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Unlike minimal SU(5), SO(10) provides a straightforward path towards gauge coupling unification by
modifying the renormalization group evolution of the gauge couplings above some intermediate scale
which may also be related to the seesaw mechanism for neutrino masses. Unification can be achieved for
several different choices of the intermediate gauge group below the SO(10) breaking scale. In this work, we
consider in detail the possibility that SO(10) unification may also provide a natural dark matter candidate,
stability being guaranteed by a leftover Z2 symmetry. We systematically examine the possible intermediate
gauge groups which allow a nondegenerate, fermionic, Standard Model singlet dark matter candidate while
at the same time respecting gauge coupling unification. Our analysis is done at the two-loop level.
Surprisingly, despite the richness of SO(10), we find that only two models survive the analysis of
phenomenological constraints, which include suitable neutrino masses, proton decay, and reheating.
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I. INTRODUCTION

One of the often quoted motivations for supersymmetry
(SUSY) is its ability to improve the possibility for gauge
coupling unification at the grand unified (GUT) scale,
which is not possible in minimal SU(5) [1]. However,
SO(10) has the built-in possibility for achieving gauge
coupling unification through several potential intermediate-
scale gauge groups [2–4]. Of course, low-energy SUSY has
many other motivations, including the presence of a dark
matter (DM) candidate [5] whose stability is insured if R-
parity is conserved. However, under very generic condi-
tions, non-SUSY SO(10) models also possess a remnantZ2

symmetry when an intermediate-scale U(1) symmetry is
broken [6–11]. Thus, several modest extensions of minimal
SO(10) may also allow for the possibility of DM.
In building a successful SO(10), we must also require

that the GUT and intermediate mass scales be sufficiently
large so as to ensure a proton lifetime and neutrino masses
compatible with experiment. Unfortunately, these require-
ments are not realized for every choice of intermediate-
scale gauge group. The addition of a new SO(10) multiplet
containing a DM candidate will, however, affect the
running of the gauge couplings and can improve the
desired unification of the gauge couplings. For this reason,
we suppose that the DM candidate is charged under the
intermediate gauge symmetries. The cosmological produc-
tion of DM could occur, for example, out of equilibrium
from the thermal bath (NonEquilibrium Thermal DM

(NETDM) [4]) in a manner reminiscent of freeze-in
scenarios [12]. This mechanism works with a stable particle
which has no interaction with the SM particles. Thus, we
focus on singlet DM candidates. Further, as scalar DM
would most assuredly couple to the Standard Model (SM)
Higgs, we limit our attention here to fermionic DM.
SO(10) grand unification is, of course, a general moniker

for many candidate theories of unification, as there are
several possible intermediate gauge groups and several
possible choices for representations R1 of Higgs fields
which break SO(10) to the intermediate gauge group, Gint,
and then again, several possible choices of representations
R2 for the Higgs fields which break Gint down to the SM.
Furthermore, there are several possible choices for the
representation which contains DM. Thus, it may seem that
DM in SO(10) models is a rather robust and generic feature.
However, if we insist on maintaining gauge coupling
unification at a suitably high scale to guarantee proton
stability, the number of models is dramatically reduced. In
fact, by limiting the dimension of the representation
containing DM to be no larger than a 210, we find that
only two models survive.
In this paper, we will systematically examine the

possibility for fermionic NETDM in SO(10) models,
though our conclusions are more general than the specific
NETDM model. We will discuss the various possible
intermediate gauge groups and Higgs representations
which allow for gauge coupling unification, and we will
demonstrate the effect of including two-loop running of the
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renormalization group equations (RGEs). The DM repre-
sentation needs to be split so that only fermions with the
appropriate gauge quantum numbers survive at low energy.
This requires fine-tuning similar to the doublet-triplet
separation problem in GUTs. We also systematically
consider viable DM representation and their effect on
the running of the gauge couplings. In all but two distinct
models, the presence of DM spoils the desired unification
of the gauge couplings.
In the following, we begin by discussing the origin of a

discrete symmetry in a variety of models with different
intermediate gauge groups and the possible representations
for DM and the splitting of the DMmultiplet. In Sec. III, we
first demonstrate gauge coupling unification in these
models (without DM) and show the effect of including
the two-loop functions in the RGE running and one-loop
threshold effects. We next consider the question of gauge
coupling unification in the presence of a DM multiplet. In
Sec. IV, we discuss the criteria which select only two
possible models in a specific example of the NETDM
scenario [4]. The phenomenological aspects of these
models including neutrino masses, proton decay, and the
production of DM through reheating after inflation will be
discussed in Sec. V. We also consider the case where the
DM field is a singlet under the intermediate gauge groups in
Sec. VI. Our conclusions will be given in Sec. VII.

II. CANDIDATES

We assume that the SO(10) gauge group is spontane-
ously broken to an intermediate subgroup Gint at the GUT
scale MGUT, and subsequently broken to the SM gauge
group GSM at an intermediate scale Mint:

SOð10Þ ⟶ Gint ⟶ GSM ⊗ ZN; ð1Þ

with GSM ≡ SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY . The Higgs mul-
tiplets which break SO(10) and Gint are called R1 and R2,
respectively. In addition, we require that there be a remnant
discrete symmetry ZN that is capable of rendering a SM
singlet field to be stable and hence account for the DM in
the Universe [10,11]. The mechanism for ensuring a
remnant ZN is discussed in detail in Sec. II A, and the
possible intermediate gauge groups that accommodate the
condition are summarized in Sec. II B.
If, moreover, the DM couplings are such that the

candidate is not in thermal equilibrium at early times, as
in the NETDM scenario, we obtain stringent constraints on
the model structure. We will consider this subject in
Sec. II C.

A. Discrete symmetry in SO(10)

SO(10) is a rank-five group and has an extra U(1)
symmetry beyond Uð1ÞY in the SM gauge group. The
U(1) charge assignment for fields in an SO(10) multiplet is

determined uniquely up to an overall factor. We define the
normalization factor such that all of the fields ϕi in a given
model have integer charges Qi with a minimum nonzero
value of jQij equal to þ1. Now, let us suppose that a Higgs
field ϕH has a nonzero charge QH. Then, if QH ¼ 0
(mod N) with N ≥ 2 an integer, the U(1) symmetry is
broken to a ZN symmetry after the Higgs field obtains a
vacuum expectation value (VEV) [7–9]. One can easily
show this by noting that both the Lagrangian and the VEV
hϕHi are invariant under the following transformations:

ϕi → exp

�
i2πQi

N

�
ϕi;

hϕHi → exp

�
i2πQH

N

�
hϕHi ¼ hϕHi: ð2Þ

Thus, an SO(10) GUT may account for the stability of DM
in terms of the remnant ZN symmetry originating from the
extra U(1) gauge symmetry.
The next task is to determine which type of irreducible

representations for the Higgs field ϕH can be exploited to
realize the discrete symmetry. To that end, we follow the
discussion presented in Ref. [13]. The discussion is based
on the Dynkin formalism of the Lie algebra [14].1 Since the
rank of SO(10) is five, we have five independent generators
which can be diagonalized simultaneously. We denote them
by Hi (i ¼ 1;…; 5). They form the Cartan subalgebra of
SO(10). Each component of a multiplet is characterized by
a set of eigenvalues of the generators, μi ði ¼ 1;…; 5Þ,
called weights. We also define the weight vector
μ≡ ðμ1;…; μ5Þ. The weights in the adjoint representation
are called roots αi, with α ¼ ðα1;…; α5Þ the root vector.
Among the root vectors, a set of five linearly independent
vectors play an important role. They are called simple roots,
αi (i ¼ 1;…5), and expressed by the Dynkin diagrams. In
what follows, we consider the weight and root vectors in the
so-called Dynkin basis. In this particularly useful basis, a
weight vector μ is expressed in terms of a set of Dynkin
labels given by

~μi ¼
2αi · μ
jαij2

: ð3Þ

It turns out that the Dynkin labels are always integers. For
example, the highest weight of the 16 in SO(10) is
expressed as ð 0 0 0 0 1Þ , while that of the 10 is
given by ð 1 0 0 0 0Þ .
On the other hand, it is convenient to express the Cartan

generatorsHi in the dual basis, where they are expressed in
terms of five-dimensional vectors ½h̄i1;…; h̄i5� such that

1For a review and references, see Refs. [15,16]. We follow the
convention of Ref. [15] in this paper.
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their eigenvalues for a state corresponding to the weight μ
are given by

HiðμÞ ¼
X5
j¼1

h̄ij ~μj: ð4Þ

We choose the five linearly independent Cartan generators
as follows:

H1 ¼
1

2
½ 1 2 2 1 1 �;

H2 ¼
1

2
ffiffiffi
3

p ½ 1 0 0 −1 1 �;

H3 ¼
1

2
½ 0 0 1 1 1 �;

H4 ¼
1

6
½−2 0 3 −1 1 �;

H5 ¼ ½ 2 0 2 1 −1 �: ð5Þ

Here, H1 and H2 correspond to the SUð3ÞC Cartan
generators λ3=2 and λ8=2, respectively, where λA ðA ¼
1;…; 8Þ are the Gell-Mann matrices; H3 and H4 are the
weak isospin and hypercharge, T3L and Y, respectively.

2H5

is related to the B − L charge as H5 ¼ −5ðB − LÞ þ 4Y.
The additional U(1) symmetry required to generate a
discrete symmetry is provided by a linear combination
of the Cartan generators containing H5. Following
Ref. [13] (see also Ref. [8]), we define the extra U(1)
charge Q1 by

Q1 ¼ − 6

5
H4 − 1

5
H5 ¼ ½ 0 0 −1 0 0 �: ð6Þ

This U(1) charge can be also written as Q1¼ðB−LÞ−2Y.
One can readily find that all of the components in 10 and 16
have the U(1) charges of either 0 or �1.
Now we consider possible representations, R2, for ϕH

discussed above. First, let us determine the possible weight
vectors corresponding to the component of ϕH that can
have a VEV without breaking the SM gauge group.
Namely, such a component has a zero eigenvalue for Hi
(i ¼ 1;…; 4). This condition tells us that the corresponding
weight vectors have the following form:

μN ¼ ð−N N −N 0 N Þ: ð7Þ

The Q1 charges of the vectors are then given by

Q1ðμNÞ ¼ N: ð8Þ

It is found that the smallest irreducible representation that
contains the weight vector μN has the highest weight3

ΛN ¼ ð 0 0 0 0 N Þ: ð9Þ

Its dimension is 16; 126; 672;… for N ¼ 1; 2; 3;…,
respectively.4 To obtain a ZN symmetry, N ≥ 2 is required.
Thus, as long as we consider relatively small representa-
tions (such as those with dimensions not exceeding 210),
126 is the only candidate5 for the representation of ϕH. In
this case, the remnant discrete symmetry is Z2.

6

Under the Z2 symmetry, the SM left-handed fermions
are even, while the SM right-handed fermions as well as the
Higgs field are odd. One can easily show that this
symmetry is related to the product of matter parity PM ¼
ð−1Þ3ðB−LÞ [19] and the Uð1ÞY rotation by 6π, e6iπY . Thus,
if a SM-singlet fermion (boson) has an even (odd) parity,
the remnant Z2 symmetry makes the particle stable. In
Table I, we summarize irreducible representations that
contain μN . We only show those that have dimensions less
than or equal to 210. From the table, we find that a singlet
fermion in a 45; 54; 126, or 210 representation, or a singlet
scalar boson in a 16 or 144 representation, can be a DM
candidate.
Note that although we need a 126 Higgs field to break

the extra U(1) symmetry and produce a remnant Z2

symmetry, other Z2-even singlet fields, 45; 54; 210, etc.,
can have VEVs simultaneously without breaking the Z2

symmetry. While the latter do not break the Z2 symmetry,
as discussed above, they are not capable of producing it,
thus requiring the 126. We will use such fields to obtain an
adequate mass spectrum and a nondegenerate DM candi-
date, as discussed in Sec. II C and Sec. IV. R2 will therefore
refer to all representations at the intermediate scale which
are responsible for either symmetry breaking or intermedi-
ate-scale masses and may be a combination of the 126 and
other representations listed in Table I with positive Z2

charge.

B. Intermediate gauge group

As shown in Eq. (1), the extra U(1) symmetry is assumed
to be broken at the intermediate scale, i.e., the 126 Higgs

2In the case of the flipped SU(5) scenario [17,18], the weak
hypercharge is given by Y ¼ − 1

5
ðH4 þH5Þ.

3In fact, we obtain μN by subtracting the root vector
ð 1 −1 1 0 0 Þ from ΛN N times.

4The dimension of ΛN for any N is given by

dimðΛNÞ ¼ ð1þ NÞ
�
1þ N

2

��
1þ N

3

�
2
�
1þ N

4

�
2
�
1þ N

5

�
2

×

�
1þ N

6

��
1þ N

7

�
: ð10Þ

5The next-to-smallest representation including μ2 is 1728 with
the highest weight ð 1 0 0 1 1 Þ.

6For earlier work on the remnant Z2 symmetry in SO(10), see
Ref. [6].
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field acquires a VEV of the order of Mint. Thus, the
intermediate gauge group Gint should be of rank five. In
Table II, we summarize the rank-five subgroups of SO(10)
and the Higgs multiplets R1 whose VEVs break SO(10)
into the subgroups. Again, we only consider the represen-
tations whose dimensions are less than or equal to 210.
Here D denotes the so-called D-parity [20], that is,
a Z2 symmetry with respect to the exchange of
SUð2ÞL ↔ SUð2ÞR. D-parity can be related to an element
of SO(10) [20] under which a fermion field transforms into
its charge conjugate. In cases where the D-parity is not
broken by R1, it is subsequently broken by R2 at the scale of
Mint. In the NETDM scenario, the reheating temperature is
always below Mint, and therefore any cosmological relics
[6] due to the breaking of D-parity will be harmless. Note
that the VEVs of the R1 Higgs fields are even under the Z2

symmetry considered in Sec. II A. Thus, there is no danger
for this Z2 symmetry to be spontaneously broken by the R1

Higgs fields.

C. Fermion dark matter and degeneracy problem

In the NETDM scenario, the DM should not be in
thermal equilibrium. This requirement disfavors scalar DM
candidates, since a scalar, ϕ, can always have a quartic
coupling with the SM Higgs field H: λϕHjϕj2jHj2. Unless
jλϕHj is extremely small for some reason, this coupling
keeps scalar DM in thermal equilibrium even when the
temperature of the Universe becomes much lower than the
reheating temperature. Therefore, we focus on fermionic
DM in this paper. Following the discussion in Sec. II A, the
DM candidate should be contained in either a 45; 54; 126,
or 210 representation.

Below the GUT scale, components in an SO(10) multi-
plet can obtain different masses. We assume that only a part
of an SO(10) multiplet which contains the DM candidate
and forms a representation under Gint has a mass much
lighter than the GUT scale. We denote this representation
by RDM. Such a mass splitting can be realized by the
Yukawa coupling of the DM multiplet with the R1 Higgs
field. After the R1 Higgs obtains a VEV, the Yukawa
coupling leads to an additional mass term for the SO(10)
multiplet, which gives different masses among the compo-
nents. By carefully choosing the parameters in the
Lagrangian, we can make only RDM light. This will be
discussed in detail in Sec. IV.
As will be seen in Sec. III A, withoutRDM, SO(10) GUTs

often predict a low value of either MGUT or Mint, which
could be problematic for proton decay or the explanation of
light neutrino masses, respectively. In order to affect the
RGE running of the gauge couplings and possibly increase
the mass scales for bothMint andMGUT, the DM should be
charged under Gint. In Table III, we summarize possible
candidates for RDM for each intermediate gauge group.
Above the intermediate scale, all of the components have
an identical mass. In fact, it turns out that the degeneracy is
not resolved at tree level even after the intermediate gauge
symmetry is broken. This is because the SO(10) multiplets
which contain RDM displayed in the table cannot have
Yukawa couplings with the 126 Higgs; such a coupling is
forbidden by the SO(10) symmetry. Thus, the effects of
symmetry breaking by the 126 Higgs VEV cannot be
transmitted to the mass of the RDM multiplet at tree level,
and a simple realization of DM in RDM makes its compo-
nents degenerate in mass.
Such a degenerate mass spectrum is problematic. Since

the degenerate multiplet contains particles charged under
the SUð3ÞC ⊗ Uð1ÞEM gauge group, they will be in thermal
equilibrium. In general, these components have quite a long

TABLE I. Irreducible representations containing μN .

Representation Highest weight Z2

μ0 45 ð0 1 0 0 0Þ þ
54 ð 2 0 0 0 0 Þ þ
210 ð 0 0 0 1 1 Þ þ

μ1 16 ð 0 0 0 0 1 Þ −
144 ð 1 0 0 1 0 Þ −

μ2 126 ð 0 0 0 0 2 Þ þ

TABLE II. Candidates for the intermediate gauge group Gint.

Gint R1

SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR 210
SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ D 54
SUð4ÞC ⊗ SUð2ÞL ⊗ Uð1ÞR 45
SUð3ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L 45
SUð3ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L ⊗ D 210
SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞR ⊗ Uð1ÞB−L 45; 210
SUð5Þ ⊗ Uð1Þ 45; 210
Flipped SUð5Þ ⊗ Uð1Þ 45; 210

TABLE III. Candidates for the NETDM.

Gint RDM SO(10)

SUð4ÞC⊗SUð2ÞL⊗SUð2ÞR ð1;1;3Þ 45
ð15;1;1Þ 45;210
ð10;1;3Þ 126
ð15;1;3Þ 210

SUð4ÞC⊗SUð2ÞL⊗Uð1ÞR ð15;1;0Þ 45;210
ð10;1;1Þ 126

SUð3ÞC⊗SUð2ÞL⊗SUð2ÞR⊗Uð1ÞB−L ð1;1;3;0Þ 45;210
ð1;1;3;−2Þ 126

SUð3ÞC⊗SUð2ÞL⊗Uð1ÞR⊗Uð1ÞB−L ð1;1;1;−2Þ 126
SUð5Þ⊗Uð1Þ ð24;0Þ 45;54;210

(1, −10) 126
ð75;0Þ 210

Flipped SUð5Þ ⊗ Uð1Þ ð24;0Þ 45;54;210
(50, −2) 126
ð75;0Þ 210
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lifetime, and thus their thermal relic density conflicts with
various observations. To see this, let us consider the
ð1; 1; 3Þ Dirac fermion multiplet ðψ0;ψ�Þ in the SUð4ÞC ⊗
SUð2ÞL ⊗ SUð2ÞR theory, which originates from the 45
representation of SO(10), as an example. As mentioned
above, they have an identical mass M at tree level, and the
mass difference ΔM induced by the radiative corrections
can be estimated as

ΔM ≃ α1
4π

M ln

�
Mint

M

�
∼ 0.01 ×M; ð11Þ

where α1 is the U(1) gauge fine-structure constant. The
charged components ψ� can decay into the neutral DM ψ0

only through the exchange of the intermediate-scale gauge
bosons as shown in Fig. 1. We estimate the decay width as

Γðψþ → ψ0ff̄0Þ ∼ α2R
π

ðΔMÞ5
M4

WR

; ð12Þ

where αR ¼ g2R=4π, and gR and MWR
are the coupling and

the mass of the intermediate gauge bosonWR, respectively.
Then, for example, when the DM mass is Oð1Þ TeV and
the intermediate scale isOð1013Þ GeV, the lifetime of ψþ is
much longer than the age of the Universe, and thus
cosmologically stable. The abundance of such a stable
charged particle is stringently constrained by the null
results of the search for heavy hydrogen in sea water
[21]. The DM multiplets in other cases may also be
accompanied by stable colored particles, whose abundance
is severely restricted as well. If the intermediate scale is
relatively low, the charged/colored particle can have a
shorter lifetime. Even in this case, their thermal relic
abundance should be extremely small in order not to spoil
the success of big-bang nucleosynthesis (BBN). Quite
generally, a degenerate mass spectrum leads to disastrous
consequences. We refer to this problem as the “degeneracy
problem” in what follows.
To avoid the degeneracy problem, we need to make the

charged/colored components heavy enough so that they are
not in thermal equilibrium and have very short lifetimes.

To that end, it is natural to explore a way to give them
masses of OðMintÞ by using the effects of the intermediate
symmetry breaking. There are several solutions. One of the
simplest ways is to introduce an additional Higgs field that
has a VEVof the order ofMint. For this purpose, we can use
a 45; 54, or 210 field, as discussed in Sec. II A. The Yukawa
coupling between the Higgs and the DM then yields the
desired mass splitting. By fine-tuning the coupling, we can
force only the DM to have a mass much below Mint, while
the other components remain around the intermediate
scale.7 Though other mechanisms are possible, we adopt
this approach in this work. Concrete realizations of the
mechanism are illustrated in Sec. IV.
Another solution to the degeneracy problem involves the

use of higher-dimensional operators that include at least
two 126 fields. One would expect that such operators
suppressed by the Planck scale, MPl, always exist. These
Planck-suppressed operators can give rise to a mass differ-
ence of OðM2

int=MPlÞ. Another mechanism to generate
higher-dimensional operators is to introduce a vector-like
fermion which has a Yukawa coupling with the DM and the
126 Higgs. By integrating out the fermion, we obtain
dimension-five operators which give a OðM2

int=MferÞ mass
difference, where Mfer is the mass of the additional
fermion. Moreover, the higher-dimensional operators can
be induced at the loop level, which gives rise to an
OðαGUTM2

int=ð4πMGUTÞÞ mass difference, where αGUT ¼
g2GUT=ð4πÞ is the fine-structure constant of the unified
gauge coupling gGUT. Realization of these scenarios will be
discussed elsewhere.

III. GAUGE COUPLING UNIFICATION

As is well known, gauge coupling unification can be
realized in SO(10) GUTs with an intermediate scale [2].8

Once the intermediate gaugegroup aswell as the low-energy
matter content is given, one can determine both the inter-
mediate and GUT scales by requiring gauge coupling
unification. In what follows, we reevaluate these scales in
the SO(10)GUT scenarioswith different intermediate gauge
groups and up-to-date values for the input parameters. Then,
in Sec. III B, we study the effects of the DM and the
intermediate Higgs multiplets on gauge coupling unifica-
tion. We will find that the requirement of gauge coupling
unification severely constrains the NETDM models.

A. Gauge coupling unification with the
intermediate scale

To begin with, let us briefly review SO(10) GUTs with
an intermediate gauge group. In SO(10) GUTs, the SM

FIG. 1. Diagram responsible for the decay of ψþ into the DM
ψ0. f and f0 denote the SM particles.

7This fine-tuning is similar to (though somewhat less severe
than) the fine-tuning associated with the doublet-triplet separa-
tion to insure a weak scale Higgs boson.

8For a review, see Refs. [3,22].
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fermions as well as three right-handed neutrinos are
embedded into three copies of the 16 spinor representations,
while the SM Higgs boson is usually included in a 10
representation. At the GUT scale, the SO(10) GUT group is
spontaneously broken into an intermediate gauge group.
Subsequently, the intermediateHiggsmultiplet breaks it into
the SM gauge group at the intermediate scale. In the
following analysis, we work with the so-called extended
survival hypothesis [23,24]; that is, we assume that a
minimal set of Higgs multiplets necessary to realize the
symmetry breaking exists in low-energy region. Above the
intermediate scale, the presence of the additional Higgs
multiplet and intermediate gauge bosons change the gauge
coupling running from that in the SM.Thismakes it possible
to realize gauge coupling unification in this scenario.
As displayed in Table II, the intermediate gauge groups

relevant to our discussion are divided into two classes;
those which contain the SU(5) group as a subgroup, and
those which do not. The former class is, however, found to
be less promising. In the case of ordinary SUð5Þ ⊗ Uð1Þ,
the SM gauge couplings should meet at the intermediate
scale, though they do not, as is well known. Failure of
gauge coupling unification is also found in the flipped
SU(5) case. This conclusion cannot be changed even if one
adds the DM and Higgs multiplets in the case of ordinary
SU(5). In the flipped SU(5) case, the addition of the DM
and Higgs multiplets may yield gauge coupling unification.
However, it turns out that the intermediate mass scale is as
high asOð1017Þ GeV in such cases. Since the masses of the
right-handed neutrinos are expected to be OðMintÞ, if
Mint ¼ Oð1017Þ, the simple seesaw mechanism [25] cannot
explain the neutrino masses required from the observation
of the neutrino oscillations. However, the GUT scale tends
to be close to the Planck scale, and one may need to rely on
a double seesaw to explain neutrino masses [18,26]. We do
not consider these possibilities in the following discussion.
The other class of the intermediate gauge groups is

related to the Pati-Salam gauge group [27]. Therefore, it is
useful to decompose the SO(10) multiplets into multiplets
of the SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR gauge group. The 16
spinor representation in SO(10) is decomposed into a
ð4; 2; 1Þ and ð4̄; 1; 2Þ of SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR.
We denote them by ΨL and ΨC

R, respectively, in which
the SM fermions are embedded as follows:

ΨL ¼
�
u1L u2L u3L νL

d1L d2L d3L eL

�
;

ΨC
R ¼

�
dCR1 dCR2 dCR3 eCR
−uCR1 −uCR2 −uCR3 −νCR

�
; ð13Þ

where the indices represent the SUð3ÞC color and C
indicates charge conjugation. The SM Higgs field is, on
the other hand, embedded in the ð1; 2; 2̄Þ component of the
ten-dimensional representation. As discussed in Ref. [28],

to obtain the viable Yukawa sector,9 we need to consider a
complex scalar 10C for the representation, not a real one.
Thus, ð1; 2; 2̄Þ is also a complex scalar multiplet and
includes the two Higgs doublets. In the following calcu-
lation, we regard one of these doublets as the SM Higgs
boson, and the other is assumed to have a mass around the
intermediate scale. The SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR
gauge group is broken by the VEV of the ð10; 1; 3Þ
component in the 126C. In the presence of the left-right
symmetry, we also have a ð10; 3; 1Þ above the intermediate
scale. We assume that the ð10; 3; 1Þ field does not acquire a
VEV, with which the constraint coming from the ρ
parameter is avoided. From these charge assignments,
one can readily obtain the quantum numbers for the
corresponding fields in the other intermediate gauge
groups, since they are subgroups of the SUð4ÞC ⊗
SUð2ÞL ⊗ SUð2ÞR.
With this field content, we study whether the gauge

coupling unification is actually achieved or not for the first
six intermediate gauge groups listed in Table II. We
perform the analysis by using the two-loop RGEs, which
are given in Appendix B. We will work in the DR scheme
[30], as there is no constant term in the intermediate and
GUT scale matching conditions. The input parameters we
use in our analysis are listed in Table VII in Appendix A.
By solving the RGEs and assuming gauge coupling
unification, we determine the intermediate scale Mint, the
GUT scale MGUT, and the unified gauge coupling constant
gGUT. If we fail to find the appropriate values for these
quantities, we will conclude that gauge coupling unification
is not realized in this case. To determine their central values
as well as the error coming from the input parameters, we
form a χ2 statistic as

χ2 ¼
X3
a¼1

ðg2a − g2a;expÞ2
σ2ðg2a;expÞ

; ð14Þ

where ga are the gauge couplings at the electroweak scale
obtained by solving the RGEs on the above assumption,
and ga;exp are the experimental values of the corresponding
gauge couplings, with σðg2a;expÞ denoting their error. The
central values of Mint, MGUT, and gGUT are corresponding
to a point at which χ2 is minimized.10

By using the method discussed above, we carry out the
analysis and summarize the results in Table IV. Here, we
show log10ðMintÞ, log10ðMGUTÞ, and gGUT. For each inter-
mediate gauge group, the upper (lower) row shows the
2-loop (1-loop) result. Mint and MGUT are given in GeV.

9For a general discussion on the Yukawa sector in SO(10)
GUTs, see Refs. [28,29].

10We also use the χ2 statistics to determine the value of the
input Yukawa coupling in a similar manner, though it scarcely
affects the error estimation of Mint, MGUT, and gGUT.
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The blank entries indicate that gauge coupling unification is
not achieved. The uncertainties resulting from the input
error are also shown in the parentheses. To illustrate our
procedure more clearly, we show χ2 as functions of
log10ðMintÞ (top), logðMGUTÞ (middle), and gGUT (bottom)
in Fig. 2 for two examples of intermediate gauge groups.
The left panels are for Gint¼ SUð4ÞC ⊗ SUð2ÞL ⊗SUð2ÞR,
while the right ones are for Gint ¼ SUð4ÞC ⊗ SUð2ÞL ⊗

SUð2ÞR ⊗ D. The χ2 functions for the other choices of
intermediate scale gauge groups will be qualitatively
similar. Here again, Mint and MGUT are given in GeV. In
each plot, the other two free parameters are fixed to their
best-fit values. We also plot the one-loop results (shown as
dotted curves) to show the significance of the two-loop
effects. In Fig. 3, we show the χ2 functions projected down
onto 2D planes corresponding to gGUT-log10ðMintÞ,
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FIG. 2 (color online). χ2 as functions of log10ðMintÞ (top), log10ðMGUTÞ (middle), and gGUT (bottom). Left and right panels are for
Gint ¼ SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR and Gint ¼ SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ D, respectively. Mint and MGUT are given in GeV.
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gGUT-log10ðMGUTÞ, and log10ðMGUTÞ-log10ðMintÞ in the
top, middle, and bottom panels, respectively. Again, the
left panels are for Gint ¼ SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR,
while the ones on the right are for Gint ¼
SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ D. The stars represent
the best-fit point. The uncertainty ellipses represent
68%, 95%, and 99% C.L. uncertainties corresponding to
Δχ2 ¼ 2.30, 5.99, and 9.21, respectively. Threshold

corrections at Mint and MGUT [31] due to the nondegener-
acy of the particles that have masses of the order of these
scales contribute to the uncertainties.11 For a recent dis-
cussion of threshold corrections, see Ref. [32]. In addition,
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FIG. 3 (color online). Contour plots for the allowed region in the gGUT-log10ðMintÞ, gGUT-log10ðMGUTÞ, and log10ðMGUTÞ-log10ðMintÞ
parameter planes in the top, middle, and bottom panels, respectively. Left panels are for Gint ¼ SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR, while
right ones are for Gint ¼ SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ D. Stars represent the best-fit point. The colored regions correspond to 68%,
95%, and 99% C.L. limits determined from Δχ2 ≃ 2.30; 5.99; 9.21.

11Note that the intermediate scale in the left-right-symmetric
theories does not depend on physics beyondMint, as discussed in
Appendix C.
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we neglect the contribution of Yukawa couplings above the
intermediate scale, which causes additional error. These are
expected to give Oð1Þ% uncertainty to the results.
From Table IV, it is found that gauge coupling

unification is not achieved in the case of Gint ¼
SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞR ⊗ Uð1ÞB−L. Moreover, we
find that relatively low GUT scales are predicted for
Gint ¼ SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ D and SUð4ÞC ⊗
SUð2ÞL ⊗ Uð1ÞR, and thus the proton decay constraints
may be severe in these cases, as discussed in Sec. V B.
Furthermore, except for Gint ¼ SUð4ÞC ⊗ SUð2ÞL ⊗
SUð2ÞR ⊗ D, we obtain low intermediate scales, with
which it may be difficult to account for the neutrino
masses, as explained in Sec. VA. As we will see below,
this situation can be improved in the NETDM models.

B. NETDM and gauge coupling unification

Next, we look for the NETDM models in which
gauge coupling unification is realized with an appropriate
intermediate unification scale. Here, we require

1015 ≲MGUT ≲ 1018 GeV; if MGUT < 1015 GeV, then
proton decays are too rapid to be consistent with proton
decay experiments, while if MGUT > 1018 GeV, then
gravitational effects cannot be neglected anymore, and a
calculation based on quantum field theories may be invalid
around the GUT scale. To search for promising candidates,
we assume the following conditions: First, a model should
contain a NETDM candidate shown in Table III, where
only a singlet component has a mass much below the
intermediate scale. This component does not affect
the running of the gauge couplings. Second, the rest of
the components in RDM are assumed to be around Mint due
to the mass splitting mechanism with an additional Higgs
multiplet, discussed in Sec. II C. At this point, we only
assume that there exists an extra Higgs multiplet from
either the 45, 54 or 210 whose mass is around the
intermediate scale. Whether the VEV of the extra Higgs
actually gives rise to the mass splitting or not will be
discussed in the subsequent section. Thirdly, we require
that only the SM fields, the intermediate gauge bosons,
RDM, and R2 are present below the GUT scale. For

TABLE IV. log10ðMintÞ, log10ðMGUTÞ, and gGUT. For eachGint, the upper (lower) row shows the 2-loop (1-loop) result.Mint andMGUT
are given in GeV. The blank entries indicate that gauge coupling unification is not achieved.

Gint log10ðMintÞ log10ðMGUTÞ gGUT

SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR 11.17(1) 15.929(4) 0.52738(4)
11.740(8) 16.07(2) 0.5241(1)

SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ D 13.664(3) 14.95(1) 0.5559(1)
13.708(7) 15.23(3) 0.5520(1)

SUð4ÞC ⊗ SUð2ÞL ⊗ Uð1ÞR 11.35(2) 14.42(1) 0.5359(1)
11.23(1) 14.638(8) 0.53227(7)

SUð3ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L 9.46(2) 16.20(2) 0.52612(8)
8.993(3) 16.68(4) 0.52124(3)

SUð3ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L ⊗ D 10.51(1) 15.38(2) 0.53880(3)
10.090(9) 15.77(1) 0.53478(6)

SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞR ⊗ Uð1ÞB−L

TABLE V. Models that realize the gauge coupling unification. Mint and MGUT are given in GeV. All of the values listed here are
evaluated at one-loop level.

SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR
RDM R2 log10ðMintÞ log10ðMGUTÞ gGUT

ð1; 1; 3ÞW ð10; 1; 3ÞC ð1; 1; 3ÞR 10.8 15.9 0.53
ð1; 1; 3ÞD ð10; 1; 3ÞC ð1; 1; 3ÞR 9.8 15.7 0.53

SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ D

RDM R2 log10ðMintÞ log10ðMGUTÞ gGUT

ð15; 1; 1ÞW ð10; 1; 3ÞC ð10; 3; 1ÞC ð15; 1; 1ÞR ð10; 1; 3ÞC ð10; 3; 1ÞC 13.7 16.2 0.56
ð15; 1; 1ÞW ð15; 1; 3ÞR ð15; 3; 1ÞR ð10; 1; 3ÞC ð10; 3; 1ÞC 14.2 15.5 0.56
ð15; 1; 1ÞD ð15; 1; 3ÞR ð15; 3; 1ÞR 14.4 16.3 0.58

SUð3ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L
RDM R2 log10ðMintÞ log10ðMGUTÞ gGUT

ð1; 1; 3; 0ÞW ð1; 1; 3;−2ÞC ð1; 1; 3; 0ÞR 6.1 16.6 0.52
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example, if we consider the ð1; 1; 3Þ DM of the 45 given in
the first column in Table III, then we suppose that all of the
components of the 45 except RDM ¼ ð1; 1; 3Þ should have
masses around the GUT scale. This condition corresponds
to the requirement of the minimal fine-tunings in the scalar
potential to realize an adequate mass spectrum.
With these conditions, we then search for possible

candidates by using the one-loop analytic formula given
in Appendix C. In Table V, we summarize the field contents
that satisfy the above requirements, as well as the values of
log10ðMintÞ, log10ðMGUTÞ, and gGUT, with Mint and MGUT
in GeV. All of the values are evaluated at one-loop level.
Here the subscript R, C,W, orD of each multiplet indicates
that it is a real scalar, a complex scalar, a Weyl fermion, or a
Dirac fermion, respectively. As for the intermediate Higgs
fields, R2, listed in Table V, ð10; 1; 3ÞC and ð1; 1; 3;−2ÞC
are from the 126 Higgs field, while all other representations
included in R2 are extra Higgs fields introduced to resolve
the degeneracy problem. For the additional Higgs fields, we
only show the real scalar cases for brevity. Indeed, we can
also consider complex scalars for the Higgs fields and find
that gauge coupling unification is also realized in these
cases, where both the intermediate and GUT scales are only
slightly modified.

IV. MODELS

In the previous section, we have reduced the possible
candidates to those presented in Table V. In this section, we
study if any of those models are viable; i.e., we check if
they actually offer appropriate an mass spectrum to realize
the NETDM scenario, with the charged/colored compo-
nents in RDM acquiring masses of OðMintÞ.
First, let us consider the ð1; 1; 3ÞW=D DM representation

in the SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR gauge theory. To split
the masses in the ð1; 1; 3Þ multiplet ψ r, we need to couple
the DM with the ð1; 1; 3ÞR Higgs ϕr, with r denoting the
SUð2ÞR index. Since the fields transform as triplets under
the SUð2ÞR transformations, to construct an invariant term
from the fields, the indices should be contracted antisym-
metrically; i.e., the coupling should have a form like

ϵpqrðψ̄Þpψqϕr: ð15Þ

Then, if ψ r is a Majorana fermion, the above term always
vanishes. Thus, ψ r should be a Dirac fermion—that is,
ð1; 1; 3ÞD is the unique candidate for NETDM in this case.
Next, we study the terms in the SO(10) Lagrangian

relevant to the masses of the fields much lighter than the
GUT scale. In SO(10), ð1; 1; 3ÞD, ð1; 1; 3ÞR, and ð10; 1; 3ÞC
are included in the 45D, 45R, and 126C, respectively. The
SO(10) gauge group is spontaneously broken by the 210R
Higgs field ðR1Þ into the SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR
intermediate gauge group. As is usually done in the
intermediate scale scenario, we fine-tune the Higgs poten-
tial so that the ð1; 1; 3ÞR and ð10; 1; 3ÞC Higgs fields have

masses around the intermediate scale. This can always be
performed by using the couplings of the 45R and 126C
fields with the 210R Higgs field, which acquires a VEVof
the order of the GUT scale. Similarly, we give desirable
masses to the fields in ð1; 1; 3ÞD by carefully choosing the
couplings of the 45D fermion with the 45R and 126C Higgs
fields. Here, the relevant interactions are

Lint¼−M45D
45D45D−iy4545D45D45R−y21045D45D210R:

ð16Þ

Notice that 45D does not couple to the 126C field,
as already mentioned in Sec. II C. After the R1 ¼ 210R
Higgs field gets a VEV h210Ri ¼ v210, the interactions in
Eq. (16) lead to the following terms12:

Lint → −MDMðψ̄Þrψ r − iy45ϵrstðψ̄Þrψ sϕt; ð17Þ
withMDM ¼ M45D

þ y210v210=
ffiffiffi
6

p
. Here, ψ r and ϕr denote

the ð1; 1; 3ÞD and ð1; 1; 3ÞR components in 45D and 45R,
respectively. We find that although M45D

and v210 are
expected to be OðMGUTÞ, we can let MDM be much lighter
than the GUT scale by carefully choosing the above
parameters so that they cancel each other. In addition, it
turns out that the mass term of the ð1; 3; 1ÞD component in
45D is given byM45D

− y210v210=
ffiffiffi
6

p
. Thus, even if we fine-

tune M45D
and y210 to realize MDM ≪ MGUT, the mass of

ð1; 3; 1ÞD is still around the GUT scale. This observation
reflects the violation of the D-parity in this model. At this
point, all of the components in ψ r have identical masses
(the “degeneracy problem”). Once the neutral component
of ϕr acquires a VEV hϕ3i ¼ v45, which is assumed to be
OðMintÞ, the second term in Eq. (17) gives rise to additional
mass terms for ψ r. These are

Lint → −MDMψ
0ψ0 −Mþψþψþ −M−ψ−ψ−; ð18Þ

where M� ¼ MDM ∓ y45v45, and ψ0 and ψ� are the
neutral and charged components, respectively.13 The above
expression shows that the VEV of the 45R Higgs field
indeed solves the degeneracy problem; ifMDM ≪ Mint and
y45v45 ¼ OðMintÞ, then the charged components acquire
masses ofOðMintÞ, while the neutral component has a mass
much lighter thanMint. Thus, we obtain the mass spectrum
we have assumed in the previous section.
In the next example, we consider the DM representation

RDM ¼ ð15; 1; 1ÞW with R2 ¼ ð10; 1; 3ÞC ⊕ ð10; 3; 1ÞC ⊕
ð15; 1; 1ÞR in the left-right-symmetric SUð4ÞC ⊗
SUð2ÞL ⊗ SUð2ÞR gauge theory. In this case, R1 ¼ 54R.
We assume that the ð15; 1; 1ÞW is a part of the 45W , while

12For the computation of the Clebsch-Gordan coefficients, we
have used the results given in Ref. [33].

13Note that since ψr are Dirac fermions, ðψ0ÞC ≠ ψ0 and
ðψ�ÞC ≠ ψ∓.

MAMBRINI et al. PHYSICAL REVIEW D 91, 095010 (2015)

095010-10



both ð10; 1; 3ÞC and ð10; 3; 1ÞC are part of the 126C. The
couplings of the DM with the Higgs fields, as well as its
mass term, are then given by

Lint ¼ −M45W

2
45W45W − y54

2
45W45W54R

− y210
2

45W45W210R þ H:c: ð19Þ

Here, ð15; 1; 1ÞR is included in the 210R field; we cannot
use a 45R in this case, since the Weyl fermion 45W has no
coupling to the 45R.

14 As before, below the GUT scale, the
VEV of 54R, v54, gives a common mass M to the
ð15; 1; 1ÞW multiplet with M ¼ M45W

− y54v54=
ffiffiffiffiffi
15

p
. We

can takeM ¼ OðMintÞ by fine-tuningM45W
and y54v54. The

above Lagrangian then reduces to

Lint → −M
2
ψAψA þ 2y210ffiffiffi

3
p TrðψϕψÞ þ H:c:; ð20Þ

where ψA and ϕA denote the ð15; 1; 1ÞW and ð15; 1; 1ÞR
fields, respectively, with ψ ≡ ψATA and ϕ≡ ϕATA;
A;B;C ¼ 1;…15 are the SU(4) adjoint indices, and TA

are the SU(4) generators. The mass degeneracy in this case
is resolved by the VEV of the 210R field,

hϕi ¼ v210
2

ffiffiffi
6

p diagð1; 1; 1;−3Þ; ð21Þ

with which Eq. (20) leads to

Lint → −MDM

2
ψ0ψ0 −M ~g

2
~gA ~gA −Mξξ̄aξ

a þ H:c:; ð22Þ

where ψ0, ~gA, ξa, and ξ̄a are the color singlet, octet, triplet,
and antitriplet components in ð15; 1; 1ÞW , respectively, with
a denoting the color index, and

MDM ¼ M þ
ffiffiffi
2

p

3
y210v210; ð23Þ

M ~g ¼ M − 1

3
ffiffiffi
2

p y210v210; ð24Þ

Mξ ¼ M þ 1

3
ffiffiffi
2

p y210v210: ð25Þ

Therefore, by carefully adjusting y210v210, we can make the
DM ψ0 much lighter than Mint while keeping the other
components around the intermediate scale.
There are two more possible representations for RDM for

the left-right-symmetric SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR
intermediate gauge group given in Table V, namely
ð15; 1; 1ÞW=D. In this case, however, one can readily
conclude that the degeneracy problem cannot be solved

by the ð15; 1; 3ÞR and ð15; 3; 1ÞR Higgs fields. This is
because the Yukawa couplings between the DM and these
Higgs fields are forbidden by the intermediate gauge
symmetry. As a consequence, we can safely neglect these
possibilities.
Finally, we discuss the model presented in the last

column in Table V. We again find that the ð1; 1; 3; 0ÞR
Higgs field does not yield a mass difference among the
components in the ð1; 1; 3; 0ÞW DM multiplet, since the
operator in Eq. (15) vanishes when the DM is a Weyl
fermion. Thus, we do not consider this model in the
following discussion.
As a result, we obtain two distinct models for NETDM

within SO(10). We summarize these two models in
Table VI. We call them models I and II in what follows.
Here,Mint andMGUT are given in GeV, and all of the values
are evaluated with two-loop RGEs and differ somewhat
from the one-loop values given in Table V. The errors
shown in the parentheses arise from uncertainties in the
input parameters. In addition, we again expect threshold
corrections at Mint and MGUT. Furthermore, we neglect the
contribution of Yukawa couplings to the RGEs above
the intermediate scale, and this also will contribute to
the theoretical error. We estimate that these two sources
cause Oð1Þ% uncertainties in the values displayed in
Table VI. From these results, we find that the presence
of the DM component as well as the extra Higgs bosons can
significantly alter the intermediate and GUT scales,15

because of their effects on the gauge coupling running.
To illustrate this more clearly, in Fig. 4 we show the running
of gauge couplings in each theory. The left and right panels
of Fig. 4 correspond to models I and II, respectively. In each
figure, solid (dashed) lines show the case with (without)
DM and additional Higgs bosons. The blue, green, and red
lines represent the running of the U(1), SU(2) and SU(3)
gauge couplings, respectively, where the U(1) fine-
structure constant α1 is defined by

1

α1
≡ 3

5

1

α2R
þ 2

5

1

α4
; ð26Þ

while the SUð3ÞC coupling α3 is defined by α3 ≡ α4 above
the intermediate scale. These figures clearly show the
effects of the extra particles on the gauge coupling running.
In particular, the GUT scale in model II is now well above
1015 GeV, which allows this model to evade the proton
decay constraints, as will be seen in the subsequent section.

V. PHENOMENOLOGICAL ASPECTS

Now that we have obtained the NETDM models, we can
study their phenomenological aspects and possible impli-
cations in future experiments. In Sec. VA, we first consider

14It is also possible to embed ð15; 1; 1ÞW into 210W and
ð15; 1; 1ÞR into 45R. The phenomenology in this case is the
same as that discussed in the text.

15However, their existence hardly changes the intermediate
scale in model II, which is clarified in Appendix C.
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whether these models can give appropriate masses for light
neutrinos. Next, in Sec. V B, we evaluate proton lifetimes
in each model and discuss the testability in future proton
decay experiments. Finally, we compute the abundance of
DM produced by the NETDMmechanism in Sec. V C, and
predict the reheating temperature after inflation.

A. Neutrino mass

In SO(10) GUTs, the Majorana mass terms of the right-
handed neutrinos are induced after the B − L symmetry is
broken. These mass terms are generated from the Yukawa
couplings of the 16 spinors with the 126C Higgs field. If the
Yukawa couplings are Oð1Þ, then the Majorana mass terms
are OðMintÞ. On the other hand, in these models, the Dirac
masses of neutrinos are equal to the up-type quark masses,
mu, at the unification scale. Therefore, via the seesaw
mechanism [25], light neutrino masses are given by

mν ≃ m2
u

Mint
: ð27Þ

In model II, Mint ¼ Oð1013Þ GeV indeed gives proper
values for neutrino masses.16 However, in model I, a low
intermediate scale of Oð108Þ GeV yields neutrino masses

which are too heavy using the standard seesaw expression
(27). Thus, model I is disfavored on the basis of small
neutrino masses.
The defect in model I may be evaded if the ð15; 2; 2Þ

component in 126C has a sizable mixing with the ð1; 2; 2̄Þ
Higgs boson and acquires a VEV of the order of the
electroweak scale. In this case, the neutrino Yukawa
couplings can differ from those of the up quark, and thus
the relation (27) does not hold any more. For sizable mixing
to occur, the ð15; 2; 2Þ field should lie around the inter-
mediate scale. One might think that the presence of
additional fields below the GUT scale would modify the
running of the gauge couplings and spoil the above
discussion based on gauge coupling unification.
However, it turns out that both the intermediate and
GUT scales are hardly affected by the existence of this
field, though the unified gauge coupling constant becomes
slightly larger. This is because its contribution to the one-
loop beta function coefficients is Δb4 ¼ 16=3 and
Δb2L ¼ Δb2R ¼ 5, and thus their difference is very tiny
(see the discussion given in Appendix C). Therefore, we
can take the ð15; 2; 2Þ to be at the intermediate scale with
little change in the values of Mint and MGUT. The presence
of the ð15; 2; 2Þ is also desirable to account for the
down-type quark and charged lepton Yukawa couplings
[28,35–37]. In addition, the higher-dimensional operators
induced above the GUT scale may also affect the Yukawa
couplings. Constructing a realistic Yukawa sector in these
models is saved for future work.

B. Proton decay

Proton decay is a smoking-gun signature of GUTs, and
thus a powerful tool for testing them. In non-SUSY GUTs,

FIG. 4 (color online). Running of gauge couplings. Solid (dashed) lines show the case with (without) DM and additional Higgs
bosons. Blue, green, and red lines represent the running of the U(1), SU(2) and SU(3) gauge couplings, respectively.

16Note that in a left-right-symmetric model such as model II
there is in general also a type-II seesaw contribution to mν from
the VEV of the SUð2ÞL triplet in the 126C. However, we know
from constraints on the ρ parameter that the VEV must be quite
small and definitely much smaller than the VEV of the SUð2ÞR
triplet. For example, if the mixing between the SUð2ÞL and
SUð2ÞR triplets with the Higgs doublets is small, it is safe to
assume that the SUð2ÞL triplet VEV is small, and thus the type-II
seesaw contribution is subdominant [34].
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p → eþπ0 is the dominant decay mode, which is caused by
the exchange of GUT-scale gauge bosons. This could be
compared with the case of the SUSY GUTs; in SUSY
GUTs, the color-triplet Higgs exchange usually yields the
dominant contribution to proton decay, which gives rise to
the p → Kþν̄ decay mode [38].17

Since the p → eþπ0 decay mode is induced by gauge
interactions, we can make a robust prediction for the partial
decay lifetime of this mode. Details of the calculation are
given in Appendix D. By using the results given there, we
evaluate the partial decay lifetime of the p → eþπ0 mode in
each theory and plot it as a function of MX=MGUT
(MX denotes the mass of the GUT-scale gauge boson) in
Fig. 5. Here, the blue and red solid lines represent models I
and II, while the blue and red dashed lines represent the
models without the DM and extra Higgs multiplets as given
in Table IV, namely Gint ¼ SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR
and Gint ¼ SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ D, respec-
tively. The shaded area shows the region which is excluded
by the current experimental bound, τðp → eþπ0Þ > 1.4 ×
1034 years [40,41]. We have varied the heavy gauge boson
mass betweenMGUT=2 ≤ MX ≤ 2MGUT, which reflects our
ignorance of the GUT-scale mass spectrum. From this
figure, we see that the existence of DM andHiggs multiplets
produces a large effect on the proton decay lifetime. In
particular, in the case of SUð4ÞC ⊗ SUð2ÞL ⊗
SUð2ÞR ⊗ D, the predicted lifetime is so small that the
present bound has already excluded the possibility. This
conclusion can be evaded, however, once the DM and R2

Higgs multiplets are included in the theory, as they raise the
value ofMGUT. Moreover, model I is now being constrained
by the proton decay experiments. In this case, the inclusion
of the DM and Higgs multiplets decreases MGUT. Future
proton decay experiments, such as the Hyper-Kamiokande
experiment [42], may offer much improved sensitivities (by
about an order of magnitude), with which we can probe a
wide range of parameter space in both models.

C. Nonequilibrium thermal dark matter

Finally, we evaluate the relic abundance of DM produced
by the NETDM mechanism [4] in models I and II. In both
of these models, the DM ψ0 is produced in the early
Universe via the exchange of the intermediate-scale par-
ticles. Therefore, the production rate is extremely small and
their self-annihilation can be neglected. In addition, the
produced DM cannot be in the thermal bath, since they
have no renormalizable interactions with the SM particles.
These two features characterize the NETDM mechanism;
the DM is produced by SM particles in the thermal bath via
the intermediate boson exchange, while they do not
annihilate with each other nor attain thermal equilibrium.

In what follows, we estimate the density of the DM
produced via this mechanism and determine the reheating
temperature which realizes the observed DM density.
The Boltzmann equation for the DM ψ0 is given by

dYDM

dx
¼

ffiffiffiffiffi
π

45

r
g�sffiffiffiffiffiffig�ρ
p MDMMPl

hσvi
x2

Y2
eq; ð28Þ

with YDM ≡ nDM=s and Yeq ≡ neq=s, where nDM is the DM
number density, neq is the equilibrium number density of
each individual initial state SM particle, and s is the entropy
of the Universe; x≡MDM=T, with T being the temperature
of the Universe; g�s and g�ρ are the effective degrees of
freedom for the entropy and energy density in the thermal
bath, respectively; MPl ≡ 1=

ffiffiffiffiffiffiffi
GN

p ¼ 1.22 × 1019 GeV is
the Planck mass; and hσvi is the thermally averaged total
annihilation cross section of the initial SM particles, f, into
the DM pair. When we derive Eq. (28), we neglect the DM
self-annihilation contribution as discussed above. From
now on, we assume g�s ¼ g�ρ ≡ g� for brevity.
We evaluate the thermal averaged cross section hσvi

multiplied by the equilibrium number density squared
n2eq as

hσvin2eq≃ T
512π5

Z
∞

4M2
DM

dŝ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ−4M2

DM

q
K1ð

ffiffiffî
s

p
=TÞ

X
jMj2;

ð29Þ

where
ffiffiffî
s

p
denotes the center-of-mass energy, and KnðxÞ is

the modified Bessel function of the second kind. Here, we

FIG. 5 (color online). Proton lifetimes as functions of
MX=MGUT. Blue solid and red solid lines represent model I
and model II, respectively. Blue dashed and red dashed lines
represent the cases for Gint ¼ SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR and
Gint ¼ SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ D when the DM and
extra Higgs multiplets are not included. The shaded area shows
the region which is excluded by the current experimental bound,
τðp → eþπ0Þ > 1.4 × 1034 years [40,41].

17For recent analyses on proton decay in SUSY GUTs, see
Ref. [39].
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have used the approximation mf ≪
ffiffiffî
s

p
, with mf being the

masses of the SM particles, since the particle production
predominantly occurs at high temperature, and we have
neglected the angular dependence of M for simplicity. In
addition, we have assumed the initial particles follow a
Maxwell-Boltzmann distribution and ignored statistical
mechanical factors which may result from the Fermi-
Dirac or Bose-Einstein distribution.

P jMj2 indicates
the sum of the squared amplitude over all possible incom-
ing SM particles, as well as the spin of the final state.
Next, we evaluate the amplitudeM in each model. First,

we consider the case of model II. In this case, the dominant
contribution comes from the tree-level Higgs-boson anni-
hilation process displayed in Fig. 6. Here, ψ0, h, and ϕ0

denote the DM, the SM Higgs boson, and the singlet
component of the ð15; 1; 1ÞR, respectively, and the VEV
hϕi is given in Eq. (21). From the dimensional analysis, we
estimate the contribution as

X
jMj2 ≃ c

ŝ − 4M2
DM

M2
int

; ð30Þ

where c is a numerical factor which includes the unknown
couplings appearing in the diagram. By substituting
Eqs. (29) and (30) into Eq. (28), we have

dYDM

dx
≃ c

1024π7

�
45

πg�

�3
2 MPlMDM

M2
int

×
1

x2

Z
∞

2x
tðt2 − 4x2Þ32K1ðtÞdt: ð31Þ

When MDM ≪ TRH with TRH being the reheating temper-
ature, the above equation is easily integrated to give

Yð0Þ
DM ≃ c

64π7

�
45

πg�

�3
2 MPlTRH

M2
int

; ð32Þ

where the superscript “(0)” implies the present-day value.

On the other hand, the current value of Yð0Þ
DM is given by

Yð0Þ
DM ¼ ΩDMρ

ð0Þ
crit

MDMsð0Þ
; ð33Þ

where ΩDM is the DM density parameter and ρð0Þcrit is
the critical density of the Universe. In the following

calculation, we use ΩDMh2 ¼ 0.12, ρð0Þcrit ¼ 1.05×
10−5h2 GeV · cm−3, and sð0Þ ¼ 2.89 × 103 cm−3, with h
the Hubble parameter. As a result, we obtain

TRH≃2.7×104 GeV×

�
ΩDMh2

0.12

��
g
3
2�c−1
104

��
MDM

100GeV

�−1
;

ð34Þ

where we have set the value of Mint ¼ 1013.66 GeV from
the result in Table VI. This approximate formula is valid

when MDM ≪ TRH. Here, g
3
2�c−1 is an unknown factor and

thus causes an uncertainty in the computation. For instance,
if g� ¼ Oð100Þ and the quartic coupling of h and ϕ is ∼0.3,
then g

3
2�c−1 ¼ Oð104Þ. Note that the perturbativity of the

quartic coupling ensures that this factor cannot become too
small. On the other hand, it also has an upper bound; if c is
extremely small, then the one-loop gauge-boson exchange
contribution dominates over the tree level. Taking this

consideration into account, we vary the value of g
3
2�c−1 by a

factor of 10 to estimate the uncertainty in the analysis
given below.
Next, we evaluate the relic abundance of the DM in

model I. In this case, there is no tree-level process for the
DM production, since the DM does not couple to the singlet
component ϕ0 in the ð1; 1; 3ÞR. Therefore, the DM is
produced at the loop level. In Fig. 7, we show examples

FIG. 6. Diagram responsible for the DM production in model II.

TABLE VI. NETDM models. Mint and MGUT are given in GeV. All of the values are evaluated with the two-loop
RGEs.

Model I Model II

Gint SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ D
RDM ð1; 1; 3ÞD in 45D ð15; 1; 1ÞW in 45W
R1 210R 54R
R2 ð10; 1; 3ÞC ⊕ ð1; 1; 3ÞR ð10; 1; 3ÞC ⊕ ð10; 3; 1ÞC ⊕ ð15; 1; 1ÞR
log10ðMintÞ 8.08(1) 13.664(5)
log10ðMGUTÞ 15.645(7) 15.87(2)
gGUT 0.53055(3) 0.5675(2)
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of one-loop diagrams which give the dominant contribution
to the DM production. The amplitude is then estimated as

X
jMj2 ≃ c0

ð16π2Þ2
ŝ − 4M2

DM

M2
int

; ð35Þ

where we have included the one-loop factor. After a similar
computation, we obtain

Yð0Þ
DM ≃ c0

64π7ð16π2Þ2
�
45

πg�

�3
2 MPlTRH

M2
int

ð36Þ

and

TRH ≃ 4.6 GeV ×

�
ΩDMh2

0.12

��
g
3
2�c0−1
105

��
MDM

GeV

�−1
ð37Þ

on the assumption of MDM ≪ TRH. Here, we have set
Mint ¼ 108.08 GeV.
In Fig. 8, we plot the predicted reheating temperature as a

function of the DM mass after numerically integrating
Eq. (31). The left and right panels show the cases of models
I and II, respectively. The pink band shows the uncertainty

of the calculation, which we estimate by varying the
unknown factor by a factor of 10. It turns out that when
MDM ≪ TRH, in the case of model I, only a small DMmass
is allowed and the reheating temperature must be quite low.
In model II, on the other hand, DM with a mass of around
the electroweak scale accounts for the observed DM
density with an acceptably high reheating temperature.
For a larger MDM, in both models, the DM relic abundance
can only be explained in the narrow strip region where
MDM ≃ TRH.

VI. LONELY SINGLET FERMION
DARK MATTER

In the above discussion, we have assumed that there
exists a DM multiplet (as well as extra Higgs multiplets)
above the intermediate scale, and studied how the presence
of the additional fields affect the gauge coupling running in
such models. As seen in Sec. III B, these fields can indeed
improve the solutions for both the intermediate and GUT
scales, which allow the models to evade the limit from the
proton decay experiment and to explain light neutrino
masses via the seesaw mechanism. Before concluding our
discussion, we briefly consider another possibility in this
section; that is, we have only a singlet DM fermion on top
of the standard SO(10) setup discussed in Sec. III A. In this
case, the DM, of course, cannot affect the gauge coupling
running, and thus it does not solve the problems regarding
the low intermediate/GUT scales in the ordinary SO(10)
GUT models. Since there may be another solution
to these problems, it is worthwhile studying this possibility
as well.
In fact, we can easily construct such a model by

exploiting an appropriate Higgs field at the GUT scale
and fine-tuning its VEV so that only the singlet fermion

FIG. 8 (color online). Reheating temperature as a function of DM mass. Pink band shows the theoretical uncertainty (a) Model I and
(b) Model II.

FIG. 7. Examples of diagrams responsible for the DM pro-
duction in model I.
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DM has a mass much lighter than the GUT scale. For
example, let us consider the case of SUð4ÞC ⊗ SUð2ÞL ⊗
SUð2ÞR ⊗ D. In this case, the singlet field under the
intermediate gauge interactions, ð1; 1; 1Þ, is contained in
a 54 or 210 of SO(10). Since only the 210 can have a
Yukawa coupling to the R1 ¼ 54R Higgs field, we focus on
the case where the singlet DM fermion is a component of
the 210 field. In this case, both Majorana and Dirac
fermions can couple to the R1 Higgs. Then, by fine-tuning
the Yukawa coupling, we can make only the singlet
component have a light mass, as is done in Sec. IV.
Similarly, we can obtain other models with different
intermediate gauge groups by using appropriate multiplets
for the fields which contain the singlet DM.
The NETDM mechanism again works for this singlet

DM through the R1 Higgs exchange process at tree level,
with a diagram similar to that illustrated in Fig. 6.
Following the discussion given in Sec. V C, we can readily
evaluate the reheating temperature required to produce the
right amount of DM. When MDM ≪ TRH, we have

TRH ≃ 1.3 × 109 GeV ×

�
ΩDMh2

0.12

��
g
3
2�c−1
104

�

×

�
MDM

100 GeV

�−1� MGUT

1016 GeV

�
2

: ð38Þ

Compared with models I and II, the present scenario in
general predicts a high reheating temperature, as the
production occurs via the GUT-scale particle exchange.
Such a high reheating temperature may be consistent with
thermal leptogenesis [43].
As for proton decay and neutrino masses, the conse-

quence of the singlet DMmodels is the same as that without
DM. Thus, for Gint ¼ SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ D
and SUð4ÞC ⊗ SUð2ÞL ⊗ Uð1ÞR, the proton decay con-
straints are still problematic, and thus it may be required
that we assume a relatively heavy GUT-scale gauge boson
when compared to the GUT scale. Other intermediate
groups are not suitable for the explanation of neutrino
masses. The solution discussed in Sec. VA can again be
exploited in these cases.

VII. CONCLUSION AND DISCUSSION

For over 40 years now, we have wondered whether grand
unification is actually realized in nature. Its simplicity, its
capacity for an explanation of charge quantization and the
apparent focusing of the gauge couplings as they run to
high energy has kept grand unification (supersymmetric or
not) at the center of most ultraviolet completions of the SM,
though experimental verification is still lacking.
On the other hand, we know from the existence of

neutrino masses, the baryon asymmetry of the Universe,
and the existence of DM that there must be new physics
beyond the SM. The presence of a natural DM candidate in

SUSY extensions of the SM (with conserved R-parity) is
often taken to be one of the motivations for low-energy
SUSY. The ingredients for the baryon asymmetry are
contained in most grand unified theories (supersymmetric
or not) including SU(5) and SO(10), and while a neutrino
seesaw can be accomplished in SU(5) [by including the
right-handed neutrino as a SU(5) singlet], it is more natural
in SO(10).
We have, here, examined several breaking schemes of

SO(10) which lead to gauge coupling unification (by
altering the SM running of the gauge couplings at an
intermediate scale), and contain a remnant ZN symmetry
which can account for the stability of DM. Having
established the possible intermediate-scale gauge groups
capable of both gauge coupling unification and of support-
ing a stable DM candidate, we considered specific possible
representations (of dimension no larger than 210 for
simplicity) which contain a suitable nondegenerate SM
singlet DM candidate. If the DM candidate couples to the
SM only through intermediate scale fields, it may never
equilibrate in the early Universe after reheating, and its
production from the thermal bath is an example of the
NETDM scenario. Despite the fact that there are several
possible intermediate-scale gauge groups to consider and
many possible representations for the DM candidate and
intermediate-scale Higgs fields needed to break the degen-
eracy in the DM multiplet, we found only two surviving
models: one each based on SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR
and SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ D, with DM con-
tained in a ð1; 1; 3ÞD ∈ 45D and ð15; 1; 1ÞW ∈ 45W ,
respectively.
Both of the surviving models are capable of producing

light neutrino masses (though it is more difficult in model I
due to its relatively low intermediate scale). We also
showed that while the proton decay lifetime (to eþπ0) is
at least a factor of 2 longer than the current experimental
bound for MX=MGUT > 1=2 in model I, the current bound
excludes masses MX=MGUT ≲ 0.7, and higher masses may
be probed in future proton decay experiments. Finally,
within the NETDM production scenario, we have related
our two models to a specific reheat temperature after
inflation needed to obtain the current relic density.
While model II predicts a reheat temperature which easily
allows for (nonthermal) leptogenesis [43,44], the reheat
temperature in model I is rather low and presents a
challenge for baryogenesis.
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APPENDIX A: INPUT PARAMETERS

The values for the input parameters we have used in this
paper are summarized in Table VII. They are taken from
Ref. [45] except for the top-quark pole mass and the Higgs
mass, for which we use the values given in Refs. [46] and
[47], respectively. In this table, the gauge coupling con-
stants are defined in the MS scheme, and thus we convert
them to the DR scheme at the electroweak scale using the
one-loop relation [48]:

gaðmZÞDR ¼ gaðmZÞMS

�
1þ CðGaÞαaðmZÞMS

24π

�
; ðA1Þ

where CðGaÞ is the quadratic Casimir invariant. For the
mass of the top quark, we convert the pole mass to its MS
mass by using [45]

mMS
t ðmMS

t Þ ¼ mt

�
1 − 4αsðmMS

t Þ
3π

�
; ðA2Þ

from which we obtain the MS top Yukawa coupling. The
DR Yukawa coupling is then given by

yDRt ¼ yMS
t

�
1þ α1

480π
þ 3α2
32π

− α3
3π

�
: ðA3Þ

APPENDIX B: RENORMALIZATION GROUP
EQUATIONS

In this section, we summarize the RGEs and the
matching conditions used in text. The two-loop RGEs
[49] of the gauge coupling constants ga are written as

μ
dga
dμ

¼ bð1Þa

16π2
g3a þ

g3a
ð16π2Þ2

�X3
b¼1

bð2Þab g
2
b − cay2t

�
: ðB1Þ

Below, we will give the coefficients in each theory
discussed in this paper. For the contribution of Yukawa
couplings, we include them only in the SM running, as
unknown Yukawa couplings appear above the intermediate
scale. Their effects should be taken into account as
theoretical uncertainties. All of the one-loop RGEs have
been checked with the code PyR@TE [50], and more
importantly, the two-loop RGEs have been computed with
this code.

1. Standard Model

In the SM, we have

bð1Þa ¼

0
B@

41=10

−19=6
−7

1
CA;

bð2Þab ¼

0
B@

199=50 27=10 44=5

9=10 35=6 12

11=10 9=2 −26

1
CA;

ca ¼

0
B@

17=10

3=2

2

1
CA: ðB2Þ

Here, a ¼ 1, 2, 3 correspond to U(1), SUð2ÞL, and SUð3ÞC,
respectively, with the U(1) gauge coupling constant nor-
malized as g1 ≡

ffiffiffiffiffiffiffiffi
5=3

p
g0. Since the top Yukawa coupling

contributes to the running of the gauge couplings at the
two-loop level, it is sufficient to consider the one-loop RGE
for the top Yukawa coupling. Furthermore, we can safely
neglect the contribution of the other Yukawa couplings.
Thus, the relevant RGE is

μ
d
dμ

yt ¼
1

16π2
yt

�
9

2
y2t − 17

20
g21 − 9

4
g22 − 8g23

�
: ðB3Þ

2. SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR
As discussed in Sec. III A, above the intermediate

mass scale, the theory contains the SM fermions, the
gauge bosons, the ð10; 1; 3ÞC field, and the ð1; 2; 2̄ÞC
Higgs field. The beta-function coefficients in this case
are given by

TABLE VII. Input parameters [45–47].

Strong coupling
constant αsðmZÞ 0.1185(6)
QED coupling
constant

αðmZÞ 1=127.944ð14Þ

Fermi coupling
constant

GF 1.1663787ð6Þ×10−5GeV−2

Weak mixing angle sin2 θWðmZÞ 0.23126(5)
Z-boson mass mZ 91.1876(21) GeV
Top pole mass mt 173.34(82) GeV
Higgs mass mh 125.15(24) GeV
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bð1Þa ¼

0
B@

−3
11=3

−23=3

1
CA;

bð2Þab ¼

0
B@

8 3 45=2

3 584=3 765=2

9=2 153=2 643=6

1
CA; ðB4Þ

where a ¼ 2L; 2R; 4 correspond to SUð2ÞL, SUð2ÞR, and
SUð4ÞC, respectively. The matching conditions at the
intermediate mass scale are

1

g21ðMintÞ
¼ 3

5

1

g22RðMintÞ
þ 2

5

1

g24ðMintÞ
;

g2ðMintÞ ¼ g2LðMintÞ;
g3ðMintÞ ¼ g4ðMintÞ: ðB5Þ

3. SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ D

In this case, the ð10; 3; 1ÞC field is added to the previous
theory. The beta-function coefficients then become

bð1Þa ¼

0
B@

11=3

11=3

−14=3

1
CA;

bð2Þab ¼

0
B@

584=3 3 765=2

3 584=3 765=2

153=2 153=2 1759=6

1
CA; ðB6Þ

where a ¼ 2L; 2R; 4 correspond to SUð2ÞL, SUð2ÞR, and
SUð4ÞC, respectively.

4. SUð4ÞC ⊗ SUð2ÞL ⊗ Uð1ÞR
This theory contains the SM fermions, the gauge bosons,

the ð10; 1; 1ÞC field, and the ð1; 2; 1
2
Þ Higgs field. The beta-

function coefficients in this case are given by

bð1Þa ¼

0
B@

−19=6
15=2

−29=3

1
CA;

bð2Þab ¼

0
B@

35=6 1=2 45=2

3=2 87=2 405=2

9=2 27=2 −101=6

1
CA; ðB7Þ

where a ¼ 2L; 1R; 4 correspond to SUð2ÞL, Uð1ÞR, and
SUð4ÞC, respectively. The matching conditions at the
intermediate mass scale are

1

g21ðMintÞ
¼ 3

5

1

g21RðMintÞ
þ 2

5

1

g24ðMintÞ
;

g2ðMintÞ ¼ g2LðMintÞ;
g3ðMintÞ ¼ g4ðMintÞ: ðB8Þ

5. SUð3ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L
This theory contains the SM fermions, the gauge bosons,

the ð1; 1; 3;−2ÞC field, and the ð1; 2; 2; 0Þ Higgs field. The
beta-function coefficients in this case are given by

bð1Þa ¼

0
BBB@

−3
−7=3
11=2

−7

1
CCCA;

bð2Þab ¼

0
BBB@

8 3 3=2 12

3 80=3 27=2 12

9=2 81=2 61=2 4

9=2 9=2 1=2 −26

1
CCCA; ðB9Þ

where a ¼ 2L; 2R;BL; 3 correspond to SUð2ÞL, SUð2ÞR,
Uð1ÞB−L and SUð3ÞC, respectively. The Uð1ÞB−L charge is
normalized such that it satisfies the normalization condition
of the SO(10) generators: TB−L ¼ ffiffiffiffiffiffiffiffi

3=8
p ðB − LÞ. The

matching conditions at the intermediate mass scale are

1

g21ðMintÞ
¼ 3

5

1

g22RðMintÞ
þ 2

5

1

g2BLðMintÞ
;

g2ðMintÞ ¼ g2LðMintÞ;
g3ðMintÞ ¼ g3ðMintÞ: ðB10Þ

6. SUð3ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L ⊗ D

For this left-right-symmetric theory, the ð1; 3; 1; 2ÞC field
is added to the previous case. The beta-function coefficients
are then modified to

bð1Þa ¼

0
BBB@

−7=3
−7=3
7

−7

1
CCCA;

bð2Þab ¼

0
BBB@

80=3 3 27=2 12

3 80=3 27=2 12

81=2 81=2 115=2 4

9=2 9=2 1=2 −26

1
CCCA; ðB11Þ

where a ¼ 2L; 2R;BL; 3 correspond to SUð2ÞL, SUð2ÞR,
Uð1ÞB−L and SUð3ÞC, respectively.
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7. SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞR ⊗ Uð1ÞB−L
This theory contains the SM fermions, the gauge

bosons, the ð1; 1; 1;−2ÞC field, and the ð1; 2; 1=2; 0Þ
Higgs field. The beta-function coefficients in this case
are given by

bð1Þa ¼

0
BBB@

−19=6
9=2

9=2

−7

1
CCCA;

bð2Þab ¼

0
BBB@

35=6 1=2 3=2 12

3=2 15=2 15=2 12

9=2 15=2 25=2 4

9=2 3=2 1=2 −26

1
CCCA; ðB12Þ

where a ¼ 2L; 1R;BL; 3 correspond to SUð2ÞL, Uð1ÞR,
Uð1ÞB−L, and SUð3ÞC, respectively. The matching con-
ditions at the intermediate mass scale are

1

g21ðMintÞ
¼ 3

5

1

g21RðMintÞ
þ 2

5

1

g2BLðMintÞ
;

g2ðMintÞ ¼ g2LðMintÞ;
g3ðMintÞ ¼ g3ðMintÞ: ðB13Þ

8. Model I

For DM model I, a ð1; 1; 3ÞD Dirac fermion and a
ð1; 1; 3ÞR real scalar field are added to the theory described
in Appendix B 2. The beta-function coefficients are then
computed as

bð1Þa ¼

0
B@

−3
20=3

−23=3

1
CA;

bð2Þab ¼

0
B@

8 3 45=2

3 740=3 765=2

9=2 153=2 643=6

1
CA; ðB14Þ

where a ¼ 2L; 2R; 4 correspond to SUð2ÞL, SUð2ÞR, and
SUð4ÞC, respectively.

9. Model II

For DM model II, a ð15; 1; 1ÞW Weyl fermion and a
ð15; 1; 1ÞR real scalar field are added to the theory
described in Appendix B 3. The beta-function coefficients
are then computed as

bð1Þa ¼

0
B@

11=3

11=3

−4=3

1
CA;

bð2Þab ¼

0
B@

584=3 3 765=2

3 584=3 765=2

153=2 153=2 2495=6

1
CA; ðB15Þ

where a ¼ 2L; 2R; 4 correspond to SUð2ÞL, SUð2ÞR, and
SUð4ÞC, respectively.

APPENDIX C: ONE-LOOP FORMULAS FOR
GAUGE COUPLING UNIFICATION

At the one-loop level, the gauge coupling RGEs are
easily solved analytically. By using the solutions, we can
obtain analytic expressions for Mint, MGUT, and αGUT as
follows:

Mint ¼ mZ exp

�
2πð~b × nÞ · α−1

ð~b × nÞ · b

�
; ðC1Þ

MGUT ¼ mZ exp

�
2πðΔb × nÞ · α−1

ð~b × nÞ · b

�
; ðC2Þ

α−1GUT ¼ ð~b × α−1Þ · b
ð~b × nÞ · b ; ðC3Þ

with

α−1 ≡
0
B@

α−11 ðmZÞ
α−12 ðmZÞ
α−13 ðmZÞ

1
CA; b≡

0
B@

b1
b2
b3

1
CA;

~b≡
0
B@

~b1
~b2
~b3

1
CA; n≡

0
B@

1

1

1

1
CA; ðC4Þ

where Δb≡ ~b − b, and ba and ~ba denote the beta-function
coefficients below and above the intermediate scale,
respectively. The U(1) beta function above the intermediate
scale is given by a linear combination of the beta functions
of the intermediate gauge group. For instance, in the case of
SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR, we have

~b1 ¼
2

5
b4 þ

3

5
b2R: ðC5Þ

Similar expressions are obtained for other intermediate
groups. Notice that the components of the beta-function
coefficients which are proportional to n do not affect
MGUT and Mint, as one can see from the formulas.
Therefore, if one adds a multiplet to, e.g., the
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SUð4ÞC⊗SUð2ÞL⊗SUð2ÞR theory whose contribution to
the beta-function coefficients isΔb4¼Δb2L¼Δb2R, then the
multiplet does not alterMGUT andMint at the one-loop level.
We also note that physics above the intermediate scale

gives negligible effects on the determination of Mint in the
presence of the left-right symmetry. We can see this feature
by using Eq. (C1). Let us consider the case of
SUð4ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ D. In the left-right-
symmetric theories, the beta functions of the SUð2ÞL
and SUð2ÞR gauge couplings should be the same.
Therefore, we have b2L ¼ b2R, and

~b × n ¼ ðb2L − b4Þc; ðC6Þ

with

c ¼

0
B@

1

− 3
5

− 2
5

1
CA: ðC7Þ

Therefore, Eq. (C1) reads

Mint ¼ mZ exp

�
2πc · α−1

c · b

�
; ðC8Þ

and thus, the intermediate scale does not depend on the beta
function aboveMint. One can also see this feature by noting
that above the intermediate scale g2L ¼ g2R holds at any
scale. Hence, the intermediate scale corresponds to a point
at which g2L becomes equivalent to g2R, which is deter-
mined only by the running below Mint. A similar argument
holds in the case of SUð3ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗
Uð1ÞB−L ⊗ D.

APPENDIX D: PROTON DECAY IN
SOð10Þ → SUð4Þ ⊗ SUð2Þ ⊗ SUð2Þ

Here, we give details of the calculation for the proton
decay lifetime in the intermediate-scale scenario. We
consider the case of SOð10Þ → SUð4Þ ⊗ SUð2Þ ⊗
SUð2Þ, which was discussed in Sec. V B.
In non-SUSY GUTs, proton decay is induced by gauge

interactions. The relevant interactions are written as

Lint ¼
gGUTffiffiffi

2
p ½ðQ̄ÞarXairPRðLCÞi þ ðQ̄ÞaiXairPLðLCÞr

þ ϵijϵrsϵabcðQCÞarXbisPLQcj þ H:c:�; ðD1Þ

where

Q ¼
�
u

d

�
; L ¼

�
ν

e−

�
; ðD2Þ

and X denotes the superheavy gauge bosons which induce
the baryon-number-violating interactions; gGUT is the

unified gauge coupling constant; a; b; c, i; j, and r; s are
the SUð3ÞC, SUð2ÞL, and SUð2ÞR indices, respectively,
and; PR=L ≡ ð1� γ5Þ=2 are the chirality projection
operators.
After integrating out the SO(10) gauge fields X, we

obtain the dimension-six proton decay operator. The
operator is expressed in a form that respects the inter-
mediate gauge symmetry, SUð4Þ ⊗ SUð2Þ ⊗ SUð2Þ:

Leff ¼ CðMGUTÞ · ϵijϵrsϵαβγδðΨCÞαiPLΨβjðΨCÞγrPRΨδs;

ðD3Þ

where α; β;… denote the SU(4) indices, and Ψ is given in
Eq. (13). Notice that

ϵijϵklϵαβγδðΨCÞαiPLΨβjðΨCÞγkPLΨδl

¼ ϵrsϵtuϵαβγδðΨCÞαrPRΨβsðΨCÞγtPRΨδu ¼ 0; ðD4Þ

and thus the operator in Eq. (D3) is the unique choice. At
tree level, the coefficient of the effective operator is
evaluated as

CðMGUTÞ ¼
g2GUT
2M2

X
; ðD5Þ

with MX the mass of the heavy gauge field X. Here, we
have neglected fermion flavor mixings [51] for simplicity.
The Wilson coefficient is evolved down to the inter-

mediate scale using the RGE. The renormalization factor is
computed to be [52]

CðMintÞ ¼
�
α4ðMintÞ
αGUT

�− 15
4b4

�
α2LðMintÞ
αGUT

�− 9
4b2L

×

�
α2RðMintÞ
αGUT

�− 9
4b2RCðMGUTÞ: ðD6Þ

At the intermediate scale, the SUð4Þ ⊗ SUð2Þ ⊗ SUð2Þ
theory is matched onto the SM. The effective Lagrangian is
written as

Leff ¼
X4
I¼1

CIOI; ðD7Þ

with the effective operators given by [53–55]

O1 ¼ ϵabcϵijðuaRdbRÞðQci
L L

j
LÞ;

O2 ¼ ϵabcϵijðQai
L Q

bj
L ÞðucReRÞ;

O3 ¼ ϵabcϵijϵklðQai
L Q

bk
L ÞðQcl

LL
j
LÞ;

O4 ¼ ϵabcðuaRdbRÞðucReRÞ: ðD8Þ

We evaluate the coefficients CI as
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C1ðMintÞ ¼ 4CðMintÞ;
C2ðMintÞ ¼ −4CðMintÞ;
C3ðMintÞ ¼ C4ðMintÞ ¼ 0: ðD9Þ

We then run down the coefficients to the electroweak
scale. The renormalization factors are given by [55]

C1ðmZÞ ¼
�
α3ðmZÞ
α3ðMintÞ

�− 2
b3

�
α2ðmZÞ
α2ðMintÞ

�− 9
4b2

×

�
α1ðmZÞ
α1ðMintÞ

�− 11
20b1C1ðMintÞ; ðD10Þ

C2ðmZÞ ¼
�
α3ðmZÞ
α3ðMintÞ

�− 2
b3

�
α2ðmZÞ
α2ðMintÞ

�− 9
4b2

×

�
α1ðmZÞ
α1ðMintÞ

�− 23
20b1C2ðMintÞ: ðD11Þ

Note that the beta-function coefficients should be appro-
priately modified when the number of quark flavors
changes. Below the electroweak scale, the QCD corrections
are the dominant contribution. By using the two-loop RGE
given in Ref. [56], we compute the Wilson coefficients at
the hadronic scale μhad as

CiðμhadÞ ¼
�
αsðμhadÞ
αsðmbÞ

� 6
25

�
αsðmbÞ
αsðmZÞ

� 6
23

�
αsðμhadÞ þ 50π

77

αsðmbÞ þ 50π
77

�−173
825

×
�
αsðmbÞ þ 23π

29

αsðmZÞ þ 23π
29

�− 430
2001

CiðmZÞ; ðD12Þ

with i ¼ 1; 2.
In non-SUSY GUTs, the dominant decay mode of proton

is p → π0eþ. The partial decay width of the mode is
computed as

Γðp → π0eþÞ ¼ mp

32π

�
1 − m2

π

m2
p

�
2

½jALj2 þ jARj2�; ðD13Þ

where mp and mπ are the masses of the proton and the
neutral pion, respectively, and

AL ¼ C1ðμhadÞhπ0jðudÞRuLjpi;
AR ¼ 2C2ðμhadÞhπ0jðudÞLuRjpi: ðD14Þ

The hadron matrix elements are evaluated with the lattice
QCD simulations in Ref. [57]. We have

hπ0jðudÞRuLjpi ¼ hπ0jðudÞLuRjpi
¼ −0.103ð23Þð34Þ GeV2; ðD15Þ

with μhad ¼ 2 GeV. Here, the first and second parentheses
indicate statistical and systematic errors, respectively.
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