ρ

��

ð35Þ

and

a20ðsÞ ¼
−K1

2
s−

K2

2

��
m2

ρ

s
þ 2

�
log

�
1þ s

m2
ρ

�
− 1

�
ð36Þ

[the first and third ones satisfy a20ðsÞ ¼ − 1
2
a00ðsÞ]. These

are the lowest-order partial wave projections in each isospin
channel: higher ones are suppressed by an additional power
of s. For example, in the isoscalar channel, the tensor
(l ¼ 2) partial wave starts as

a02ðsÞ ¼
K2

s2

�
m2

ρ

s
þ 2

��
−3sð2m2

ρ þ sÞ

þ ð6m4
ρ þ 6m2

ρsþ s2Þ log
�
1þ s

m2
ρ

��
; ð37Þ

i.e., without the linear term ∝ K1s.
Let us delve in the amplitudes for a few lines. First, we

notice that the isotensor partial wave a20 is repulsive at low
energy, as Eq. (36) has an explicit negative sign, while the
other two channels are attractive. Thus, if a doubly charged
resonance couplesWþWþ, this means that this partial wave
probably changes sign (to avoid violating Wigner’s cau-
sality bound), driven by higher order chiral terms, and the
convergence of the series will be very poor.
Our second observation is that, naturally, the vector-

isovector partial wave in Eq. (35) presents a simple pole at
s ¼ m2

ρ. Of course, this singularity is just a feature of
perturbation theory blindly applied: if we resum the ππ
bubble insertions in the ρ propagator, the BSM-vector
width Γρ naturally regulates the denominator. Then, one
should substitute 1

m2
ρ−s

by 1
ðmρ−iΓρ=2Þ2−s. This isovector partial

wave is the only one that acquires an imaginary part at this
stage; the others remain real and are thus in violation of
unitarity, which is only satisfied in perturbation theory by
proceeding to the next order. Again, in the case in which the
fermion decay channels are suppressed, the width is
dominated by the partial width Γρππ , otherwise it is an
independent parameter.
A straightforward calculation yields

Γρππ ¼ mρ
K2

6
; ð38Þ

an equation that provides a beautiful interpretation of the
chiral constant K2 in terms of Γρππ=mρ which simply
becomes

Γρππ ¼
m3

ρ

192πf2
ð39Þ

in scenario 1, where one can eliminate gs.
An important observation is that the contribution of the

BSM vector resonance to Eq. (34) is positive. For s < m2
ρ,

in the low-energy regime, the factor

��
m2

ρ

s
þ 2

�
log

�
1þ s

m2
ρ

�
− 1

�
∼

3s
2m2

ρ
> 0: ð40Þ

Thus, at low energy, Eq. (34) becomes

a00ðsÞ ¼
�
K1 þ

3K2

2m2
ρ

�
s: ð41Þ

The ratio of the two terms in this expression happens to
be, for mâ not too far from mρ (else we are in scenario 1),
3ðm2

â −m2
ρÞ=ð2m2

ρÞ. So, if mâ > mρ and the two states are
not closely degenerate (which would invalidate our treat-
ment anyway because an explicit â resonance would have
to enter the amplitudes), both terms contribute to the low-
energy theorem.
By using the explicit expressions for K1 and K2 in

Eq. (31) plus mρ in Eq. (21), we get the low-energy
ðs < m2

ρÞ behavior for the scalar partial wave,

a00ðsÞ≃ s
16πf2

f6

f61

��
1

4
þ f61
f62

�
þ 3

4

�
1þ 2

f21
f62

�
2
�

≃ s
16πf2

; ð42Þ

with the first contribution from the four-pion contact terms
and the second from the ρ-exchange terms. These two
contributions sum up to the expected low-energy result for
a00 being regulated only by the symmetry breaking scale f.
It is easy to check it in scenario 1ðf2 → ∞; f1 ¼ fÞ, but it
holds true for any choice of f2 which satisfies the relation
in Eq. (8). This result does not depend on the ρ mass or
coupling, so at this order the scale of unitarity saturation is
totally controlled by f. Actually, at the next order there is
some amelioration (the unitarity scale is pushed higher)
because the logarithm in Eq. (40) is an alternating series
and the next term is negative, slightly reducing f. This
happens at order s2=m4

ρ,

a00 ≃ s
16πf2

− s2
�
2

3

K2

m4
ρ

�
: ð43Þ
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A. Matching to low-energy effective theory

From the LHC run-I data other investigators have
extracted some bounds on the low-energy coefficients of
operators extending the SM in the language of effective
theory that is being used profusely, especially in the
nonlinear representation of the sigma model [26–29].
We can profit from this approach to reduce the parameter

space that needs to be explored. Taking again the low-
energy limit of our expression for a00 in Eq. (43), we
can identify the leading term in the commonly used
expression [30]

a00 ≃ 1

16πv2
ð1 − a2Þs; ð44Þ

where currently a ∈ ð0.7; 1.3Þ is not excluded by the LHC
run I [31] (in the weakly coupled SM, a ¼ 1 and this strong
amplitude vanishes). Since the s coefficient is positive, the
relevant bound for us is the lower one, a ≥ 0.7.
By comparing with Eq. (43), in our CHM

a2 ¼ 1 − v2=f2. For large mρ so that s2=m4
ρ may be

neglected, we have

f ≥ 350 GeV: ð45Þ

[If mρ is kept finite and the next-to-leading-order (NLO)
term in Eq. (43) is not negligible, then the bound is a little
bit less stringent: for example, for s ¼ m2

ρ=2 the bound is
lowered to ∼320 GeV.] Since one naturally expects f > v
we will explore this range of values of f in the following.
We do not employ precision EW constraints here since they
are contingent on what new physics enters through loop
corrections [31].
The comparison with the SM in the linear representation

is not direct, so we discuss it very briefly. Bounds are often
given for the coupling ratio k2V ¼ Γh→VV

ΓSM
h→VV

. Currently, CMS

[32] quotes in its run-I legacy paper a 2σ lower bound on kV
of about 0.87 based on its complex global analysis. The
direct measurement for h → VV is less constraining and
kV ∼ 0.76 would remain possible: to exclude it one would
have to rely on the pull towards higher kV of h → ττ, a
notoriously difficult channel. Moreover, if several degrees
of freedom are allowed to vary simultaneously from their
SM values, the bound even relaxes to kV > 0.66 (still at 2σ
or 95% confidence level).
The h → VV decay amplitude in the linear representa-

tion of the symmetry breaking (the usual SM) is propor-

tional to M2
V
v whereas a typical one in the low-energy limit of

a CHM is ∼a P1P2

v ¼ P1P2

f . This would suggest a ∼ kV , so
that f ¼ 350 GeV, giving a ¼ v=f ¼ 0.7 ∼ kV , would be
the extreme acceptable case in view of the bounds just
quoted. But this comparison is to be taken with a grain of
salt: the degrees of freedom in the two theories are different.
Whereas the SM bounds are given in terms of the gauge

bosons themselves, the effective Lagrangian and CHM are
most transparently formulated (as we have done) in terms
of the Goldstone bosons. They coincide only at E ≫ MW
(say above 500 GeV, the region of our interest). But the
experimental bounds are taken with the Higgs on shell, that
is, E ∼MW and thus, the bounds from kV are not strict.
Next we compare the inelastic amplitude M0

0 for
ππjI¼0 → hh between the actual CHM and the low-energy
effective theory. For this, let us quickly reorder the
amplitude in Eq. (29) to expose it as a power series in
mh, from which we will keep only the zeroth order term
since we are also neglecting MW and MZ that are of the
same order in any sensible counting,

Mðs; t; uÞ ¼ 16πK1s − 8πK2

�
s − u
t −m2

ρ
þ s − t
u −m2

ρ

�

−
32π

3
K1m2

h

− 8πK2

m4
h

m2
ρ

�
1

t −m2
ρ
þ 1

u −m2
ρ

�
:

In the massless limit we immediately note the equality with
the elastic amplitude Mðmh ¼ 0Þ ¼ Aðs; t; uÞ. To obtain
the isospin-zero projection we note that the Clebsch-
Gordan coefficients rotating jπaπbi to jππiI¼0 bring in
factors of 1=

ffiffiffi
3

p
so that

M0 ¼
1ffiffiffi
3

p
X
a

Mðπaπa → hhÞ

¼
ffiffiffi
3

p
M: ð46Þ

Then the scalar partial wave projection of that cross-
channel amplitude M0 becomes

M0
0 ¼

1

64π

Z
1

−1
dxM0ðs; tðs; xÞÞ: ð47Þ

Performing the integral we find M0
0 ≃

ffiffi
3

p
2
a00 in the limit

mh ≃ 0 (that is, much smaller than s and mρ). The
proportionality factor is easy to understand at least for
small s. Just note that to project the elastic A over zero
isospin we used A0 ¼ 3AðsÞ þ AðtÞ þ AðuÞ and that, since
3sþ tþ u≃ 2s, A0 ¼ 2M for small s. Finally the

ffiffiffi
3

p
comes from

ffiffiffi
3

p −1P
aδ

aa and reflects the different final
state in AðπaπbÞ and MðhhÞ.
Comparing now with the nonlinear version of the Higgs

effective field theory (EFT), where

M0
0 ¼

ffiffiffi
3

p

32πv2
ða2 − bÞsþOðs2Þ; ð48Þ

it follows that
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�
K1 þ

3K2

m2
ρ

�
¼ a2 − b

16πv2
ð49Þ

and, by using Eq. (42), that

1

16πf2
¼ a2 − b

16πv2
: ð50Þ

It further follows that a and b (independent parameters of
the EFT) are correlated in CHMs by

ða2 − bÞ ¼ ð1 − a2Þ ð51Þ

that relates the strength of elastic scattering beyond the SM
(rhs) with the inelastic one (lhs).
At higher order Oðs2Þ in the expansion, strong vector

resonances appearing in WLWL scattering leave sizable a4
and a5 coefficients. We do not pursue the topic further here
but refer to [33] where the low-energy parameter map is
studied in detail with attention to the appearance or not of a
BSM vector resonance.

B. Numerical results

We now numerically examine the elastic πiπj → πkπl

amplitudes as a function of the three independent param-
eters f, mρ and Γρ of scenario 1 (âμ-decoupled).
In Fig. 2 we show the a00 scalar-isoscalar scattering

amplitude as a function of Mandelstam-s. We choose as
reference parameter set mρ ¼ 2 TeV, f ¼ 350 GeV and
Γρ ¼ 20%mρ (thick, solid line). To show the dependence
on parameters, the thick dashed and dotted lines correspond
to increasing mρ to 4 and 6 TeV respectively. The red thin

ones towards the bottom of the plot correspond to mρ ¼
2 TeV and increasing f to 0.7 and 1 TeV instead. The width
of the vector state exchanged in the t, u channels is of little
concern for this scalar-channel amplitude. The thickness of
the line itself corresponds to varying the width between 5%
and 20%. The unitarity bound Reða00Þ ≤ 1

2
is violated at

around 1.7 TeV, invalidating perturbation theory. This
happens at lower energies for larger mρ and at higher
energies for larger f: for the higher f values shown, the
violation of unitarity happens at higher scales between 4
and 5 TeV.
One effect in the perturbative amplitude of adding the

width of the vector resonance (induced by its potentially
large coupling to fermions, for example) is the appearance
of an imaginary part in the a00 amplitude because of the

substitution mρ → ðmρ − i Γρ

2
Þ in Eq. (34). In Fig. 3 we

separately plot the real and imaginary parts of a00. Though
now complex, a00 still fails the unitarity test that would only
be satisfied perturbatively if an NLO amplitude was added:
the induced imaginary part is too small.
Since adding or not a width Γρ will not change any of our

qualitative statements, particularly in Fig. 11 below, we will
subsequently fix Γρ in Eq. (34) to the larger value Γρ=mρ ¼
20% when dealing with the scalar channel in this sub-
section, and neglect Γρ altogether afterwards (in the vector
channel it does make a difference as we explain next).
The isotensor wave a20 is repulsive and thus not expected

to resonate at low energy, and since its value is −a00=2 we
do not plot it explicitly.
The vector-isovector wave is shown in turn, again in

perturbation theory, in Fig. 4. Unitarity is here perfectly
respected in all the low and intermediate energy region up
to a few TeV, and it is saturated of course at mρ ¼ 2 TeV,
where ja11j ¼ 1 for the narrower resonance. Other values of
mρ trivially displace the pole; but it is worth showing how
this channel reacts to Γρ, to which we assign the two values

0 1 2 3 4 5 6 7 8 9 10
s (TeV

2
)

0

0.2

0.4

0.6

0.8

1

mρ= 4 TeV

mρ= 6 TeV

f = 0.7 TeV
f = 1 TeV

FIG. 2 (color online). Modulus of the scalar-isoscalar partial
wave a00 (a real, positive number for realmρ and s) in Eq. (34) as a
function of Mandelstam-s. Solid line: reference values of the
parameters, mρ ¼ 2 TeV, f ¼ 350 GeV, with the thickness of
the line representing the uncertainty in the width Γρ ∈ ð5 − 20%Þ.
Thick dashed and dotted lines: same with mρ ¼ 4 and 6 TeV. Red
thin lines: instead, increase f to 0.7 and 1 TeV (at the larger
Γρ ¼ 0.2mρ width value and mρ ¼ 2 TeV).
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0

0
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FIG. 3. We plot the scalar-isoscalar partial wave in Eq. (34)
explicitly showing the real and imaginary parts. The later comes

from the substitution mρ → ðmρ − i Γρ

2
Þ with mρ ¼ 2 TeV,

Γρ ¼ 20%mρ, f ¼ 350 GeV.
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5% and 20%.We also display the calculation for two values
of f. It is seen that the peak is more prominent for small f,
while larger values of f tend to make it disappear (this is
because of the smaller K2, coupling intensity of the
resonance to the ππ channel, at fixed mρ).
Figure 5 displays in turn the tensor-isoscalar amplitude

a02. This partial wave is seen to be very small (note the scale
in the y-axis has been divided by 10), far from reaching the
unitarity bound Reða02Þ ≤ 1

2
, and thus perturbative and

nonresonating. In comparing with the J ¼ 0 wave in
Fig. 2, we see that the convergence of the partial wave
expansion of the amplitude in the low-energy region is
excellent, with the isoscalar channel practically dominated
by the lowest, scalar partial wave. This is analogous to the
QCD situation where the scalar σ pole at 450 MeV
dominates low-energy ππ scattering, with the first tensor
resonance, the f2ð1270Þ, being much higher in mass. A
difference between the scalar and tensor channels is their
reaction to increasing mρ. While in the scalar channel this
makes the amplitude larger bringing unitarity violation to a

smaller scale, in the tensor channel it makes it smaller just
like increasing f does.
We now turn to the second scenario from Table I. We

shade the plots with numerical data from this scenario 2
(soft yellow online) to easily distinguish them. In Fig. 6 we
compare both scenarios. We have fixed f, mρ and Γρ and
vary only gs in scenario 2, which is a free parameter
controlling the coupling of the vector to the ππ channel (the
remaining width presumably due to fermion couplings). As
can be seen, the results at low energy are not too disparate,
and the second scenario converges towards the first when
mâ → ∞ (the largest such mass in the plot is about 16 TeV
and corresponds to the gs ¼ 4 curve).
In Figs. 6 and 7 we stay with scenario 2, assuming the

4DCHM without decoupling the axial vector resonances.
The first of them offers a comparison with scenario 1 in the
limit mâ → ∞, achieved for a finite value of gs for which
f2 → ∞. As seen in the plot, the convergence is good
though not monotonic in sign. In any case, the two
scenarios seem to give comparable results for both values
of f ¼ 0.35 and 0.7 TeV.
Further detail is provided by Fig. 7. Here f ¼ 350 GeV,

so the imaginary part of the scalar channel in the top plot is
directly comparable with the real part in the top plot in
Fig. 6. In the real part, unitarity is clearly violated by

0 1 2 3 4 5 6
s (TeV

2
)

0

0.2

0.4

0.6

0.8

1

f = 0.35 TeV
f = 0.7 TeV

FIG. 4 (color online). Modulus of the vector-isovector partial
wave ja11j in Eq. (35) as a function of Mandelstam-s. Solid lines:
Γρ ¼ 20%mρ. Dotted lines: Γρ ¼ 5%mρ for mρ ¼ 2 TeV.
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FIG. 5 (color online). Tensor-isoscalar partial wave a02. Lines as
in Fig. 2.
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FIG. 6 (color online). Scenario 2 converges towards scenario 1
for a certain gs. With the parameters here (mρ ¼ 2 TeV,
Γρ ¼ 20%mρ), this happens for gs slightly larger than 8 if
f ¼ 0.35 TeV (top plot) and for gs a bit above 4 for
f ¼ 0.7 TeV (bottom).

DANIELE BARDUCCI et al. PHYSICAL REVIEW D 91, 095013 (2015)

095013-10



exceeding the bound Reða00Þ ≤ 1
2
. The imaginary part shows

additionally that the relation Imða00Þ ¼ ja00j2 is not satisfied
even when the bound is not exceeded (the imaginary part is
of order 0.01–0.02 in the low-energy region).
For the shown values of gs, mâ is either half a TeV or a

TeV higher than mρ, so its effect in the low-energy physics
is less prominent, but it is not totally decoupled as in
scenario 1 (we have not included the â exchanges in our
computation because, as stated in Sec. II, the â have small
couplings to ππ induced by EWSB and their contribution to
the unitarity dynamics is negligible).
The lower plot in Fig. 7 shows the vector-isovector wave

that behaves unsurprisingly, peaked at the nominal mass,
with the width that we have fixed a priori, and with a
strength that grows with gs, its coupling to the ππ channel
(when Γππ → Γρ the peak height of the modulus
approaches 1, saturating unitarity).

V. COUPLED CHANNEL UNITARITY

A. Analysis for physical s

An unpleasant feature of perturbation theory is the
breakdown of unitarity that can be catastrophic if the
interactions become relatively strong, even surpassing
the unitarity bound. This limits the reach of effective

low-energy Lagrangians, but dispersion-relation based
analysis provides a way around. There are several tools
and methods of varying sophistication to address unitarity,
but for this exploration we adopt the simplest, so-called
“K-matrix” method [34] (see [35] and [36] for a related
work and a recent extension of this prescription). In its
original form, this guarantees unitarity but not the appear-
ance of a proper right cut, so we use a slightly modified
version, sometimes called “improved K-matrix” approach.
It is based on the observation that the often appearing loop
function

JðsÞ ¼ −1
π

log

�
−s
Λ2

�
ð52Þ

provides a right-hand cut in the complex-s plane for
s ∈ ð0;∞Þ. Here Λ is an appropriate high-energy cutoff
that we can naturally take as Λ ¼ mρ to analyze the lower-
energy scalar channel.
If the amplitude Mðπiπj → π4π4Þ vanished, we could

unitarize the elastic Aðπiπj → πiπjÞ scalar amplitude as
~a ¼ að1 − JaÞ−1. This amplitude would satisfy Ima ¼ jaj2,
but mixing with the Higgs-Higgs channel introduces the
inelastic scalar m0

0 projection of Eq. (47) in this relation.
This happens only in the isospin-zero channel where there
is mixing between the WLWL and Higgs-Higgs states
because of the nonvanishing channel-coupling amplitude
in Eq. (29). Thus, we expect a probability leak from the
πiπj to the π4π4 channels.
Under this circumstance, the exact elastic unitarity

relation that the amplitude needs to satisfy is

Im a ¼ jaj2 þ jmj2 ð53Þ

(the 0 indices are omitted). A convenient way to implement
it is to construct a reaction matrix that contains both
channels in perturbation theory,

k ¼
�

a m
m 0

�
ð54Þ

(noticing the vanishing of the Higgs-Higgs elastic ampli-
tude in LO perturbation theory, a model feature). This
perturbative 2 × 2 reaction matrix can be unitarized by

~k ¼ kð1 − JkÞ−1 ð55Þ

if k is small, which happens at low s, so this model
amplitude reproduces the LO perturbative behavior since
~k≃ kþ � � � therein.
The unitarization prescription of the K-matrix is by no

means unique, with alternatives being the large-N treat-
ment, the inverse amplitude method (IAM), or the N=D
ansatz [37], but all yield qualitatively similar results in the
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FIG. 7 (color online). Scenario 2, the complete 4DCHM. Top:
imaginary part of the scalar, isoscalar partial wave. Bottom:
modulus of the vector, isovector one. Here, f ¼ 350 GeV and
Γρ=mρ ¼ 20%.
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scalar channel over the right cut (the physical s region) and
nearby in the complex plane.
The matrix element ~k11 ≡ ~a thus substitutes a00ðsÞ for all

but the lowest energies. Its explicit expression is

~a ¼ aþ Jm2

1 − Ja − J2m2
: ð56Þ

Equation (53) is now satisfied exactly as long as the
perturbative a is real. Since Γρ was shown to induce a small
imaginary part in the perturbative scalar amplitude, there is
a residual unitarity problem of that same order. To avoid it,
and since the effect of the width was numerically small in
the scalar channel, we neglect Γρ here altogether.
In Fig. 8 we present one of the three possible checks of

unitarity for the K matrix (in scenario 1 for definiteness),
showing the satisfaction of Eq. (53) for the ~a ¼ ~k11 and
~m ¼ ~k12 quantities (the other two independent checks are
also satisfied, but not shown).
By comparing the lowest two curves in the figure one can

see that after unitarization the loss of probability from the
WLWL channel to the hh channel is still about 25% of the
elastic scattering one.
In Fig. 9 we then present the modulus of the elastic

amplitude (after unitarization) j~k11j ¼ j ~a00ðsÞj that shows
how the goal has been met: the amplitude equals the LO
perturbation theory for the lowest s but later moderates its
growth satisfying the theoretical constraints. In both sce-
narios it is apparent that the presence of a ρ-boson at low
energy and strongly coupled to the ππ channel weakens the
strength of the scalar channel and makes it more
perturbative.
Other unitarization methods will lead to qualitatively

similar predictions. To make an appreciable gain in

accuracy, if ever necessary, the complete NLO amplitudes
would have to be calculated and then fed into the
more sophisticated IAM [38] (that requires both LO
and NLO).
An interesting feature that illustrates the limitations of

perturbation theory is presented in Fig. 10 that shows the
modulus j~k22j ¼ j~t00ðsÞj of the elastic hh → hh or π4π4 →
π4π4 scattering amplitude for zero angular momentum. It is
remarkable that the scattering amplitude takes a finite and
indeed non-negligible value when it is zero in LO pertur-
bation theory. This reflects in the figure in that the linear
term near the origin is zero, but the amplitude quickly
overcomes this and takes appreciable values. This effect
occurs, of course, by rescattering through the other channel,
hh → WLWL → hh, and since the unitarization procedure
typically resums the imaginary part of all such rescatter-
ings, it is able to yield a finite value even when only LO
perturbation theory is at hand.
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FIG. 8 (color online). Test of unitarity for Im ~a ¼ Im ~k11 (black
solid line). Bottom line (downward triangles, blue online):
j ~mj2 ¼ j~k12j2. Second from bottom (upward triangles, red on-
line): j ~aj2 ¼ j~k11j2. Circles (on top of the imaginary part): the sum
of the last two, unitarity compliant. Here Γρ=mρ ¼ 5%, for larger
values a small difference is visible due to the perturbative a00
acquiring an imaginary part.
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FIG. 9 (color online). Modulus of the unitarized elastic matrix
element j~k11j ¼ j ~a00ðsÞj, that remains below 1 in all the energy
interval of interest. First plot (scenario 1): solid lines correspond
to mρ ¼ 2 TeV, dashed ones to mρ ¼ 4 TeV. From thicker to
thinner, f ¼ 0.35, 0.7 TeV respectively. Lower plot: in scenario
2, we fix f ¼ 0.35 TeV and Γρ=mρ ¼ 5%. The thick lines (blue
online) correspond to mρ ¼ 2 TeV, with gs ¼ 4 (solid), 6 (dash-
dotted) and 8 (dashed). The thin ones (red online) were in turn
calculated with gs ¼ 6 (solid), 8 (dash-dotted) and 10 (dashed),
and all have mρ ¼ 4 TeV.
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B. Extension to the complex s-plane: σ pole

The most important midrange attraction of the nucleon-
nucleon potential in nuclear physics is controlled by an
exchange with scalar quantum numbers, that is usually
assigned to a σ particle. In the modern understanding of
QCD, this particle, perhaps too broad to be called as such,
is a resonance or pole in the second Riemann sheet of the
scattering amplitude ππ → ππ with a mass of about
450 MeV. It is now known with remarkable precision
thanks to the use of accurate dispersion relations with a
wealth of low and midenergy data. The strong interaction
that we observe in WLWL scattering in Fig. 9 also comes
from an equivalent pole in the second Riemann sheet. To
expose it with the K-matrix method (obviously a model,
thus less precise than the Roy equations [39,40] that can
later be applied when/if data becomes available) we extend
the variable s to the complex plane in our computer code.
The extension to the second Riemann sheet, where reso-
nance poles in the lower-half plane can appear (since they
are forbidden in the first sheet due to causality) is
implemented in the loop function in Eq. (52). It is sufficient
to take the logarithm to be cut in ð−∞; 0Þ (so the argument
is defined between −π and π) and exploit the simple
prescription

log

�
−s
m2

ρ

�
II

¼ log

�
Abs

�
s
m2

ρ

��
þ i

�
Arg

�
s
m2

ρ

�
− π

�
:

ð57Þ

We then employ the CERN standard minimization
program MINUIT to search the complex plane for zeros
of the determinant of ð1 − JkÞ that yield the poles of the
unitarized scattering amplitude ~k, in accord with Eq. (55).
We find exactly one such pole and interpret its position as
an effective’ resonance with a certain mass and width, given
by

ffiffiffi
s

p ¼ M0 − iΓ0=2 (where the 0 reminds us of its
apparent spin).
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FIG. 10 (color online). Same as Fig. 9 but for j~k22j ¼ j~t00ðsÞj the
elastic hh → hh scattering that vanishes in the perturbative
amplitude at LO. Unitarization requires this channel to have
finite probability too.

0 0.4 0.8 1.2 1.6
f (TeV)

0

1

2

3

4

5

m
0 (

T
eV

)

mρ = 4 TeV

mρ = 3 TeV

mρ = 2 TeV

0 0.5 1 1.5
f (TeV)

0

1

2

3

4

5

6

Γ 0 (
T

eV
)

mρ = 4 TeV

mρ = 3 TeV

mρ = 2 TeV

0 1 2 3 4 5 6
m

0
 (TeV)

0

1

2

3

4

5

6

Γ 0 (
T

eV
) mρ = 2 TeV

mρ = 3 TeV

mρ = 4 TeV

FIG. 11 (color online). Top and middle plots: evolution of the
mass and width of the dynamically generated scalar σ-like
resonance as function of f in the limit f2 → ∞ (scenario 1),
for three values of the vector mass. Bottom: width of the scalar
resonance against its mass, with f being now just the parameter of
the trajectory in this plane.
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We have tracked the evolution of this pole in scenario 1
for fixed Γρ=mρ ¼ 0.05 as a function of f and for three
values of mρ as shown in Fig. 11. We show the behavior of
the mass and width of the scalar pole in terms of f in the
first two plots, then eliminate this parameter to see directly
Γ0ðm0Þ in the third plot.
As the LHC data advances and perhaps tightens the

constraint on f rising its minimal allowed value, the
possible positions of the pole recede in the complex plane
(larger m0 and Γ0 for larger f, at fixed mρ).
If, in contrast, the vector resonance relatively decouples

from the low energy Goldstone bosons, because of its
heavy mass (large mρ), we recover the known broad pole
from generic strongly interacting theories a bit under 2 TeV.
As the ρ becomes lighter, this pole moves up in energy (for
fixed f) and becomes broader. Since its width is similar in
size to its mass (bottom plot) for all values of f (bottom plot
of Fig. 11) its interpretation as an unstable particle is as
difficult as in QCD.
We now turn to scenario 2 (the full 4DCHM with a finite

mâ mass, though we still neglect its exchange) and plot the
result in Figs. 12 and 13.

The top plot of Fig. 12 shows the complex-plane
evolution (with gs being the curve’s parameter) for fixed
f ¼ 0.35 TeV and mρ ¼ 2 or 4 TeV, while the bottom one
corresponds to the same mρ but a larger f ¼ 0.7 TeV. In
comparing with the bottom plot of Fig. 11 we see that the
dependence of the mass and width on f and mρ is similar:
larger f entails a heavier and broader pole, while a heavier
mρ moves it the opposite way, towards lighter values of m0

and Γ0. The pole position bends gently in the complex
plane, which must translate into a slight oscillation as a
function of gs. This is observed in Fig. 13 where we
represent m0 and Γ0 as a function of gs.
The most noticeable effect is that the mass is practically

independent of gs except for larger f and smallermρ, where
it fluctuates somewhat more. The curves in both figures end
when gs is so large that either f2 is very large or Γρππ equals
its maximum possible value Γρ that we have set in both
cases to 5% of mρ.
The width of the scalar pole moves slightly up with that

of the vector pole, but in all the effect of gs is not striking
(for moderate widths of the vector resonance itself Γρ).
So the conclusion from both scenarios is how the σ pole

recedes deeper in the complex plane as f is increased, and
its mass behaves opposite to the vector one for fixed
couplings.
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FIG. 12 (color online). Varying gs produces a curve in the
ðm0;Γ0Þ plane of the σ-like pole as extracted from its complex-s
position, for f ¼ 0.7 TeV (top) and f ¼ 0.35 TeV (bottom), and
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with the parameter of the curve, gs, visible in Fig. 13, and caused
by the nontrivial dependence of Eq. (31) on gs.
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Thus, if the vector resonance is coupled as the sym-
metries of the CHM dictate, it not only unitarizes the vector
channel with its quantum numbers, but it also improves
perturbative unitarity in the scalar channel (not generically
true for other low-energy vector resonances).

VI. ρρ PRODUCTION

We now make a slight extension of our low-energy study
and take a look at the ρρ threshold. Double-ρ intermediate
states should be taken into account in the elastic ππ
amplitude, but we will not recalculate those and leave it
to future investigation. Nevertheless, for completeness, we
find interesting to explore the inelastic scattering amplitude
Bðπaπb → ρcLρ

d
LÞ, containing h, π and ρ exchange chan-

nels, and with a general isospin structure:

Bab→cd ¼ Aðs; t; uÞδabδcd þ Bðs; t; uÞδacδbd
þ Bðs; u; tÞδadδbc: ð58Þ

We quote explicit expressions for Aðs; t; uÞ and Bðs; t; uÞ,
where threshold effects will be important (if the threshold

can be reached at all), and are encoded in the phase-space

velocity factor βρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

ρ=s
q

[41].
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Bðs; t; uÞ ¼ g2s
4

�
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ð60Þ
As we have mh ≪ mρ, it is justified to take the massless mh → 0 limit in this amplitude. Since the LHC might reach
the ρρ threshold but would probably be energy and luminosity constrained to go much above, in practice, we need
consider only the scalar partial wave (higher ones being suppressed by powers of pl). After projecting, and setting
mh ¼ 0, we get

b00ðsÞ ¼ K2

5

8β2ρm2
ρ

�
ð1 − 2β2ρÞs − 2m2

ρ þ
ðð1 − β2ρÞs − 2m2

ρÞ2
2βρs

log

�ð1 − βρÞs − 2m2
ρ

ð1þ βρÞs − 2m2
ρ

��
ð61Þ

for the ρρ production inelastic amplitude with entrance
channel ππ. This amplitude is real and negative for s > 4m2

ρ

(note the logarithm itself is negative).
The scalar-isoscalar projection in Eq. (61) is shown in

Fig. 14 with the threshold at E0 ¼ 2mρ ¼ 4 TeV
(s0 ¼ 16 TeV2). We are allowed to vary the value of gs
and f, but need to ensure f22 > 0. The amplitude is finite at
the double-ρ threshold. Notice from Fig. 14 that the
modulus of the amplitude grows most linearly in the
perturbation theory, and we are able to have the linear
term finely tuned to avoid stringent constraint from the
inelastic scattering channel. However it will ultimately
violate unitarity in the large s limit. We abstain from

unitarizing it at the current stage since, at such a energy
scale, one should start thinking whether other resonances
should be included into the effective theory.

VII. CONCLUSIONS

In this paper we have examined a simple CHM template
with vector resonances assumed to be accessible at the
LHC. As CHMs naturally come with a family of such new
states, both charged and neutral, we have implicitly taken
the pragmatic approach (in the sense that it enabled us to
perform accurate numerical studies that would otherwise
not be possible) of assuming that the CERN collider will
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FIG. 14 (color online). Scalar-isoscalar perturbative amplitude
of ππ → ρLρL for mρ ¼ 2 TeV, with gs ¼ 3 (dashed line) and
gs ¼ 4 (solid line) in scenario 2. The two bottom lines and
the two top lines correspond respectively to f ¼ 0.35
and 0.7 TeV.
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find initially only one (degenerate) pair of such states. This
could be the lowest lying one in terms of mass or else the
most strongly interactive one with SM matter.
After obtaining the scattering amplitudes among the low-

energy particles, WL and h, their partial wave projections,
and adopting the improved K-matrix method of unitariza-
tion, we have exposed an effective scalar resonance
(equivalent to the σ meson of low-energy hadron physics),
wherein the keyword “effective” is meant to highlight the
fact that this object, other than being a proper spin-0 state,
could well appear as such yet being the scalar polarization
of one or more of the additional vector resonances naturally
present in CHMs but not seen at the LHC, even lighter than
the detected ρ states (if weakly coupled to SM objects). In
fact, the proliferation of new gauge resonances typical of
CHMs can also account for the rather broad appearance of
the new σ state. For example, its pole may well be just the
typical mass scale of the unseen spin-1 states and its width
the linear sum of the individual ones. This is well known to
be realizable in case of multiple, nearly overlapping and
typically narrower Breit-Wigner shapes with or without
additional phases related to pole residues [42]). In our case,
such states would be taken from the coset (or even from
additional sites). The decay dynamics also leaves plenty of
scope in a typical CHM for adequate interpretation. It
should indeed be recalled that the aforementioned vector
resonances come accompanied in these scenarios by a
variety of heavy fermions, the former decaying into the
latter, with the fermionic masses and couplings dictating
the size of the width of both the ρ states and other vector
bosons present in the spectrum. This was emphasized and
quantitatively illustrated in [15] in one specific CHM
realization, the so-called 4DCHM, which we have used
as a reference benchmark herein. However, in this con-
nection, a caveat should be borne in mind. Since in the
4DCHM there is no space for vector resonances lighter than
ρL;R

3 which are also the most strongly coupled ones to SM
matter and forces, we can interpret our results by saying
that, if we want this construct to satisfy perturbative

unitarity, we must require f to be larger than the threshold
value for which m0 > mρ. Also, we need to invoke spin-1
resonances with larger mass and width, not included in the
4DCHM, which is a two-sites truncated theory describing
only the lowest lying resonances, to realize the “sigma” as a
cooperative effect.
Whichever the underlying CHM realization though, the

position in the complex s-plane of this resonance should
depend slightly on the partial width of the ρs but more
strongly on the vector mass mρ with an inverse relation, so
when one becomes lighter, the other is heavier and vice versa.
Altogether, when all the relations among parameters in

the CHMs at hand are taken into account, the presence of
the ρ at fixed f improves perturbative unitarity and pushes
the effective scalar pole deeper into the complex plane. It
will therefore be crucial, in the case of a ρ state discovery at
the LHC, to closely scrutinize its properties in order to
ascertain, through the unitarization method that we have
advocated here, whether and where additional states above
and beyond the SM spectrum can be found. We therefore
conclude that, unless specific model assumptions are made
on the nature of a ρ state accessible at the LHC, the
unitarization procedure adopted here is a powerful method
to gain substantive knowledge (mass, width, spin, etc.) of
the yet unseen spectrum of the CHM at hand, either lighter
or heavier than the ρ itself, in a model-independent
approach. In fact, such an approach can be extended to
incorporate further discoveries of both vector and scalar
states that might occur at the LHC in the years to come.

ACKNOWLEDGMENTS

F. J. L. E. thanks instructive conversations with A.
Dobado, particularly about Eq. (57), and support from
Grants No. MINECO: FPA2014-53375-C2-1-P and
No. MINECO:FPA2011-27853-01 as well as computer
resources, technical expertise and assistance from the
Red Española de Supercomputación. F. J. L. E. also thanks
the Southampton High Energy Physics (SHEP) group for
hospitality at the time when this project was conceived.
S. M. is financed in part through the NExT Institute. S. M.
also acknowledges insightful discussions with R. L.
Delgado. H. Cai is supported in part by the postdoc
foundation under Grant No. 2012M510001.

[1] G. Aad et al. (ATLAS Collaboration), Observation of a new
particle in the search for the StandardModel Higgs bosonwith
the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012);
S. Chatrchyan et al. (CMS Collaboration), Observation of a
new boson at a mass of 125 GeVwith the CMS experiment at

the LHC, Phys. Lett. B, 716, 30 (2012); G. Aad et al. (ATLAS
Collaboration), Observation and study of the Higgs boson
candidate in the two photon decay channel with the ATLAS
detector at the LHC, Report No. ATLAS-CONF-2012-168; S.
Chatrchyan et al. (CMS Collaboration), Evidence for a new

3An exception is the gauge boson associated with an extra U(1)
symmetry, necessary for the correct hypercharge assignment to
the SM fermions, which however is weakly coupled to WLWL.

DANIELE BARDUCCI et al. PHYSICAL REVIEW D 91, 095013 (2015)

095013-16

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.021


state decaying into two photons in the search for the standard
modelHiggsboson inppcollisions,ReportNo.CMS-HIG-12-
015.

[2] Precise exclusion limits within specific models have
been recently reported in V. Khachatryan et al. (CMS
Collaboration), Search for massive resonances decaying
into pairs of boosted bosons in semi-leptonic final states atffiffiffi
s

p ¼ 8 TeV, J. High Energy Phys. 08 (2014) 174;
V. Khachatryan et al. (CMS Collaboration), Search for
new resonances decaying via WZ to leptons in proton-
proton collisions at sqrtðsÞ ¼ 8 TeV, arXiv:1407.3476.

[3] D. B. Kaplan and H. Georgi, SUð2ÞxUð1Þ breaking
by vacuum misalignment, Phys. Lett. 136B 183 (1984).

[4] K. Agashe, R. Contino, and A. Pomarol, The minimal
composite Higgs model, Nucl. Phys. B719, 165 (2005).

[5] J. M. Cornwall, D. N. Levin, and G. Tiktopoulos, Derivation
of gauge invariance from high-energy unitarity bounds on the
s matrix, Phys. Rev. D 10, 1145 (1974); C. E. Vayonakis,
Born helicity amplitudes and cross-sections in nonabelian
gauge theories, Lett. Nuovo Cimento 17, 383 (1976); B. W.
Lee, C. Quigg, and H. Thacker, Weak interactions at very
high-energies: the role of theHiggs bosonmass, Phys. Rev.D
16, 1519 (1977); M. S. Chanowitz and M. K. Gaillard, The
TeV physics of strongly interacting W's and Z's, Nucl. Phys.
B261, 379 (1985); M. S. Chanowitz, M. Golden, and H.
Georgi, Low-energy theorems for strongly interacting W's
and Z's, Phys. Rev. D 36, 1490 (1987); A. Dobado and J. R.
Peláez, On the equivalence theorem in the chiral perturbation
theory description of the symmetry breaking sector of the
standard model, Nucl. Phys. B425, 110 (1994); On the
equivalence theorem in the chiral perturbation theory de-
scription of the symmetry breaking sector of the standard
model, Phys. Lett. B 329, 469 (1994); The equivalence
theorem for chiral lagrangians, Phys. Lett. B 335, 554 (1994).

[6] S. Kanemura, K. Kaneta, N. Machida, and T. Shindou, New
resonance scale and fingerprint identification in minimal
composite Higgs models, arXiv:1410.8413.

[7] F. Siringo, Light Higgs bosons from a strongly interacting
Higgs sector, Europhys. Lett. 59, 820 (2002).

[8] R. L. Delgado, A. Dobado, and F. J. Llanes-Estrada, Light,
yet strong interactions, J. Phys. G 41, 025002 (2014).

[9] G. Bhattacharyya, D. Das, and P. B. Pal, Modified Higgs
couplings and unitarity violation, Phys. Rev. D 87, 011702
(2013).

[10] A. Lahiri and D. Mukhopadhyay, Unitarity in WW → WW
elastic scattering without a Higgs boson, arXiv:1107.1501.

[11] L. Basso, S. Moretti, and G. M. Pruna, Theoretical con-
straints on the couplings of nonexotic minimal Z0 bosons,
J. High Energy Phys. 08 (2011) 122.

[12] R. Contino, D. Marzocca, D. Pappadopulo, and R. Rattazzi,
On the effect of resonances in composite Higgs phenom-
enology, J. High Energy Phys. 10 (2011) 081.

[13] K. Agashe, H. Davoudiasl, S. Gopalakrishna, T. Han, G. Y.
Huang, G. Perez, Z. G. Si, and A. Soni, LHC signals for
warped electroweak neutral gauge bosons, Phys. Rev. D 76,
115015 (2007).

[14] K. Agashe, S. Gopalakrishna, T. Han, G. Y. Huang, and
A. Soni, LHC signals for warped electroweak charged
gauge bosons, Phys. Rev. D 80, 075007 (2009).

[15] D. Barducci, A. Belyaev, S. De Curtis, S. Moretti, and G. M.
Pruna, Exploring Drell-Yan signals from the 4D composite

Higgs model at the LHC, J. High Energy Phys. 04 (2013)
152; D. Barducci, L. Fedeli, S. Moretti, S. De Curtis, and
G.M. Pruna, Leptonic final states from di-boson production
at the LHC in the 4-dimensional composite Higgs model,
J. High Energy Phys. 04 (2013) 038.

[16] G. Aad et al. (ATLAS Collaboration), Search for high-mass
dilepton resonances in pp collisions at

ffiffiffi
s

p
with the ATLAS

detector,Phys.Rev.D90, 052005(2014);V.Khachatryanetal.
(CMS Collaboration), Search for physics beyond the standard
model in dilepton mass spectra in proton-proton collisions atffiffi
s

p ¼ 8 TeV, J. High Energy Phys. 04 (2015) 025.
[17] G. Aad et al. (ATLAS Collaboration), Search for WZ

resonances in the fully leptonic channel using pp collisions
at

ffiffiffi
s

p ¼ 8 TeV with the ATLAS detector, Phys. Lett. B 737,
223 (2014); V. Khachatryan et al. (CMS Collaboration),
Search for new resonances decaying via WZ to leptons in
proton-proton collisions at

ffiffi
s

p ¼ 8 TeV, Phys. Lett. B 740,
83 (2015).

[18] A. Thamm, R. Torre, and A. Wulzer, Future tests of Higgs
compositeness: direct vs indirect, arXiv:1502.01701.

[19] S. De Curtis, M. Redi, and A. Tesi, The 4D composite
Higgs, J. High Energy Phys. 04 (2012) 042.

[20] S. De Curtis, M. Redi, and E. Vigiani, Nonminimal terms in
composite Higgs models and in QCD, J. High Energy Phys.
06 (2014) 071.

[21] H. Cai, Vector-like Fermions in a minimal composite Higgs
model, arXiv:1405.7664.

[22] K. Kawarabayashi and M. Suzuki, Partially conserved g
vector current and the decays of vector mesons, Phys. Rev.
Lett. 16, 255 (1966); Riazuddin and Fayyazuddin, Algebra of
current components and decaywidths of rho andK�mesons,
Phys. Rev. 147, 1071 (1966); L. v. Dung and T. N. Truong,
Equivalence between vector meson dominance and unita-
rized chiral perturbation theory, arXiv:hep-ph/9607378.

[23] R. Contino, C. Grojean, D. Pappadopulo, R. Rattazzi, and
A. Thamm, Strong Higgs interactions at a linear collider,
J. High Energy Phys. 02 (2014) 006.

[24] A. E. CarcamoHernandez and R. Torre, A composite’ scalar-
vector system at the LHC, Nucl. Phys. B841, 188 (2010).

[25] C. Becchi, A. Rouet, and R. Stora, The abelian Higgs Kibble
model, unitarity of the S-operator, Phys. Lett. 52B, 344
(1974); Renormalization of the abelian Higgs-Kibble
model, Commun. Math. Phys. 42, 127 (1975); Renormal-
ization of gauge theories, Ann. Phys. (N.Y.) 98, 287 (1976);
I. V. Tyutin, Gauge invariance in field theory and statistical
physics in operator formalism, arXiv:0812.0580.

[26] R. Alonso, M. B. Gavela, L. Merlo, S. Rigolin, and J. Yepes,
The effective chiral Lagrangian for a light dynamical Higgs,’
Phys. Lett. B 722, 330 (2013).

[27] A. Pich, I. Rosell, and J. J. Sanz-Cillero, Strongly coupled
models with a Higgs-like boson, EPJ Web Conf. 60, 19009
(2013).

[28] C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H.
Mebane, T. Stelzer, S. Willenbrock, and C. Zhang, Effective
field theory: A modern approach to anomalous couplings,
Ann. Phys. (N.Y.) 335, 21 (2013).

[29] G. Buchalla, O. Cata, and C. Krause, Complete electroweak
chiral Lagrangian with a light Higgs at NLO, Nucl. Phys.
B880, 552 (2014); G. Buchalla and O. Cata, Effective theory

UNITARITY IN COMPOSITE HIGGS BOSON APPROACHES … PHYSICAL REVIEW D 91, 095013 (2015)

095013-17

http://dx.doi.org/10.1007/JHEP08(2014)174
http://arXiv.org/abs/1407.3476
http://dx.doi.org/10.1016/0370-2693(84)91177-8
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.035
http://dx.doi.org/10.1103/PhysRevD.10.1145
http://dx.doi.org/10.1007/BF02746538
http://dx.doi.org/10.1103/PhysRevD.16.1519
http://dx.doi.org/10.1103/PhysRevD.16.1519
http://dx.doi.org/10.1016/0550-3213(85)90580-2
http://dx.doi.org/10.1016/0550-3213(85)90580-2
http://dx.doi.org/10.1103/PhysRevD.36.1490
http://dx.doi.org/10.1016/0550-3213(94)90174-0
http://dx.doi.org/10.1016/0370-2693(94)91092-8
http://dx.doi.org/10.1016/0370-2693(94)90392-1
http://arXiv.org/abs/1410.8413
http://dx.doi.org/10.1209/epl/i2002-00116-1
http://dx.doi.org/10.1088/0954-3899/41/2/025002
http://dx.doi.org/10.1103/PhysRevD.87.011702
http://dx.doi.org/10.1103/PhysRevD.87.011702
http://arXiv.org/abs/1107.1501
http://dx.doi.org/10.1007/JHEP08(2011)122
http://dx.doi.org/10.1007/JHEP10(2011)081
http://dx.doi.org/10.1103/PhysRevD.76.115015
http://dx.doi.org/10.1103/PhysRevD.76.115015
http://dx.doi.org/10.1103/PhysRevD.80.075007
http://dx.doi.org/10.1007/JHEP04(2013)152
http://dx.doi.org/10.1007/JHEP04(2013)152
http://dx.doi.org/10.1007/JHEP04(2013)038
http://dx.doi.org/10.1103/PhysRevD.90.052005
http://dx.doi.org/10.1007/JHEP04(2015)025
http://dx.doi.org/10.1016/j.physletb.2014.08.039
http://dx.doi.org/10.1016/j.physletb.2014.08.039
http://dx.doi.org/10.1016/j.physletb.2014.11.026
http://dx.doi.org/10.1016/j.physletb.2014.11.026
http://arXiv.org/abs/1502.01701
http://dx.doi.org/10.1007/JHEP04(2012)042
http://dx.doi.org/10.1007/JHEP06(2014)071
http://dx.doi.org/10.1007/JHEP06(2014)071
http://arXiv.org/abs/1405.7664
http://dx.doi.org/10.1103/PhysRevLett.16.255
http://dx.doi.org/10.1103/PhysRevLett.16.255
http://dx.doi.org/10.1103/PhysRev.147.1071
http://arXiv.org/abs/hep-ph/9607378
http://dx.doi.org/10.1007/JHEP02(2014)006
http://dx.doi.org/10.1016/j.nuclphysb.2010.08.004
http://dx.doi.org/10.1016/0370-2693(74)90058-6
http://dx.doi.org/10.1016/0370-2693(74)90058-6
http://dx.doi.org/10.1007/BF01614158
http://dx.doi.org/10.1016/0003-4916(76)90156-1
http://arXiv.org/abs/0812.0580
http://dx.doi.org/10.1016/j.physletb.2013.04.037
http://dx.doi.org/10.1051/epjconf/20136019009
http://dx.doi.org/10.1051/epjconf/20136019009
http://dx.doi.org/10.1016/j.aop.2013.04.016
http://dx.doi.org/10.1016/j.nuclphysb.2014.01.018
http://dx.doi.org/10.1016/j.nuclphysb.2014.01.018


of a dynamically broken electroweak standard model at
NLO, J. High Energy Phys. 07 (2012) 101.

[30] R. L. Delgado, A. Dobado, and F. J. Llanes-Estrada, One-
loop WLWL and ZLZL scattering from the electroweak
chiral Lagrangian with a light Higgs-like scalar, J. High
Energy Phys. 02 (2014) 121; A. Dobado, R. L. Delgado, and
F. J. Llanes-Estrada, Strongly interacting electroweak sym-
metry breaking sector with a Higgs-like light scalar,
Proceedings of the II Russian-Spanish Congress “Particle
and Nuclear Physics at all Scales and Cosmology” Institute
of Cosmos Sciences, Saint-Petersburg, 2013, AIP Conf.
Proc. 1606, 151 (2014).

[31] Fits of precision EW observables lead to more stringent
bounds on a and thus on K1 but they depend on unknown
high-energy effects in virtual states, so they are not as reliable
as direct LHC bounds. See M. Baak, J. Haller, A. Hoecker,
D. Kennedy, R. Kogler, K. Mönig, M. Schott, and J. Stelzer,
The electroweak fit of the standard model after the
discovery of a new boson at the LHC, Eur. Phys. J. C 72,
2205 (2012).

[32] S. Catrchyan et al. (CMS Collaboration), Precise determi-
nation of the mass of the Higgs boson and tests of
compatibility of its couplings with the standard model
predictions using proton collisions at 7 and 8 TeV,
arXiv:1412.8662. [See Fig. 9 and Table 12 for the global
analysis, Fig. 10 for the direct measurement h → VV (off-
shell). See also the last rows of Table 12].

[33] D.Espriu andF.Mescia,Unitarity and causality constraints in
composite Higgs models, Phys. Rev. D 90, 015035 (2014).

[34] E. P. Wigner, Resonance reactions and anomalous scatter-
ing, Phys. Rev. 70, 15 (1946); E. P. Wigner and L. Eisenbud,

Higher angular momenta and long range interaction in
resonance reactions, Phys. Rev. 72, 29 (1947).

[35] A. Alboteanu, W. Kilian, and J. Reuter, Resonances and
unitarity in weak boson scattering at the LHC, J. High
Energy Phys. 11 (2008) 010.

[36] W. Kilian, T. Ohl, J. Reuter, and M. Sekulla, High-energy
vector boson scattering after the Higgs discovery,
arXiv:1408.6207.

[37] J. A. Oller and E. Oset, Two meson scattering amplitudes
and their resonances from chiral symmetry and the N/D
method, Nucl. Phys. A663, 629 (2000).

[38] A. Gomez Nicola and J. R. Pelaez, Meson meson scattering
within one loop chiral perturbation theory and its unitariza-
tion, Phys. Rev. D 65, 054009 (2002); A. Dobado, M. J.
Herrero, and T. N. Truong, Unitarized chiral perturbation
theory for elastic pion-pion scattering, Phys. Lett. B 235,
134 (1990); A. Dobado, M. J. Herrero, and T. N. Truong,
Study of the strongly interacting Higgs sector, Phys. Lett. B
235, 129 (1990).

[39] B. Ananthanarayan, G. Colangelo, J. Gasser, and H.
Leutwyler, Roy equation analysis of pi pi scattering, Phys.
Rep. 353, 207 (2001).

[40] R. Kaminski, J. R. Pelaez, and F. J. Yndurain, The pion-pion
scattering amplitude. III. Improving the analysis with
forward dispersion relations and Roy equations, Phys.
Rev. D 77, 054015 (2008).

[41] H. Cai, Higgs decay into a diphoton in the composite Higgs
model, Phys. Rev. D 88, 035018 (2013).

[42] S. Ceci, M. Korolija, and B. Zauner, Model-Independent
Extraction of the Pole and Breit-Wigner Resonance
Parameters, Phys. Rev. Lett. 111, 112004 (2013).

DANIELE BARDUCCI et al. PHYSICAL REVIEW D 91, 095013 (2015)

095013-18

http://dx.doi.org/10.1007/JHEP07(2012)101
http://dx.doi.org/10.1007/JHEP02(2014)121
http://dx.doi.org/10.1007/JHEP02(2014)121
http://dx.doi.org/10.1063/1.4891127
http://dx.doi.org/10.1063/1.4891127
http://dx.doi.org/10.1140/epjc/s10052-012-2205-9
http://dx.doi.org/10.1140/epjc/s10052-012-2205-9
http://arXiv.org/abs/1412.8662
http://dx.doi.org/10.1103/PhysRevD.90.015035
http://dx.doi.org/10.1103/PhysRev.70.15
http://dx.doi.org/10.1103/PhysRev.72.29
http://dx.doi.org/10.1088/1126-6708/2008/11/010
http://dx.doi.org/10.1088/1126-6708/2008/11/010
http://arXiv.org/abs/1408.6207
http://dx.doi.org/10.1016/S0375-9474(99)00693-4
http://dx.doi.org/10.1103/PhysRevD.65.054009
http://dx.doi.org/10.1016/0370-2693(90)90109-J
http://dx.doi.org/10.1016/0370-2693(90)90109-J
http://dx.doi.org/10.1016/0370-2693(90)90108-I
http://dx.doi.org/10.1016/0370-2693(90)90108-I
http://dx.doi.org/10.1016/S0370-1573(01)00009-6
http://dx.doi.org/10.1016/S0370-1573(01)00009-6
http://dx.doi.org/10.1103/PhysRevD.77.054015
http://dx.doi.org/10.1103/PhysRevD.77.054015
http://dx.doi.org/10.1103/PhysRevD.88.035018
http://dx.doi.org/10.1103/PhysRevLett.111.112004

