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We analyze a model for the Higgs sector with two scalar doublets and a Z2 symmetry that is manifest in
the Yukawa sector but broken in the potential. Thus, one of the doublets breaks the electroweak symmetry
and has tree-level Yukawa couplings to fermions, whereas the other doublet has no vacuum expectation
value and no tree-level couplings to fermions. Since the Z2 parity is broken the two doublets can mix,
which leads to a distinct and novel phenomenology. This stealth doublet model can be seen as a
generalization of the inert doublet model with a broken Z2 symmetry. We outline the model and present
constraints from theory, electroweak precision tests, and collider searches, including the recent observation
of a Higgs boson at the LHC. The charged scalar H� and the CP-odd scalar A couple to fermions at one-
loop level. We compute the decays ofH� and A and in particular the one-loop decays A → ff̄, H� → ff̄0,
H� → W�Z and H� → W�γ. We also describe how to calculate and renormalize such processes in our
model. We find that if one of H� or A is the lightest scalar, H� → W�γ or A → bb̄ are typically their
respective dominating decay channels. Otherwise, the dominating decays ofH� and A are into a scalar and
a vector. Due to the absence of tree-level fermion couplings forH� and A, we consider pair production and
associated production with vector bosons and scalars at the LHC. If the parameter space of the model that
favors H� → W�γ is realized in Nature, we estimate that there could be a considerable amount of such
events in the present LHC data.
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I. INTRODUCTION

The ATLAS [1] and CMS [2,3] experiments at the Large
Hadron Collider (LHC) have after a long history of
searches discovered a Higgs boson. By all accounts the
properties of the observed particle agree within errors with
what is expected of a Standard Model (SM) Higgs boson,
but it will require much work to ascertain whether the SM
Higgs doublet is all there is, or if an extended Higgs sector
exists. In earlier data there were some (not quite significant)
hints of enhanced signal strengths in e.g. H → γγ, and
moreover the results from ATLAS and CMS were not in
complete agreement, but when all data from the first run of
LHC are taken into account, the enhancement has dis-
appeared and the two experiments agree; see e.g. [4,5] for
the latest data on H → γγ. It is important to now probe and
investigate the Higgs sector in detail to understand the
observations and what can be expected.
Much work has been dedicated to studying some

standard scenarios for the electroweak symmetry breaking
sector. Among these scenarios are the SM, the Minimal
Supersymmetric Standard Model (MSSM), and general
CP-conserving two-Higgs doublet models (2HDMs). For
the latter models one often imposes a, possibly softly
broken, Z2 symmetry to prevent the occurrence of large

flavor-changing neutral currents (FCNCs). General
2HDMs have been recently reviewed in Ref. [6]. Except
for the SM, these models predict a set of additional Higgs
bosons, each of which has characteristic production and
decay channels for a given set of parameters.
In general CP-conserving models with two Higgs

doublets, there are two CP-even neutral Higgs bosons, h
and H, which have the same coupling structure to fermions
and gauge bosons (up to mixing angles) as the SM Higgs.
Their decay channels are the same as for the SM Higgs plus
possible decays to lighter Higgs bosons. Of course their
branching ratios can be very different because of different
coupling strengths and different decay channels being
open. There is additionally a CP-odd neutral Higgs boson
A, which mainly decays to the heaviest possible fermions,
A → bb̄ or tt̄, or to a Higgs-vector boson pair, A → hZ,
H�W∓. Finally, there is a charged Higgs boson H�, which
depending on its mass and couplings decays mainly as
H� → τν, cs or tb, or as H� → hW� or H� → AW�.
An alternative scenario is presented by the inert doublet

model (IDM) [7–9], where there is a SM-like Higgs boson,
but in addition there is another doublet that is odd under a
discrete Z2 symmetry. Making all other SM particles even
under this symmetry and demanding that the Lagrangian is
Z2 symmetric, the scalars from the other doublet become
fermiophobic, i.e. they do not couple to fermions. Thus, if
the Z2 symmetry is exact, the lightest scalar from this
doublet is stable, providing a possible dark matter
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candidate (see e.g. [10,11] for constraints on the IDM from
dark matter). This makes for a very different phenomenol-
ogy, so that if an alternative scenario such as the IDM or
some other nonstandard model is realized in Nature, the
common searches may prove inadequate.
The stealth doublet model (SDM) studied in this paper

was recently proposed in Ref. [12]. It can be seen as a
generalization of the IDM, but with the Z2 symmetry
broken in the scalar potential. This means that, in general,
there is no stable scalar particle, but instead there are now
two particles, h and H, that can play the role of the Higgs
boson observed at the LHC. In [12] we showed that this
model can describe the observations of ATLAS and CMS
very well. In this paper we will study the model in more
detail, and we will in particular study some of the properties
of the charged scalar H� and the CP-odd scalar A.
As in the IDM, the H� and A have no tree-level

couplings to fermions, and must therefore be produced
and decay in different channels than in the standard
scenarios. However, contrary to the IDM, because of the
broken Z2 symmetry, couplings to fermions are now
generated at the one-loop level. The usual decay channels
of the H� and A bosons into fermions are therefore loop
suppressed in our model. Consequently, model-dependent
constraints do not always apply, and H� and A can be
lighter in our model than in standard scenarios. For
example, the main decay of the charged Higgs boson is
typically H� → W�γ, provided that H� is the lightest
scalar. Another example is that the production of the CP-
odd Higgs A through gluon-gluon fusion is strongly sup-
pressed, but still the main decay channel is typically into bb̄
as in the standard scenarios.
Fermiophobic models have been discussed previously

[13–19], for the case where the lightest CP-even Higgs
boson is fermiophobic. Such a Higgs boson has an
increased branching ratio for h → γγ but is not produced
in gg → h. In our model, instead, the lightest CP-even
Higgs boson has the same types of interactions as in
standard 2HDMs, but the H� and A are fermiophobic.
Fermiophobic charged Higgs bosons have recently been
discussed in [20] and [21].
As already mentioned, a Z2 symmetry is usually

imposed on 2HDMs in order to not run into dangerous
FCNCs. One possibility is to arrange the symmetry such
that only one of the doublets couples to fermions. This is
known as a Type-I Yukawa sector, and our model is an
example of such a Yukawa sector. It is worth pointing out
that the model cannot be obtained by simply taking the
tan β → 0 or tan β → ∞ limit of a type-I 2HDM with a
broken Z2 symmetry, similarly as the IDM can not be
obtained from a type-I 2HDM with an exact Z2 symmetry
[9]. An additional motivation for considering type-I models
is that recent work in string theory [22] seems to imply that
they are generic in heterotic string theories, where selection
rules forbid additional Higgs doublets from coupling to

fermions. Type-I models by definition have an exact Z2

symmetry in the Yukawa sector. As a consequence, if the
symmetry is only broken in the Higgs potential, then no
dangerous FCNCs are generated at tree level. This also
applies to our model, where new sources of FCNCs only
appear at the two-loop level.
Furthermore, it is possible to avoid FCNC by imposing

alignment in the Yukawa sector [23]. In the Aligned 2HDM
(A2HDM), the Yukawa couplings are governed by the three
parameters tan βU;D;L in place of the tan β parameter of the
previously mentioned Z2-symmetrical 2HDMs. We note
that our model is very similar to the fermiophobic limit of
the A2HDM; see Sec. II C.1 For recent analyses of the
A2HDM we refer to [20] and [21].
The organization of this paper is as follows: in Sec. II we

discuss the definition of the model and derive masses as
well as define the free parameters of the model. We then
consider constraints on the model from theoretical consid-
erations and electroweak precision tests (EWPT) in Sec. III.
The recently observed Higgs boson at the LHC is discussed
in the context of our model in Sec. IV. Decays of the scalar
particles are discussed in Sec. V. Finally, we briefly discuss
the collider phenomenology of the charged scalar and the
CP-odd scalar in Sec. VI. Some more technical matters are
relegated to the appendices.

II. THE STEALTH DOUBLET MODEL

In this paper we construct and study a model with two
scalar doublets where only one of the doublets couples to
fermions at tree level. This is achieved by imposing a Z2

symmetry in the Yukawa sector, which, however, is broken
in the potential. In this section we will first analyze the
scalar potential of the model. We will then derive the scalar
mass eigenstates, and consider the free parameters and the
constraints on them. We will finally consider the structure
of the Yukawa couplings in Sec. II C.
We will in the following refer to the model as the stealth

doublet model (SDM). The model has previously been
presented in [12] and in the conference proceedings [24].

A. The scalar potential

We introduce two SUð2ÞL-doublet, hypercharge Y ¼ 1,
complex scalar fields Φ1;2, which may be written in terms
of their component fields as

Φ1;2 ¼
�
φþ
1;2

φ1;2

�
; ð2:1Þ

or in components ½Φ1;2�þ ¼ φþ
1;2 and ½Φ1;2�0 ¼ φ1;2. We

then consider the most general gauge invariant and renor-
malizable scalar potential,

1We also note that in Ref. [21], which appeared some time after
the first arXiv version of this paper, our calculations of the decay
widths of fermiophobic H� presented in Sec. Vare reproduced in
the A2HDM with compatible results.
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V½Φ1;Φ2� ¼ M2
11Φ

†
1Φ1 þM2

22Φ
†
2Φ2 − ½M2

12Φ
†
1Φ2 þ h:c:� þ 1

2
Λ1ðΦ†

1Φ1Þ2 þ
1

2
Λ2ðΦ†

2Φ2Þ2 þ Λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ

þ Λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ
�
1

2
Λ5ðΦ†

1Φ2Þ2 þ ½Λ6ðΦ†
1Φ1Þ þ Λ7ðΦ†

2Φ2Þ�Φ†
1Φ2 þ H:c:

�
; ð2:2Þ

where all parameters are real except Λ5;6;7 and M2
12, which

may be complex. In this paper we are only concerned with
CP-conserving models and will from now on assume all
couplings to be real.
A priori there is no physical difference between the two

fields Φ1 and Φ2 in the scalar potential (2.2), since they
have the same quantum numbers and transformation
properties. We will now consider the effect on the scalar
potential (2.2) of global U(2) transformations of the two
doublets, Φa → UabΦb with U ∈ Uð2Þ. The potential is in
general not invariant under such transformations, but since
there is no difference between the doublets, any linear
combination of them can be the physical fields.
It is therefore convenient to define a basis for the

doublets in terms of their vacuum expectation values
(vevs) as

hΦ1i ¼
1ffiffiffi
2

p
�
0

v1

�
; ð2:3Þ

hΦ2i ¼
1ffiffiffi
2

p
�

0

v2eiξ

�
; ð2:4Þ

where v2 ¼ v21 þ v22 ≈ ð246 GeVÞ2 is the total vev, and
where ξ is a possible phase that could allow spontaneous
CP breaking, which we therefore set to zero. A particular
choice of vevs v1 and v2 of the two doublets then
corresponds to a choice of a particular basis, and the
U(2) transformations may be seen as changes of basis for
the doublets, where the total vev is rotated between the
doublets. Once again, the physics related to the scalar
potential, such as the mass spectrum of the scalars, is not
affected by basis transformations. (See [6,25–27] for clear
discussions of basis changes in 2HDMs).
One particular example of U(2) transformations is the

transformations belonging to the discrete Z2 subgroup,

Φ1 → Φ1; ð2:5Þ

Φ2 → −Φ2: ð2:6Þ

The potential is in general not invariant under such trans-
formations. The noninvariant terms are the dimension-
two operator Φ†

1Φ2 þ H:c: with coupling M2
12 and the

dimension-four operators ðΦ†
1Φ1ÞðΦ†

1Φ2Þ þ H:c: and
ðΦ†

2Φ2ÞðΦ†
1Φ2Þ þ H:c: with couplings Λ6 and Λ7.

The Z2 symmetry is often imposed to remove these
symmetry breaking terms. It is also imposed, with various

schemes for assignments of Z2 charges to fermions, in
order to avoid large flavor-changing neutral currents
(FCNC) [28,29], by arranging the Yukawa couplings such
that each fermion only couples to one doublet. If the
symmetry is broken, large FCNC may potentially occur,
but in our model we will only encounter new sources of
FCNC at the two-loop level (see Sec. II C below).
If the fields Φ1 and Φ2 would only occur in the scalar

potential (and in the kinetic terms), there would, as already
mentioned, be no difference between them. However, once
the fields are coupled to fermions and a specific structure
for the Yukawa couplings is introduced, they are no longer
equivalent and a particular basis is singled out as the
physical one.
In ourmodel, only one of the doublets, whichwe take to be

Φ1, couples to fermions, and we will from now on therefore
work in what is known as theHiggs basis, which is precisely
the basiswhere onlyΦ1 has a vev (see Sec. II C). Thevacuum
expectation values of the doublets are then

hΦ1i ¼
1ffiffiffi
2

p
�
0

v

�
; ð2:7Þ

hΦ2i ¼
�
0

0

�
; ð2:8Þ

where v ≈ 246 GeV.
The minimization conditions for electroweak symmetry

breaking in the Higgs basis become

m2
11 ¼ −

1

2
v2λ1; ð2:9Þ

m2
12 ¼

1

2
v2λ6; ð2:10Þ

giving no constraint on m2
22, which is therefore a free

parameter in this basis and in our model. From now on we
will use lowercase letters to specify that we are working in
the Higgs basis.

B. Physical states and mass relations

We choose Φ1 to be the doublet that gets a vev, with Z2

parity þ1, and Φ2 to be the one with zero vev and Z2 parity
−1. In a CP-conserving 2HDM, there are two CP-even
neutral states h, H, one CP-odd neutral state A, and two
charged states H�. We may then write the doublets in the
Higgs basis as
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Φ1 ¼
1ffiffiffi
2

p
� ffiffiffi

2
p

Gþ

vþ ϕ1 þ iG0

�
; ð2:11Þ

Φ2 ¼
1ffiffiffi
2

p
� ffiffiffi

2
p

Hþ

ϕ2 þ iA

�
; ð2:12Þ

whereG� andG0 are the Goldstone bosons and ϕ1;2 are the
neutral CP-even interaction eigenstates. The doublet Φ2 is
fermiophobic, i.e., the states H�, A, and ϕ2 do not interact
with fermions at tree level. From now on, we will call the
mass eigenstates in our model “scalars,” not Higgs bosons,
in accordance with the usual IDM nomenclature [9].
The masses for the A and H� can be found directly from

the potential,

m2
A ¼ m2

22 þ
1

2
v2ðλ3 þ λ4 − λ5Þ ¼ m2

H� −
1

2
v2ðλ5 − λ4Þ;

ð2:13Þ

m2
H� ¼ m2

22 þ
1

2
v2λ3: ð2:14Þ

The mass matrix for the CP-even states has nondiagonal
elements, and we may find the physical mass eigenstates by
diagonalizing this matrix. Taking the minimization con-
ditions (2.9), (2.10) into account, we have

M2 ¼
�
λ1v2 λ6v2

λ6v2 m2
22 þ λ345v2

�
¼

�
λ1v2 λ6v2

λ6v2 m2
A þ λ5v2

�
;

ð2:15Þ

where λ345 ¼ λ3 þ λ4 þ λ5. The matrix M2 may be dia-
gonalized by an orthogonal matrix V, defined by a rotation
angle α, as

�
m2

H 0

0 m2
h

�
¼ VTM2V: ð2:16Þ

The physical CP-even states are then given by (with α
defined so that mH > mh)�
H

h

�
¼ VT

�
ϕ1

ϕ2

�
¼

�
cos α sin α

− sin α cos α

��
ϕ1

ϕ2

�
;

where −
π

2
≤ α ≤

π

2
: ð2:17Þ

The physical CP-even scalar masses can be expressed as

m2
h ¼ c2αm2

A þ s2αv2λ1 þ c2αv2λ5 − 2sαcαv2λ6; ð2:18Þ

m2
H ¼ s2αm2

A þ c2αv2λ1 þ s2αv2λ5 þ 2sαcαv2λ6; ð2:19Þ

where we defined the abbreviations sα ≡ sin α, cα ≡ cos α.
Finally, we have the following explicit expressions for the

potential parameters λ1;3;4;5 in terms of the masses, the
mixing angle α, and the couplings λ6 and m2

22,

λ1v2 ¼
m2

H þm2
h

2
þ ðm2

H −m2
hÞ

2 cos 2α
− v2λ6 tan 2α; ð2:20Þ

λ3v2 ¼ 2ðm2
H� −m2

22Þ; ð2:21Þ

λ4v2 ¼
m2

Hþm2
h

2
−
ðm2

H−m2
hÞ

2cos2α
þv2λ6 tan2αþm2

A−2m2
H� ;

ð2:22Þ

λ5v2 ¼
m2

Hþm2
h

2
−
ðm2

H−m2
hÞ

2cos2α
þv2λ6 tan2α−m2

A; ð2:23Þ

allowing us to use the masses of the scalars as parameters of
the model. The mixing angle α is given by

tan 2α ¼ 2v2λ6
v2ðλ1 − λ5Þ −m2

A
; ð2:24Þ

or, in terms of the masses and λ6 only,

sin 2α ¼ 2v2λ6
m2

H −m2
h

: ð2:25Þ

Note that themass relations Eqs. (2.13), (2.14), (2.18), and
(2.19) are invariant under sin α → − sinα. Equivalently, from
Eqs. (2.20)–(2.23), the parameters λ1, λ3, λ4 and λ5 are also
invariant. This is easily seen, since as we have − π

2
≤ α ≤ π

2
,

the parameter sin α can take any value −1 ≤ sinα ≤ 1, and
cos α is always non-negative. This implies that under
sin α → − sin α, we have sin 2α → − sin 2α and λ6 → −λ6.
Equations (2.20)–(2.23) are not valid in the case of

maximal mixing, α ¼ � π
4
. In this case one instead obtains

λ1v2 ¼
m2

H þm2
h

2
; ð2:26Þ

λ3v2 ¼ 2ðm2
H� −m2

22Þ; ð2:27Þ

λ4v2 ¼
m2

H þm2
h

2
þm2

A − 2m2
H� ; ð2:28Þ

λ5v2 ¼
m2

H þm2
h

2
−m2

A: ð2:29Þ

Equations (2.15) and (2.25) show that when the Z2

symmetry is exact (λ6 ¼ 0), the mass matrix is diagonal and
there will be no mixing between h andH. This is the case in
the inert doublet model; in fact all our results reduce to the
IDM in the limit λ6 → 0, λ7 → 0 and sin α → 1 or −1.2 In
this sense, our model is a generalization of the IDM.

2Note that in this case the relation mH > mh is not valid, since
no rotation is performed to diagonalize the mass matrix M2.
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The scalar-scalar couplings depend on the potential
parameters and are straightforward to obtain from the
potential. The scalar-gauge boson couplings are obtained
from the covariant derivatives and depend on the mixing
angle only. The relevant three-particle couplings are listed in
Appendix A.

C. Yukawa sector

Now we are in a position to specify the Yukawa
couplings of the model. The most general Yukawa
Lagrangian in the Higgs basis reads [27]

−LYukawa ¼ κL0 L̄LΦ1ER þ κU0 Q̄Lð−iσ2Φ�
1ÞUR

þ κD0 Q̄LΦ1DR þ ρL0 L̄LΦ2ER

þ ρU0 Q̄Lð−iσ2Φ�
2ÞUR þ ρD0 Q̄LΦ2DR ð2:30Þ

and is written in terms of the electroweak interaction
eigenstates. In order to obtain the fermion mass eigenstates,
the matrices κF0 , ρ

F
0 (F ¼ U;D;LÞ are transformed by a

biunitary transformation that diagonalizes κF0 using the
unitary matrices VF

L, V
F
R according to

κF ¼ VF
Lκ

F
0V

F
R ¼

ffiffiffi
2

p

v
MF; ρF ¼ VF

Lρ
F
0V

F
R; ð2:31Þ

where MF is the diagonal mass matrix for fermions F, e.g.
½ML�22 ¼ mμ etc.
The ρF matrices are in general nondiagonal and will

generate FCNC. However, in our model we demand the Z2

symmetry to only be broken in the potential part of the
Lagrangian. Since the Z2 symmetry must be exact in
LYukawa, we impose ρF ¼ 0 at tree level. As a result, Φ2

has no tree-level couplings to fermions, and therefore large
FCNC are avoided. The fermions will acquire mass through
Yukawa couplings with the Higgs doublet Φ1 only. The
Yukawa Lagrangian in unitary gauge then reads

−LYukawa ¼
mf

v
Ψ̄fΨfϕ1 ¼

mf

v
Ψ̄fΨfðH cos α − h sin αÞ;

ð2:32Þ

for all fermions f. As will be shown in Secs. V B 1 and
VC 1 the soft breaking termsm2

12Φ
†
1Φ2 þ H:c: will generate

couplings between Φ2 and fermions, i.e. ρF ≠ 0 at one-loop
level. Furthermore, we will show in Sec. V B 1 that the ρF

matrices are diagonal and UV-finite at one-loop level. At
higher orders in perturbation theory, ρF will develop off-
diagonal elements and introduce additional sources of
FCNC.3 Finally we also note that the couplings of fermions

to A and H� are governed by ρF; more specifically we have
terms of the form iF̄ρFγ5FA and Ū½VCKMρ

Dð1þγ5Þ−
ρUVCKMð1−γ5Þ�DHþ.
It is interesting to compare our model with the A2HDM,

where the Yukawa matrices are imposed to be aligned in the
general basis (tan β ≠ 0) [23]. This condition makes ρF0
proportional to κF0 and they can be diagonalized simulta-
neously, without invoking a Z2-symmetry. In this sense,
our model can be seen as the fermiophobic limit of the
A2HDM, where the alignment parameters are set to zero
[21]. It should be noted that, due to the lack of a Z2

symmetry in the A2HDM, the alignment of the Yukawa
couplings in this model are in the general case not protected
with respect to higher-order corrections. In other words, the
alignment condition is in general not stable under renorm-
alization group evolution (RGE) at the one-loop level as
emphasized by Ferreira et al. [30]. However, the special
case of setting ρF ¼ 0 is stable at one loop. Thus the
structure of the Yukawa sector of the SDM is stable under
RGE at this level.
Before ending this section, wewant to emphasize that the

physical basis, i.e. the fermionic structure, in the SDM and
the A2HDM is not related to a particular value of
tan β ¼ v2=v1. There are no observables that depend on
tan β, i.e., the relation between the physical Yukawa
couplings ρF and κF is unchanged even if tan β is modified
[23,27]. Therefore tan β should be regarded as an auxiliary
parameter. As a matter of principle one can of course work
in an arbitrary basis, with a related value of tan β. However,
it is convenient to work in a specified basis and in this
article, we choose to work in the previously introduced
Higgs basis.

D. Parameters of the model

We consider models with CP conservation by imposing
only real parameters and thus the scalar potential has ten free
parameters. The minimization conditions (2.9), (2.10)
remove m2

11 and m2
12, leaving us with the eight parameters

λ1 − λ7 and m2
22. We may use the relations (2.20)–(2.23) to

relate λ1, λ3, λ4, and λ5 to the four physical scalar massesmh,
mH,mA andmH� . The parameter λ6 can beused to specify the
amount of Z2 breaking, but considering Eqs. (2.24), (2.25)
we choose to instead use the mixing angle α for this purpose,
since in a general 2HDM sinðα − βÞ is invariant under basis
changes.
Of the remaining λ parameters, we note that λ2 only

enters indirectly through the stability and tree-level unitar-
ity constraints etc. to be discussed below, as its only direct
effect is to set the strength of the self-interaction of the Φ2

field, whereas, as we will see in more detail later, λ3 and λ7
govern couplings between the two doublets such as ghHþH− .
Finally, we can relate λ3 and m2

22 using Eq. (2.14). We
choose λ3 as input parameter, as this parameter enters the
coupling between the CP-even states and pairs of charged
scalars; see Secs. IV, VA, and Appendix A for more details.

3In our model, just as in the SM, we will have, e.g., hbs̄
couplings generated by a loop with two W� bosons with off-
diagonal CKM matrix elements.
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The eight parameters of the model that we will use are
then

mh;mH;mA;mH� ; sin α; λ2; λ3; λ7:

To simplify our analysis we will often make the
following assumptions. To start with, we choose λ2 ¼ λ1
and λ7 ¼ λ6. Sometimes we will also be using a set of
representative values for λ3, chosen as λ3 ¼ 0, 2m2

H�=v2

and 4m2
H�=v2, corresponding to m2

22 ¼ m2
H� , 0 and −m2

H� ,
respectively. In Secs. IV, V, and VI, we will vary λ2, λ3 and
λ7, within theoretically allowed regions, to deduce their
impact on the signal strengths for h → γγ and H → γγ, and
the decays of H.
We must also consider bounds on the parameters from

the requirement that the potential is bounded from below
[7,31]. Stability of the potential gives rise to a number of
constraints on the parameters in the quartic part of the
potential. The simplest constraints are

λ1 > 0; λ2 > 0;

λ3 > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; λ3 þ λ4 − λ5 > −

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; ð2:33Þ

where the last equation applies for λ6 ≠ 0 or λ7 ≠ 0. There
are also additional constraints that we do not list here,
which can be found in Refs. [7,31,32]. In addition, one can
also constrain the parameters by requiring perturbativity of
the various four-Higgs couplings and tree-level unitarity as
we will return to below in Sec. III.

III. CONSTRAINTS ON THE SDM

Apart from the constraints discussed above, namely that
we require electroweak symmetry breaking with a vacuum
bounded from below, we impose several other theoretical
and experimental constraints on the model. All of the

constraints discussed in this section are included in our
numerical work by using the two-Higgs doublet model
calculator 2HDMC [33,34], where we have implemented our
model as a special case.
The electroweak vacuum selected by the symmetry

breaking mechanism must be stable, which requires that
the potential should be bounded from below for any values
of the fields. We also impose the requirements that tree-
level scattering of scalars and longitudinalW and Z bosons
must be unitary at high energies (the eigenvalues Li of the
S-matrix elements fulfill jLij ≤ 16π) [35–39], and that the
quartic scalar couplings are perturbative jChihjhkhl j ≤ 4π.
We will collectively call these constraints “theoretical
constraints.” Two examples of the allowed regions in the
parameter space of the model are shown in Fig. 1. For
simplicity we choose λ2 ¼ λ1 and λ7 ¼ λ6, which makes the
allowed regions depend only on j sin αj.
In general, one could also consider constraints from

renormalization group evolution of Yukawa couplings and
masses in a similar way as in [10,40]. Furthermore, one
could consider constraints on metastable vacua as in
[41,42]. However, this is beyond the scope of this study.
Any model with new particles that couple to gauge

bosons can potentially lead to large contributions to the
gauge boson self-energies. Such corrections are constrained
by experimental measurements, and can be parametrized by
the oblique Peskin-Takeuchi S, T, and U parameters [43],
which are defined in terms of contributions to the vacuum
polarizations of the electroweak gauge bosons. In particu-
lar, the T parameter is proportional to the deviation from the
SM value of the ρ parameter ρ ¼ m2

W=ðm2
Zcos

2θWÞ. We do
not list the explicit expressions here, which are lengthy and
involve all scalars. It should be noted that S, T andU do not
depend explicitly on the parameters in Eq. (2.2) but only
implicitly through the scalar masses of the model,
Eqs. (2.13), (2.14), and (2.18). Additionally, the mixing
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FIG. 1 (color online). Contours displaying allowed regions in parameter space (to the left of/above/below the contour lines), taking
into account the theoretical constraints of stability, tree-level unitarity and perturbativity. The black contour displays the allowed region
for mH ¼ 200 GeV, cyan mH ¼ 300 GeV, and magenta mH ¼ 400 GeV. Here, we have used λ2 ¼ λ1 and λ7 ¼ λ6, which makes the
allowed regions depend only on j sin αj.
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angle α only enters as s2α and c2α, so S, T and U do not
depend on the sign of sα.
We use 2HDMC to compute the oblique parameters S, T

and U and require the obtained values of S and T to fall
within the 90% C.L. ellipse of Fig. 10.7 in [44]. This
ellipse is given by values of constant ESTðS; TÞ, where,
approximately,

ESTðS; TÞ ¼
�
~S cos θ þ ~T sin θ

0.224

�2

þ
�
~T cos θ − ~S sin θ

0.068

�2

;

ð3:1Þ

with θ ¼ 0.753, ~S ¼ S − 0.051 and ~T ¼ T − 0.077. In
other words, Fig. 10.7 in [44] shows the ESTðS; TÞ ¼ 1

ellipse. We use the reference valuemref
H ¼ 125 GeV, which

is to be compared with the values 115.5 < mref
H < 127 GeV

used in [44], where U was fixed at U ¼ 0, the expected
result for models without anomalous gauge couplings. We
find that for parameter points in our model with allowed S
and T values, we have 0≲ U ≲ 0.02.
In Fig. 2 we show some examples of regions satisfying

the experimental constraints on the S and T parameters as
well as the theoretical constraints discussed above. We note
that in our model, there are two candidates for the newly
observed Higgs boson, H, with mass mH ≈ 125 GeV:
either the lightest CP-even scalar h, or the heaviest H.
We will in the following refer to the scenario mh ¼
125 GeV as “case 1” and to mH ¼ 125 GeV as “case
2”. In Sec. IV we will see that in order to accommodate the
experimentally observed signal strengths, j sin αj must be
close to unity in case 1 and small in case 2. Motivated by

these relationships between mh;H and sin α, we present the
constraints in the (mH� ; mA) plane from theory and S and T
parameters, using sin α ¼ 0.9 for mh ¼ 125 GeV, and
sin α ¼ 0.1 for mH ¼ 125 GeV in Fig. 2.
We also present the boundaries for different values of λ3

[corresponding to the three values m2
22 ¼ 0 and

m2
22 ¼ �m2

H� , according to Eq. (2.21)], shown as the
regions inside the black, magenta, and cyan lines in
Fig. 2. First of all, we see that in order to satisfy the
theoretical constraints, the scalar masses can typically not
exceed ∼700 GeV. Secondly, as noted in [45] for 2HDMs,
in order to have a small contribution to the S and T
parameters, the H� and A masses must satisfy an approxi-
mate custodial symmetry (the two branches in the figure). If
we define [45]

M2 ≡m2
hcos

2αþm2
Hsin

2α; ð3:2Þ

then there is an approximate custodial symmetry if either
mA ≈mH� þ 50 GeV when m2

H� ≲M2, or mA ≈mH�

when m2
H� ≳M2, or 0≲mA ≲ 700 GeV when m2

H� ≈M2.
When presenting the results in Fig. 2 we use λ2 ¼ λ1 and

λ7 ¼ λ6 for simplicity, but the results are not sensitive to the
precise values chosen. It is always possible to find
parameters such that mH� and mA up to ∼700 GeV are
allowed.
In models with charged scalars H�, any Feynman

diagram that contains a W� also occurs with a H�. In
particular, this will affect low energy observables such as
decay widths of B mesons. By considering the effects of
H� and A on low energy observables, one can indirectly
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FIG. 2 (color online). Some examples of allowed regions in parameter space taking into account theoretical constraints and
experimental S and T values. The x axis shows the charged scalar mass mH� and the y axis the CP-odd scalar mass mA. The z axis
displays the value of ESTðS; TÞ if it fulfills EST ≤ 1.0; See Eq. (3.1). The regions to the left of the lines in the figure are the allowed by
theoretical constraints for the different values of λ3 indicated: black (i) λ3 ¼ 0, magenta (ii) λ3 ¼ 2m2

H�=v2, and cyan (iii) λ3 ¼ 4m2
H�=v2.

Here, we have also used λ2 ¼ λ1 and λ7 ¼ λ6.
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constrain e.g.mH� for a given set of couplings CH�ff̄0 , or in
other words ρF. For a discussion of the impact of
constraints from meson decays on H� in general
2HDMs we refer to e.g. Ref. [45]. In our model, we will
assume that the sizes of the loop-induced couplings
between H� and fermions are well below current limits
from such flavor observables. In other words, indirect
constraints from flavor observables do not apply to the
H� and A of our model. The only direct, model indepen-
dent, constraint prior to LHC that applies to our H� is the
measurement of ΓZ, which gives the limit mH� >
39.6 GeV [46].

IV. THE SDM AND THE OBSERVED
HIGGS BOSON AT THE LHC

In this section, we include collider constraints in our
analysis of the SDM parameter space. This is implemented
through the 2HDMC interface to HIGGSBOUNDS (version
4.1.3) [47,48], which includes Higgs searches at LEP, the
Tevatron, and the LHC. Limits on mH� and mA are not
tested with HIGGSBOUNDS, since 2HDMC only calculates
tree-level branching ratios for the charged scalar H� and
the CP-odd scalar A; see Sec. V B and further below. We
will refer to the recently discovered Higgs boson as H and
the SM Higgs boson as HSM.
We here mainly consider the γγ-channel, which was the

most significant channel in the discovery of H. Studies of
the impact of the γγ signal on the IDM has been studied in
e.g. [10,11,49,50]. In Ref. [51] constraints on general
2HDMs with a softly broken Z2 symmetry and tan β ≠ 0
are studied in the light of the new LHC data.
The ATLAS experiment previously observed a small

excess in the signal strength γγ compared to the SM, which
was in slight disagreement with the CMS measurement.
With the higher statistics of the most recent data, this excess
is no longer present and the two experiments are
compatible.
The signal strength μHγγ is defined as

μHγγ ¼
P

kσkðpp → Hþ XkÞ × BRðH → γγÞP
kσkðpp → HSM þ XkÞ × BRðHSM → γγÞ ;

ð4:1Þ

where H ¼ h, H in our model, and σk are the gluon-fusion
and vector boson fusion (VBF) hadronic cross sections.
The signal strength for other channels, such as μHZZ, are
defined in an analogous way.
At the time of writing, ATLAS reports for the H → γγ

channel the signal strength μHγγ ¼ 1.17� 0.27 at a mass of
mH ¼ 125.4� 0.4 GeV [4] whereas CMS reports μHγγ ¼
1.14þ0.26

−0.23 at a mass of mH ¼ 124.70� 0.34 GeV [5].
In theH → ZZ → 4l channel, ATLAS measures the signal
strength μHZZ ¼ 1.44þ0.40

−0.33 at the mass mH ¼ 125.36 GeV

[52] and the CMS experiment obtains the signal strength
μHZZ ¼ 0.93þ0.29

−0.25 at mH ¼ 125.6� 0.45 GeV [53]. We
also note that CMS reports a combined best fit value for
all decay channels of μH ¼ 1.00þ0.14

−0.13 with a best-fit mass of
mH ¼ 125.03þ0.29

−0.31 GeV [54].
In the following, we will use the weighted averages of

the ATLAS and CMS signal strengths. We use symmetric
errors, choosing in the case of asymmetric errors the
smaller of the two in order to be conservative and reject
a larger portion of parameter space. This gives μHγγ ¼
1.15� 0.35 and μHZZ ¼ 1.12� 0.41.
In our model, where H ¼ h, H, the signal strength μHγγ

becomes

μhγγ ¼ sin2α
BRðh → γγÞ

BRðHSM → γγÞ ;

μHγγ ¼ cos2α
BRðH → γγÞ

BRðHSM → γγÞ ;
ð4:2Þ

at leading order; see Eq. (6.1). This is because the h
couples as sin α both to quarks in the gg-fusion process and
to vector boson pairs in VBF, whereas H couples as cos α.
The matrix element for H → γγ at lowest order in

2HDMs, and in particular in our model, has contributions
from two additional Feynman diagrams compared to the
SM, with a pair of charged scalars in the loop, as shown in
Fig. 3. These two diagrams contain the couplings between
H and HþH−

ghHþH− ¼ −ivð−λ3 sin αþ λ7 cos αÞ;
gHHþH− ¼ −ivðλ3 cos αþ λ7 sin αÞ:

ð4:3Þ

The inclusion of the charged scalars in the loop can
enhance the ΓH→γγ and BRðH → γγÞ compared to the
SM and therefore also μHγγ.
In order to deduce the regions of parameter space in our

model that are compatible with the experimentally
observed γγ and ZZ signal strengths and that satisfy
constraints from EWPT, theory and limits from previous
collider experiments (through HIGGSBOUNDS), we scan in
the (mH� ; sin α) plane over the λ2, λ3 and λ7 parameters.
The scan proceeds by sampling uniformly from the

following intervals:

h H

H

H

H
h H

H

H

FIG. 3. The two additional Feynman diagrams for the process
H → γγ in 2HDMs, H ¼ h, H.
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mH� ∈ ½45; 300�GeV; j sin αj ∈ ½0; 1�;
λ2 ∈ ½0; 4π�; λ3 ∈ ½−

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; 4π�; λ7 ∈ ½−4π; 4π�:

ð4:4Þ

We need only consider j sin αj since the allowed region is
independent on the sign of sin α.
In case 1, mA is taken as mA ¼ mH� þ 50 GeV in order

to fulfill the constraints from EWPT. In case 1 we also use
mH ¼ 300 GeV as a representative value. In case 2 we use
mh ¼ 75 or 95 GeV with mA ¼ mH� to fulfill EWPT
constraints. The allowed points that satisfy all the con-
straints are shown in Figs. 4 and 5 for case 1 and case 2,
respectively, showing points within 1σ and 2σ of the
experimental measurement.
We find an allowed region for case 1 compatible with

observed signal strengths, such that j sin αj≳ 0.85 at 1σ or
j sin αj ≳ 0.5 at 2σ. For case 2, with mh ¼ 75 GeV or
mh ¼ 95 GeV, the preferred regions at both 1σ and 2σ are

j sin αj ≲ 0.2 or j sin αj ≲ 0.3 respectively, both with
mh ≲mH� ; see Fig. 5.
We also note that there are allowed regions with

mH� < mH=2, where the coupling ghHþH− is small enough
to make BRðH → HþH−Þ negligible. For mH� ≲ 80 GeV,
one might think that the LEP constraints on mH� are
violated [46,55,56]. However, the majority of the allowed
points in the scan have BRðH� → W�γÞ > 99% and are
therefore not excluded by the LEP constraints. We refer the
reader to Secs. V B 4 and V B 2 for details concerning the
H� decays in our model.
Because of the smallness of ΓH� and ΓA we have not

considered the off-shell decay channels H → Hþð�ÞH−� or
H → Að�ÞA� (see Secs. V B 4 and V C 2).
The heavier scalar H in case 1 is also constrained

by the LHC data. In Fig. 6 we present the allowed points
in the ðmH; sin αÞ plane for mH� ¼ mH and mA ¼ mH�þ
50 GeV. When mH < 2mh, the H has the same decay
modes as the SM Higgs boson and the SM Higgs searches
apply directly. When mH ≳ 2mh, the decay channel H →
hh opens up, which has the effect of suppressing the
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FIG. 4 (color online). Points in case 1, withmh ¼ 125 GeV and
mH ¼ 300 GeV, that satisfy all constraints from theory, collider
searches with the use of HIGGSBOUNDS version 4.1.3. The red
(black) points have both the predicted μhγγ and μhZZ within 1σ
(2σ) from their experimental values given in the text. The scan is
described in the text.

mH+ (GeV)
50 100 150 200 250

|α
|s

in

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 σ < 1
HZZ

μ and 
γγH

μ

σ < 2
HZZ

μ and 
γγH

μ

mH+ (GeV)
50 100 150 200 250

|α
|s

in

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 σ < 1
HZZ

μ and 
γγH

μ

σ < 2
HZZ

μ and 
γγH

μ
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FIG. 6 (color online). Similar to Fig. 4 but scanning over mH,
showing points with mh ¼ 125 GeV and mH� ¼ mH, mA ¼
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branching ratios of the SM channels, thus allowing more
parameter space. This boundary in mH is clearly seen
in Fig. 6.

V. DECAYS OF THE SCALARS IN THE SDM

In this section we present the decay branching ratios and
widths for the scalars in our model. We first briefly discuss
the decays of the CP-even bosons h and H followed by a
longer discussion of the decays of the charged scalar H�.
Some of the discussion regarding technical details of the
H� decays is relegated to Appendices B and C. We then
finish this section by briefly discussing the decays of the A
bosons, which are computed analogously to theH� decays.

A. Decays of the non-SM-like CP-even scalar h or H

In this section, we will focus on case 1 and case 2, which
were discussed in Sec. IV. For the calculations of the
branching ratios of h and H, we use 2HDMC.
We first consider case 1, where mh ¼ 125 GeV. The

decay modes of h must be SM-like in order to reproduce
the recent LHC results. This constrains the masses of the
charged scalar H� and the CP-odd A to be large enough to
prohibit e.g. h → HþH− and h → AA, unless the couplings
are small as discussed in Sec. IV. The heavier H boson can
decay into hh, H�W∓, HþH−, AA and AZ if any of these
channels are open. In this case they will be potential
production channels for charged scalars and CP-odd
scalars; see Sec. VI A.
In order to investigate these decays in more detail, we

scan the parameters λ2, λ3 and λ7 as in (4.4) with
sin α ¼ 0.9, mh ¼ 125 GeV and mA ¼ mH� þ 50 GeV.
We impose the theoretical constraints and demand the
points to fulfil 0.8 < μhγγ < 1.5 and 0.71 < μhZZ < 1.53 as
before (the points shown in red in Figs. 4, 5 and 6). In the
scan, it is possible to obtain ΓH ≳mH through the Hhh,
HHþH− and HAA couplings, which depend on the

scanned λ3 and λ7 parameters. This means that the partial
widths ΓH→hh, ΓH→HþH− and ΓH→AA can become very
large. In order to have well-defined particle properties, e.g.
narrow resonances, we demand the width of H to fulfil
ΓH < 0.1mH as an additional constraint. The results are
summarized in Figs. 7(a) and 7(b) for mH ¼ 200 and
300 GeV, respectively.
In the case mH ¼ 200 GeV, the kinematically open non

SM-like decays are H → HþH− and H → H�W∓. From
Fig. 7(a) we see that for mH ¼ 200 GeV the decay H →
HþH− can dominate completely whereas H → H�W∓ is
substantial for mH� ≲ 120 GeV. We also note that the
branching ratio forH → HþH− grows all the way up to the
threshold. This is due to the constraint on ΓH which puts
limits on the magnitude of the HHþH− coupling for
mH� < mH=2. When mH� goes to mH=2, larger values
for the coupling is allowed and therefore also larger
BRðH → HþH−Þ is possible. Without the constraint ΓH <
0.1mH it is possible to obtain BRðH → HþH−Þ ≈ 1 asmH�

goes to mH=2. This is because in this case the only decay
that is open and depends on λ3 and λ7 is H → HþH−.4

Turning to the case mH ¼ 300 GeV, the decay H → hh
is now open. Furthermore, the decays of H into HþH− and
H�W∓ are open formH� ≲ 150 GeV andmH� ≲ 220 GeV
respectively. Finally, the AA and AZ channels are open for
mH� ≲ 100 GeV and mH� ≲ 160 GeV respectively. From
the results shown in Fig. 7(b) we see that the branching
ratio of the H scalar into a pair of charged scalars HþH−

can be as large as 80% and H → H�W∓ can be up to 70%.
Looking at the sum of the two, we see that the branching
ratio for H → H�X is substantial for mH� ≲ 150 GeV.
Without the constraint on ΓH it is possible to enhance
BRðH → HþH−Þ further. However, theH → HþH− has to
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FIG. 7 (color online). The branching ratios of theH boson as a function ofmH� when scanning over λ3 and λ7 (see the text for details)
for mH ¼ 200 GeV (left) and mH ¼ 300 GeV (right): BRðH → HþH−Þ is shown as red points, BRðH → H�W∓Þ as black points, and
the cyan points show the sum BRðH → H�XÞ.

4The decays H → γγ and H → Zγ are open and depend on λ3
and λ7 but are loop suppressed.
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compete against the H → hh and H → AA modes. For
mH� ≲ 100 GeV, BRðH → HþH−Þ can reach 80%. For
larger mH�, BRðH → HþH−Þ ¼ 0.95 is possible.
In case 2, where mH ¼ 125 GeV, the possible decay

modes of H are the same as in case 1. However, in
order to accommodate the recent LHC results, the signal
strengths must be very SM-like and this puts limits
on mH� and mA. The branching ratios of h in case 2
should then also be SM-like since no other decay channels
are open.

B. Decays of the charged scalar H�

We now turn to the decay of the charged scalar H�. The
main issue here is that below the H� → W�S threshold,
where S is the lightest of the neutral scalars, it is not known
a priori which is the largest of the partial decay widths:
H� → ff̄0, H� → W�Z=γ (which proceeds at one-loop
level at lowest order) or H� → W��S� → 4 or 6 fermions
(which are tree-level processes, suppressed by massive
propagators and multiparticle phase space).
All loop calculations of the H� and A decays in this

paper have been performed by implementing the model in
the FEYNARTS [57] and FORMCALC [58] packages with the
help of the FEYNRULES package [59].5 The calculations
have been performed in Feynman–’t Hooft gauge, i.e. Rξ

gauge with ξ ¼ 1, and renormalization conditions and
counterterms have been implemented in FORMCALC

directly as this is not included in models generated using
FEYNRULES. Details of the calculations are given in the rest
of this section, and details of the renormalization and the
chosen on-shell renormalization scheme are given in
Appendix B.

1. H� → f f̄ 0

Due to the assigned Z2 parities of the Φ1;2 fields and the
fermions, the charged scalar, which resides solely in Φ2,
does not couple to fermions at tree level. Since the CP-even
mass eigenstates are a mixture of the neutral and real
components from Φ1 and Φ2 it is possible for the charged
scalar to interact with fermions through the terms
m2

12Φ
†
1Φ2 þ H:c: in the scalar potential. Because of the

mixing, the amplitudes for all such diagrams will be
proportional to sin 2α ∝ jm12j [see Eqs. (2.10) and (2.25)].
There are several different ways for the charged scalar to

couple to two fermions. We start by considering the
effective vertex generated by the Feynman diagrams shown
in Fig. 8, and given in Eq. (C2) in Appendix C. Since the
coupling CH�ff̄0 ∼ ρF is absent at tree level and no counter-
term is obtained by performing field and coupling expan-
sions in LYukawa, the loop-generated coupling is UV finite.
This has also been verified explicitly using the FEYNARTS

and FORMCALC implementation.
Another contribution to the matrix element MH�→ff̄0

comes from mixing of the charged scalar with the longi-
tudinal component of the W� boson or the charged
Goldstone boson G� since we are using Rξ gauge. This

contribution also arises due to the m2
12Φ

†
1Φ2 þ H:c: term in

the scalar potential. Feynman diagrams for the H�W∓ and
H�G∓ mixing contribution to H� → ff̄0 are shown in
Figs. 9 and 10.
In the present work, we follow the procedure for

renormalization described in [60], which means that no
tadpole diagrams contribute and the real parts of theH�W∓
and H�G∓ mixings are absent for on-shell charged scalars.
Again we refer to Appendix B for details. Below the hW�
threshold, only the vertex-diagrams in Fig. 8 contribute to
ΓH�→ff̄0 in the present renormalization scheme. As a
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5The FEYNRULES model can be obtained from the authors.
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consequence, for charged scalar masses below mh þmW,
the width forH� → ff̄0 is proportional to the fermion mass
mf and vanishes when mf → 0. Above the mh þmW

threshold, where the H�W∓-mixing diagrams develops a
nonzero imaginary part (which is unaffected by the
renormalization scheme, see Fig. 24), the width will not
vanish in the limit mf → 0. We have also verified, with our
FEYNARTS and FORMCALC implementation, that the final
expression for the partial width ΓH�→ff̄0 , including all
contributions, is indeed UV finite.
Finally we want to emphasize that the H� → ff̄0 partial

width is proportional to sin2 2α and does not depend on the
parameters λ2, λ3 or λ7. In our numerical calculations we
include QCD radiative corrections for final state quarks up
to order α2s, according to Eq. (14) in [33], which is based on
[61–63]. We will also in the following discussion set VCKM
equal to the unit matrix.
In Fig. 11, the partial widths ΓH�→τν and ΓH�→cs are

shown. The widths are very small, less than ∼1 eV. This is
partially due to the small Yukawa couplings ms=v, mc=v
and mτ=v, on which all diagrams below the hW� threshold
depend through the Hif̄f vertex, Hi ¼ h, H. Above the
hW� threshold, the diagrams in Fig. 9, which are inde-
pendent of the Yukawa couplings, start to contribute

according to the chosen renormalization scheme. The
smallness of the widths is also due to the loop suppression.
In Sec. V C 1, we compare the partial width for the process
A → τþτ− (which is analogous to H� → τν) evaluated in
our model and in a generic 2HDM in order to extract the
size of the loop suppression. We also note that the widths
depend on mh and mH since diagrams with h and H
propagators interfere destructively. Furthermore, the τν and
cs widths are similar in size due to the scaling with the
fermion masses in the Hif̄f vertex.

2. H� → W�Z=γ

We now discuss the decay channels H� → W�Z=γ,
starting with H� → W�γ. Because the electromagnetic
current jμEM must be conserved classically, only couplings
between photons and particle-antiparticle pairs exist at tree
level. This means in particular that the coupling H�W∓γ is
absent, irrespective of the underlying model giving rise to
the charged scalar H� state. However, this coupling can in
general be generated at higher orders. The Feynman
diagrams that contribute to the amplitude at one-loop order
in Rξ gauge are shown in Fig. 12.
In principle, the diagrams in Fig. 13 could also contribute

to longitudinally polarized W� bosons, W�
L , but in fact all
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of diagrams exists for the AZmixing contribution to A → ff̄ with
the replacements Hþ → A, Wþ → Z, Gþ → G0 and f̄0 → f̄.
There is also the possibility to draw diagrams where the A boson
mixes with a h=H boson which in turn go into a pair of fermions,
but all such diagrams vanish due to CP conservation in the scalar
sector. Diagrams that contain propagators denoted by h=H are to
be counted as two diagrams: one with an h boson running in the
loop and one with an H boson instead.
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FIG. 11 (color online). The partial widths ΓH�→τν (black) and
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mH ¼ 200 GeV.
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vanish. This can be understood by the form of the HþH−γ
coupling, for which the Feynman rule reads

HþH−γ∶ ie½pμ
Hþ − pμ

H− �; ð5:1Þ

where the four momenta are taken to be incoming. Due to
four momentum conservation at each vertex, we obtain
pμ
Hþext − pμ

γ ¼ pμ
Hþint ¼ pμ

W (at the HþH−γ vertex in the
diagrams in Fig. 13), which contracted with the final state
polarization vector ϵμ for the W� boson gives

pμ
Wϵμðσ; pWÞ ¼ 0; ð5:2Þ

according to the gauge condition for massive spin-1
bosons, for all polarizations σ. This demonstrates that all
the diagrams in Fig. 13 vanish and has also been verified
with our FORMCALC implementation.
Similarly, the diagrams in Fig. 14, which are a subset of

possible diagrams for the matrix element of H� → W�ZL,
vanish by the same argument applied to the AH�W∓
coupling,

AH�W∓∶ gAH�W∓ ½pμ
H� − pμ

A�; ð5:3Þ

where the four-momenta are taken to be incoming. It is
important that the contributions from AZ-mixing vanish at
one-loop level in H� decays. If they did not, then we

would not have a consistent renormalization scheme (see
Appendix B).
One should also add to the matrix elementMH�→W�γ all

the diagrams from the H�W∓ and H�G∓ mixing pre-
viously discussed for the H� → ff̄0 processes, by sub-
stitutingWþγ for ff̄0 in the diagrams depicted in the Figs. 9
and 10. We do not include diagrams with external
Goldstone bosons in the processes H� → W�Z=γ since
we employ the standard unitary gauge prescription for
summing over the physical polarization states of the final
state W� and Z bosons,

X
σ

ϵ�μðσ; pÞϵνðσ; pÞ ¼ −gμν þ
pμpν

m2
V

; ð5:4Þ

where V ¼ W� or Z.
Before continuing with further H� decays, we now want

to briefly compare the decay modes calculated so far.
Above the on-shell threshold mH� > mW we find that
H� → W�γ dominates over Hþ → τþντ=cs̄ by several
orders of magnitude, as illustrated in Fig. 15. However,
as will be discussed below, it is possible to tune the
parameters to make H� → W�γ become very small.
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FIG. 12. Feynman diagrams in Rξ gauge for theH�W∓γ effective vertex at one-loop order. Diagrams that contain propagators denoted
by h=H are to be counted as two diagrams: one with an h boson running in the loop and one with an H boson instead.
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As was discussed in the previous section, all the diagrams
that contribute to ΓH�→ff̄0 are proportional to the small
Yukawa couplings for mH� < mh þmW. Above the thresh-
old this partial amplitude is more or less unchanged.
In contrast, the leading order diagrams that contribute to
H� → W�γ do not depend on the Yukawa couplings, and
thus H� → W�γ dominates over Hþ → τþντ=cs̄. The sit-
uation is similar to the case in the Standard Model where
HSM → WþW− dominates over thebb̄ channel if it is open. It

is well known that by including the width of theW� bosons,
i.e.HSM → Wþ�W−� → fermions, theWþ�W−� decaymode
of the HSM dominates over bb̄ far below the threshold;
mHSM

< 2mW . As we will now show, the situation is similar
in our model, i.e. the H� → W��γ mode dominates over
the H� → ff̄0 modes even for charged scalar masses
mH� < mW .
To investigate this, we include the effect of subsequent

decays of the W� boson, by considering the process
H� → W��γ, using the method of “smeared mass unstable
particles” [64,65] described in Appendix D. Formally,
one should consider all contributions to the process
H� → ff̄0γ, with a photon energetic enough to be detected.
The diagrams contributing to this process would be the
same as those for H� → ff̄0 with an external photon
radiated off any charged particle. We do not do this here,
since to be consistent, we would then also have to include
all other OðαEMÞ corrections to those widths, which are
needed to cancel IR divergences. This procedure will then
require two-loop calculations, a cumbersome task that
should not alter the overall result regarding our H� →
W��γ → ff̄0γ calculation.
The result of the inclusion of the width of theW� boson

is that, due to its broadness and the smallness of ΓH�→τν and
ΓH�→cs, the process H� → W��γ clearly dominates the
spectrum even below the threshold for H� → W�γ, as
shown in Fig. 15 above and in Fig. 16 below.

FIG. 15 (color online). The cyan points show the obtained
ΓH�→Wγ according to the scan described in the text. The dotted
magenta line shows ΓH�→Wγ and the solid black shows ΓH�→τν,
evaluated at λ3 ¼ 2ðmH�=vÞ2 and λ7 ¼ λ6 respectively. The
dotted black line shows ΓH�→Wγ evaluated at λ3 ¼ λ7 ¼ 0 which
makes the contribution from diagrams containing HiHþH−

vertices (Hi ¼ h;H) vanish according to (4.3).
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(a) mA = mH± − 10 GeV, mh = 125 GeV, (b) mA = mH± − 20 GeV, mh = 125 GeV,
mH = 300 GeV, sin α = 0.9. mH = 300 GeV, sin α = 0.9.

WΓ Wh/H

tb

WZ

50 100 150 200

0.01
0.02

0.05
0.10
0.20

0.50
1.00

mH��GeV�

B
R

cs/ΤΝ

Wh/HWΓ

50 100 150 200

0.01
0.02

0.05
0.10
0.20

0.50
1.00

mH��GeV�

B
R

(c) mA = mH± , mh = 125 GeV, (d) mA = mH± , mh = 75 GeV,
mH = 300 GeV, sin α = 0.9. mH = 125 GeV, sin α = 0.1.

FIG. 16 (color online). The branching ratios of the charged scalarH� as a function ofmH� . The solid black line shows theW�γ mode,
dotted blackW�Z, solid cyanW�A, dashed cyanW�h=H, and dotted magenta tb. In this figure, we have λ3 ¼ 2ðmH�=vÞ2, λ2 ¼ λ1, and
λ7 ¼ λ6. The scenarios in (a) and (b) are phenomenologically disfavored since EWPT require mA > mH� for these values of mH� (see
Fig. 2 and the related discussion).
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TheH� → W�Z=γwidths are proportional to sin2 2α and
are independent of λ2. They do however depend on the λ3 and
λ7 parameters through the HþH−h and HþH−H vertices
present in the second and seventh diagram in Fig. 12. In
Fig. 15 we give the partial decay width H� → W�γ for the
canonical choice of λ3 ¼ 2ðmH�=vÞ2 with λ7 ¼ λ6 as well as
when scanning over λ2, λ3 and λ7 according to Eq. (4.4) with
sin α ¼ 0.9, mh ¼ 125 GeV, mH ¼ 300 GeV and mA ¼
mH� þ 50 GeV. The conclusion is that for the vast majority
of the scanned parameter points, the Wγ mode dominates
over the τν and cs modes. We note that it seems possible to
tune the parameters λ3 and λ7 for a givenmH� to give a very
small ΓH�→W�γ . This is most likely due to cancellations
between the diagrams containingHiHþH− vertices,Hi ¼ h,
H [which depend on λ3 and λ7; see Eq. (4.3)] with diagrams
containing HiH�W∓ vertices (which depend on gauge
couplings; see Appendix A). However, we do not analyze
this further here.
We now turn to the process H� → W�Z. The tree-

level coupling gH�W∓Z depends on the SUð2ÞL and Y
representations of the different scalar multiplets in a given
model, and their vevs. In models where only SUð2ÞL
doublet representations are present, the coupling gH�W�Z
vanishes at tree level. This coupling can in general be
generated at higher orders. The diagrams for the process
H� → W�Z at one-loop order are the same diagrams as for
H� → W∓γ (replace γ → Z) plus the diagrams in Fig. 17.
At this stage, we do not include off-shell effects in the

H� → W�Z decays. The reason will become clear below in
Sec. V B 4 where we will see that since mh ¼ 125 GeV or
lighter, the tree-level decay H� → W�ð�Þhð�Þ will dominate
over H� → W�Z as soon as h can be produced on shell in
H� → W��h. Now, since mh ¼ 125 GeV is below the
W�Z threshold, this will always be true. The inclusion of
H� → W��Z� does not alter this result. However, it can in
principle influence the importance of theH� → W�γ mode
below the WZ threshold, as indicated in Fig. 16. In
addition, the inclusion of off-shell top quarks could also

be important when we consider which decay mode is
subdominant (at the percentage level). We leave these
questions for future studies.
Finally, we have checked, using the FEYNARTS and

FORMCALC implementation of our model, that the calcu-
lated partial widths of ΓH�→W�Z=γ are UV finite. For
completeness we also note that the processes H� →
W�Z=γ have been considered for the MSSM, as well as
types I and II 2HDMs, in [60].

3. H� → W�h=H=A → multiple fermions

In addition to the loop decays already discussed, the H�

can also decay into fermions via, possibly off-shell,W�, h,
H and A bosons. Here we limit the discussion to decays into
4 or 6 fermions, ΓH�→4f=6f. For 4 fermion decays the only
relevant channel is

ΓH�→4f ¼ ΓðH� → ½W�� → 2f� þ ½h�=H� → bb̄�Þ: ð5:5Þ

For 6 fermion final states there are several different
amplitudes that contribute. In principle the partial width
should be calculated from the sum of all of all these.
In line with this we add the contributions from (possibly)
virtual h, H on the amplitude level. However, we do not
consider possible interference terms between diagrams with
different vector boson propagators. In other words, we
approximate

ΓH�→6f ≈ ΓðH� → ½W�� → 2f�
þ ½h�=H� → W�W� → 4f�Þ ð5:6Þ
þ ΓðH� → ½W�� → 2f�
þ ½h�=H� → Z�Z� → 4f�Þ;

as is standard practice. We also define

ΓH�→Wh=H ≡ ΓH�→4f þ ΓH�→6f: ð5:7Þ
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FIG. 17. Feynman diagrams in Rξ gauge that contribute to the process H� → W∓Z at one-loop level. Diagrams that contain
propagators denoted by h=H are to be counted as two diagrams: one diagram with an h boson running in the loop and one with an H
boson instead.
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We calculate these widths using the 2HDMC implementation
of our model interfaced with the tree-level matrix element
and Monte Carlo phase-space generator MADGRAPH

[66,67], with nonzero widths included for the internal
propagators using the prescription in Eq. (D6).
As we will see in Sec. V B 4, ΓH�→Wh=H is negligible in

comparison to the partial widths ΓH�→ff̄0 and ΓH�→W�γ for
mH� < mS ≲ 2mW , where S is the lightest of A and h, even
after the inclusion of off-shell h=H and A bosons. This is
due to the smallness of the widths of the h,H and A bosons
below the h=H → WW=ZZ and A → Zh=H or W�H∓
thresholds. The effects of off-shell h, H and A bosons can
become sizable when we consider larger mh;H;A, i.e. when
the subchannels h=H → VV or A → Zh=H are kinemati-
cally open, so that Γh;H;A ¼ Oð1 GeVÞ. One should also
remember that the AH�W∓ coupling is independent of the
mixing angle α.

4. Decay widths and branching ratios for H�

We have now come to the point where we can compare
the magnitudes of the different decay modes under con-
sideration in our standard cases with λ3 ¼ 2ðmH�=vÞ2,
λ2 ¼ λ1 and λ7 ¼ λ6 as is illustrated in Fig. 16. Here we
have calculated the partial width of the decay mode H� →
W��A using the results of [68] as implemented in 2HDMC.
First of all it should be noted that the contribution

to the decay modes of H� from the processes H� → τν
and H� → cs is very small: BRðH� → τνÞþ
BRðH� → csÞ < Oð1%Þ. As mentioned, due to the broad-
ness of the W� boson, the H� → W��γ mode dominates
over H� → τν and H� → cs even below the threshold,
mH� < mW . If one considers mA < mH� , the decay mode
H� → W��A can start to make a significant contribution
and will dominate the branching ratios for the charged
scalar below theW�γ threshold,mH� < mW . If we consider
case 1, then the mass of the A boson has to be heavier than
H� for mH� ≲M [according to the limits from EWPT
illustrated in Fig. 2(a) with M given by eq. (3.2)] and the
decay mode H� → W�A is therefore not possible for light
H�. For charged scalar masses larger than mW , the decay
mode H� → W�γ will dominate, provided that H�
is the lightest scalar in our model. The tb and WZ modes
will contribute to the branching ratios of the order a few
percent.
A consequence is that the charged scalar in our model is

not in general constrained by the LEP resultmH� ≳ 80 GeV,
valid for BRðH� → csÞ þ BRðH� → τνÞ ¼ 1 [46,55,56].
Moreover, theWγ channel can be dominant, andWZ of order
1%. This is to be compared to the case of type-I or II
2HDMs and MSSM where the maximal branching ratios
for the Wγ mode are ∼Oð10−5Þ and WZ ∼Oð10−3Þ [60].
Note that, as shown in Fig. 15, the width of H� can

become very small in some regions of parameter space. For
example, if the width would be 1 eV, then the proper decay

length is cτ ∼ 0.2 μm, and if the width is as small as 1 meV,
then cτ ∼ 0.2 mm. It would therefore be interesting to
study whether this could lead to tracks or displaced vertices
in the detector. Such signatures have been studied by the
CMS Collaboration in [69].

C. Decays of the CP-odd scalar A

We end this section on scalar decays by considering
the decays of the A boson. As mentioned for the H�
bosons, we do not know a priori if the decay modes
of the A boson into 4 or 6 fermions, via possible
off-shell bosons, dominates over A → ff̄, which proceeds
at one loop at the lowest order in our model.6 The decay
modes of the A boson into 4 or 6 fermions through possible
off-shell h, H, H�, Z and W� bosons are calculated in a
very similar way as the decay of the charged scalar, in
Sec. V B 3.

1. A → f f̄

The situation here is similar to the situation for the
charged scalar: the CP-odd scalar A couples to a pair of
fermions with the same diagrams as the charged scalar,
but with the W� or G� bosons replaced with Z or G0

in the loop. The A bosons will mix with longitudinally
polarized Z bosons (and with G0 bosons in Rξ gauge),
which in turn go into a pair of fermions. We will renorm-
alize the AZ and AG0 mixing in the same way as forH�W�

and H�G�, i.e., the real part of the mixing vanishes for an
on-shell A boson.
One way to give a measure of the magnitude of the loop-

generated ρF elements in our model is by comparing e.g.
ΓA→τþτ− calculated in our model (at one-loop level) with the
tree-level result obtained in a generic model. Writing the
effective interaction as iΨ̄τ½ρL�33γ5ΨτA, we can calculate
the effective coupling ½ρL�33 from

ΓA→τþτ− ¼ ð½ρL�33Þ2
mA

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
τ

m2
A

s
: ð5:8Þ

Defining the ratio

ζ ≡ ½ρL�33
mτ=v

; ð5:9Þ

6Note that due to the quantum numbers of the A boson, the
amplitudes for A → VV, where VV ¼ WþW−; ZZ; γγ; Zγ or gg
are zero at tree level. In general 2HDMs, the A boson can couple
to a pair of gauge bosons at one-loop order through a loop of
fermions [70]. This is not the case in our model due to the
vanishing of the tree-level couplings between A and a fermion
pair, CAff̄ ∼ ρF ¼ 0. This means that in our model, A → VV is a
two-loop process. We will not consider these decay modes in this
paper.
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where ζ ¼ 1 is the value obtained in a type-I 2HDM with
tan β ¼ 1, we find that the magnitude of ζ in our model is
Oð10−3Þ if mA ≲mh þmZ; see Fig. 18. Note that this
effective coupling is independent of the values of mH� , λ3,
λ2, and λ7.
Another property of the model is that at lowest order we

have

ΓA→cc̄

ΓA→ss̄
¼ m2

c

m2
s
: ð5:10Þ

In this sense, our model is therefore type I-like.
Furthermore, as already mentioned, the off-diagonal entries
in the ρF matrices are zero at one-loop level. This is due to
the absence of a W� boson in the diagrams for the process
A → ff̄. At two-loop order, off-diagonal ρF matrix ele-
ments are generated and will introduce new FCNC in
our model.

2. Decay widths and branching ratios for A

The result of the calculations for the partial widths and
branching ratios for the A boson is similar to those of the
charged scalar. If A is not the lightest scalar in our model,
the dominating decay mode is A → SV, where S is the
lightest scalar and V the associated vector boson. If A is the

lightest scalar, the bb̄mode dominates; see Figs. 19 and 20.
The partial decay widths A → ff̄ are proportional to
sin2 2α and can be very small; see Fig. 21. In case 1 there
is no region in parameter space which allows the A boson to
be the lightest scalar. As was outlined in Sec. III, in case 1
one should havemA ≳mH� þ 50 GeV in order to fulfill the
constraints from EWPT for mH� below mh ¼ 125 GeV. In
case 2 we have larger freedom to choose mA and mH�

according to Fig. 2(b). But the recent LHC results
restrict the possible mA and mH� since e.g. the decay
mode H → AZ� (with Z far off shell) should not be
allowed.

VI. POSSIBLE SIGNALS OF THE SDM AT
COLLIDER EXPERIMENTS

We have seen that the scalars in our model, and in
particularH� and A, can have nonstandard decay modes. In
particular, if H� is the lightest scalar, its dominating decay
mode will be H� → W�γ unless the parameters are fine-
tuned. In this section we now consider the production of the
scalars. As mentioned in Sec. IV, the CP-even scalars h and
H are produced in the same way as HSM in gg fusion and
VBF, but with modified couplings

σkðpp → HiÞ ¼ κHi
σkðpp → HSMÞ; ð6:1Þ
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FIG. 19 (color online). The various branching ratios for the scalar A: dotted magenta A → bb̄, solid magenta A → cc̄, dashed magenta
A → ττ, dashed black A → Zh=H, solid black A → W�H∓. Here λ3 ¼ 0, λ2 ¼ λ1 and λ7 ¼ λ6.
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FIG. 18. The ratio ζ ¼ ½ρL�33=ðmτ=vÞ as a function of mA. The
solid line is for sinα ¼ 0.7 and the dotted for sinα ¼ 0.95. The
other parameters of the model are taken to be mh ¼ 125 GeV,
mH ¼ 300 GeV, mH� ¼ mA.
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FIG. 20 (color online). The branching ratios for the scalar A:
dotted magenta is bb̄, solid magenta cc̄, dashed magenta ττ,
dashed black Zh=H.mH� ¼ mA,mh ¼ 75 GeVmH ¼ 125 GeV,
sin α ¼ 0.1. Here λ3 ¼ 0, λ2 ¼ λ1 and λ7 ¼ λ6.
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where Hi ¼ h, H, κh ¼ sin2α, κH ¼ cos2α and σk are the
production cross sections through gg fusion or VBF. The
expression in (6.1) is valid up to electroweak corrections.
The QCD corrections, which are the most important ones,
are the same in our model as in the SM.
The discovery of a charged scalar H� has long been

considered a sure sign of physics beyond the SM. In the
standard scenarios such as MSSM, NMSSM or 2HDMs,
H� are produced primarily in top quark decays if they are
light, or if they are heavy, in association with top and
bottom quarks in gg and gb collisions.
In our model, the tbH� coupling is zero at tree level and

is instead generated by loops, and the same holds for the Att̄
coupling. We have calculated the loop-generated decay
width Γt→Hþb in our model in the same way as we
calculated ΓHþ→tb̄. The result is that the branching ratio
BRðt → HþbÞ is less than 10−6 for allowed points in
parameter space (the λ parameters cannot be arbitrarily
large). So, due to the absence of tree-level fermion
couplings for H� and A, the standard production mecha-
nisms of the H� involving the tb̄Hþ couplings and the
gg → A channel for the A are negligible. Other production
mechanisms must therefore be considered. Our model thus
leads to a novel phenomenology of the H� and A bosons,
with both production and decay modes being nonstandard.
More detailed phenomenological studies of H� and A will
be performed in future work, but in this section, we briefly
outline some channels that will be important. Production
cross sections for light charged Higgs bosons in general
2HDMs can be found in [71].

A. Production of H�

The production of a pair of charged scalars in qq̄
collisions through s-channel γ�=Z� exchange depends on
the electroweak couplings through the ZHþH− and
γHþH− vertices. Except for the dependence on mH� , the
partonic cross section for qq̄ → HþH− does not depend on
the parameters of the scalar potential, if one neglects the
contribution from s-channel processes with h and H
bosons, whose couplings to the quarks involved are very

small. To get a first estimate of the hadronic production
cross sections we have calculated σðpp → HþH−Þ atffiffiffi
s

p ¼ 8 TeV and 14 TeV and σðpp̄ → HþH−Þ at
ffiffiffi
s

p ¼
2 TeV using the LO Monte Carlo generator software
MADGRAPH [66,67] with CTEQ6L1 PDFs and using
factorization and renormalization scales set to μ ¼ MZ.
The results are shown in Fig. 22(a) as a function of mH� .
Another production process to consider is the associated

production qq̄0 → W� → H�S, where S ¼ h, H or A. This
will give cross sections of similar magnitude as
qq̄ → γ�=Z� → HþH−, provided that the sum of the final
state rest masses are similar; mH� þmS ≈ 2mH� . In
Figs. 22(b–d) we show the leading order hadronic cross
sections at the LHC with

ffiffiffi
s

p ¼ 8 TeV, as calculated with
MADGRAPH, for pp → HþA, pp → Hþh and pp → HþH
respectively. We note that the process qq̄0 → W� → H�A is
independent of the mixing angle α, whereas the qq̄0 →
W� → H�Hi processes have a dependence on α through
the W�H∓Hi coupling, where Hi ¼ h, H.
The final production mechanisms of H� that we

consider in this paper are via the H boson from
pp → H, with subsequent decays H → HþH− and
H → HþW−. We have employed the same scan and
constraints as in Sec. VA, and the expression (6.1)
together with the HSM cross sections from [72]. The
results for σðpp → HÞ × BRðH → HþH−Þ and σðpp →
HÞ × BRðH → HþW−Þ are shown in Fig. 23, for sinα ¼
0.9 and

ffiffiffi
s

p ¼ 8 TeV. The mH� dependence of the cross
section lies solely in the branching ratios of H discussed in
Sec. VA. We note that in Ref. [21], the off-shell
contribution σðpp → h�=H� → H�W∓Þ is calculated for
the fermiophobic A2HDM. These results can be carried
over to our model. We also note that in our model, given
the cross sections in Fig. 23, there could already exist a
significant amount of events with charged scalars H�

originated from H decays. For mH� ≲mh, the H� decays
more or less exclusively into W�γ; see Sec. V B 4. Finally,
the production of a heavy resonance H in gg fusion, with
the decay chain H → ðH� → ðH → bb̄ÞW�ÞW∓, was
studied for the LHC 8 TeV run in Ref. [73].
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FIG. 21 (color online). The partial decay widths ΓA as a function of mA. Dotted magenta is bb̄, dashed black Zh=H, solid black
W�H∓. Here λ3 ¼ 0, λ2 ¼ λ1 and λ7 ¼ λ6.
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B. Production of A

The process gg → A occurs at two-loop level in our
model. We will instead consider those regions in parameter
space where it can be produced in decays of the other
scalars or in association with those. If H is heavy enough,
its decays H → AZ; AA could contribute a significant
amount of the total production cross section of A bosons
at the LHC. One could also consider the process qq̄0 →
Z� → Ah=H for which the cross section is similar to the
previously discussed qq̄ → H�A=h=H. One would then

have to consider the subsequent decay of the A boson into
hZ orH�W∓. If A is the lightest scalar of the model one has
to instead consider A → bb̄.
We also note that if A is the lightest scalar, the decay

width can be very small, ΓA < 1 meV as shown in
Fig. 21(b), for sinα ∼ 0.1. This feature might open for
signatures with displaced vertices in the detectors,
provided that the A bosons are produced with sufficient
pT relative to its mass so that the γ-factor from the boost is
large enough.

FIG. 23 (color online). The cross section σðpp → HÞ times branching ratio for H → HþH− (left), and H → HþW− (right), at the
LHC for

ffiffiffi
s

p ¼ 8 TeV with sin α ¼ 0.9 and different values of mH . The values of the other parameters are described in the text.

FIG. 22. Hadronic cross sections for various production mechanisms as functions of mH� : (a) σðpp → HþH−Þ at LHC 8 (14) TeV
solid (dashed) and σðpp̄ → HþH−Þ at the Tevatron (dotted), (b) σðpp → HþAÞ at LHC 8 TeV. For the solid/dashed/dotted lines, we
have mA ¼ mH� þ 0=25=50 GeV, (c) σðpp → HþhÞ at LHC 8 TeV. For the solid line, we have mh ¼ 125 GeV with sinα ¼ 0.9, the
dashed (dotted) line mh ¼ 95ð75Þ GeV with sin α ¼ 0.1, (d) σðpp → HþHÞ at LHC 8 TeV. For the solid (dashed) line, we have
mH ¼ 200ð300Þ GeV with sin α ¼ 0.9 and for the dotted line mH ¼ 125 GeV with sinα ¼ 0.1.
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VII. CONCLUSIONS AND SUMMARY

In this paper, we have discussed a novel type of 2HDMs,
first introduced by us in [12], where the Z2 symmetry is
only broken in the potential and only one of the doublets
has tree-level fermion couplings such that new FCNCs
occur first at the two-loop level. Since the H� and the A
bosons reside solely in the fermiophobic doublet, indirect
constraints from flavor observables do not apply. We also
demonstrated that there are substantial regions of the
parameter space of the model which satisfy theoretical
constraints, and are compatible with EWPT and earlier
Higgs searches and with the new LHC results. In
particular, we have considered the H → γγ and H → ZZ
signal strengths, where H denotes the observed
Higgs boson.
We have calculated the decay rates of all scalars,

and in particular the decays of the H� and A bosons that
occur through one-loop processes at lowest order.
Decay modes involving off-shell final state particles have
also been considered in detail. These calculations
show that if the H� boson is the lightest scalar of the
model, the nonstandard decay mode H� → W�γ will
typically dominate. Otherwise, decays of H� into on-shell
scalars and off-shell vector bosons will dominate. The
decay modes of the A boson show a similar behavior as for
the H� boson. If A is not the lightest scalar, then A will
decay into on-shell scalars and off-shell vector bosons. If A
is the lightest scalar, A → bb̄ is the dominating decay
channel.
Since the H� and A bosons of this model are fermio-

phobic at tree level, they have loop-suppressed standard
production channels at hadron colliders. Therefore, we
consider production of these scalars in pairs, and in
association with vector bosons and other scalars.
These production channels could originate from qq̄0
collisions or H decays. We estimate that, if light
enough, H� and A could already had been produced in
considerable amounts at the LHC. Therefore, more detailed
investigations of such scenarios should be considered, in
particular the case where H� → W�γ is the dominating
decay mode.
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APPENDIX A: COUPLINGS

In this appendix we give the three-particle couplings of
scalars and gauge bosons. We do not list all the Goldstone
boson couplings or the four-particle couplings, but these
can be easily obtained using the FEYNRULES implementa-
tion of the model. As before, we define sα ¼ sin α,
cα ¼ cos α, and sW ¼ sin θW . The triple scalar couplings
of the model are then given by gijk ¼ −ivcijk for
i; j; k ¼ h;H; A;H�, where

chhh ¼ 3ð−s3αλ1 þ 3cαs2αλ6 þ c3αλ7 − c2αsαλ345Þ; ðA1Þ
cHHH ¼ 3ðc3αλ1 þ 3c2αsαλ6 þ s3αλ7 þ cαs2αλ345Þ; ðA2Þ

chhH ¼ 3s3αλ6 − 3c2αsαð2λ6 − λ7Þ
þ cαs2αð3λ1 − 2λ345Þ þ c3αλ345; ðA3Þ

chHH ¼ 3c3αλ6 − 3cαs2αð2λ6 − λ7Þ
− c2αsαð3λ1 − 2λ345Þ − s3αλ345; ðA4Þ

chAA ¼ −sαðλ3 þ λ4 − λ5Þ þ cαλ7; ðA5Þ

cHAA ¼ cαðλ3 þ λ4 − λ5Þ þ sαλ7; ðA6Þ

chHþH− ¼ −sαλ3 þ cαλ7; ðA7Þ

cHHþH− ¼ cαλ3 þ sαλ7; ðA8Þ

chHþG− ¼ 1

2
ð2sαλ6 − cαðλ4 þ λ5ÞÞ; ðA9Þ

cHHþG− ¼ −
1

2
ð2cαλ6 þ sαðλ4 þ λ5ÞÞ: ðA10Þ

Coming to the gauge-scalar couplings, we start with the
SSV couplings. Writing the Feynman rules as

S1S2V∶ gS1S2Vðpμ
S1
− pμ

S2
Þ; ðA11Þ

where the momenta are taken to be incoming, we have

ghAZ ¼ ecα
2cWsW

; gHAZ ¼ esα
2cWsW

; ðA12Þ

ghH�W∓ ¼ ∓ iecα
2sW

; gHH�W∓ ¼ ∓ iesα
2sW

; ðA13Þ

gAH�W∓ ¼ −
e

2sW
; ðA14Þ

gHþH−Z ¼ ieðc2W − s2WÞ
2cWsW

; gHþH−γ ¼ ie: ðA15Þ

Finally we have the SVV couplings, which we write as

SVV∶ gSVVgμν ðA16Þ
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with

ghZZ ¼ −
ie2vsα
2c2Ws

2
W
; gHZZ ¼ ie2vcα

2c2Ws
2
W
; ðA17Þ

ghWþW− ¼ −
ie2vsα
2s2W

; gHWþW− ¼ ie2vcα
2s2W

; ðA18Þ

ghG�W∓ ¼ � iesα
2sW

; gHG�W∓ ¼ ∓ iecα
2sW

: ðA19Þ

The gauge-scalar couplings are thus the same as in general
2HDMs with the replacement β → 0.

APPENDIX B: RENORMALIZATION

We here give a summary of the on-shell renormalization
scheme used in [60]. The on-shell renormalization scheme
at one-loop order for 2HDMs and the MSSM is also
discussed in e.g. Refs. [74–78]. We renormalize the
doublets and vevs according to

Φi →
ffiffiffiffiffi
Zi

p
Φ̂i; vi → v̂i − δvi ; ðB1Þ

where v2 ¼ 0 at tree level in our model, and the wave-
function renormalization constants Zi are expanded as Zi ¼
1þ δZi

at one-loop order. These redefinitions are then
inserted into the kinetic Lagrangian for the doublets. After
this insertion, we obtain the following counterterms (Aμ is
the photon field):

δH�W∓ð∂μH�ÞW∓
μ ; ðB2Þ

δH�W∓γH
�W∓

μ Aν ¼ eδH�W∓H�W∓
μ Aν; ðB3Þ

δH�W∓ZH
�W∓

μ Zν ¼ e
sW
cW

δH�W∓H�W∓
μ Zν; ðB4Þ

for the mixings and vertices respectively, where

δH�W∓ ¼ mW

v̂21þ v̂22
½v̂1δv2 − v̂2δv1 þ v̂1v̂2ðδZ1

−δZ2
Þ�: ðB5Þ

Hence, the renormalization of the H�W∓Z and H�W∓γ
vertices depends on the H�W∓ mixing renormalization.
In order for the one-loop potential to be minimized

by v̂1 and v̂2, we require that the renormalized tadpoles
vanish:

Th=H þ δth=H ¼ 0; ðB6Þ

where Th=H denotes the sum of all tadpole diagrams for the
field h=H and δth=H the tadpole counterterms at one-
loop order.

The on-shell renormalization scheme proceeds by requir-
ing that the real part7 of the renormalized off-diagonal self-
energy Σ̂H�W∓ vanishes for an on-shell H�:

Re½Σ̂H�W∓ðk2 ¼ m2
H�Þ� ¼ 0; ðB7Þ

which then determines δH�W∓ according to

Re½Σ̂H�W∓ðk2 ¼ m2
H�Þ�

¼ Re½ΣH�W∓ðk2 ¼ m2
H�Þ� þ δH�W∓ ¼ 0; ðB8Þ

where the bare self-energy ΣH�W∓ is given by Eq. (C3).
Furthermore, the renormalization of the H�G∓ mixing is
also determined by δH�W∓ due to a Slavnov-Taylor identity
that forces Σ̂H�W∓ and Σ̂H�G∓ to be proportional to each
other [60,78,79].
For illustration we show the real and imaginary parts of

the renormalized self-energy Σ̂H�W∓ in Fig. 24. Note that
the real part vanishes for an on-shellH� as prescribed. Note
also that the imaginary part is only nonzero when the
internal particles in the loop (W�; h and H) can be
produced on shell, i.e. when k > mh þmW .
By following the same prescription outlined here and in

[60], we find that the counterterm for AZ mixing is
proportional to the one obtained for H�W∓ mixing,
δAZ ¼ iðmZ=mWÞδH�W∓ . The AZ mixing is also defined
to vanish on shell,

Re½Σ̂AZðk2 ¼ m2
AÞ� ¼ 0; ðB9Þ

and the AG0 mixing is related to this by a similar Slavnov-
Taylor identity as for the H�G∓ mixing. All in all this
means that the AZ and H�W∓ mixing cannot vanish on
shell at the same time. At one-loop order this is not a
problem since the AZ and H�W∓ mixing cannot both be
present in the same set of diagrams, and we are free to
choose whatever scheme (i.e. values of the counterterms)
we want. However, if we include two-loop diagrams, then
inconsistencies may arise but this is not relevant for this
study, so we leave aside the issue of on-shell renormaliza-
tion of 2HDMs, and in particular of our model, at arbitrary
order in perturbation theory.
In a perturbative expansion using Rξ gauge one must also

include Faddeev-Popov ghosts. The ghosts corresponding
to W� and Z couple only to h=H in the scalar sector and
only occur in loop diagrams. For diagrams that contribute
to the matrix elements for ΓH�→ff̄0, ΓH�→W�Z=γ and ΓA→ff̄

at one loop order, the tadpole diagrams are the only ones
that contain ghosts. Since we require the sum of the tadpole

7δH�W∓ is real since we consider a CP-conserving scalar
sector.
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diagrams to vanish according to Eq. (B6) we do not need to
include the ghost contributions explicitly in our calcula-
tions. It is however straightforward to include ghosts
in our model. One just makes the replacement HSM →
H cos α − h sin α in LSM

ghost [75], which gives the following
couplings between ghosts (ηV) and h;H:

ghηV η̄V ¼ isαξm2
V=v; gHηV η̄V ¼ −icαξm2

V=v; ðB10Þ

where V ¼ Wþ;W− or Z.

APPENDIX C: EXPRESSIONS FOR THE
VERTICES AND MIXING SELF-ENERGIES

In this appendix we give the expressions for the
unrenormalized vertices and self-energies. The vertex
function VHþL−ν forHþ → Lþν in Feynman-’t Hooft gauge
is at leading order defined as

MHþ→Lþν ≡ ½ūLþPRvν�VHþL−νðm2
H� ; m2

L; 0Þ; ðC1Þ

whereMHþ→Lþν is the matrix element for the triangle loop
contribution to Hþ → Lþν; see Fig. 8(b). The vertex
function reads

16π2VHþL−νðm2
H� ; m2

L; 0Þ ¼ ghLþL−ghHþW− ~gB0ð0; m2
L;m

2
WÞ − ghLþL− ½ghHþG−gGþL−νmL − ghHþW− ~gðm2

H� þm2
h − 4m2

LÞ�
× C0ðm2

H� ; m2
L; 0; m

2
W;m

2
h; m

2
LÞ þ ghLþL− ½ghHþG−gGþL−νmL − ghHþW− ~gðm2

H� − 2m2
LÞ�

× C1ðm2
H� ; m2

L; 0; m
2
W;m

2
h; m

2
LÞ þ ghLþL−ghHþW− ~gðm2

H� −m2
LÞ

× C2ðm2
H� ; m2

L; 0; m
2
W;m

2
h; m

2
LÞ þ ðh → HÞ; ðC2Þ

where B0, C0, C1, C2 are Passarino-Veltman integrals [80], ~g ¼ ie=
ffiffiffi
2

p
sW , ghLþL− ¼ imL=v, gGþL−ν ¼ −i

ffiffiffi
2

p
mL=v, and the

remaining gijk are given in Appendix A. The ðh → HÞ indicates the four terms that have an H boson running in the loop
instead of h, which are obtained if one makes the replacement h → H. The vertex function for Hþuid̄j is analogous to
VHþL−ν, but has more terms due to the nonvanishing quark masses.
The bare off-diagonal HþW− self-energy in Feynman-’t Hooft gauge reads

16π2ΣHþW−ðk2Þ¼ghHþW−ghHþH½B0ðk2;m2
h;m

2
H�Þþ2B1ðk2;m2

h;m
2
H�Þ�−ghHþW−ghWþW− ½2B0ðk2;m2

h;m
2
WÞþB1ðk2;m2

W;m
2
hÞ�

þghGþW−ghHþG− ½B0ðk2;m2
h;m

2
WÞþ2B1ðk2;m2

h;m
2
WÞ�þðh→HÞ; ðC3Þ

where again B0 and B1 are Passarino-Veltman functions. Here ðh → HÞ denotes the four terms that have an H boson
running in the loop instead of an h.
One should notice that the matrix element MH�→W� for the transition H� → W� vanishes. This is because of the

Feynman rules for the hH�W∓ and HH�W∓ vertices, which are present in the diagrams in Fig. 9:

SH�W∓∶ gSH�W∓ ½pμ
H� − pμ

S�; ðC4Þ
where S ¼ h, H and the four-momenta are taken to be incoming. This means that the mixing diagrams are all proportional
to pμ

H� ¼ pμ
W , which, combined with Eq. (5.2) for a final state W� boson results in MH�→W� ¼ 0. A H� boson can

therefore not fluctuate into an (on-shell) W� boson, which is a renormalization-scheme independent statement.
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FIG. 24. The imaginary part (a) and the real part (b) of the on-shell renormalized off-diagonal self-energy Σ̂H�W∓ as a function of the
invariant mass k. In this figure we havemH� ¼ 100 GeV (solid),mH� ¼ mh þmW� (dashed), andmH� ¼ 300 GeV (dotted). The other
parameters in our model are taken to be mh ¼ 100 GeV, mH ¼ 300 GeV, mA ¼ mH� , sin α ¼ 0.9, λ3 ¼ 0, λ2 ¼ λ1 and λ7 ¼ λ6.
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The vertex functions for A → 2f are obtained similarly.
We do not give the expressions for the vertex functions for
H� → W�V here, but they can be found in Ref. [60].

APPENDIX D: THE SMEARED MASS UNSTABLE
PARTICLE MODEL

The smeared mass unstable particle (SMUP) model is
based on the time–energy uncertainty relation and the
Källén–Lehmann form of the exact propagator where finite
width effects are taken into account in the spectral density,
see [64,65] and references therein. The reason we use this
model is that it requires only the use and knowledge of
Γ�
H�→W��γðmH� ; qÞ defined below.

To evaluate the decay width for H� → W��γ for a given
mass of the charged scalar,mH� , one considers the invariant
mass of the virtual W, mW�� ≡ q, as a free parameter and
defines

ΓH�→W��γðmH�Þ ¼
Z

m2

H�

0

Γ�
H�→W��γðmH� ; qÞρðqÞdq2;

ðD1Þ

where Γ�
H�→W��γðmH� ; qÞ is the decay width for H� →

W��γ with the off-shell W� having a specific invariant
mass q. This is folded with the spectral density ρðqÞ,
defined as

ρðqÞ ¼ 1

π

qΓWðqÞ
½q2 −m2

W �2 þ ½qΓWðqÞ�2
ðD2Þ

where we have used mW ¼ 80.4 GeV and

ΓWðqÞ ¼
9g2

48π
q: ðD3Þ

We evaluate Eq. (D1) by using our code for H� → W�γ
with on-shell W� but allowing the W� mass to vary. We
then integrate numerically over the spectral density.
As a check of the formalism, we also applied the SMUP

model to the well-known SM process HSM → W−�Wþ�.
Comparison with known “standard” formulas [81,82] show
excellent agreement with a difference of less than 2%. The
standard formula for HSM → W−�Wþ� with a fixed width
reads [82]

ΓHSM→W−�Wþ�ðmHSM
Þ ¼

Z
m2

HSM

0

dq21mWΓW=π
½q21 −m2

W �2 þm2
WΓ2

W

Z
k2

0

dq22mWΓW=π
½q22 −m2

W �2 þm2
WΓ2

W
Γ0 ðD4Þ

where k ¼ mHSM
− q1, and

Γ0 ¼
m3

HSM

16πv2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

q21
m2

HSM

−
q22

m2
HSM

�
2

− 4
q21q

2
2

m4
HSM

s ��
1 −

q21
m2

HSM

−
q22

m2
HSM

�
2

þ 8
q21q

2
2

m4
HSM

�
: ðD5Þ

This formula is obtained by denoting the denominator of the respective W� propagators as
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FIG. 25 (color online). (a) Comparison of off-shell (dashed blue line) and on-shell (solid red line) decay widths for H� → γW�.
(b) The ratio of the on-shell and the off-shell decay widths. The parameters of the model take the values mh ¼ 125, mH ¼ 300 GeV,
mA ¼ mH� , sin α ¼ 0.9 and λ3 ¼ 2ðmH�=vÞ2.
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q2i −m2
W þ imWΓW; ðD6Þ

where q2i is the invariant mass squared of the ith off-shell
W� boson. We stress that, differently from the SMUP
method, the quantity Γ0 in (D4) should not be literally
interpreted as neither the decay width of the Higgs boson to

a pair of virtual bosons with invariant masses q1; q2 nor as
the matrix element squared.
As a further check, we evaluate ΓH�→W��γ for mH� far

above the threshold, with the result that the off-shell
calculation coincides with the on-shell result, as shown
in Fig. 25(b).
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