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We show that a new strongly interacting sector can produce large enhancements of the tt̄ asymmetries at
the Tevatron. The Standard Model is extended by a new vectorlike flavor triplet of fermions and one heavy
scalar, all charged under a hypercolor gauge group SUð3ÞHC. This simple extension results in a number of
new resonances. The predictions of our model are rather rigid once a small number of UV parameters is
fixed, since all the strong dynamics can be directly taken over from our understanding of QCD dynamics.
Despite the rather low hypercolor confinement scale of ∼100 GeV, the new strongly interacting sector is
stealth. It is shielded from present direct and indirect New Physics searches since the light resonances are
QCD singlets, whereas the production of the heavier QCD colored resonances leads predominantly to high-
multiplicity final states. Improved searches can potentially be devised using top tagged final states or
decays into a small number of hypercolor pions.
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I. INTRODUCTION

Strongly interacting theories with a low confinement
scale, e.g., fπ ≲ 100 GeV, are a particularly interesting
possibility for new physics in the LHC era, due to the large
number of resonances that could be experimentally acces-
sible. In view of the recent discovery of the Higgs-like
particle, an interesting framework in which a low confine-
ment scale is motivated by electroweak symmetry breaking
is “bosonic technicolor,” where the vacuum expectation
value of a fundamental Higgs is induced from technicolor
(TC) dynamics [1–9], and supersymmetry is introduced to
protect the Higgs mass [2,3,6,8,9].
More generally, several classes of strongly interacting

theories with a low confinement scale and distinct phe-
nomenologies have been proposed, which are not directly
linked to electroweak symmetry breaking. In “hidden
valley” models [10,11], the new strongly interacting
fermions which undergo confinement are neutral with
respect to the Standard Model (SM) interactions, thus
effectively hiding their bound states at colliders. In “quirk”
models, the confining fermions or quirks are taken to have
color or electroweak charges and have masses that are
much heavier than the new strong interaction scale [12–18].
They therefore form long stable strings at colliders with
exotic signatures that depend on the quirk mass. Finally, in

Refs. [19–22] collider signatures of “vectorlike confine-
ment”models were studied, in which the confining “hyper-
color quark”masses are small compared to the confinement
scale, as in QCD. Variants containing weak scale colored
mesons already tend to be ruled out by LHC and
Tevatron data.
In this paper we show that potentially enhanced top-

quark forward-backward asymmetries (Att̄
FB) at the Tevatron

could be a manifestation of a new strong interaction with a
low confinement scale that is not directly related to
electroweak symmetry breaking. Among the many pro-
posals leading to large asymmetries [23], only a small
subset satisfies all flavor constraints without fine-tuning.
The t-channel models have new vector or scalar resonances
with masses of Oð200 GeVÞ, transforming nontrivially
under flavor symmetries [24–27].
There are two possibilities for flavorful vector fields in a

renormalizable theory: either they are fundamental gauge
bosons of a flavor symmetry, or they are composite. While
theories with light gauged flavor bosons are a logical
possibility, flavor constraints could be particularly chal-
lenging to satisfy, and they could require a complicated and
potentially fine-tuned Higgs sector; see e.g. Refs. [28,29].
We thus explore the second option, which implies a strong
interaction confinement scale of ∼100 GeV. Surprisingly,
this possibility is not excluded by existing collider
searches.
We build an explicit model with a confining hypercolor

(HC) gauge group, SUð3ÞHC. The hypercolored matter
consists of three “light” flavors of vectorlike fermion
“HC quarks” that are neutral with respect to the SM gauge
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interactions (they will be identified with the flavors
of the ordinary right-handed up quarks), with masses of
∼3–30 GeV lying well below the strong interaction scale,
like the u; d; s quarks in QCD. A hallmark of this model is
the existence, following confinement, of new SM singlet
resonances with masses between 60 and 300 GeV organ-
ized in flavor nonets of pseudoscalar, vector, axial-vector,
and higher mass resonances. They are the equivalent of the
QCD resonances but with HC scale confinement dynamics.
There is also a “heavy” flavor-singlet fundamental “HC
scalar,” S, with a mass of ∼500 GeV lying well above the
strong interaction scale. It is an electrically charged QCD
triplet which decays before it can hadronize.
Remarkably, while the new states are relatively light and

can lead to large changes in the Tevatron tt̄ asymmetries,
the current LHC and Tevatron searches are not yet sensitive
to their production. The reason is that in our model the light
HC resonances are color singlets and thus have relatively
small cross sections. The only QCD colored new states are
the heavier elementary HC scalars that carry both QCD and
HC charge. However, their detection is challenging, as their
production results in high-multiplicity events, for instance
pp → nπHC þ 2j with n large, and with the HC pions, πHC,
decaying to two jets.
In the limit of a large mass for the HC scalar S, our

model can effectively be thought of as a confining hidden
valley model [10,11]. In both cases the composite reso-
nances are not charged under the SM. However, in our case
the interaction with the SM is not through a Z0 as in
Refs. [10,11] but through Yukawa-like interactions involv-
ing a HC quark, the HC scalar S, and an ordinary right-
handed up quark. Unlike in the case of the hidden valley,
the HC pions decay to quark pairs, and we thus have no or
very little missing ET and/or leptons in the events. The
second difference between our model and hidden valley
models is that the couplings of the new states to the SM are
large. Thus, virtual exchanges of these states can lead to
observable consequences, such as significant changes to the
tt̄ asymmetry at the Tevatron.
The two most important New Physics (NP) contributions

to the tt̄ asymmetry are the exchanges of the HC vector
resonance K�

HC and the pseudoscalar resonance KHC, by
virtue of their flavor off-diagonal couplings to the u and t
quarks; see Fig. 1. Our model is thus a realization of the

effective t-channel models that have been discussed in the
literature, but with both vector and (pseudo)scalar
exchanges, rather than only one of these. The K� acts as
the Z0 in effective t-channel models [30] and the K as the
(pseudo)scalar state [31,32]. At the LHC, the associated
production of K�

HC and KHC in the tt̄j final state is also
important for reducing the charge asymmetry AC, as
stressed for Z0 models in Ref. [33] (for next-to-leading
order (NLO) see also Ref. [34]). To avoid other constraints,
e.g. bounds on top-jet resonance production at the LHC, the
branching ratio of the decay K�

HC → qt̄ should be of order
25%. This is achieved naturally in our model since the K�

HC
decays dominantly into pairs of pseudoscalar mesons, in
analogy with the decay K� → Kπ in QCD.
Note that, in order to have large tt̄ asymmetry, a

relatively large Yukawa coupling between the HC and
the SM fields is needed. For the considered values of the
Yukawa couplings, the two-loop renormalization-group
equations (RGEs) suggest the existence of a strongly
interacting UV fixed point. Under this assumption our
theory can thus be extended to arbitrarily high scales in
the UV.
The paper is organized as follows. In Sec. II we introduce

our simple extension of the Standard Model, in Sec. III we
discuss in detail the mass spectra and interactions of the
resulting resonances, while Sec. IV covers the LHC and
Tevatron phenomenology, including the tt̄ asymmetries.
Section V covers precision electroweak constraints and
perturbations of the Higgs properties. Future searches are
covered in Sec. VI, including a brief discussion of the
lightest HC baryon and dark matter direct detection experi-
ments. Our conclusions are collected in Sec. VII. Three
Appendixes contain further details on translating informa-
tion from QCD to the parameters of the effective HC
interaction Lagrangians.

II. SETUP

QCD provides the prototype for a confining theory with
a spectrum that contains flavorful vector mesons. Using
QCD as a guide, we introduce an asymptotically free
confining SUðNÞHC HC gauge group. The anomaly-free
matter content consists of the SM and three copies of
vectorlike hypercolor quarks QLi;QRi (i ¼ 1; 2; 3) and a
flavor-singlet hypercolor scalar S, transforming as

QLi ∼ ðN; 1; 1; aÞ;
QRi ∼ ðN; 1; 1; aÞ;
S ∼ ðN̄; 3; 1; bÞ; ð1Þ

with respect to the gauge symmetry SUðNÞHC ×
SUð3ÞC × SUð2ÞL × Uð1ÞY . The hypercharge assignments
satisfy aþ b ¼ 2=3. The choice a ¼ 0; b ¼ 2=3 is phe-
nomenologically favored, as we will see below, and will be
used in the main part of the paper.

FIG. 1. Feynman diagram generating a contribution to the tt̄
asymmetry via a t-channel exchange of K and K� resonances.
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The most general renormalizable NP Lagrangian is
given by

−LNP ¼ ðhijūRiQLjS þ H:c:Þ þmQijQ̄iQj

þ μ2STrðS†SÞ þ λ1TrðS†SÞ2
þ λ2TrðS†SS†SÞ þ λHH†HTrðS†SÞ; ð2Þ

plus the kinetic energy terms, whereH is the SM Higgs and
uRi the SM right-handed (RH) up quarks. The quartic
interactions are not relevant for this work. However, we do
require that the couplings λ1;2; λH do not lead to a non-
vanishing vacuum expectation value (vev) for S. The total
mass of the scalar S is m2

S ¼ μ2S þ λHv2=2, where v=
ffiffiffi
2

p
is

the SM Higgs vev. In the context of naturalness, we can
imagine that the scalar S is actually composite, or we can
invoke supersymmetry aboveOð1 TeVÞ to protect its mass.
In the absence of Yukawa interactions and HC quark

masses, the theory respects the global symmetry group
GF ¼ Uð3ÞUR

× Uð3ÞDR
× Uð3ÞQL

, like the SM. Under the
Uð3ÞUR

symmetry, both ðuR1; uR2; uR3Þ and ðQ1;Q2;Q3Þ
transform as flavor triplets. In the SM the main sources of
flavor breaking are the top and bottom Yukawa couplings
that break GF to its subgroup

HF ¼ Uð2ÞUR
× Uð2ÞDR

× Uð2ÞQL
× Uð1Þ3: ð3Þ

Here, we assume that the NP interactions also respect HF;
i.e. the new Yukawa couplings and mass terms are of the
form

h ¼ diagðh1; h1; h3Þ; mQ ¼ diagðmQ1; mQ1; mQ3Þ: ð4Þ

The breaking of HF in the SM is due to the light-quark
Yukawa couplings and the CKM mixing angles and is thus
small. We will assume that this breaking continues to be
small in our model. The approximate Uð2ÞUR

symmetry
protects against dangerous flavor violation. We assume that
its breaking is small, e.g. of minimally flavor violating type.
Thus, new contributions to D0–D̄0 mixing as well as single
and same-sign top production are negligible.1

We stress the following:
(i) The fact that the hypercolor matter only couples to

the RH up quarks is due to the choice of represen-
tations. For example, had we chosen a hypercharge
assignment such that aþ b ¼ −1=3 in Eq. (1), the
hypercolor quarks Qi would only couple to the RH
SM down quarks. Alternatively, they could couple to
the left-handed (LH) quarks if theQi’s were SUð2ÞL
doublets.

(ii) Our setup is potentially compatible with generation
of the quark mass and mixing hierarchies via

spontaneous breaking of a horizontal non-Abelian
symmetry in the UV, e.g. SU(3), SU(2), or discrete
non-Abelian groups.2 In such a scenario, the Uð2ÞUR

global symmetry of the hypercolor sector would be a
consequence of the underlying horizontal symmetry,
under which all of the quarks transform.

(iii) The flavor structure of the resonance mass spectrum,
to be discussed below, could provide a hint for
the existence of such a fundamental horizontal
symmetry in the UV (see also Ref. [35]).

III. HYPERCOLOR RESONANCES
AND INTERACTIONS

To make use of the available information on nonpertur-
bative QCD dynamics, we take the HC gauge group to be
SUð3ÞHC. The HC condensates, resonance masses, and
couplings are estimated via naive dimensional analysis
(NDA), vector-meson dominance (VMD), and/or scaling
from QCD. The Q and S masses are taken to satisfy
mQi

≪ Λχ and mS ≳ Λχ , where Λχ ∼ 4πfπ is the HC chiral
symmetry breaking scale (the motivation for this choice is
given below, in Sec. III C). We also introduce the scale
ΛHC ∼OðfewÞfπ , which is the equivalent of ΛQCD in QCD.
The phenomenology that we are interested in is dominated
by the lowest-lying HC resonances. We thus keep the
following resonances in the description:

(i) the flavor octet of pseudo-Goldstone pseudoscalar
resonances, πaHC,

(ii) the set of lowest-lying vector, ρaHC, and axial vector,
aa1;HC, flavor nonet resonances.

In principle one could include additional HC resonances,
e.g. the 1P1 axial-vector multiplet [in QCD it contains the
b1ð1235Þ and K1B]. For simplicity, however, we ignore
them in this work. Our notation is directly borrowed from
QCD: πHC is thus the equivalent of π in QCD, etc. To
shorten the notation, we will often drop the HC subscript.
For this reason in this paper the QCD states always carry a
QCD subscript or superscript.
To illustrate the effect on tt̄ production and other collider

and low-energy observables, we consider a benchmark in
the parameter space. The benchmark resonance masses and
decay widths are given in Table I. The underlying UV
parameters, as well as resonance couplings and decay
constants, are listed in Table II. The determination of the
resonance properties is described in detail below.

A. Pseudo-Nambu–Goldstone bosons

In the Uð3ÞUR
symmetric limit, the Qi form equal

condensates, hQ̄Qi ≠ 0, which break the HC sector
chiral symmetry to the diagonal subgroup,
SUð3ÞL × SUð3ÞR → SUð3ÞV . This gives rise to a flavor

1Alternatively, one could entertain the possibility of an Abelian
Uð1ÞH horizontal symmetry, with diagonal but fully nondegen-
erate h and mQ entries.

2Again, Abelian U(1) symmetries provide a possible
alternative.
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octet of pseudo-Nambu–Goldstone bosons (pNGBs) πaHC
(a ¼ 1;…; 8). In NDA, Λχ ∼ 4πfHCπ and

hQ̄Qi ∼ 4πðfHCπ Þ3; m2
πa ∼ 8πfHCπ mQ; ð5Þ

where fHCπ is the HC-pion decay constant,

hπajQ̄Taγμγ5Qj0i ¼ −ifHCπ pμ: ð6Þ

The flavor octet Gell-Mann matrices are normalized as
Tr½TaTb� ¼ δab=2. For hQ̄Qi we use the recent lattice
determination of the QCD condensate [36], which gives
29.8ðfQCDπ Þ3, instead of the NDA estimate 4πðfQCDπ Þ3 in
Eq. (5) (in our convention fQCDπ ≃ 92 MeV). Similarly, for
the pion mass, we take 2 × 29.8 instead of the factor 8π in
Eq. (5). Requiring the vector resonances to have masses in
the phenomenologically favored range of approximately
200 GeV fixes fHCπ ≃ 20 GeV, cf. Eq. (7) below. Thus,
for mQ ∼Oð10Þ GeV the masses of the pseudoscalars
are mHC

π ∼Oð100Þ GeV.
In our benchmark we takemQ3∼fπ andmQ1∼mQ3=10.

The flavor-symmetry breaking, mQ1
≠mQ3

, leads to mass
splitting between the π ∼ ½Q̄1;2Q1;2�, K∼ ½Q̄1;2Q3�, and
η ∼ ½Q̄1Q1 þ Q̄2Q2 − 2Q̄3Q3�, where the valence-quark
content is given in square brackets. Details of the evaluation
of their masses are given in Appendix A. The pseudoscalar
mass spectrum also contains a heavier η0HC flavor singlet.
The mass of the η0HC is mη0 ∼ Λχ , i.e. mη0 ∼Oð250Þ GeV.
The η0HC has flavor diagonal couplings to the SM quarks.
For the light quarks, these are suppressed by the light-quark
masses. The η0HC thus has a negligible impact on tt̄ and
dijet phenomenology, as well as on the vector decay widths
(due to its large mass). As such it can be omitted from our
discussion. For simplicity we also neglect “η − η0” mixing.

B. Vectors and axial vectors

As in QCD, the ½Q̄Q� bound states give rise to vector and
axial-vector resonances that are flavor nonets. We denote
the lowest-lying states by ρaHC and aa1HC (a ¼ 1;…; 9),
respectively. Here, ρ9HC and a91HC are the flavor-singlet
states. Sometimes we will also use the generic notation of V
and A for vector and axial-vector mesons.
We first discuss the properties of these resonances in the

flavor-symmetric limit. The masses and decay constants
can be estimated via the approximate scaling relations

fHCπ
fQCDπ

∼
fHCρða1Þ
fQCDρða1Þ

∼
mHC

ρða1Þ
mQCD

ρða1Þ
; ð7Þ

with fQCDπ ≃ 92 MeV. The ρaHC and aa1HC decay constants
are defined as

hρaHCjQ̄TaγμQj0i ¼ −ifHCρ mHC
ρ ϵμ; ð8Þ

haa1HCjQ̄Taγμγ5Qj0i ¼ −ifHCa1 m
HC
a1 ϵμ; ð9Þ

where the flavor-singlet matrix T9 ≡ I3×3=
ffiffiffi
6

p
. In QCD, the

ρ decay constant is fQCDρ ≃ 148 MeV [37]. The a1 decay
constant fQCDa1 is not well known. For example, a light-cone
sum-rule determination yields fQCDa1 ≃ 168 MeV [38].
Isgur et al. [39] made a phenomenological determination
from the τþ → ντπ

þπþπ− branching ratio. Rescaling their
result to the current branching ratio from the Particle Data
Group [40] would yield fa1 ≃ 152 MeV. (Note that the
quoted values of the ρ and a1 decay constants have been
reduced by a factor 1=

ffiffiffi
2

p
to conform to our normalization

for fπ.) As an example, taking the sum-rule value for fQCDa1 ,
the scaling relations would imply

fHCρ
mHC

ρ
∼ 0.19;

fHCa1
mHC

a1

∼ 0.13; ð10Þ

in accord with Weinberg’s sum rules that require
fHCa1 =m

HC
a1 < fHCρ =mHC

ρ . Eq. (7) also implies

mHC
a1

mHC
ρ

∼ 1.6: ð11Þ

Motivated by Att̄
FB, we consider mHC

ρ ∼ 200 GeV, corre-
sponding to fHCπ ∼ 20 GeV.
In the flavor-symmetric limit, the flavor octet ρa decays

primarily to pairs of HC pions, with the decay width

Γρ→ππ ¼
g2ρππ
32π

mρ

�
1 −

4m2
π

m2
ρ

�3
2

; ð12Þ

where gρππ is the ρππ coupling in

Lρππ ¼ −gρππfabcρaμπb∂μπc: ð13Þ

The VMD estimate

gρππ ≃mρ=fρ ð14Þ

agrees with the NDA estimate gρππ ∼Oð4πÞwithin a factor
of ∼2. In QCD the VMD prediction is only 16% smaller
than the measured value. Based on the above, we can
expect Γρ=mρ ∼Oð10%Þ.
Flavor-symmetry breaking due to mQ1 ≠ mQ3 splits the

ρ ∼ ½Q̄1;2Q1;2� and K� ∼ ½Q̄1;2Q3� masses, as well as the
corresponding a1 and K1 masses. In general, gVPP (¼ gρππ
in the flavor-symmetric limit) now also depends on the
vector and pseudoscalar flavors. Motivated by QCD, we
allow forOð10%Þ flavor breaking. The flavor breaking also
leads to “ω − ϕ” mixing as well as its axial-vector analog.
We denote the deviation from ideal vector-meson mixing
by the angle θidV , so that the relation between the mass
eigenstates VL;H and the ideally mixed states,
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jV12i ¼
1ffiffiffi
2

p ðjQ̄1Q1i þ jQ̄2Q2iÞ; jV3i ¼ jQ̄3Q3i;

ð15Þ

is given by

� jVLi
jVHi

�
¼

�
cos θidV sin θidV
− sin θidV cos θidV

�� jV12i
−jV3i

�
; ð16Þ

and similarly for the axial-vector mixing angle θidA , with
VL;H → AL;H and V12;3 → A12;3. Frequently, we will also
employ QCD inspired notation for the mass eigenstates, i.e.
VL ¼ ωHC, VH ¼ ϕHC, and AL ¼ fHC1 , AH ¼ f0HC1 . Since
we do not include the 1P1 resonances, there is no equivalent
of the K1A-K1B mixing in our simplified formalism. In
particular, we identify the KHC

1 in Table I with the
equivalent of the KQCD

1A in QCD.
Given mQ1

and mQ3
, we determine the vector and axial-

vector masses as well as the mixing angles θidV;A using the
simplified quark-model treatment of Ref. [41]. The HC
hadronic parameters of this model are obtained by fitting to
the QCD vector and axial-vector meson data and then
rescaling to the HC scale, Mχ , as explained in detail in
Appendix A. The HC scale is defined to be the ρ mass in
the chiral limit,

Mχ ≡ lim
mQi

→0
mρ: ð17Þ

In turn, the π, ρ, and a1 decay constants are taken to be

fπ ¼
Mχ

mQCD
ρ

fQCDπ ; ð18Þ

fρ ¼
Mχ

mQCD
ρ

fQCDρ ; ð19Þ

fa1 ¼
Mχ

mQCD
a1

fQCDa1 ; ð20Þ

where the QCD decay constants that we use are fQCDπ ¼
92 MeV, fQCDρ ¼ 148 MeV, and fQCDa1 ¼ 168 MeV.
The ρHC resonances decay primarily to HC pion pairs, as

in QCD, and subdominantly to light-quark pairs; cf.
Table III. The K�

HC resonances decay primarily to KHC þ
πHC pairs, as in QCD. Their subdominant decays to
tþ light-quark pairs have a branching ratio of ≈30%, as
explained in Sec. IV C. The fact that the K�

HC → tþ jet
decays are subleading is phenomenologically favored and
naturally achieved within our model, as already mentioned
in the Introduction. In our benchmark both the ωHC and
ϕHC are kinematically forbidden to decay to on-shell
K̄HCKHC pairs. Therefore, their dominant decays are to
SM quarks with very narrow decay widths; cf. Table I.
For the axial-vector meson decay widths, we use the

model of Ref. [42], where a global SU(3) flavor symmetry
is used for the matrix elements, but the phenomenologically
more important effect of flavor-symmetry breaking in the
phase space of the final states is kept. A hadronic
parameter, ~FQCD, obtained from the fit to the A → PV
decay widths in QCD [42] is rescaled to ~FHC in order to
obtain the corresponding HC decay widths. See
Appendix C and Eq. (C12) for details. The HC a1 state
decays predominantly to ρHCπHC pairs, yielding a large
decay width, Γa1 ≃ 0.2ma1 . The branching ratio into
light-quark pairs is small,Oðfew%Þ. The HC K1 resonance
decays predominantly to K�

HCπHC pairs, yielding
ΓK1

≃ 0.05mK1
. The K1 → u; cþ t branching ratio is

of Oð5%–10%Þ. In our benchmark the decays of the HC
f1ð¼ ALÞ and f10ð¼ AHÞ to KHCK�

HC pairs are

TABLE II. The UV parameters for the benchmark point (left
two columns), the resulting HC resonance couplings (middle two
columns), and the HC decay constants (last two columns).

Parameter Value Parameter Value Parameter Value

Mχ [GeV] 171 gρ 4.88 fπ 20.4 GeV
mQ1

[GeV] 3.1 gρππ 4.88 fρ 32.6 GeV
mQ3

[GeV] 30.5 ga1 6.73 fa1 37.1 GeV
mS [GeV] 520 gVo

12.5 fu0;c0 53.5 GeV
h1 2.0 gVs

5.10 ft0 52.4 GeV
h3 4.2 gA 1.26

TABLE I. The spectrum of the HC resonances for our bench-
mark.

HC resonance Mass Decay width

πHC 62 GeV 4.0 × 10−7mπ

KHC 143 GeV 5.5 × 10−7mK
ηHC 161 GeV 1.3 × 10−7mη

ρHC 177 GeV 0.059mρ

K�
HC 211 GeV 0.002mK�

VH½ϕHC� 242 GeV 8.0 × 10−7mVH

VL½ωHC� 180 GeV 0.001mVL

aHC1 273 GeV 0.23ma1
KHC

1 295 GeV 0.057mK1

fHC1 280 GeV 0.002mf1
f10HC 320 GeV 3.2 × 10−5mf1 0

TABLE III. Table of the dominant branching ratios of HC
vector resonances and their decays into SM quarks.

HC resonance Channel Br(%)

ρHC ππ 98.2
ūc; c̄u; ūuþ c̄c 1.8

K�
HC Kπ 68

ūt; t̄u; c̄t; t̄c 32
VH½ϕHC� ūuþ c̄c 100
VL½ωHC� ūuþ c̄c 100
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kinematically forbidden. Therefore, they are very narrow
with their dominant decays being to light-quark pairs.

C. Would-be composite quarks

In our benchmark an on-shell HC scalar S decays to
ujQ̄j pairs well before HC hadronization can occur. In
particular, the decay width of the heavy scalar S is

ΓS ¼
X
j

ΓS→ujQ̄j
; ð21Þ

where j runs over j ¼ 1; 2; 3. The S → ujQ̄j partial decay
widths are given by

ΓS→ujQ̄j
≃mS

jhjj2
16π

; ð22Þ

up to phase-space corrections which are at most of
Oð10%Þ. In our benchmark the Yukawa couplings are
large (hi ∼ 2–4), leading to ΓS ≃ 0.44 ×mS ≃ 230 GeV.
The S therefore decays on a time scale that is much shorter
than the HC hadronization time scale, which is governed by
ΛHC ∼OðfewÞfπ ∼Oð60 GeVÞ. Consequently, there are
no asymptotic bound states of two heavy HC scalars, SS�,
or of a HC scalar and a HC quark, SQi. (Had we taken the
fundamental scalar to be much lighter, SS� bound states
would form and clearly show up as resonances in the
differential tt̄ spectrum. We are thus led to a consider scalar
mass mS ≳ 0.5 TeV.)
However, the picture changes for production of the

elementary quarks uRi via their Yukawa couplings to the
composite operators SQi. The latter are also isosinglet
QCD color triplets with hypercharge 2=3. The SM right-
handed up quarks can then be viewed as an admixture of the
elementary uRi and bound-state SQi quark fields. Note that
in this case the scalar S has virtuality

ffiffiffi
s

p ≡ ðp2
SÞ1=2 lying

well below mS. The S decay width becomes s dependent,
being obtained via the substitution mS →

ffiffiffi
s

p
in Eq. (22),

including the implicit phase-space factor. Thus, its decay
width is suppressed to levels ≲ΛHC, and bound-state SQi
quark fields with virtuality much smaller than their would-
be physical mass can form and mix into on-shell uRi.
To estimate the mixing or partial compositeness of the

uRi, we assume that it is dominated by the lowest pole in the
TfSQiðxÞ;S�Q̄ið0Þg two-point function, or equivalently,
by the lowest pole in the SQi → SQi scattering S matrix.
In the calculation of the mixing, we will treat the lowest
pole as an asymptotic state. Formally, this corresponds to
taking the limit hi → 0 in Eq. (22), making S stable.
The Yukawa couplings induce mass mixing between the

would-be composite quarks and the elementary up quarks
(ui ¼ u; c; t),

ffiffiffi
2

p
hifu0i ūRiu

0
Li; ð23Þ

where the would-be composite quark decay constants fu0i
are defined as

hu0ijQ̄iS�j0i ¼
ffiffiffi
2

p
fu0i ū

0
i: ð24Þ

Here, the ū0i are the Dirac spinors.
Since mQ ≪ mS the would-be composite HC quarks

correspond to bound states of a heavy–light-quark system.
More precisely, in our benchmarks mS is ∼2ΛHC.
Comparing to QCD this corresponds to a heavy–light-
quark system with a heavy-quark mass lying somewhere
between the charm- and bottom-quark mass. To estimate
the fu0i decay constants, we therefore interpolate between
the known light–light and heavy–light vector-meson decay
constants in QCD and rescale to the case of HC—see
Appendix B, Eq. (B5) in particular, for details.
For the purpose of this discussion, we can take the

ordinary 3 × 3 up-quark mass matrix to be flavor diagonal,
neglecting the small misalignment between the weak and
up-quark mass bases in the SM. For each generation the
mixing between the SM and would-be HC quarks is then
described by 2 × 2 matrices,

Mi
RL ¼

�
mui

ffiffiffi
2

p
hifu0i

0 Mu0i

�
; i ¼ 1; 2; 3: ð25Þ

Here, mui is the ordinary SUð2ÞL breaking quark mass, and
Mu0i

≃mQi
þmui þ ΛHC is the mass term for the would-be

composite quark [see Eq. (A17)]. The mixing term follows
from Eq. (23).
Diagonalization of Eq. (25) yields the mass eigenstates

juRiiphys ¼ cos θRijuRii − sin θRiju0Rii; ð26Þ

ju0Riiphys ¼ sin θRijuRii þ cos θRiju0Rii; ð27Þ

and similarly for the LH mass eigenstates with the
replacement R → L. The ordinary u; c, and t quarks are
identified with uphys1 , uphys2 , and uphys3 , respectively. Taking
hifu0i significantly smaller than Mu0i

yields

sin θRi ∼
ffiffiffi
2

p
hi

fu0i
Mu0i

; sin θLi ∼
ffiffiffi
2

p
hi
fu0imui

M2
u0i

: ð28Þ

The RH mixings are substantially larger than the LH ones,
which are suppressed by the Mu0i

. Specifically, for our
benchmark we find

sin θR1 ¼ sin θR2 ¼ 0.22; sin θR3 ¼ 0.43; ð29Þ

sin θL1 ¼ sin θL2 ≈ 0; sin θL3 ¼ 0.10: ð30Þ

The couplings of the vector mesons to the would-be
composite quarks are given by
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L ¼ gρðū0Taγμu0Þρaμ þ ga1ðū0Taγμγ5u0Þa1aμ þ � � � : ð31Þ

Here, the u0 appear in the interaction basis of Eqs. (23)–(25),
and, for simplicity, we have taken flavor-symmetric cou-
plings. The ellipses denote higher-derivative operators. In
NDA, both gρ and ga1 areOð4πÞ, while the VMD estimates
are (see Appendix B)

gρ ≃mρ

fρ
; ga1 ≃

ma1

fa1
; ð32Þ

so that gρ ≃ gρππ . In the numerics below,wewill take them to
be equal.
Couplings of the vector mesons to the SM quarks are

induced then via the quark mixing in Eq. (26). In the quark-
mass basis, these couplings are given by

L ¼ λRijūRiγ
μTa

ijρ
a
μuRj þ ðR → LÞ þ � � � ; ð33Þ

where

λRij ¼ gρ sin θRi sin θRj; ð34Þ
and the ellipses denote terms involving the would-be
composite quarks.
The LH quark couplings λLi are obtained by substituting

R → L in Eqs. (33)–(34). The axial-vector meson cou-
plings to quarks follow by substituting γμ → γμγ5 and
gρ → ga1 . The K�ut coupling λR113 and the corresponding
K1ut coupling are phenomenologically important for NP
contributions to tt̄ production from t-channel HC resonance
exchanges. On the other hand, the s-channel contributions
from ϕ=ω as well as f1=f10 exchanges are suppressed by
the small θidV;A mixing angles. The above couplings also
govern the partial decay widths of the vector and axial-
vector resonances to quark pairs.
Similarly, the interactions of the HC pions with the SM

quarks follow from their couplings to the would-be
composite quarks,

L ¼ gA
fπ

ðū0RiTa
ij∂πau0Rj − ū0LiT

a
ij∂πau0LjÞ þ � � � ; ð35Þ

where the ellipses again denote higher-derivative operators.
In NDA gA ∼Oð1Þ, consistent with the QCD nucleon-pion
axial coupling gQCDA ≃ 1.26. Ignoring the spin structure, as
warranted in the heavy-scalar limit, one can also compare
gA with the QCD B�Bπ and D�Dπ couplings, which are
also Oð1Þ (i.e. ĝ ∼ 0.6–0.7 [43–45]).
Changing to the physical quark basis, the Lagrangian is

given by

L ¼ gA
fπ

sin θRi sin θRjūRiTa
ij∂πauRj − ðR → LÞ; ð36Þ

where we do not show the terms that involve would-be HC
quarks. Integrating by parts and using the Dirac equation,

Eq. (36) is equivalent on the quark-mass shell to

L≃ igA
fπ

sin θRi sin θRjmuj ūRiT
a
ijπ

auLj þ H:c: − ðR → LÞ:
ð37Þ

We see that the only significant contribution is propor-
tional tomt. Thus, production of tt̄ pairs receives important
contributions from t-channel K exchange. In contrast,
s-channel contributions are suppressed by the light-quark
masses.
The couplings in Eq. (37) are also responsible for pion

decays to quark pairs, e.g. π → 2j, K → jt�. The πa decay
widths are given by

Γπa→ūiuj

mπa
¼ g2ANc

16π

ðm2
uj þm2

uiÞ
f2π

Ta
ijT

a
ji sin θ

2
Ri sin θ

2
Rj; ð38Þ

where a ¼ 1; 2; 3, and we do not write down terms further
suppressed by the light-quark masses. While the decay
widths are narrow due to light-quark mass suppression,
they do not lead to displaced vertices since they correspond
to decay lengths of tens of nanometers.

IV. TEVATRON AND LHC PHENOMENOLOGY

Next, we assess the effect of the new HC sector on the tt̄
production cross sections and asymmetries at the Tevatron
and the LHC. The relevant measurements and the corre-
sponding SM predictions are collected in Tables IV and V.
As an example we take the benchmark set of parameters
introduced in the previous section. It has been chosen to
demonstrate that our model can easily yield anomalously
large Att̄

FB asymmetries, while satisfying the remaining tt̄
constraints. We also show that the benchmark passes the
Tevatron and LHC dijet tests that often invalidate models
addressing the Tevatron Att̄

FB anomalies. Cross sections for
the production of new resonances that are present in our
model are evaluated, and the most promising signals are
identified. In Sec. V we will discuss another class of
constraints, namely electroweak-precision tests, including
atomic-parity violation.

A. The top-antitop asymmetries: Experimental review

The CDF and D0 experiments at the Tevatron have
measured various partonic level asymmetries in pp̄ → tt̄.
One of these is the inclusive asymmetry,

AFB ≡ NðΔy > 0Þ − NðΔy < 0Þ
NðΔy > 0Þ þ NðΔy < 0Þ ; ð39Þ

where Δy ¼ yt − yt̄ is the difference between the t and t̄
rapidities, taking the forward direction to be that of the
proton. The SM prediction for the inclusive asymmetry is

ASM
FB ¼ 0.088� 0.006: ð40Þ
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This result uses NLO cross-section differences, including
leading EW corrections, in the numerator [58,60–65] and
LO cross sections in the denominator. Note that use of the
NLO cross sections in the denominator would reduce the
predicted asymmetry by Oð30%Þ. The NLO Parton
Distribution Functions (PDF) set CTEQ6.6M [66] is used
throughout. The error in Eq. (40) is the pure scale
uncertainty for μ ∈ ½mt=2; 2mt�.
The CDF [46] measurement of AFB is larger than the SM

prediction, as was the 2011 D0 measurement. A new D0
measurement [47], extended to include a 3-jet sample in tt̄
production, is significantly lower and supersedes the
previous one. Naively averaging with CDF yields

Ainc
FB ¼ 0.124� 0.025: ð41Þ

Interestingly, CDF observes a significant rise in AFB with
the invariant mass of the tt̄ pair. Quoting just their two-bin
result as an example, they report

Alow
FB ¼ 0.084� 0.046� 0.030; ð42Þ

for mtt̄ ≤ 450 GeV and

Ahigh
FB ¼ 0.295� 0.058� 0.033; ð43Þ

for mtt̄ ≥ 450 GeV, which should to be compared to the
SM predictions [58]

Alow; SM
FB ¼ 0.062� 0.003 ð44Þ

and

Ahigh; SM
FB ¼ 0.129� 0.006: ð45Þ

The CDF and D0 collaborations have also presented results
with finer, albeit different, binning in mtt̄ [46,47]. The two
sets of measurements are consistent with each other, with
the exception of the largest bin, mtt̄ > 650 GeV, for which
D0 obtains a negative central value with an error that is 68%
larger than CDF’s. In the mtt̄ ∈ ½550; 650� bin, the D0 and
CDF central values are very close, but the D0 error is 60%
larger. The CDF fitted slope for AFB vs mtt̄ is 1.8σ larger
than D0’s and 2.4σ larger than the NLO SM prediction.
Both collaborations have also measured AFB vs the rapidity
difference Δy, again with different binning. The CDF fitted
slope is 1.3σ larger than D0’s and 2.4σ larger than the NLO
SM prediction.
At the LHC, the initial state is symmetric, and thus there

is no fixed forward or backward direction with respect to
which an asymmetry can be defined. Instead, the observ-
able that is related to AFB is the charge asymmetry,

AC ¼ NðΔjyj > 0Þ − NðΔjyj < 0Þ
NðΔjyj > 0Þ þ NðΔjyj < 0Þ ; ð46Þ

where Δjyj ¼ jytj − jyt̄j is the difference between the
absolute values of the top and antitop rapidities. At
7 TeV both ATLAS and CMS have measured the charge
asymmetry in the semileptonic and dilepton decay chan-
nels, albeit with appreciable experimental uncertainties (see
Table IV). Naively averaging the four measurements yields

AEXP
C ¼ 0.007� 0.008; ð47Þ

consistent with the SM prediction [58]

ASM
C ¼ 0.0123� 0.0005: ð48Þ

(Only averaging the two semileptonic measurements yields
Aexp
C ¼ 0.005� 0.009.) Again, the SM prediction has been

obtained with the leading-order (LO) cross section in the
denominator. An 8 TeV measurement of AC was recently
presented by CMS [52],

AC ¼ 0.005� 0.009; ð49Þ

TABLE IV. Experimental input for tt̄ production cross section
and asymmetries. All errors have been added in quadrature.

Observable Value Reference

Alow;CDF
FB 0.084� 0.055 [46]

Ahigh;CDF
FB 0.295� 0.067 [46]

Ainc;CDF
FB 0.164� 0.047 [46]

Ainc;D0
FB 0.106� 0.030 [47]

Ainc; average
FB 0.124� 0.025

Ainc;ATLAS; semileptonic
C 0.006� 0.010 [48]

Ainc;ATLAS; dileptons
C 0.057� 0.028 [49]

Ainc;CMS; semileptonic
C 0.004� 0.015 [50]

Ainc;CMS; dileptons
C −0.010� 0.019 [51]

Ainc;7TeV; average
C 0.007� 0.008

Ainc;CMS; 8TeV
C 0.005� 0.009 [52]

σCDFþD0
inc ð7.60� 0.41Þ pb [53]

σATLASinc (7 TeV) ð177� 11Þ pb [54]
σATLASinc (8 TeV) ð237.7� 11.3Þ pb [55]
σCMS
inc (7 TeV) ð165.8� 13.3Þ pb [56]

σCMS
inc (8 TeV) ð239� 13Þ pb [57]

TABLE V. SM predictions for tt̄ production cross section and
asymmetries.

Observable Value Reference

Alow; SM
FB 0.062� 0.003 [58]

Ahigh; SM
FB 0.129� 0.006 [58]

Ainc; SM
FB 0.088� 0.006 [58]

ASM
C (7 TeV) 0.0123� 0.0005 [58]

ASM
C (8 TeV) 0.0111� 0.0004 [58]

σTEV;NNLOinc ð7.395� 0.544Þ pb [59]
σLHC;NNLOinc (7 TeV) ð172.5� 15.0Þ pb [59]
σLHC;NNLOinc (8 TeV) ð246.3þ19.8

−20.5 Þ pb [59]
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which is also consistent with the SM prediction [58]

AC ¼ 0.0111� 0.0004: ð50Þ
Whether or not the experimental situation at the Tevatron

points to an anomalously large forward-backward asym-
metry or is due to statistical fluctuations, our philosophy
will be to show that in our model large enhancements of
AFB can be consistent with all other constraints, thus
highlighting the stealth nature of the new strong
interactions.

B. Choosing a benchmark

We calculate the asymmetries in our NP model using the
procedure outlined in Ref. [33] and employed in Ref. [58]
for the SM predictions given above. In the numerator we
take the SM at NLO (QCDþ EW) and work with LO cross
sections in the denominators. The contributions from NP
(including NP–SM interference) in both the numerator and
denominator are always evaluated at LO. All LO cross
sections are automatically evaluated in MADGRAPH [67]
using the NLO PDF set CTEQ6M with a fixed renormal-
ization and αs scale. For the benchmark presented here, we
fix the renormalization scale to μ ¼ 2mt.
To obtain the Tevatron and LHC total tt̄-production cross

sections and differential dσ=dmtt̄ spectra, we use the next-
to-next-to-leading-order (NNLO) CTEQ10 predictions [59]
at μ ¼ mt for the total SM cross sections, with their
reported errors (see Table V), and AMC@NLO for the
differential SM spectra, evaluated at μ ¼ mt, with the errors
reflecting the scale and PDF uncertainties. The NP con-
tributions to the total and differential spectra are evaluated
at LO for a fixed scale choice, μ ¼ 2mt, as in the
asymmetries.
Two of the explanations that have been proposed for the

potential Tevatron Att̄
FB anomalies are t-channel exchange of

light vectors, e.g. W0, Z0 [30], or of light scalars [32]. In
both cases the exchanged particle’s mass is optimally a few
hundred GeVor less. The models can yield a large Att̄

FB that,
particularly in the case of vector exchange, increases
appreciably with mtt̄. Moreover, both proposals have been
shown to simultaneously lead to good agreement with the
dσ=dmtt̄ spectra (for the t-channel exchanges, correcting
for the CDF acceptance at large pseudorapidity is crucial
[25,68,69]).
Our model provides a concrete renormalizable example

that combines the two proposals. The role of the Z0 is
played by the HC K� and, to a lesser extent, by the K1. The
t-channel scalar corresponds to the HC K. Note that for
high mtt̄ there are also perturbative contributions coupling
to the RH up-type quarks from intermediate S −Q box
graphs, which scale as

h21h
2
3

16π2
1

m2
tt̄

∼
1

2m2
tt̄

: ð51Þ

However, we find that their effects are subleading and do
not consider them further.
At the LHC important constraints come from σtt̄ and AC.

An increase in Att̄
FB via t-channel exchange is typically

correlatedwith an increase inAC beyond its measured value.
However, associated light-mediator production, e.g. gq →
tþ ðZ0 → t̄qÞ fromFig. 2, hasbeen shown to reduceAC [33].
Associated light-mediator production also contributes to the
total LHC cross section, σtt̄. The resulting constraint, as well
as the ATLAS and CMS bounds from tþ jet resonance
searches, are evaded if the light mediator has other open
decay channels, thus suppressing the Z0 → t̄q branching
ratio. Inourmodel anewdominantdecaychannel is naturally
present. In particular, the strong interaction decayK� → Kπ
can lead to BrðK� → t̄jÞ ∼Oð30%Þ. This would still allow
for a significant reduction of AC. Note that on-shell K →
tþ j decays are kinematically forbidden so that the above
constraints do not apply.
Previous studies, as outlined above, thus motivate us to

search for benchmarks with relatively light K� and K, with
masses of ∼200 GeV. Moreover, a ρ mass in this range is
also favored by the recent CDF bounds on pair production
of dijets [70]. For ρ → ππ → jjjj with mρ ≲ 200 GeV and
mπ ∼ 70 GeV, the bounds weaken significantly and, in
fact, lie above the expected limits.
To obtain a viable set of parameters for our model that

i) yields substantially enhanced Att̄
FB at the Tevatron and

ii) yields agreement with all other constraints, we employ a
rough χ2-minimization procedure containing a subset of
available measurements. Minimizing the χ2 with respect to
a large number of variables is algorithmically difficult. We
use the COBYLA method [71], which allows us to apply
constraints on the minimization procedure.
The χ2 contains the experimental values of the inclusive

Att̄
FB and AC (7 TeV), the total tt̄ cross sections at the

Tevatron and the LHC (7 TeV), and the highest bins of the
differential cross sections at ATLAS (7 TeV) and CMS
(8 TeV). The UV inputs are h1; h3; mQ1

; mQ3
, mS , and the

HC scale Mχ defined in Eq. (17). Through dimensional
transmutation, the latter is equivalent to the choice of HC
strong coupling constant, αHC, in the UV. The UV
parameters fix the pseudoscalar masses via the quadratic
terms in the HC chiral Lagrangian and the vector and axial-
vector masses via the naive quark model described in

FIG. 2. Feynman diagrams for the associated production of a K
and K�, respectively. The t̄ resulting from the K decay is off shell.
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Appendix A. The would-be composite quark masses in the
interaction basis are given by Eq. (A17). The decay
constants fπ; fρ, and fa1 (for simplicity taken to be
universal for all members of the corresponding flavor
octets), are given in Eqs. (18)–(20). The would-be
composite quark decay constants fu0i are allowed to vary
within 30% of the interpolation given in Eq. (B5).
We must also choose values for the couplings of the HC

resonances to the would-be composite quarks, i.e. gρ, ga1 ,
and gA. We allow gρ and ga1 to lie within roughly 30% of
the values obtained from Eq. (32), and we take gA ¼ 1.26,
identifying it with the representative QCD nucleon-pion
axial coupling. The vector-pion coupling gρππ is taken to be
equal to gρ. The decay widths of the vector-meson
multiplet, ρ; K�;…, are determined via Eqs. (C1)–(C3).
The axial decay widths are determined using the model of
Ref. [42], see Eqs. (C8)–(C12), with the parameter ~FHC
fixed to the value obtained from Eq. (C12). The pseudo-
scalar decay widths (38) are small and do not enter into our
analysis.
The UV or fundamental parameters for our illustrative

benchmark are listed in Table II, together with the reso-
nance couplings and decay constants. The resonance
masses and decay widths are given in Table I.
Realization of the phenomenologically favored range
BrðK� → t̄jÞ ∼ 30% arises via phase-space suppression
of the dominant K� → Kπ decay mode; see Table III.
Since m�

K ≃mK þmπ the phase-space factor is small, of
Oð10−2Þ in our benchmark. The tuning associated with the
phase-space suppression is actually quite moderate, given
that the approximate equality of m�

K and mK þmπ changes
relatively slowly as the HC quark masses mQ3

, mQ1
are

varied. For instance, the Barbieri–Giudice measure of fine-
tuning for the phase-space suppression factor, correspond-
ing to variation of the HC quark masses around the
benchmark point and using the naive quark model for
the vector masses, is ≈8. It is comparable to the tuning
associated with the coincidence of mϕ and 2mK in QCD.
Before moving to the resulting phenomenology, we

comment on the large benchmark Yukawa couplings
h3 ¼ 4.2, h1 ¼ 2.0. This is driven by two factors: a sizable
product of couplings h1h3 is required in order to obtain a
large t-channel enhancement of the forward-backward
asymmetry, e.g. AFB > 0.15, and h1 is bounded from above
by dijet constraints, most notably the CDF bounds on dijet
pair production; see below. A moderate decrease in h3 is
possible if the nonperturbative couplings gρ or gA of the
vector or pseudoscalar mesons to the would-be composite
quarks are moderately increased, or if h1 is maximized
consistently with dijet phenomenology. Nevertheless, a
large h3 is required, e.g. h3 > 3.
The values of the Yukawa couplings h1, h3 in Table II

correspond to a renormalization scale which can be
approximately identified with mS. A large h3 at this scale
prompts us to ask if our theory is sensible at higher

energies. For example, whether we encounter a Landau
pole as we evolve h1, h3, and the HC gauge coupling gHC
upward in energy. To answer this, we fix the values of
h1ðmSÞ, h3ðmSÞ to those given in Table II. We also take
gHCðmSÞ ¼ 1.9, the value we would obtain for the QCD
coupling gs at scale μ ¼ mSfπ=fHCπ by running upward
with three flavors rather than four (given the three HC
quark flavors) from its usual two-loop MS value at
μ ¼ 1 GeV. The one-loop RGEs yield a Landau pole at
μ ≈ 1.6 TeV. However, moving to two-loop RGEs using
the general results from Ref. [72], we find that h3 reaches
an approximate attractive UV fixed point at
μ ¼ Oð10Þ TeV, given by h�3 ¼ 16π=

ffiffiffiffiffi
37

p
≈ 8.3, while

h1 and gTC are asymptotically free. For lower values of
h3ðmSÞ > 3 (see above), with h3ðmSÞ > h1ðmSÞ, the one-
loop Landau pole and the two-loop UV fixed point for h3
are, respectively, reached at scales that are a few times
larger. Clearly, given the large value of h�3 obtained at two
loops, the question of whether a true UV fixed point exists
or not can only be settled using nonperturbative methods.
Consistency of our model requires that there are no QCD

and HC breaking condensates, hūR3QL3i ≠ 0 and hSi ≠ 0,
which could potentially be triggered by a large value of h3.
An estimate of the critical Yukawa coupling above which
condensates form can be obtained using the Schwinger–
Dyson equation at one-loop in the rainbow or ladder
approximation in the massless scalar limit (see Ref. [73],
where such an estimate was applied to electroweak-
symmetry breaking via fourth-family condensates with
large Higgs Yukawa couplings). In our model, the ladder
approximation in the mS ¼ 0 limit yields hcrit3 ¼ 2π, some-
what below the two-loop fixed point coupling h�3. If this
result also holds nonperturbatively, the field content of the
theory would need to be enlarged in order for the model to
be phenomenologically viable. For example, we have
checked that the addition of massive singlets, N i, with
flavor conserving Yukawa couplings to the HC quarks,

hiN 1
N iðQ̄1Q1 þ Q̄2Q2Þ þ hiN 3

N iQ̄3Q3; ð52Þ

lead to an asymptotically free h3, with h3 always well
below 2π, for a large set of hiN 1;2 values. In this case some
or all of the singlet Yukawas, hiN 1;2, obtain a fixed point.
The presence of the singlets also has an added benefit that
the HC quark masses, mQ, can be generated dynamically
via the induced singlet vevs.

C. Top-antitop asymmetries and cross sections:
Benchmark predictions

The predictions for the Tevatron tt̄ asymmetries within
our benchmark are (quoting the central values)

Ainc
FB ¼ 0.173; Alow

FB ¼ 0.091; Ahigh
FB ¼ 0.301;

ð53Þ
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corresponding to a large enhancement of AFB at large mtt̄.
On the other hand, the charge asymmetries at the LHC are
predicted to be

Ainc; 7TeV
C ¼ 0.0137; Ainc;8TeV

C ¼ 0.0135; ð54Þ

consistent with the SM predictions, as well as their
measured values. Note that the associated production of
K� has a significant effect on the value of AC. Without this
effect the charge asymmetries would have been
Ainc; 7TeV
C ¼ 0.0245, and Ainc; 8TeV

C ¼ 0.0239. The total
cross sections at the Tevatron and the LHC are found to be

σTEVinc ¼ 6.34� 0.54 pb;

σLHCinc ð7 TeVÞ ¼ 176� 15 pb;

σLHCinc ð8 TeVÞ ¼ 252� 20 pb; ð55Þ

where the errors reflect the uncertainty in the SM con-
tributions at NNLO, as discussed above. These predictions
are in good agreement with the experimental measure-
ments, listed in Table IV, with the exception of a ∼2σ
tension with the larger measured value of σTEVinc . Note that
the NP contributions to all observables have been treated at
leading order and are therefore subject to significant
uncertainties which have not been included in our
predictions.
The differential forward-backward asymmetries

dAFB=dmtt̄ and dAFB=djΔyj are compared to the CDF
data3 and the SM predictions in Fig. 3. The CDF differ-
ential cross section is shown in Fig. 4 (left). The dominant
NP effect on tt̄ production in our model is due to t-channel
exchanges. Thus, the effect of the CDF rapidity acceptance
corrections for large mtt̄ is significant [68,69]. We take this
into account using the prescription in Ref. [25]. In Fig. 4 we
compare the predicted normalized differential cross section,
1=σdσ=dmtt̄, with the 7 TeVATLAS [74] and 8 TeV CMS
[75] measurements for semileptonic final states. We can see
that it is not difficult to reproduce the increase in AFB vsmtt̄
and AFB vsΔy. A modest indication of the well-known high
mtt̄ tail in the LHC dσ=dmtt̄ distribution, characteristic of
low-scale t-channel exchanges [30,76], can be seen in the
last bin of the second as well as the third panels of Fig. 4. It
lies well within the experimental uncertainties.
The deficit in the inclusive tt̄ cross section at the

Tevatron, σTEVinc , is primarily due to the lowest bin, as
can be seen in Fig. 4 (first panel). Note that a relative
increase in the scalar (K) vs vector (K�; K1) contributions
to tt̄ production would reduce this deficit. This could be
achieved by increasing the coupling gA relative to gρ;a1 .

D. Dijets

The dijet cross-section measurements at the Tevatron and
the LHC typically provide stringent constraints on models
that aim to explain the forward-backward asymmetry in tt̄,
since the resonances are usually required to have large
couplings to quarks. The s-channel exchanges are subject to
direct resonance searches (i.e. bump hunting in pp → 2j),
while t-channel exchanges could visibly enhance the
dσjj=dmjj spectra at large invariant masses [25].
The couplings of the various resonances to light-quark

pairs in our benchmark are summarized in Table VI. Dijet
production in the s channel is primarily due to ρ, ω, and
a1 exchanges. The ρ, ω, and a1 contributions are sup-
pressed by their relatively small couplings to light quarks.
This is a result of the hierarchy between h1 and h3; see
Table II. Moreover, the ρ and a1 contributions are further
suppressed by their small branching ratios to quark pairs
(they predominantly decay to pseudoscalar–pseudoscalar
and vector–pseudoscalar pairs, respectively; cf. Tables III,
VII, and VIII for the branching ratios of the subsequent
pseudoscalar decays). Finally, the s-channel contributions

FIG. 3 (color online). Differential AFB asymmetries at the
Tevatron as a function of mtt̄ (top) and Δy (bottom) with the
SM prediction in black, the NP benchmark predictions in blue,
and the measurements by CDF given by red bands.

3Since our main point is to provide an explicit model which
can explain a large asymmetry while being consistent with all
other data, we compare our predictions to the CDF measure-
ments, which yield larger slopes than D0’s.
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of the pseudoscalars are negligible because of the chiral
suppression of their couplings to light quarks.
All of the above resonances also contribute in the

t-channel. Here, the branching ratios to dijets play no
role, since the resonance contributions only depend on their
couplings to the light quarks. The modest hierarchy h1 <
h3 in Eq. (4) turns out to be crucial. For instance, had we
taken h1 ≃ h3, the t-channel exchanges would yield an
appreciable Oð1Þ excess at mjj ¼ 3 TeV.
In Figs. 5 and 6, we compare the benchmark and SM

dσjj=dmjj dijet mass spectra at the Tevatron and LHC
(8 TeV). The dijet cross sections are calculated at the
partonic level at LO, using MADGRAPH with CTEQ6M and
NLO αs. Guided by the experimental analyses [77,78], we
impose the following cuts on the two outgoing partons (i.e.
the two leading jets). For the Tevatron we impose jyj < 1.
For the 8-TeV LHC cross section calculation, we require
that the pseudorapidity difference between the two partons
satisfies Δηjj < 1.3 and that jηj < 2.5, pT > 30 GeV for
each of them. The renormalization scale is set to the
average pT of the outgoing partons in both cases. In the
LHC analysis, the dijet mass is above mjj > 890 GeV.
The upper two panels in Figs. 5 and 6 show dσjj=dmjj in

the SM (black line) and in our benchmark (red line). The
lower two panels show the ratios of the two,
ðdσNPjj =dmjjÞ=ðdσSMjj =dmjjÞ. The effect of the new reso-
nance exchanges is small, lying below the experimental
uncertainties at both the Tevatron and the LHC. In both
cases the experimental analysis was aimed at bounding
resonance production in the dijet channel. The CDF

bump-hunting analysis allows for about a 1%–2% spread
in the ratio of data to a smooth background for
mjj ∈ ½200; 700� GeV. This spread is larger than the
deviation of ðdσNPjj =dmjjÞ=ðdσSMjj =dmjjÞ from 1, as shown
in the lower panel of Fig. 5. Furthermore, our benchmark
does not show any bumps in the spectrum at this level of
precision. The CMS bump-hunting analysis allows for a NP
contribution in the mjj spectrum at the level of a few per

FIG. 4 (color online). The differential cross sections, dσ=dmtt̄, at the Tevatron (first panel) and at the LHC (7 TeV ATLAS in the
second panel and 8 TeV CMS in the third panel), SM prediction in black, the NP benchmark predictions in blue, and measurements by
CDF given by red bands.

TABLE VI. Table of the dominant branching ratios of HC pions
into SM quarks.

HC resonance Channel Br(%)

πHC ūc; c̄u; ūuþ c̄c 100
KHC ūt; t̄u; c̄t; t̄c 100
ηHC ūuþ c̄c 100

TABLE VII. Table of the dominant branching ratios for HC
axial-vector resonances and their decays to the SM quarks.

HC resonance Channel Br(%)

a1 ρπ 99.08
ūc; c̄u; ūuþ c̄c 0.92

K1 ρK 92.6
ūt; t̄u; c̄t; t̄c 7.4

AL ūuþ c̄c 100
AH ūuþ c̄c 100

TABLE VIII. HC resonance couplings to SM quarks. They
correspond to the coefficients in the Lagrangian of Eq. (33) after
rotating all fields to the mass eigenbasis.

HC resonance Quarks κVR κVL

ρ ūu; c̄c �0.117 0.0
ūc 0.165 0.0

K� ūt; c̄t 0.328 0.0
VL ūu; c̄c 0.117 0.0

t̄t −0.018 −0.001
VH ūu; c̄c −0.003 0.0

t̄t −0.649 −0.038
a1 ūu; c̄c �0.161 0.0

ūc 0.228 0.0
K1 ūt; c̄t 0.451 0.0
f1 ūu; c̄c 0.160 0.0

t̄t −0.116 −0.007
f10 ūu; c̄c −0.021 0.0

t̄t −0.887 −0.052
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mill at mjj ∼ 1000 GeV, with an increase to Oð10%Þ at
mjj ∼ 3000 GeV. Note that the benchmarks differential
distribution is very smooth. Fitting dσNPjj =dmjj to the same
analytical function that was used to describe the smooth
QCD background in Ref. [78], we find that the difference
between the fit and the prediction is always well below a
per mill. Thus, the bump-hunting analysis is not sensitive to
our model.
CMS and D0 have also measured the dijet angular

distributions dσ=dχ as functions of the dijet mass [here,
χ ¼ expðjy1 − y2jÞ, where y1 and y2 are the rapidities of the
two leading jets] [79,80]. The comparison of our bench-
mark and SM predictions are shown in Fig. 7 for the
Tevatron and in Fig. 8 for the LHC. The predictions are calculated at LO at the partonic level using MADGRAPH

with CTEQ6M PDFs, setting the renormalization
scale to the average pT of the outgoing partons.
Following the D0 analysis, we impose the Tevatron cut
yboost ≡ 0.5jy1 þ y2j < 1, where y1;2 are now the rapidities
of the two partons (as opposed to the rapidities of the two
leading jets). The D0 measurements begin at
mjj > 250 GeV. Following the CMS angular analysis,
we impose the LHC cut yboost < 1.11. The CMS measure-
ments begin at mjj > 400 GeV. The contributions from the
NP resonances lead to deviations from the SM predictions
that are much smaller than the experimental error bars. In
the figures we show the LO predictions for the SM;
however, the NLO predictions are available [81,82]. They
further improve the agreement between the data and the SM
predictions. Our conclusion that the NP contributions to the
angular distributions are negligible is not expected to
change when going from LO to NLO predictions.
Another constraint arises from searches for pair produc-

tion of resonances that decay to dijets, resulting in 4-jet final
states. In our model this signal would be due to s-channel ρ
production followed by ρ → ππ decays with π → jj.

FIG. 5 (color online). The dijet cross-section distribution at
CDF.

FIG. 6 (color online). The dijet cross-section distribution at
CMS.

FIG. 7 (color online). The dijet angular distributions at the
Tevatron, in bins ofmjj. The SM predictions are denoted by black
lines, the benchmark predictions are in red, while measurements
are denoted with crosses of the size of error bars.

STEALTH QCD-LIKE STRONG INTERACTIONS AND THE … PHYSICAL REVIEW D 91, 095009 (2015)

095009-13



The 95% C.L. bound on σðpp̄ → X → YY → jjjjÞ from
CDF for mX ¼ 175 GeV and mY ¼ 50ð70Þ GeV is 66.8
(111.5) pb [70]. In our benchmark, X ¼ ρ with a mass of
177 GeV, and Y ¼ π with a mass of 62 GeV. The inclusive
production cross section at LO is ≈79 pb. However, after
imposing partonic cuts based on the CDF hadronic jet cuts
(pmin

T > 15 GeV and jηj < 2.4), we obtain σðpp̄ →
ρ → ππ → jjjjÞ ¼ 37 pb. The OðαsÞ Z0 production
K-factor, 1þ 8παsðμÞ=9, increases this cross section by
≈30% (atμ ¼ mρ ¼ 177 GeV) to48pb.The analysesof pair
production of dijets at CMS and ATLAS probe mjj >
250 GeV and mjj > 150 GeV [83,84], respectively, and
are thus not sensitive to the pp → ρ → ππ mode in our
model. However, they could be relevant for production of
higher resonances, which we cover in the next section.

E. Production of new states

In this section we discuss existing constraints on the
production of HC resonances in our model. As already
mentioned, the CDF [85], CMS [86], and ATLAS [87]
collaborations have searched for tþ j resonances, which

could, in principle, constrain associated K�t and K1t
production. The CDF and ATLAS analyses put bounds
on tþ j resonance masses above mtj > 200 GeV and are
thus relevant for our model (the CMS obtains bounds for
mtj > 400 GeV). The associatedK�t andK1t cross sections
are listed in Table IX. Here, we sum over the CP conjugate
final states K�t and K̄�t̄ as well as over the light flavors,
K�

13 ∼ ½Q1Q̄3� and K�
23 ∼ ½Q2Q̄3�, and similarly for the K1.

At the 7 TeV LHC, one has σK�tBrK�→t̄j ¼ 4.4 pb, which is
roughly a factor of 5 below the ATLAS bound for mK� ¼
211 GeV [87]. At the Tevatron, σK�tBrK�→t̄j ¼ 0.07 pb,
which is roughly an order of magnitude smaller than the
CDFbound [85]. In the case of associatedK1 production, the
products σK1tBrK1→t̄j lie even further below the correspond-
ing bounds at the Tevatron and the LHC.
Associated Kt production leads to a t̄�tj final state, with

one of the top quarks off shell. This feeds into the
experimental measurements of the (inclusive) tt̄ cross
sections [55,57,88] and the Wt production cross sec-
tion [89,90]. The Kt cross section is comparable to the
theory error on the SM prediction for tt̄ production.
Furthermore, since the t� is off shell, only a fraction of
the Kt signal spills over into the tt̄ production cross-section
measurements. For instance, using a LOMADGRAPH analy-
sis and imposing the experimental cuts for the tt̄ signal
region employed in the recent CMS dileptonic analysis [57],
we estimate theKt contribution to the 8 TeV tt̄ cross section
to be below 11 pb. It is thus smaller than the error on the
measurement σðpp → tt̄Þ ¼ 239� 13 pb [57]. The softer
Kt leptonpT significantly reduces the leakage into the signal
region. Similarly, the Kt contribution to the Wt production
signal region in the recent CMS dilepton analysis at 7 TeV is
below 1.7 pb, to be comparedwith the CMSmeasurement of
σðpp → WtÞ ¼ 16þ5

−4 pb [89].
Next we move to pair production of the colored scalars,

SS�. As discussed in Sec. III C, the decay width of the S is
almost an order of magnitude greater than the HC hadro-
nization scale ΛHC ∼OðfewÞfπ . Therefore, the S scalars
decay before they can hadronize. This is reminiscent of the
top quark in QCD. The S decays to quark–HC-quark pairs,
S → uiQ̄i, where i ¼ 1; 2; 3. The Q̄i fromS → uiQ̄i and the
Qj from S� → ujQ̄j hadronize via HC strong interactions
and result in final states containing many πHC, KHC. In
general we expect pp → SS� → uiūjXQ̄iQj

, whereXQ̄iQj
is

the multi-π, K state. The light π will receive sizable boosts.

FIG. 8 (color online). The angular distributions in dijet pro-
duction at the LHC, measured in bins of mjj as indicated in the
plots. The SM prediction is denoted by black lines, the prediction
with our benchmark NP is in red, while crosses denote the
measured spectra including errors.

TABLE IX. Inclusive cross sections for pp → Kð�Þ
HCt and pp →

Kð�Þ
1 t associated production at the Tevatron and LHC 7 TeV,

8 TeV, and 13 TeV (in pb). Summation over the first two
generations Q1;2 and the CP-conjugate modes is assumed.

Final state σTEV σLHC7 σLHC8 σLHC13

Kt 0.38 18.0 24.2 64.5
K�t 0.22 13.6 18.5 50.6
K1t 0.11 11.1 15.4 45.1
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Thus, a π → jj decay will on average appear as a single “fat
jet” in the detector. However, fat jets from the heavier K →
t� þ j decays should be easier to resolve.
The SS� production cross section at the 8 TeV LHC is

2.76 pb in the narrow-width approximation (cf. Table X).
Taking into account the large S decay width
(ΓS ≈ 0.44MS), we find that the pp → SS� → uiūjXQ̄iQj

cross section is reduced to 1.4 pb in MADGRAPH. The
dominant contributions are pp → SS� → q1;2t̄XQ̄1;2Q3

and
the CP conjugate modes, with a total cross section of
0.66 pb, and pp → SS� → tt̄XQ̄3Q3

, with a cross section of
0.57 pb. In Fig. 9 we show the mass distributions for
pp → SS� → q1;2 t̄XQ̄1;2Q3

; the distributions for the other
decay modes of the S are very similar. One can see that the
bulk of the XQ̄1;2Q3

system has invariant masses that lie
above Λχ ∼Oð250Þ GeV and also well above the threshold
for multipion production. There is enough energy available
to produce tjK, tjK þ π, tjK þ 2π, etc., multipion final
states. The cross section for producing one, two, three, or
more HC pions depends on the details of the HC dynamics,
and thus on the hadronization model. One could contem-
plate rescaling the hadronization models used for QCD to
the HC scale to obtain a more quantitative description.
However, for our purposes a qualitative picture suffices.
If we were to model the hadronization of the Q̄1;2Q3 pair

with a string model, the extra pions would be created from
string breaking. Since there is sufficient energy, the penalty
for creating an extra pion is small. As we saw, pair

production of SS� would result in tjþ n fat jets (the
HC pions and kaons) or tt̄þ n fat jets final states. Here, n
can lie anywhere from 1 toOð10Þ. The SS� pair can thus be
searched for in multijet final states. Both the CMS and
ATLAS collaborations have recently made significant
progress in multijet searches [91–93]. Particularly relevant
in this respect is the ATLAS search [93], which was
interpreted in terms of gluino production with R-parity
violating decays that result in either 6-jet or 10-jet final
states (in the 6-jet search, an extra initial-state radiation jet
was required in order to optimize the sensitivity). Most
importantly, the search strategy did not require the jets to
form resonances of a particular mass and can thus be used
to place bounds on the production of wide resonances, such
as SS�. For a 520 GeV gluino that decays to tjj, the
ATLAS bound is σðpp → ~g ~g → t̄tþ 4jÞ < 0.9 pb. This
bound lies above the cross section for σðpp → SS� →
tt̄þ nπÞ in our model.
The ATLAS collaboration has also performed a search in

which the final state contains tt̄þ 2b jets and a number of
light jets. This final state arises in our model from pp →
SS� → tt̄KK̄ plus any number of other pNGBs (a much
smaller contribution could come from the ϕ resonance in
place of KK̄). Here, the hadronization of HC quarks results
in a KK̄ pair. The kaons then decay to off-shell t� so that
K → t�j → b3j. We thus have pp → SS� → tt̄2b6j. The
ATLAS search [93], with a gluino decaying to five quarks
through an intermediate neutralino, gives an upper bound
of about 1.5 pb, well above our production cross section
of 0.6 pb.

V. ELECTROWEAK PRECISION TESTS,
HIGGS COUPLINGS

In this section we discuss the implications of
electroweak-precision measurements for our model. For
the contributions to the electroweak oblique parameters S
and T due to new HC states, we rely on the operator product
expansion and quark hadron duality in order to estimate
these contributions. Thus, the electroweak corrections are
given by the diagrams in Fig. 10 to good approximation. The
corrections are suppressed by powers ofΛHC=mS . The scalar
S is an SU(2) singlet and thus does not contribute to the S
parameter. The contribution to the T parameter, on the other
hand, vanishes due to a cancellation between the two
diagrams shown in Fig. 10 (see also the discussion of
models with Higgs singlets in Ref. [94]). The HC quarks are
hypercharge singlets and thus do not contribute at this order.
In Ref. [95] atomic-parity violation was advocated as a

strong constraint on t-channel explanations of the forward-
backward asymmetry.4

TABLE X. Cross sections for LHC pair production of the HC
scalars S S�, at various center-of-mass energies.
ffiffiffi
s

p
7 TeV 8 TeV 13 TeV

σ (pb) 1.62 2.76 13.17

FIG. 9 (color online). The invariant mass distributions for
pp → SS� → q1;2 t̄XQ̄1;2Q3

. The SS� pair invariant masses are
in red, the XQ̄1;2Q3

HC multipion invariant masses are in blue, and
the individual invariant mass distributions of the S and S� are
similar and shown in green.

4Note that in the case of the general vector boson discussion
the results of Ref. [95] [in Eq. (7)] are only indicative of the full
UV result, as signaled by the gauge-parameter dependence of the
displayed finite terms.
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Below the electroweak scale atomic-parity violation can
be described by an effective electron-quark interaction of
the form

L ¼ GFffiffiffi
2

p
X
q¼u;d

ðC1qēγμγ5eq̄γμqþ C2qēγμeq̄γμγ5qÞ; ð56Þ

where the second term is suppressed by the small electron
weak charge and neglected in the following. We define the
coupling between the Z boson and light quarks as in
Ref. [95] by

L ¼ −
e

swcw
ZμðaNPR ðqÞq̄RγμqR þ aNPL ðqÞq̄LγμqLÞ: ð57Þ

In terms of the effective electron-quark Wilson coefficients,
we have CNP

1q ¼ aNPL ðqÞ þ aNPR ðqÞ.
To estimate the effect of the K� resonances on atomic-

parity violation, we compute the matching corrections to
aK

�
R ðuÞ. To this end we evaluate the diagrams with the

exchange of a massive vector and a top quark (cf. Fig. 11).
The finite part of the contribution of the K�–top-quark
loops, including field renormalization, is

aK
�

R ðuÞ ¼ g2ρsin2θR;1sin2θR;3
32π2

×

�
x2 − 7x
8ðx − 1Þ þ

3x log x
4ðx − 1Þ2 −

x
4
log

μ2

m2
t

�
; ð58Þ

where x≡m2
t =m2

K� . Note that the K� contribution is
divergent because of our use of a nongauge vector
propagator. The divergent contribution vanishes in the limit
x → 0. We estimate the size of the effect by varying
the renormalization scale, μ, in the range ½MK�=2; 2MK� �.
The same expression also applies for K1 exchange with
x → m2

t =m2
K1

and gρ → ga1 .

The effect of HC K exchange is similarly estimated by
evaluating the diagram in Fig. 11 with K in the loop. The
finite part of the contribution of the K–top-quark loops,
including field renormalization, is given by

aKRðuÞ ¼
�
gHCA
fHCπ

�
2 sin2θR;1sin2θR;3

32π2
M2

K

×

�
xþ x2

8ð1 − xÞ þ
x log x

4ðx − 1Þ2 þ
x
4
log

μ2

m2
t

�
; ð59Þ

where x≡m2
t =M2

K . Note that this contribution is divergent
because of the dimension-5 couplings in Eq. (36). As in
the case of the K� above, the divergent contribution
vanishes in the limit x → 0, and the size of the effect is
estimated by varying the renormalization scale in the
range ½MK=2; 2MK�. All contributions of the K� and K
loops proportional to the weak mixing angle vanish after
renormalizing the external fermion fields.
The contribution of the top-quark loop diagram in

Fig. 11 (right) is given by

aVH;L
R ðuÞ ¼ ∓ g2ρsin2θR;1sin2θR;3

32
ffiffiffi
2

p
π2

sin θidVH;L
cos θidVH;L

× Nc

�
m2

t

m2
VH;L

log
μ2

m2
t

�
: ð60Þ

This is substantially suppressed by the small deviation from
the ideal ω − ϕ mixing, sin θidV ¼ 0.028 defined in Eq. (15)
(see also Appendix A). The analogous contribution
from axial AL − AH exchange is obtained by replacing
θidVH;L

→ θidV;A, gρ → ga1 , mVH;L
→ mV;A. As above, the scale

μ in Eq. (60) and the axial-vector analog is varied in the
range of half to twice the resonance mass.
Finally, we estimate the effect of the would-be composite

quarks on atomic-parity violation. As discussed in Sec. III
C, they are closely analogous to a heavy–light meson. In
our case the role of the heavy quark is played by the heavy
scalar. We thus evaluate the corresponding loops in the UV
theory, as shown in Fig. 12. The Z coupling to the scalar is
given in terms of the covariant derivative

Dμ ¼ ∂μ þ
2

3

iesw
cw

Zμ; ð61Þ

in the kinetic term

FIG. 10. The two contributions of the scalar S to the T
parameter cancel.

FIG. 11. Vector and pseudoscalar meson contribution to
atomic-parity violation.

FIG. 12. Contribution of the heavy scalar S to atomic-parity
violation.
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Lkin ¼ ðDμSÞ†DμS: ð62Þ

We find that the contribution of the renormalized diagram
vanishes.
We can obtain a bound on the size of aNPR ðuÞ from the

measurement of the nuclear weak charge of cesium (133Cs).
The contribution of aNPR ðuÞ to the nuclear weak charge is
given by

ΔQW ¼ −2ð2Z þ NÞaNPR ðuÞ; ð63Þ

where Z and N are the number of protons and neutrons in
the nucleus. From the difference of the experimental value,
Qexp

W ¼ −72.58ð43Þ [96], and the central value of the SM
prediction QSM

W ¼ −73.23 (calculated with input from
Ref. [40]),

ΔQWðCsÞ≡Qexp
W ðCsÞ −QSM

W ðCsÞ ⊂ ½0.22; 1.08�; ð64Þ

we obtain the allowed 1σ region aNPR ðuÞ ⊂
½−0.28;−0.06�%. This should be compared with the HC
resonance contributions listed in Table XI. One sees that the
HC effects are well within the errors on aNPR .
The HC interactions modify the Higgs production cross

sections and decays branching ratios. However, we find
these modifications to be small in size. The effects of the
quartic Higgs coupling to scalar S are suppressed by its
large mass, mS , and are negligible. Modifications of the
Higgs couplings to the W and Z arise at loop level and are
irrelevant. In principle the partial compositeness of the RH
top quark could lead to appreciable modifications in t̄th
production, gg → h fusion, and the h → γγ decay channel,
via the RH and LH mixings in Eqs. (29) and (30). The t̄th
production cross section is given by

σNPt̄th
σSMt̄th

¼
�
yNPt
ySMt

�
2

cos θ2R3 cos θ
2
L3 ¼ 1þOð1=M4Þ; ð65Þ

where yNPt ≡mu3=v is the top-quark Yukawa coupling in
the interaction basis, which differs from the SM relation
ySMt ¼ mphys

t =v. Since the physical top-quark mass is given
by mphys

t ≃mu3 cos θR3 cos θL3, the net change in the tt̄h

production cross section is small. Numerically, it is an
Oð1%Þ effect.
In the limit of a heavy top, where the Higgs low-energy

theorem applies, the contributions of the top and the would-
be composite top quark u03 running in the loop completely
cancel in the gg → h and h → γγ amplitudes. The net
modifications of the gluon-fusion cross section and the
h → γγ branching ratio therefore lie well below a percent.

VI. SIGNALS OF STEALTH STRONG DYNAMICS

Our strong interaction model for enhanced tt̄ asymme-
tries makes several predictions that are not tied to the exact
numerical values of the UV parameters and are thus quite
robust. It predicts the existence of a tower of resonances
that couples strongly to the right-handed top tR:
K;K�; K1;…. There is a flavor octet of pNGBs: π; K; η
(plus the η0), with the lightest state decaying to two jets. The
latter is most likely a triplet of pions, with a mass of
∼50 GeV. Finally, the minimal form of the model also
predicts the existence of a stable, electrically neutral “HC
baryon” with a mass of ∼250 GeV, which may be searched
for in direct dark matter (DM) detection experiments.
The HC resonancesK�; K1;…. decay to tþ j final states

and are already being searched for, as discussed in Sec. IV
E. Their production cross section will increase roughly
fourfold in going from the 8-TeV LHC to the 13 TeV LHC;
see Table IX. This should be compared with the corre-
sponding approximately fivefold increase in the tt̄ cross
section. The challengewill be to search for tþ j resonances
given the larger hadronic activity in 13-TeV events. One
could explore the fact that, at 13 TeV, the antitop quarks in
pp → tþ K� → tt̄j will in general be produced at larger
rapidities than the antitop quarks in tt̄ events (see Fig. 13).
The usefulness of this charge asymmetry at the LHC has
been discussed in Ref. [97] for the case of associated W0t
production.

TABLE XI. Range of the effective aR coupling to Z in %,
induced by the HC resonance contributions discussed in the main
text.

1-σ range [%]

aKRðuÞ ½−0.215; 0.010�
aK

�
R ðuÞ ½−0.037;−0.005�

aK1

R ðuÞ ½−0.054;−0.023�
aVL
R ðuÞ ½−0.0008; 0.0009�

aVH
R ðuÞ ½−0.0002; 0.0007�

FIG. 13 (color online). The rapidity distribution of the antitop
quark from pp → tt̄ (red) and pp → tK� → tt̄j (blue), for LHC
at 13 TeV. The pp → tt̄j differential cross section has been
rescaled by a factor 20.
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Next, we discuss searches for HCK mesons. A challenge
here is that the K decays to an off-shell top, K → t�j.
Ideally, the present experimental searches would be opti-
mized to search not just for tþ j resonances but also for
t� þ j resonances. Gains are potentially possible, if one
allows for softer leptons from the semileptonic decays of
the t�.
The discovery of a light pion decaying to two jets would

be a particularly striking signal of stealth strong dynamics.
The challenge in searching for HC pions is that they are
most copiously produced in decays of higher resonances,
which typically results in high-multiplicity final states. An
exception is the HC ρ resonance, which almost exclusively
decays through ρ → ππ. The s-channel production
pp → ρ → ππ, with π → 2j, is effectively already searched
for in paired dijet events, as discussed in Sec. IV D.
However, in our model both ρ and π are very light, and
thus present searches are not sensitive to them. It is unlikely
that the sensitivity to the low-mass region can be improved
in this type of search at the LHC with increased collision
energies. Potentially more promising may be the pair
production of ρ resonances, pp → ρρ → 4π, in which each
pion decays to two jets. Since the ρ’s would come primarily
from the partonic uū → ρρ process, with the u quark in the
t-channel, they would have large rapidities.
The cross sections for the process pp → ρρ are 0.38 pb

at LHC8 and 1.38 pb at LHC13, respectively. A promising
search strategy would thus be to optimize a search for
forward pair production of resonances, resulting in two fat
jets (potentially further resolved into two jets each using jet
substructure techniques).
Finally, our model in its minimal form of Eq. (2) contains

a stable neutral HC baryon Bχ formed from three of the
light HC quarks. The Lagrangian is invariant under a
global Uð1ÞBHC

HC baryon-number symmetry, under
which the HC quarks Qi have charge BHC ¼ 1=3, S has
charge BHC ¼ −1=3, while all gauge and SM-matter fields
are neutral. Alternatively, one can consider the ZHC

2 sub-
group, under which the HC quarks and S are odd, and the
SM matter is even. The lightest HC baryon state Bχ

(BHC ¼ 1, or ZHC
2 odd) is therefore stable. We estimate its

mass by rescaling from QCD, yielding mBχ
∼

mpfHCπ =fHCπ ∼ 220 GeV, not including the HC quark-mass
contributions.
Small breaking of the flavor Uð2ÞUR

symmetry should be
accompanied by small mass splittings between the light HC
quarks, with mQ2

> mQ1
or mQ2

< mQ1
. We therefore

consider two possible flavor structures for the lightest
HC baryon, Bχ ½Q1Q1Q2� or Bχ ½Q2Q2Q1�, respectively.
In general, we expect the two baryons in this “isospin
doublet” to be nearly degenerate in mass, since the Uð2ÞUR

symmetry must remain approximately intact due to flavor
changing neutral current constraints.
If Bχ is a thermal relic, its relic abundance is set by its

annihilation cross section in the early universe. This is

dominated by BχB̄χ → multi-πHC final states. We estimate
this by scaling the QCD pp̄ annihilation cross section to the
HC scale,

σBχ B̄χ
≈ σpp̄ðfHCπ =fπÞ2: ð66Þ

The pp̄ annihilation cross sections measured by the LEAR
collaboration [98] vary from ≈ 200 mb to ≈ 80 mb, for p̄
beam momenta varying from 200 MeV to ≈600 MeV,
respectively. Using Eq. (66) and converting the LEAR p̄
beam momenta to center-of-mass values of v=c, we obtain
the range of Bχ annihilation cross sections σBχ B̄χ

≈ 0.01 mb
(v=c ≈ 0.1) to σBχ B̄χ

≈ 0.004 mb (v=c ≈ 0.3). Note that the
nonrelativistic values of v=c are in the range relevant for
estimating thermal relic DM abundances. In particular, we
find hσBχ B̄χ

vi ∼ 3 × 10−20 cm3=s. This is 106 × hσvith rel,
where hσvith rel ¼ 3 × 10−26 cm3=s would be the annihila-
tion cross section required for Bχ to explain the observed
DM abundance.
Our estimate for hσBχ B̄χ

vi implies that the Bχ would
be a very subleading DM component, with
ΩBχ

∼Oð10−6Þ × ΩDM. Nevertheless, DM direct detection
searches could be sensitive to it because the Bχ—nucleon
scattering cross section is large. The latter is dominated by
exchange of the vector mesons ρHC; VLðωHCÞ. For sim-
plicity, we only consider the vector couplings gVB̄χγμBχVμ

and ignore the higher-dimension tensor couplings. For the
coupling strengths, we use the corresponding QCD sum-
rule values [99]: gρ ¼ 2.3 and gω ¼ 6.9.
For Bχ ½Q1Q1Q2� its cross section with protons is given

by

σðBχp → BχpÞ ¼ ðκρRÞ2
ðgρ þ gωÞ2

m4
ρHC

m2
p

16π
; ð67Þ

where we have ignored the small splitting between the ρHC
and VL masses, and the couplings of the ρHC and VL to the
RH up quark are equal and given by κρR ¼ 0.117; see
Table VI. For Bχ ½Q2Q2Q1� its cross section with
protons is obtained by substituting gρ → −gρ in
Eq. (67). In both cases the cross sections with neutrons
are a factor of 4 smaller. Thus, for our benchmark we
estimate that the Bχ–nucleon cross section would be σscatt ∼
10−38 cm2 for Bχ ½Q2Q2Q1�, and σscatt ∼ 5 × 10−38 cm2 for
Bχ ½Q1Q1Q2�. The LUX bound on the DM-nucleon scatter-
ing cross section excludes ðΩBχ

=ΩDMÞ × σscatt ≲ 2.5 ×
10−45 cm2 [100] for mBχ

∼ 220 GeV. With our estimate
for ΩBχ

=ΩDM, the scattering of relic Bχ ½Q2Q2Q1� on nuclei
would seem to be at the very limit of the allowed range,
whereas for Bχ ½Q1Q1Q2� it is an order of magnitude too
large. The uncertainties in our estimates of the Bχ relic
density and cross sections with nucleons are large and
warrant a more detailed analysis to see whether or not
stealth strong dynamics could be discovered in direct DM
searches.
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Finally, we point out that the HC baryon number (or
discrete ZHC

2 ) symmetry is accidental and therefore may
only be approximate. For instance, it could be broken at
some higher scale in extensions of our model with a larger
field content. In that case all of the HC baryons could be
unstable and decay in the early universe. For example, if the
SM is extended by a light right-handed neutrino, νR, the
breaking can exhibit itself through a dimension-7 operator
ðS†Q1Q2ÞuRνR which also breaks the Uð2ÞUR

symmetry,
where the SUðNÞHC indices in the bracket are contracted
with the antisymmetric Levi-Civitá tensor.

VII. CONCLUSIONS

We have provided an explicit strong interaction model
that can produce large enhancements of the tt̄ asymmetries
at the Tevatron, while not being excluded by other direct or
indirect searches for new physics. The model minimally
extends the SM field content by a (SM gauge singlet) flavor
triplet of vectorlike fermions Qi charged under a new
strong gauge group, and by a scalar S charged under QCD,
hypercharge and the new strong gauge group. We choose
SUð3ÞHC hypercolor for the strong gauge group in order to
directly translate the results of QCD strong dynamics, thus
reducing the uncertainties in our predictions. An approxi-
mate U(2) flavor symmetry is imposed on the fundamental
interactions between the hypercolor and SM sectors—the
Yukawa-type couplings of the S to the RH up quarks and
Qi. The Qi masses are also U(2) invariant and satisfy a
hierarchy analogous to mu;d ≪ ms ∼ fπ in QCD. The S is
heavier and is thus analogous to a heavy flavor quark in
QCD with mass m ≫ 4πfπ . The flavor symmetry insures
that new physics contributions to flavor-changing neutral
currents, e.g. D0–D0 mixing or same-sign top pair pro-
duction, are negligible or absent. The fact that the HC
sector is neutral with respect to the SUð2ÞL weak inter-
action allows the model to easily evade precision electro-
weak tests and also ensures that any modifications of the
Higgs couplings are very small.
The scale of the new strong dynamics is quite low. The

mass of the lightest pseudo-Nambu–Goldstone boson, πHC,
is merely 60 GeV, while most of the remaining resonances
are in the range of ≈ 150 GeV to ≈ 300 GeV. Despite a
plethora of new resonances, the model is, surprisingly, not
yet excluded by new physics searches. The reason is
twofold: (i) these resonances are bound states of the Qi
and are thus QCD color neutral, and (ii) the heavier
hypercolor scalar S rapidly decays into high-multiplicity
final states, before it can form QCD colored bound states.
In particular, pair production of SS� would result in tjþ n
fat jets or tt̄þ n fat jets final states, where a fat jet is
associated with a πHC → jj or KHC → t�j decay.
There already has been considerable progress at the LHC

in searches for new physics involving final states with large
jet multiplicities. However, searches in relatively low-
multiplicity final states, including fat jets, are probably

the most promising for discovery of hypercolor resonances.
An example is pair production of ρHC resonances, with each
ρHC decaying to a pair of HC pions, resulting in the chain
pp → ρHCρHC → 4πHC → 4 fat jets. The rather strong
coupling of the hypercolor sector to the top quarks leads
to observable tt̄ charge asymmetries in associated hyper-
color resonance production at the LHC. This feature could
be useful in discriminating signal from background in tþ
jet resonance searches. For example, the t̄ in the process
pp → tK�

HC → tt̄j is produced with relatively large rap-
idities compared to the top and compared to the antitop
in pp → tt̄. This feature could also be useful in virtual
t� þ j resonance searches associated with the process
pp → tKHC → tt̄�j.
We have used known nonperturbative aspects of QCD, as

well as familiar approximations like QCD sum rules,
vector-meson dominance, and a naive quark model, com-
bined with simple scaling arguments to obtain reasonable
estimates of the resonance masses and interaction strengths
in our QCD-like hypercolor model. An interesting appli-
cation concerns the relic abundance of the lightest HC
baryon, Bχ . If the accidental HC baryon number symmetry
of our Lagrangian is left unbroken by higher-dimensional
operators involving additional light non-SM fields, then the
Bχ is stable. Scaling the measured low-energy QCD pp̄
annihilation cross sections will imply a Bχ relic abundance
that is only Oð10−6Þ as large as the observed dark matter
abundance. Nevertheless, the Bχ-nucleon cross section is
large enough to be close to saturating the present direct dark
matter detection bounds and may yield an observable signal
in the next generation of the dark matter direct detection
experiments or rule out a stable Bχ .
An interesting open question is also the UV structure of

our model. The one-loop running of the Yukawa couplings
h1; h3 and the HC gauge coupling gHC gives a Landau pole
at μ ¼ Oðfew TeVÞ, whereas two-loop RGEs give an
approximate UV fixed point for h3 of nonperturbative
strength, h�3 ≈ 8, that is realized at μ ¼ Oð10 TeVÞ, with h1
and gHC asymptotically free. To settle the question which of
the two possibilities is realized would require nonpertur-
bative methods, and is beyond the scope of the current
work, but could be an interesting future research direction.
In summary, the presented model can lead to large tt̄

asymmetry at the Tevatron and evades present experimental
bounds but can be searched for with improved strategies
at the LHC and in direct dark matter detection experiments.
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APPENDIX A: RESONANCE MASS SPECTRA

The masses of the HC mesons are obtained from the
measured spectrum of QCD mesons by appropriate rescal-
ings. To good approximation, the QCD ρ mass, mQCD

ρ ,
corresponds to the massless limit of the HC ρ meson,
Mχ ¼ limmQi

→0mHC
ρ . In obtaining the spectra, we also need

to allow for variations of the HC quark masses. We do this
by employing chiral perturbation theory (ChPT) for the
pseudoscalar mesons and a naive quark model for the
vector and axial-vector resonances.

1. Pseudoscalar mesons

The compositions of the HC pion and kaon in terms of
the HC quarks are

jπ1ð2Þi ¼ jQ̄1ð2ÞQ2ð1Þi;

jπ3i ¼ 1ffiffiffi
2

p ðjQ̄1Q1i − jQ̄2Q2iÞ;

jK1ð2Þi ¼ jQ̄1ð2ÞQ3i;
jK̄1ð2Þi ¼ jQ̄3Q1ð2Þi; ðA1Þ

while the octet and the singlet pseudoscalars are given by

jη8i ¼
1ffiffiffi
6

p ðjQ̄1Q1i þ jQ̄2Q2i − 2jQ̄3Q3iÞ;

jη0i ¼
1ffiffiffi
3

p ðjQ̄1Q1i þ jQ̄2Q2i þ jQ̄3Q3iÞ: ðA2Þ

As explained in the main text, we neglect η − η0 mixing so
that the η8 ¼ η and η0 ¼ η0.
The quadratic terms in the chiral Lagrangian yield

expressions for the squared pseudoscalar masses which
are linear in the quark masses,

ðmπ1;2;3Þ2 ¼ kf
Mχ

mQCD
ρ

2mQ1
;

ðmK1;2;K̄1;2Þ2 ¼ kf
Mχ

mQCD
ρ

ðmQ1
þmQ3

Þ;

ðmηÞ2 ¼ kf
Mχ

mQCD
ρ

2

3
ðmQ1

þ 2mQ3
Þ: ðA3Þ

We use kf ¼ 2.765 as obtained from the lattice QCD
calculation in Ref. [101]. The η0 is assumed to be much
heavier than the other pseudoscalar mesons and is omitted
from our analysis as explained in Sec. III A.

2. Vector mesons

The vector-meson masses and the mixing angle between
the flavor-singlet and octet states are calculated using the
naive quark-model approach in Ref. [41]. The decompo-
sitions of the ρ and K� in terms of HC quark states are

jρ1ð2Þi ¼ jQ̄1ð2ÞQ2ð1Þi;

jρ3i ¼ 1ffiffiffi
2

p ðjQ̄1Q1i − jQ̄2Q2iÞ;

jK�1ð2Þi ¼ jQ̄1ð2ÞQ3i; jK̄�1ð2Þi ¼ jQ̄3Q1ð2Þi: ðA4Þ

Their masses are given by

ðmρ1;2;3Þ2 ¼ μHCV ðEHC
0;V þ 2mQ1

Þ;
ðmK�1;2;K̄�1;2Þ2 ¼ μHCV ðEHC

0;V þmQ3
þmQ1

Þ: ðA5Þ

Here, μHCV is an overall mass-scale parameter, E0;V
describes the binding energy in the limit of massless HC
quarks, while the mQi

are the HC quark masses.
The octet and singlet vector-meson states are

jV8i ¼
1ffiffiffi
6

p ðjQ̄1Q1i þ jQ̄2Q2i − 2jQ̄3Q3iÞ;

jV0i ¼
1ffiffiffi
3

p ðjQ̄1Q1i þ jQ̄2Q2i þ jQ̄3Q3iÞ: ðA6Þ

The mixing angle between the flavor-singlet and octet
vector mesons is obtained by diagonalizing the correspond-
ing mass matrix

� ðmVL
Þ2 0

0 ðmVH
Þ2
�

¼ RV

�
μHCV ðEHC

0V þ 2
3
ð2mQ1

þmQ3
Þ þ xHCan;VÞ − 2

3

ffiffiffi
2

p
μHCV ðmQ3

−mQ1
Þ

− 2
3

ffiffiffi
2

p
μHCV ðmQ3

−mQ1
Þ μHCV ðEHC

0V þ 2
3
ðmQ1

þ 2mQ3
ÞÞ

�
R−1
V ; ðA7Þ

where VL;H are the mass eigenstates. The mass matrix on the rhs is given in the V0 − V8 basis. It contains an additional
parameter xHCan;V which takes into account the annihilation of the flavor-singlet meson into gluonic intermediate states. The
matrix RV is chosen to diagonalize the mixing matrix and thereby yields the mixing angle,

BROD et al. PHYSICAL REVIEW D 91, 095009 (2015)

095009-20



� jVLi
jVHi

�
¼ RV

� jV0i
jV8i

�
¼

�
cos θV sin θV
− sin θV cos θV

�� jV0i
jV8i

�
:

ðA8Þ

We first fit the parameters of the ansatz in Eq. (A7),
applied to QCD. Our inputs are the measured QCD vector-
meson masses, the mixing angle θQCDV ¼ 38.7°, and the
light-quark masses mu ¼ md ¼ 4 MeV, ms ¼ 100 MeV.
They yield

μQCDV ¼ 2.21 GeV; EQCD
0;V ¼ 260 MeV;

xQCDan;V ¼ 15 MeV; ðA9Þ

where we only quote the central values. This suffices since
the errors are much smaller than the errors we ascribe to the
extrapolation to the HC case. The HC parameters are
obtained by rescaling in the usual way

fμHCV ; EHX
0;V ; x

HC
an;Vg ¼ Mχ

mQCD
ρ

fμQCDV ; EQCD
0;V ; xQCDan;V g: ðA10Þ

Note that Mχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μHCV EHC

0;V

q
.

The mixing angle is close to ideal. The deviation from
ideal mixing is parametrized by the angle θidV ; see the
definition in Eq. (16). It is related to θV as

sin θidV ¼ −
1ffiffiffi
3

p cos θV þ
ffiffiffi
2

3

r
sin θV: ðA11Þ

The singlet–octet mixing angle θV is directly related to
xHCan;V as [41]

tan 2θV ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nf − 1

p
Nf − 2 − ξV

; ðA12Þ

with

ξV ¼ NfxHCan;V
2ðmQ3

−mQ1
Þ ðA13Þ

and Nf ¼ 3 in our HC model. Note in particular that
xHCan;V ¼ 0 corresponds to ideal mixing, θidV ¼ 0.

3. Axial vectors

The same naive quark model [41] can also be applied to
the axial (3P1) vector masses. The decompositions of the a1
and K1 in terms of HC quark states are

ja1ð2Þ1 i ¼ jQ̄1ð2ÞQ2ð1Þi;

ja31i ¼
1ffiffiffi
2

p ðjQ̄1Q1i − jQ̄2Q2iÞ;

jK1ð2Þ
1 i ¼ jQ̄1ð2ÞQ3i; jK̄1ð2Þ

1 i ¼ jQ̄3Q1ð2Þi: ðA14Þ

Note that we have ignored the 1P1 multiplet and the
corresponding K1A-K2A mixing, as explained in the main
text. The naive quark-model parameters are now μHCA , EHC

0;A,
and xHCan;A. The a1 and K1 masses are given by

ðMHC
a1;2;3
1

Þ2 ¼ μHCA ðEHC
0;A þ 2mQ1

Þ;
ðMHC

K1;2
1

Þ2 ¼ μHCA ðEHC
0;A þmQ3

þmQ1
Þ: ðA15Þ

The description of the A0 − A8 (singlet-octet) system is
given by substituting V → A in Eqs. (A6)–(A8) and (A11)–
(A13). The mass eigenstates are denoted by AL and AH.
The quark-model parameters in QCD are obtained by

fitting to the a1, K1A, f1ð1420Þ, f1ð1285Þ masses and the
mixing angle θidA . For the mixing angle, we inflate the
errors, taking θidA ¼ ð23.0� 23.0Þ° (a recent LHCb deter-
mination [102] obtains �ð24þ3.1þ0.6

−2.6−0.8 Þ°, and recent lattice
determinations in Ref. [103] range from �½25; 36�°). This
gives

μQCDA ¼ 2.16 GeV; EQCD
0;A ¼ 700 MeV;

xQCDan;A ¼ 64 MeV; ðA16Þ

where again we only quote the central values.

4. Would-be composite quarks u0

The would-be composite quarks, u0i ∼ ½SQi�, can be
thought of as analogs of a heavy–light vector meson,
as discussed in Sec. III C. Carrying over the expression
for the heavy–light meson masses in the heavy-quark limit
in QCD to our would-be composite quarks gives
Mu0i

¼ OðΛHCÞ þmQi
þmS. Here, ΛHC is the HC confine-

ment scale. The scalar S corresponds to a QCD heavy
quark with mass between that of the charm and the bottom
quark. We thus estimate the HC-dynamics contribution to
the u0i mass to be roughly the ρ mass, similarly to what is
found for the D and B mesons in QCD. We set the would-
be HC quark masses to

Mu0 ¼ Mc0 ¼ Mχ þmQ1
þmS;

Mt0 ¼ Mχ þmQ3
þmS: ðA17Þ

For our benchmark this gives Mu0;c0 ¼ 691 GeV
and Mt0 ¼ 718 GeV.
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APPENDIX B: DECAY CONSTANTS
AND COUPLINGS

In this Appendix we explain in more detail how we
obtain our estimates for the couplings of the HC resonances
to the would-be composite quarks and our estimates for the
decay constants of the would-be composite quarks.
We start with the VMD estimates of the HC resonance

couplings to the would-be composite quarks, Eq. (31). The
VMD assumption states that the matrix element hu0jJaμju0i,
where Jaμ ¼ Q̄iγ

μðTaÞijQj, is dominated by the lowest-
lying vector resonance Va with the same quantum numbers
as the current Jaμ. For appropriately chosen linear combi-
nations of the flavor-group generators, Ta, these will be the
vector resonances ρ;ω; K�;ϕ. In the VMD limit, we can
write

hu0jJaμju0i → hu0ju0Vai 1

q2 −M2
V
hVajJaμj0i: ðB1Þ

Using the definitions in Eqs. (8) and (31), we have

hu0jJaμju0i → gV
fVMV

q2 −M2
V
ū0Taγμu0; ðB2Þ

where we have used
P

ϵμϵ
�
ν ¼ gμν þ qμqν=M2

V and the
Dirac equation. On the other hand, the vector current matrix
element can also be written in terms of the form factors

hu0jJaμju0i ¼ ū0Ta½γμf1ðq2Þ þ
iσμν
2mu0

qνf2ðq2Þ�u0; ðB3Þ

where the normalization condition is f1ð0Þ ¼ 1. Equating
the last two expressions for q2 → 0 leads to the VMD
relation

gV ¼ MV

fV
: ðB4Þ

Next, we describe the determination of the decay
constant, fu0 , of the would-be composite quarks. In this
estimate we can take the q̄i to be massless and focus
entirely on the mS dependence of fu0 . Again we are guided
by QCD. For mS ≪ Mχ (i.e. mq ≪ mρ in QCD) we use the
fact that ChPT and lattice QCD simulations show a linear
dependence: fu0 ¼ aðfu0 Þ0 þ bmS. For heavy mS ≫ Mχ,
HQET yields the scaling fu0 ¼ c=

ffiffiffiffiffiffiffi
mS

p
[104,105].

Rescaling from QCD yields an expression for fHCu0 of the
form

fHCu0 ¼ fQCDρ
Mχ

MQCD
ρ

F
�
mu0

Mχ

�
; ðB5Þ

where we use the fact that the would-be composite quark u0
most closely resembles the ρ in QCD (i.e. it is a low-lying
resonance but not a pNGB). The dimensionless function

F ðxÞ captures the ChPT and heavy quark effective theory
(HQET) behaviors. For x → 0 we have F ðxÞ ¼ cF ð0Þþ
F ð0Þ0x, while for x ≫ 1 we have F ðxÞ ¼ F∞=

ffiffiffi
x

p
. The

constant F∞ is determined from the value of fB� in QCD.
The HQET form of F ðxÞ is assumed to be valid above
xmatch ¼ mu0=Mχ ≃ 4.1, and a quadratic interpolation is
used for lower values of x, such that the QCD values of fD� ,
fK� , and fρ are all properly described. The result is shown
in Fig. 14. For our estimates of fu0 , only the HQET scaling
turns out to be needed (along with the proper rescaling to
the HC scale), given the range of masses we considered
for mS.

APPENDIX C: DECAY WIDTHS

The decay widths for ρ and K� decays to pseudoscalar
pairs are given by

Γρ

mρ
¼ 1

96π

�
2g2ρππ

�
1 −

4m2
π

m2
ρ

�
3=2

þ g2ρKK

�
1 −

4m2
K

m2
ρ

�
3=2

�
;

ΓK�

mK�
¼ g2K�Kπ

64π

�
fPS

�
mπ

mK�
;
mK

mK�

��
3

þ g2K�Kη8

64π

�
fPS

�
mη8

mK�
;
mK

mK�

��
3

: ðC1Þ

Here, the phase-space function is defined as

fPSðx; yÞ ¼ 1 − 2x2 − 2y2: ðC2Þ
Note that, due to flavor-symmetry breaking, the effective
couplings gρKK, gK�Kπ , gK�Kη8 could differ from gρππ ,
defined in the flavor-symmetric limit in Eq. (14). In our
numerics we take, however, all of them equal to the VMD
value gρ, as discussed in Sec. III B.

FIG. 14. The normalized interpolating function F used to
estimate the decay constant fu0 as a function of the dimensionless
quantity mu0=Mχ. The function F is chosen such that it
reproduces the measured QCD decay constants fρ, fK� , fD� ,
fB� , denoted with crosses. The value of mu0 used in the bench-
mark is denoted by a circle.
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The decay widths of VL and VH read

ΓVL

mVL

¼ g2ρ
32π

sin2θV

�
1 − 4

m2
K

m2
VL

�
3=2

;

ΓVH

mVH

¼ g2ρ
32π

cos2θV

�
1 − 4

m2
K

m2
VH

�
3=2

; ðC3Þ

where θV is the mixing angle in Eq. (A8), and we have used
the VMD estimate of the effective coupling.
The partial widths of the vector mesons to SM quarks are

governed by their mixing with the would-be composite
quarks; see Eq. (33). For instance, the K̄�1 → t̄u partial
decay width is given by

ΓK̄�1→t̄u

MK�
¼ 1

16π
fPS

�
0;

mt

mK�

�
½ðλR13Þ2 þ ðλL13Þ2�

×

�
1 −

m2
t

2m2
K�

−
1

2

�
m2

t

m2
K�

�
2
�

ðC4Þ

and similarly for ΓK̄�2→t̄c with λL=R13 → λL=R23 .
The 3P1 axial vectors can have A → VP decays and, if

kinematically allowed, A → VV decays. The former usu-
ally dominate. To estimate the corresponding decay widths,
we follow the phenomenological analysis for A → VP
decays in QCD given in Ref. [42] and carried out in the
SU(3) limit. The authors point out that in general one can
express the decay amplitudes in terms of two independent
operators,

hAμν½Vμν; P�i; hAμ½Vμ; P�i: ðC5Þ

They only choose the first operator for their study, which
involves the tensor representations for the vector operators.
However, they explain that an analysis involving only the
second operator would yield similar results. The A → VP
Lagrangian, in the SU(3) limit, is then

LAVP ¼ i ~FhAμν½Vμν; P�i; ðC6Þ

where h…i denotes a trace over the SU(3) generators, ~F is a
dimensionful coupling, and the factor i insures that the
Lagrangian is Hermitian. The tensor-field operators Vμν is
normalized such that

h0jVμνjVðP; ϵÞi ¼
i

MV
ðPμϵν − PνϵμÞ ðC7Þ

and similarly for Aμν.

The partial decay widths of the axial vectors are then
given by

ΓA→VP ¼ jλAVPj2
2π

~F2q
m2

A

�
1þ 2

3

q2

m2
V

�
; ðC8Þ

where q ¼ fPSðm2
V=m

2
A;m

2
P=m

2
AÞ · 1=ð2mAÞ and λAVP are

decay-mode-specific dimensionless prefactors. For in-
stance, the mixed flavor octet-singlet states AL and AH
decay to K�K final states. Summing over the K��K∓,
K�0K̄0, and K̄�0K0 decay modes, the AL → K�K and AH →
K�K decay widths are obtained by using the expression

λAL;HK�K ¼ 2

�
cos2θidA

2
þ sin2θidA �

ffiffiffi
2

p
sin θidA cos θidA

�
1=2

;

ðC9Þ

for the λ prefactor in Eq. (C8)
The a1 decays to ρπ and K�K. Summing over these final

states, the a1 → ρπ and a1 → K�K partial decay widths are
obtained by using

λa1ρπ ¼ 2 and λa1K�K ¼
ffiffiffi
2

p
ðC10Þ

in Eq. (C8). The K1 → ρK;K�π; Kω; Kϕ partial decay
widths follow from Eq. (C8) using

λK1ρK;K1πK� ¼
ffiffiffi
3

2

r
; λK1ωK ¼ 1ffiffiffi

2
p ; λK1ϕK ¼ 1:

ðC11Þ

The fits to the QCD axial-vector decay widths yield a
large allowed range for ~F. In particular, the solutions for ~F
vary from ~FQCD ≈ 1200 MeV to ~FQCD ≈ 1600 MeV. We
rescale from QCD with the usual scale factor,

~FHC ¼ Mχ

mρQCD
~FQCD: ðC12Þ

Finally, we quote the total decay width of the heavy
scalar S, including the phase-space factors

ΓS→uiQ̄i

mS
¼ jhij2

16π
fPS

�
mui

mS
;
mQi

mS

��
1 −

m2
ui

m2
S

−
m2

Qi

m2
S

�
: ðC13Þ
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