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The gluon flux distribution of a static three quark system has been revealed at finite temperature in the
pure SU(3) Yang-Mills theory. An action density operator is correlated with three Polyakov loops
representing the baryonic state at temperatures near the end of the QCD plateau, T=Tc ≈ 0.8, and another
just before the deconfinement point, T=Tc ≈ 0.9. The flux distributions at short distance separations
between the quarks display an action-density profile consistent with a rounded filled Δ shape iso surface.
However the Δ shape action iso-surface distributions are found to persist even at large interquark
separations. The action density distribution in the quark plane exhibits a nonuniform pattern for all quark
separations considered. This result contrasts with the Y-shaped uniform action density gluonic-flux profile
obtained using the Wilson loop as a quark source operator at zero temperature. We systematically measure
and compare the main aspects of the profile of the flux distribution at the two considered temperature scales
for three sets of isosceles triangle quark configurations. In this paper, we present major characteristics of the
gluonic profile including radii, amplitudes, and rate of change of the width of the flux distribution. These
aspects show significant changes as the temperature changes from the end of the QCD plateau towards the
deconfinement point. In particular, we found the flux tube is exhibiting a linear divergence at some planes
of the gluonic pattern for the temperature close to the deconfinement point.
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I. INTRODUCTION

Revealing the color field distribution in the nucleon is a
subject of fundamental importance to quantum chromody-
namics (QCD) and confinement. Lattice QCD simulations
provide a first principle source of knowledge about how the
energy distribution manifests itself among a system of three
static quarks (3Q). This has to do with the relevant ansatz
that accurately parametrizes and models the non-Abelian
force that binds the nucleon. The calculation of color
distribution due to a 3Q system has been revisited with a
variety of lattice techniques [1–4]. However, an important
aspect of this problem yet remains to be thoroughly
investigated. That is, the energy distribution associated
with the 3Q system at finite temperature. Tackling the
problem of the gluonic distribution from this perspective
involves the employment of a methodologically different
set of unbiased hadronic operators. In addition to this,
revealing the changes of the gluonic profile of the (3Q)
system under various temperature conditions would cer-
tainly contribute to our perception of the underlying
gluonic picture and the associated gluon dynamics. In fact,
the distribution of gluonic fields in the baryon at high
temperature, before quantum chromodynamics undergoes a
phase transition, is unknown in detail and has not yet been
scrutinized by the lattice approach.

Most of our current understanding of the (3Q) confining
force is based on analysis at zero temperature [5–12].
The parametrization which provides the best possible fits of
the lattice data of the measured 3Q system potentials has
been controversial for a long period of time [5,9,13,14].
However, recent lattice QCD findings regarding the
3-quark potential are settled to support the so-called
Δ-ansatz parametrization for small quark separation dis-
tances of R < 0.7 fm and the Y-ansatz for 0.7 < R <
1.5 fm [9]. The Δ-ansatz accounts for a confining potential
built up as a sum of two-body forces; the string tension is
half that in the correspondingQQ̄ system and the confining
part of the baryonic potential is in proportion to the
perimeter of the triangle set up by the 3Q system. On
the other hand, if the confining potential is proportional to
the sum of the distances from the quarks to the Fermat point
with a string tension the same as that in the QQ̄ system,
then due to its shape, this potential is known as the
Y-ansatz, giving rise to a three-body term relevant to a
genuine interaction channel of the non-Abelian force.
Ambiguities are known to arise, however, in the calcu-

lations of the gluonic distribution in the 3Q system at zero
temperature. The energy distribution may be vulnerable to
systematic errors associated with excited-state contamina-
tion [2] when constructing the static baryon using a Wilson
loop operator. The configuration of the spatial links that
best minimize the potential has to be adopted before hand.
Associated with this arbitrariness in tuning the ground state*abakry@impcas.ac.cn
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operator are the excited state potentials which manifest
themselves in the revealed gluonic profiles as a bias
reflecting the form of spatial links of the Wilson loop
operator [2]. The L shape baryon operator provides a
pronounced evidence where the flux distribution mimics
the source [3].
The isolation of the ground state is challenging in the

case of field-distribution calculations which involve four-
point correlations rather than the ground state potential
which is extracted in the large time limit of a three-point
correlation [2]. For example, Euclidean time evolution in
the 3-quark Wilson loop operator results in observable
broadening of the junction in the Y-shaped configuration
[3]. Statistical noise, nevertheless, imposes a practical
constraint on any further increase in the exponentially
decaying operator.
In this investigation, the static baryonic states are

accounted for by means of Polyakov loops. This provides
a gauge invariant operator which acquires a methodological
importance [4] due to the ability to construct an unbiased
3-quark operator without recoursing to a particular
assumption regarding the form of the configuration of
the spatial links in Wilson loops or the ultraviolet properties
of these parallel transporters [15]. While carrying out
energy density calculations into the zero temperature
regime requires substantial numerical simulations with
regard to the CPU time as well as the memory storage,
the use of these stringless hadronic operators for revealing
the energy distribution at finite temperature is still an
attractive idea from the practical feasibility point of view.
This can be studied in conjunction with the thermal effects.
At finite temperature, pure Yang-Mills SU(3) lattice

simulations for the action density in the mesonic sector
display a flux distribution with a vibrating stringlike shape.
The density distribution shows a nonuniform pattern with
an almost constant cross section in the intermediate dis-
tance region 0.5 ≤ R ≤ 1 fm and nonconstant cross section
at larger quark separations [16]. The nonuniformity of the
action density coincides with only a small decrease in the
QQ̄ effective string tension σ [17] suggesting the ground
state may also display a nonuniform action density dis-
tribution [15].
In this paper, we generalize this analysis to the distri-

bution of the color field inside the baryon. We consider one
temperature near the end of the QCD plateau region at
T=Tc ≈ 0.8, and another just before the deconfinement
point at T=Tc ≈ 0.9. The three infinitely heavy quarks are
accounted for by means of Polyakov loops of the same time
orientation. The field strength inside the corresponding
quark system is revealed by correlating an improved action
density operator [18] to these gauge-invariant hadronic
operators. Gauge-field smoothing [19], in addition to a high
statistics gauge-independent [3] averaging, is employed to
enhance the signal to the noise. This noise reduction
approach can be employed in a controlled and systematic

manner that has been proven effective in keeping the
physics intact in the case of the static meson [16]. The
analysis on either the QQ̄ force or the action density shows
that smearing leaves no effect on the corresponding
measurements taken for quark source separation distance
scales greater than the diameter of the Brownian motion of
a diffused link, i.e. the characteristic diameter of smearing.
Moreover, the systematic effects associated with this UV
filtering procedure on the gluonic profile has been reported
in detail in Ref. [20].
The analysis on the smearing effects is revisited in this

work for the 3Q force. The relevant distance scale where the
physics is preserved is established. After identifying this
scale, the characteristics of the action density profile are
presented for selected 3Q configurations and contrasted at
the two considered temperatures.
The outline of this paper is as follows: In Secs. II and III,

the details of the simulations and noise reduction tech-
niques are described. The force in the 3Q system for
selected configurations is evaluated in Sec. IV. In Sec. V,
the main aspects of the gluonic profile of the baryonic
action density is analyzed and contrasted at the two
temperatures. In the last Sec. VI, the conclusions are
provided.

II. MEASUREMENTS

The infinitely heavy quark state is constructed by means
of Polyakov loop correlators. In the confinement phase, for
pure SU(3) gauge configurations, the correlators respect the
center symmetry transformation

~Uμ¼4ðx; nτ ¼ 1Þ ¼ CUμ¼4ðx; nτ ¼ 1Þ; ð2:1Þ

where center C of the gauge group SUð3Þ is all the
elements z such that zgz−1 ¼ g, with g ∈ SUð3Þ or z ¼
expð2πil=3Þ ∈ Zð3Þwith l ¼ 0; 1; 2. The form of the center
symmetry preserving baryonic correlators is then

hP3Qð~r1; ~r2; ~r3Þi → h ~Pð~r1Þ ~Pð~r2Þ ~Pð~r3Þi
¼ he2iπlPð~r1ÞPð~r2ÞPð~r3Þi
¼ hPð~r1ÞPð~r2ÞPð~r3Þi;

where the Polyakov loop is given by

Pð~rÞ ¼ 1

3
Tr

�YNt

nt¼1

Uμ¼4ð~r; ntÞ
�
; ð2:2Þ

which corresponds to three Polyakov lines all in the same
time direction.
After the construction of the gauge-invariant color-

averaged quark states, subsequent measurement by a
gauge-invariant action density operator Sð~ρ; tÞ is taken at
the spatial coordinate ~ρ of the three-dimensional torus
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corresponding to each Euclidean time slice. The action
density operator is calculated via a highly improved Oða4Þ
three-loop improved lattice field strength tensor [18].
A scalar field that characterizes the gluonic field can be

defined as

Cð~ρ; ~r1; ~r2; ~r3Þ ¼
hP3Qð~r1; ~r2; ~r3ÞSð~ρÞi
hP3Qð~r1; ~r2; ~r3ÞihSð~ρÞi

; ð2:3Þ

for baryonic systems, where h……i denotes averaging over
configurations and lattice symmetries, the vectors ~ri define
the positions of the quarks, and ~ρ the position of the flux
probe. Cluster decomposition implies C⟶1 away from
the quarks.
In this investigation, we have taken 10,000 measure-

ments at temperature T=Tc ¼ 0.8, and 6,000 measurements
at temperature T=Tc ¼ 0.9. The measurements are taken on
hierarchically generated configurations. The gauge con-
figurations are generated using the standard Wilson gauge
action on lattices with a spatial volume of 363. Gauge
configurations are generated with a coupling value of
β ¼ 6.00. The lattice spacing at this coupling is a ¼
0.1 fm [21]. After each 1000 updating sweeps, nsub ¼
20 or 12 measurements separated by 70 sweeps of updates
are taken for the two lattices corresponding to T=Tc ≈ 0.8
and T=Tc ≈ 0.9 respectively. These submeasurements are
binned together in evaluating Eq. (2.3). The total measure-
ments are taken on 500 bins.
The gluonic gauge configurations are generated with a

pseudoheatbath algorithm [22]. The heatbath is imple-
mented by (FHKP) [23,24] updating on the corresponding
three SU(2) subgroups. Each update step consists of one
heatbath sweep and four microcanonical reflections.

III. STATISTICS

Gauge-independent noise reduction can be employed by
making use of the space-time translational invariance of the
hypertoroid. By space-translational invariance, measure-
ments of the action density operator is repeated for each
translated Polyakov loops correlator. The measurements are
then averaged over the spatial volume of the lattice. The
periodicity in the time direction also allows averaging over
the time direction

Sð~ρÞ ¼ 1

Nt

XNt

nt¼1

Sð~ρ; tÞ; ð3:1Þ

where Nt is the number of time slices of the lattice. The
symmetry of the quark positions can be also exploited to
gain a reduction in the statistical uncertainties. The flux
distribution has been averaged around all the symmetry
planes of a given quark configuration.
Local action reduction by smearing the gauge links has

been performed on the whole four-dimensional lattice. This

procedure can be applied for correlating operators with
polyakov loops. For example, the correlations with the
topological charge has been studied in Ref. [25] using
the Cabbibo-Marinari cooling. Smearing the gauge field
can be particularly helpful in reducing the statistical noise
associated with evaluating the Polyakov loop correlators.
However this step may result in the elimination of short
distance physics and one has to be careful with regard to the
number of smearing sweeps and the relevant distance scale
where the physical observables are extracted. In the next
section, we study the effects of gauge field smoothing on
the 3Q force and determine the distance scale and corre-
sponding smearing level where the physical observables are
left intact. We smooth the gauge field with an overimproved
stout-link smearing algorithm [26]. The scheme of the
overimprovement of this algorithm is such that a minimal
effect on the topology of the gauge field [26] is ensured.
In the standard stout-link smearing [19], all the links are

simultaneously updated. Each sweep consists of a replace-
ment of all the links by the smeared links,

~UμðxÞ ¼ expðiQμðxÞÞUμðxÞ; ð3:2Þ

with

QμðxÞ ¼
i
2
ðΩ†

μðxÞ −ΩμðxÞÞ −
i
6
trðΩ†

μðxÞ −ΩμðxÞÞ;

and

ΩμðxÞ ¼
�X

ν≠μ
ρμνΣ

†
μνðxÞ

�
U†

μðxÞ;

where ΣμνðxÞ denotes the sum of the two staples touching
UμðxÞ which reside in the μ − ν plane. In the overimproved
algorithm, however, the square staple is replaced by a
combination of plaquette and rectangular staples. This ratio
is tuned by the parameter ϵ [26]. In the following we use a
value of ϵ ¼ −0.25, with ρμ ¼ ρ ¼ 0.06.
Despite the noise reduction at short distance quark

separation, the signal drawn in statistical noise at large
distances If one opt merely to the link integration method
[27] in evaluating the Polyakov loops in Eq. (2.3), the
signal drawn in statistical noise at large distances.
While the link integration method [27] provides efficient

noise reduction at small quark separations for the expect-
ation values of Polyakov loops in Eq. (2.3), noise remains
problematic at large separations. The method is expected to
be efficient for the QQ̄ source separation range R ≤ 0.5
[28] but has to be supplemented with a large number of
measurements for the calculations of the larger distance
QQ̄ potential [17]. The number of measurements has to be
increased significantly for the corresponding 3Q potential
calculations with a three-point correlator. The action
density calculations would be, on the other hand, even
more challenging in both cases [20].
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The Lüscher-Weisz local noise reduction technique [29]
can be efficient in the calculations of the field correlators at
the temperatures considered here [30], since a good
approximation for the minimal thickness of the time
subslices is 1=ð2TcÞ. However, the practical difficulty of
employing large memory resources and computational time
strongly suggested using the cooling/4D smearing
approach. In the following, we study the effects of this
procedure on the physical measurements and set up a
conservative quark separation distance scale where the
physical measurements are intact.

IV. FORCES IN THE STATIC BARYON

Unlike the force which is extracted from a three-point
correlator, the flux characterization Eq. (2.3) involves a
four-point correlation function in the numerator presenting
additional challenges with respect to the signal-to-noise
level. The lattice space-time and configuration space
symmetries can be auxiliary in enhancing the signal-to-
noise ratio; however, a four-dimensional gauge smoothing
has to be employed to obtain a signal.
The force in the 3Q system is a physical observable of

direct relevance to the properties of the underlying energy
distribution. In the following we consider the effects of the
gauge smoothing procedure on the force experienced by a
test color charge. This can give indications on the relation-
ship between source separation distance and the number of
smearing sweeps where the changes in physics is minimal.
Similar techniques have been adopted in Ref. [31] in the
determination of the large distance QQ̄ force in vacuum
with different levels of hyperbolic (HYP) smearing [16]. In
the following, we consider the evaluation of the force via
three Polyakov loop correlators.
For several levels of smearing corresponding to

nsw ¼ f20; 40; 60; 80g, we numerically evaluate the force
on a test color charge, assuming the transfer matrix
interpretation is preserved as justified in Ref. [20], the
3Q potential can be identified via a three-loop correlator as

hP3Qi ¼ hPð~r1ÞPð~r2ÞPð~r3Þi
¼ expð−V3Qð~r1; ~r2; ~r3Þ=TÞ:

The force on the third quark Q3 for the isosceles triangle
configuration illustrated in Fig. 1 is measured through the
definition of the derivative on the lattice [32,33]

FQ3
¼ −

∂VðR;AÞ
∂R

����
Rþa

2

¼ 1

2aT
log

� hPð0; 0ÞPð0; AÞPðR; A=2Þi
hPð0ÞPð0; AÞPðRþ 1; A=2Þi

�
: ð4:1Þ

The numerical values of the force measured on smeared
configurations are reported in Fig. 2 for three isosceles

bases, A ¼ 0.6, 0.8, and, 1.0 fm. The repeated measure-
ments on the data sets corresponding to increasing smear-
ing levels indicate, in general, invariance of the force
experienced by the test charge Q3 under smearing at large
distances. The loss of short distance physics is pronounced
at small values of R which decreases as we increase the
length of the isosceles base quark configuration. In the
following, our consideration of different isosceles 3Q
configurations enables a systematic identification of the
distance scale beyond which a given level of smearing has
little effect on the physical observables.
Let us define RFðnswÞ to be the minimal distance beyond

which the measured force, Eq. (4.1), is left intact. The
values of RF can be read from Fig. 2. Table I summarizes
the values of RF for each isosceles configuration and
smearing level. Since the effects of smearing relate also
to the length of the isosceles base, we list for comparison
the values of the corresponding effective range, BF, defined
as BF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
F þ A2=4

p
, and also the distance from a quark

at the base of the triangle to the Fermat point of the triangle
LF (see Fig. 1).
Clearly the range RF is decreasing with the increase of

the length of the isosceles base, A, indicating that smearing
around the charges residing on the isosceles base decreases
the force exerted on the color test charge Q3 as the charges
Q1 and Q2 become closer as in Fig. 1. Inspection of the
corresponding values of the above defined BF, on the other
hand, show that the decrease of RF with the increase of A is
such that the length of BF is approximately constant. To
gain insight into what these observations may imply, we
study the characteristics of the Brownian motion of the
diffused field, and also the analogous values of smearing
threshold RFðnswÞ measured for the QQ̄ system.

FIG. 1 (color online). Schematic diagram for the isosceles
configuration of the 3Q system. The large spheres represent the
motion of the diffused field of characteristic smearing radius of
Rs centered at the quarks (small spheres).

BAKRY, LEINWEBER, AND WILLIAMS PHYSICAL REVIEW D 91, 094512 (2015)

094512-4



The diffuse field is Gaussian distributed [8] through a
ball centered at position r whose evolution with a smearing
time τ, in a four-dimensional smearing scheme [16] is
given by

Gðr; τÞ ¼ 1

ð4πDτÞ32 exp
�
−

r:r
4Dτ

�
; ð4:2Þ

with D describing the diffuseness of the field. The diffused
field characteristic radius is defined as

Rs ≡
�R

d3rGðr; τÞr2R
d3rGðr; τÞ

�
1=2

¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
ρcnsw

p
: ð4:3Þ

The proportionality constant c scales the number of
smearing sweeps nsw in the improved stout-link smearing
algorithm defined above with respect to APE smearing [34]
as defined for instance in Refs. [3,15]. The calibration
proceeds via comparing the respective number of smearing
sweeps in each smearing scheme with respect to a given
threshold [35] (the reconstructed action density [18] nor-
malized to a single instanton action S=S0). This yields a
value of c ¼ 6.15ð3Þ [16]. With ρ ¼ 0.06, the number of
smearing sweeps in the improved stout-link smearing
algorithm scales as half the number of the corresponding
smearing sweeps in APE smearing with the smearing
parameter α ¼ 0.7.
After identifying this characteristic smearing range, the

values of RsðnswÞ are compared to the corresponding values
of RFðnswÞ for the QQ̄ system [16] in Table II. Inspection
of the values reported for the mesonic force unveils that RF
is roughly equivalent to twice the smearing radius Rs. This
suggests that the mesonic force is invariant under the
smearing operation applied on the whole four-dimensional
lattice as long as the fuzzed balls centered at the quark
source links are nonoverlapping. Similar analysis on the
action density shows that the region free of smearing effects
obeys the same invariance criterion [16].
The distance BF describes the minimal distance from the

quarks Q1;2 to Q3 for which the measured force is invariant
under a given number of smearing sweeps. The values of
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FIG. 2 (color online). The force for the isosceles 3Q configu-
rations with base lengths (a) A ¼ 0.6 fm, (b) A ¼ 0.8 fm, and
(c) A ¼ 1.0 fm, respectively. The x axis denotes the position R of
the third quark. Smearing effects are manifest for R < 0.95 fm,
R < 0.85 fm, and R < 0.75 fm for A ¼ 0.6 fm, A ¼ 0.8 fm, and
A ¼ 1.0 fm. Only subtle smearing effects remain beyond these
distance scales.

TABLE II. The characteristic radii Rs and RF at each smearing
level for mesonic systems beyond which the force is unaffected
by smearing [16].

No. of sweeps RF (fm) Rs (fm) 2Rs (fm)

40 0.65 0.38 0.76
60 0.75 0.47 0.94
80 0.95 0.54 1.04

TABLE I. The characteristic radii BF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
F þ A2=4

p
for the

baryonic system at each smearing level for each configuration of
Fig. 2.

Config A ¼ 0.6 A ¼ 0.8 A ¼ 1.0
LF ¼ 0.35 LF ¼ 0.46 LF ¼ 0.58

nsw RF BF RF BF RF BF

40 0.65 0.63 0.55 0.68 0.45 0.67
60 0.75 0.80 0.65 0.76 0.55 0.74
80 0.85 0.90 0.75 0.85 0.65 0.82
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BF in Table I compare favorably with the values calculated
for the quark-antiquark system in Table II. This indicates
that the smearing effects are immaterial as long as the
length of the isosceles side is such that the fuzzed balls
around any of the color charges Q1;2 and that around the
test charge Q3 are nonoverlapping.
For the smearing radii considered here, a slight overlap

of the fuzzed ball around each quarkQ1;2 on the base of the
isosceles is seen to have no observable effect on the force
experienced by the test charge Q3. This observation does
not exclude the possibility of the three-body channel of the
interaction in the (3Q) system. The locus of the center of
interaction may still be outside the two overlapping spheres
in the base of the triangle.
In Table I, the distance from the quarks Q1;2 to the

Fermat point is indicated for each configuration. Simple
variation calculus shows that for an isosceles triangle, the
position of the Fermat point does not depend on the height
of the triangle, R, and the locus is fixed merely by the
length of the base of the triangle such that xF ¼ A=ð2 ffiffiffi

3
p Þ.

In summary, for the quark position geometry considered
in this work, the above analysis on the measured values of
the force among a system of three quarks for each smeared
data set of configurations suggests a conservative distance
scale γ beyond which the confining force on a given source
is unchanged to be

γ ¼ 2Rs: ð4:4Þ
This restricts the number of smearing sweeps to be such

that the characteristic diameter of smearing does not
exceed the distance between at most two quarks. To take
into account the distance between other sources, an
additional conservative measure will be to keep the
distance to the Fermat point from any of the quarks of
a given configuration outside the radius of smearing.
However, in the present case this may be immaterial since
the differences in the force measurements are well within
the statistical errors. Equation (4.4) indicates the distance
scales where a specific characteristic of the action density
might be affected by gauge field smoothing. The corre-
sponding effects of gauge field smoothing on the revealed
gluonic profile will be discussed also on several occa-
sions below.

V. ACTION DENSITY

A. Flux iso-surface profile

The flux strength is measured as the correlation between
the vacuum action density, Sð~ρ; tÞ, and a gauge-invariant
operator representing the quark states as provided by
Eq. (2.3). The action density operator

Sð~ρÞ ¼ β
X
μ>ν

1

2
TrðFImp

μν Þ2 ð5:1Þ

is calculated through the Oða4Þ improved lattice version of
the continuum field-strength tensor [18]

FImp
μν ¼

X3
i¼1

wiC
ði;iÞ
μν ; ð5:2Þ

whereCði;iÞ
νμ are i × i link products in the νμ plane andwi are

coefficients selected to remove Oða2Þ and Oða4Þ errors.
The evaluation of this operator on smeared configurations
filters out the UV divergences around the quark positions.
The origin of the coordinate system is placed at the middle
between the two quarks Q1;2 on the y axis at positions
~ρð0;� A

2
; 0Þ and at distance R from the third quark, Q3, at

~ρðx ¼ R; 0; 0Þ. The quarks reside on the plane ~ρðx; y; 0Þ.
On calculating Eq. (2.3), we find Cð~ρÞ < 1, and C ≃ 1

away from the quark positions. The density distribution in
the plane of the quarks is plotted in Fig. 3. In general, the
action density distribution is nonuniformly distributed as
revealed in Figs. 3–5. The distribution Cð~ρðx; y; z ¼ 0ÞÞ has
an action density maximal curve along the middle line
~ρðx; y ¼ 0; z ¼ 0Þ between the two quarks Q1;2. With the
increase of source Q3 separation, the peak point along the
maximal curve Cð~ρðx; y ¼ 0; z ¼ 0ÞÞ shows only subtle
movement, remaining near the Fermat point of the triangle.
These results contrast with the Wilson loop results at large
separations [3] where the action density assumes a constant
amplitude along each arm of the Y-shaped profile. A
convex curvature in the contour plot of flux density is
manifest in Fig. 4(b). This also contrasts with the density
plots obtained using the Wilson loop where the flux density
assumes a concave curvature.
Figure 4 discloses the flux surface plot of C in the 3Q

plane and associated isosurface for an isosceles configu-
ration corresponding to a base A ¼ 1.0 fm at the temper-
ature T=Tc ¼ 0.9. The flux isosurface displays a clear filled
Δ shape distribution. By moving the third quark further
away, i.e. by increasing R, the Δ shape is found to persist.
The sequence of frames in Fig. 5 displays similar results,
this time at T ¼ 0.8Tc. It is important to note that this
geometrical form of the density plot manifests itself at a
temperature near the end of the plateau of the QCD-phase
diagram [36] where the string tension has been reported to
decrease only by a value around 10% [17].
The contour lines and isosurface of the flux do not

exhibit a significant change with the temperature scale.
Similarly, the effects of smearing do not cause deforma-
tions of the isosurface profile outside of smoothing the
interpolation of the flux lines. This has been observed [37]
at relatively short distances employing the link integration
for evaluating Polyakov lines in the flux strength charac-
terization (2.3). Even though the number of smearing
sweeps selected for each graph are larger than the limits
set by the invariance of the force analysis of the last
sections, the rendered graphs are not sensitive to increased
levels of smearing.
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The flux distribution acquires a nontrivial transverse
structure along the lines perpendicular to the x axis. The fits
of the transverse distribution along the lines ~ρðxi; y; 0Þ is

returning good χ2 for a Gaussian distribution with varying
amplitudes and widths from the third quark Q3 position, R,
to the y axis as shown for instance in Figs. 3 or 6. This
symmetry about the y axis in the x-y plane also exists in the
perpendicular z direction.
In a mesonic system, the width of the flux distribution is

cylindrically symmetric around the line joining the two
quarks. However, the existence of a third quark away from
the y axis breaks the symmetry of the width profile and the
measured widths perpendicular to the plane of the quarks
do indeed differ from the widths in the quark plane. In the
forthcoming section, we focus on dissecting the profile
properties of the flux distribution within the quark plane,
while the asymmetry aspect ratios are reported separately in
the last section.

B. Flux radius profile

At large quark separation, the revealed flux tube profile
using the 3Q Wilson loop operator at zero temperature
exhibits a uniform tube amplitude with a radius that is only
slightly increasing up to the position of the junction [3].
Although the bias of the revealed energy distribution by the
shape of the configurations of the spatial links [2,3] leaves
these rendered energy distributions somewhat uncertain,
this flux distribution has been considered consistent with
the parametrization of the 3Q ground state potential with a
Y ansatz at large distance [5]. The Y-shaped gluonic
distribution has also been considered in consonance with

FIG. 3 (color online). Surface plot (inverted) of the flux
distribution Cð~ρÞ of Eq. (2.3) evaluated in the plane of the
(3Q) system ~ρðx; y; 0Þ, for isosceles configuration of base length
A ¼ 0.4 fm and separation distances (a) R ¼ 0.6 fm,
(b)R ¼ 0.8 fm, and (c) R ¼ 1.0 fm, at T ¼ 0.8 TC. The spheres
refer to the positions of the quarks.

FIG. 4 (color online). The flux action isosurface at the quark
positions, plotted together with a surface plot for the density
distribution Cð~ρÞ, in the 3Q plane at temperature T ¼ 0.9Tc, for
equilateral triangular configuration R ¼ 1.1 fm and A ¼ 1.0 fm.
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the dual superconductivity picture [38–40] of the QCD
vacuum. The flux is squeezed into a thin region dual to
the Abrikosov vortex [41] resulting in the formation of
Y-shaped stringlike flux tube [42–45].

At finite temperature, on the other hand, one intuitively
would expect the quantum vibrations of the underlying
three-string system [46–49] to give rise to a nonuniform
action density distribution in a similar fashion to the results
revealed in the meson [16]. The thin stringlike Y-shaped
flux tube may delocalize away from its classical configu-
ration and span the whole region throughout the bulk of the
triangular 3Q configuration, giving rise to a rounded
concentric family of Δ action isosurfaces (equiaction
surfaces of Fig. 4). Each surface is weighted by a temper-
ature-dependent amplitude intensity distribution. In this
nonuniform action density context, the radius topology is
not fixed merely based on the distribution of equiaction
surfaces, as there can be an infinite number of isosurface
topologies of the action density that all correspond to the
same measured square root of the second moment of the
distribution.
The second moment, r2yðxÞ, and the amplitude,HyðxÞ, of

the flux density at each line ~ρðxi; y; 0Þ is measured by
means of Gaussian fits to the complementary distribution
C0 ¼ 1 − C

C0ð~ρðxi; y; 0ÞÞ ¼ HyðxiÞe−y2=2r2 : ð5:3Þ

The fits to this Gaussian form are illustrated in Fig. 7.
The mean square width in the 3Q plane at position, xi, is
measured via

r2yðxiÞ ¼
R
dyy2C0ð~ρðxi; y; 0ÞÞR
dyC0ð~ρðxi; y; 0ÞÞ

; ð5:4Þ

eliminating dependence on HyðxiÞ. The values of the
measurements of HyðxiÞ and r2yðxiÞ are listed in
Tables III and IV. The radius profile in the quark plane,
z ¼ 0, is measured at each lattice coordinate xi. The data
points corresponding to radii along the x axis for a given
quark configuration are interpolated with a continuous
lineup to the third quark, Q3, with position ~ρðR; 0; 0Þ as
in Fig. 8.
In the three-quark interaction, there is more than a single

string and the distribution of the gluon field may result from
the overlap of more than one vibrating string. For the
Y-shaped string model for the three-quark interaction, the
choice of the fit function should not be the same for all
the distances x from the base A connecting the quarks Q1

and Q2. In the following, we discuss the accuracy of the
ansatz Eq. (5.3) in estimating the mean square width.
In Ref. [50] a fit function consisting of a sum of two

Gaussians of the form

GðyÞ ¼ H
2
e−ðy−uÞ2=W2 þH

2
e−ðyþuÞ2=W2

has been adopted to study the junction effects. This form
assumes a region consisting of a system of two overlapping

FIG. 5 (color online). Surface plot in the plane of the 3Q system
~ρðx; y; z ¼ 0Þ and isosurface of the flux distribution Cð~ρ; ~r1; ~r2; ~r3Þ
for the isosceles configuration with A ¼ 1 fm and the third quark
separation distance R as indicated. T ¼ 0.8 TC.
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strings of the same strength H=2, and mean square width
W2. The center of the two Gaussians is separated by
distance j2uðxÞj.
A detailed analysis of the profile for all considered quark

configurations and both temperatures has been analyzed
with fit function Eq. (5.5) in [50]. In general, the difference
in width measurements manifest in the first two planes
x ¼ 1 and x ¼ 2 at the temperature T=Tc ¼ 0.8 where the

string splitting uðxÞ ≠ 0 manifests at the first two planes
x ¼ 1; 2 for the largest base A ¼ 1.0 fm. The difference in
width measurements between both fit forms amounts to a
maximum of 15.0% at R ¼ 0.5 fm, 8% at R ¼ 0.9 fm, and
13.2% at R ¼ 1.1 fm. At T=Tc ¼ 0.9, the splitting of the
strings uðxÞ is larger and the percentage difference in width
can be significant at the first few planes. For the largest
triangular bases A ¼ 1, the difference ranges from 25.1% at
x ¼ 1 to 15.3% at x ¼ 3 and becomes as small as 6.0% at
x ¼ 4. For the smallest triangular base A ¼ 0.6 fm, the
percentage difference maximum is of 5.1%.
The fit ansatz Eq. (5.3) gives sufficiently good estimates

at x planes commencing at the intersection point between
the two Gaussians uðxÞ ¼ 0 up to the third quark Q3. For
the preceding planes, the fit ansatz Eq. (5.3) of the width
may become rough to disclose the junction effects [50]
when studied in the context of a Y-string model, in
particular at higher temperature.
The first row of graphs in Fig. 8 correspond to radii

measurements at the temperature T=Tc ¼ 0.8 with base
length running from A ¼ 0.6 fm to A ¼ 1.0 fm. For
A ¼ 0.6 fm, the radius profile draws almost constant lines
with small declination indicating a subtle decrease along
the x axis up to the third quark position. The difference in
radii between the very first planes and the planes close to
the third quark Q3 becomes more pronounced with the
increase of the third quark Q3 separation R as well as the
increase of the distance between the two quarks Q1;2 in
the base.
At the same temperature scale T=Tc ¼ 0.8 and small

isosceles base A ¼ 0.6 fm, the tube’s radius, ryðxiÞ, at a
given point broadens slowly with the increase of the quark
separation Q3. This behavior changes as the length of the

FIG. 6 (color online). Comparison of the flux contour lines of the density distribution in the 3Q plane C for triangular base A ¼ 1.0 fm
and third quark separation R ¼ 0.9 fm at (a) T ¼ 0.8Tc and (b) T ¼ 0.9Tc, in the z ¼ 0 plane.
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FIG. 7 (color online). The density distribution C0ð~ρÞ for the
isosceles configuration with the base, A ¼ 1.0 fm, and height
R ¼ 0.8 fm at T=Tc ¼ 0.8 (nsw ¼ 60 sweeps). Data are plotted
for the transverse planes x ¼ 1 to x ¼ 6. The lines correspond to
the Gaussian fits to the density in each plane ~ρðxi; y; 0Þ. The
highest amplitude lies close to the Fermat point plane x ¼ 2.88 of
this 3Q configuration.
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TABLE III. The amplitude, HyðxiÞ (scaled by a factor of 101) of the flux distribution at each consecutive transverse plane xi from the
quarks forming the base, A, of an isosceles triangle. The measurements for base source separation distance A ¼ 0.6, 0.8, and 1.0 fm for
the temperature T=Tc ¼ 0.8 are indicated as a function of the third quark position, Q3.

Plane x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 4 x ¼ 5 x ¼ 6 x ¼ 7 x ¼ 8 x ¼ 9 x ¼ 10 x ¼ 12 x ¼ 13
Q3 ¼ R=a

A ¼ 0.6 fm
07 4.12(2) 4.34(1) 4.28(1) 3.97(2) 3.48(2) 2.84(2)
08 4.24(2) 4.53(2) 4.56(2) 4.36(3) 4.00(3) 3.49(3) 2.85(3)
09 4.31(2) 4.63(3) 4.73(3) 4.63(4) 4.37(4) 3.99(4) 3.49(4) 2.85(3)
10 4.35(3) 4.67(5) 4.82(5) 4.79(6) 4.62(6) 4.33(5) 3.95(4) 3.46(3) 2.83(2)
11 4.36(5) 4.66(7) 4.84(7) 4.85(8) 4.74(8) 4.53(7) 4.24(5) 3.86(4) 3.39(3) 2.80(3)
12 4.35(6) 4.6(1) 4.7(1) 4.8(1) 4.8(1) 4.59(9) 4.35(7) 4.06(4) 3.72(4) 3.29(3) 2.73(3)
13 4.30(7) 4.4(1) 4.6(1) 4.7(1) 4.7(1) 4.5(1) 4.3(1) 4.06(6) 3.81(4) 3.53(4) 3.14(4) 2.64(3)
A ¼ 0.8 fm
07 4.71(5) 4.92(3) 4.80(1) 4.40(2) 3.80(3) 3.07(3)
08 4.79(5) 5.08(3) 5.06(3) 4.78(3) 4.31(4) 3.71(4) 3.01(3)
09 4.83(5) 5.14(4) 5.22(4) 5.03(4) 4.68(5) 4.22(4) 3.66(4) 2.98(3)
10 4.84(5) 5.13(5) 5.27(5) 5.18(5) 4.93(6) 4.58(5) 4.13(4) 3.60(4) 2.95(4)
11 4.84(5) 5.06(5) 5.24(5) 5.23(6) 5.08(6) 4.80(5) 4.44(4) 4.02(5) 3.51(6) 2.88(6)
12 4.84(5) 4.92(5) 5.12(5) 5.18(6) 5.12(6) 4.92(5) 4.61(3) 4.23(6) 3.8(1) 3.4(1) 2.75(9)
13 4.84(5) 4.70(4) 4.88(3) 5.00(3) 5.04(5) 4.92(5) 4.64(2) 4.27(8) 3.9(1) 3.5(1) 3.1(1) 2.6(1)
A ¼ 1.0 fm
07 5.17(9) 5.43(6) 5.33(3) 4.86(1) 4.15(2) 3.31(2)
08 5.22(9) 5.56(7) 5.58(5) 5.25(2) 4.69(1) 3.99(2) 3.19(3)
09 5.2(1) 5.58(9) 5.72(7) 5.53(5) 5.11(3) 4.55(2) 3.89(4) 3.14(4)
10 5.2(1) 5.5(1) 5.8(1) 5.71(9) 5.43(7) 4.99(6) 4.45(6) 3.82(7) 3.08(7)
11 5.26(1) 5.3(1) 5.7(1) 5.8(1) 5.7(1) 5.3(1) 4.9(1) 4.3(1) 3.7(1) 3.0(1)
12 5.4(1) 5.1(1) 5.5(1) 5.7(1) 5.8(1) 5.6(1) 5.1(1) 4.6(1) 4.0(1) 3.4(1) 2.7(1)
13 5.7(1) 4.7(1) 5.0(1) 5.4(1) 5.6(1) 5.7(1) 5.3(1) 4.6(1) 4.0(1) 3.4(1) 2.9(1) 2.4(1)

TABLE IV. The squared width, r2y, in lattice units, of the flux distribution as in Table III.

Plane x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 4 x ¼ 5 x ¼ 6 x ¼ 7 x ¼ 8 x ¼ 9 x ¼ 10 x ¼ 12 x ¼ 13
Q3 ¼ R=a

A ¼ 0.6 fm
07 9.7(1) 9.6(0) 9.3(0) 9.0(1) 8.6(1) 8.2(1)
08 10.0(1) 9.9(1) 9.7(1) 9.5(1) 9.2(1) 8.7(1) 8.2(1)
09 10.2(1) 10.3(1) 10.2(1) 10.0(1) 9.7(2) 9.3(2) 8.8(2) 8.2(1)
10 10.6(1) 10.8(2) 10.6(2) 10.5(2) 10.3(2) 9.9(2) 9.4(2) 8.8(2) 8.0(1)
11 10.9(2) 11.5(3) 11.2(3) 11.1(3) 10.9(3) 10.6(3) 10.2(2) 9.5(2) 8.6(1) 7.8(1)
12 11.3(2) 12.5(5) 12.1(4) 11.8(4) 11.6(4) 11.3(4) 11.0(3) 10.3(2) 9.4(2) 8.4(2) 7.7(1)
13 11.7(3) 13.9(7) 13.2(6) 12.7(6) 12.4(6) 12.3(6) 12.1(5) 11.5(3) 10.4(2) 9.2(2) 8.3(2) 7.9(2)
A ¼ 0.8 fm
07 12.2(2) 11.9(1) 11.3(0) 10.8(1) 10.2(1) 9.5(2)
08 12.4(2) 12.2(1) 11.7(1) 11.2(1) 10.6(1) 10.0(2) 9.2(2)
09 12.8(2) 12.6(1) 12.1(1) 11.6(1) 11.1(2) 10.5(2) 9.7(2) 8.8(2)
10 13.2(2) 13.1(2) 12.5(2) 11.9(2) 11.4(2) 10.9(2) 10.2(2) 9.3(2) 8.2(2)
11 13.6(2) 13.6(2) 12.8(2) 12.1(2) 11.5(2) 11.0(2) 10.4(1) 9.6(2) 8.5(3) 7.5(3)
12 14.1(2) 14.0(2) 12.9(2) 12.1(2) 11.3(2) 10.8(2) 10.3(1) 9.6(2) 8.6(4) 7.6(4) 6.8(4)
13 14.8(2) 14.2(2) 12.7(1) 11.4(1) 10.6(2) 10.1(1) 9.8(1) 9.3(3) 8.5(5) 7.6(6) 6.9(6) 6.4(6)
A ¼ 1.0 fm
07 15.4(4) 14.6(3) 13.7(1) 12.9(0) 12.2(1) 11.4(2)
08 15.7(4) 14.8(3) 13.8(2) 13.0(1) 12.3(0) 11.5(1) 10.6(2)
09 16.1(5) 15.0(4) 13.8(3) 12.9(2) 12.1(1) 11.5(1) 10.6(2) 9.5(2)
10 16.6(5) 15.1(5) 13.7(4) 12.6(3) 11.7(2) 11.0(2) 10.4(2) 9.4(3) 8.1(4)
11 17.0(6) 14.9(6) 13.3(6) 12.0(5) 10.9(4) 10.2(4) 9.6(5) 9.0(6) 7.9(6) 6.6(6)
12 17.2(7) 13.9(5) 12.2(5) 10.8(5) 9.7(7) 8.9(7) 8.3(8) 7.8(9) 7(1) 6(1) 5(1)
13 17.1(9) 12(1) 10(1) 9(1) 8(1) 7(1) 6(1) 6(1) 6(1) 5(1) 5(1) 4(1)
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isosceles base A becomes wider. The change in radius along
the x axis with R approaches near a stagnation in the
broadening for A ¼ 0.8 fm indicating an inflection point.
This is evident from the profile at the widest base length

A ¼ 1.0 fm. The radius at a given point typically decays
with the increase of the third quark Q3 separation R. The
geometrical area spanned by the triangle made up by the 3Q
system becomes significantly large as the third quark Q3

steps farther away. In response, the gluonic energy con-
denses in narrower extents around the x axis. In fact, we see
a clearly identifiable Y-shaped profile of the gluon flux
emerging at R ¼ 1.3 fm as well as at R ¼ 1.2 fm.
For illustration, the action contours and radius profile

have been superimposed in Fig. 9. The action contours are
concentric convex Δ-shaped action isolines, and the cor-
responding radii measured along the x axis are not
coinciding with any of the action isolines and have a
convex Y-shapedlike profile. Variation of the amplitude,
Hy, hides the underlying Y-shape revealed through the
consideration of ry. We see from the corresponding last
graph of the bottom row in Fig. 8 that the contour lines and
the radius profile have similar concave curvatures at the
temperature T=Tc ¼ 0.9.
This analysis may render the widely used terms such as

the Y- and Δ-shaped gluon flux linguistically ambiguous if
their usual usage is brought to the regime of nonuniform
action density profiles with position-dependent (local)
amplitudes distribution, Hy. One can speculate that the
observation of the simultaneous coexistence of both the Y
and the Δ aspects of the profile opens the possibility that
the ground-state baryon state may exhibit a similar action

isosurface behavior even with the success of the Yansatz in
the parametrization of the large distance potential. This
may sound plausible especially if we take into account the
fact that the gluonic junction broadens with the evolution of
Euclidean time in the Wilson loop operator [3]. In addition,
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FIG. 8 (color online). The radius profile of the flux tube measured in the plane of the quarks for each isosceles configuration with base
A ¼ 6a, A ¼ 8a, and A ¼ 10a (a ¼ 0.1 fm), at two temperatures T=Tc ¼ 0.8 (above) and T=Tc ¼ 0.9 (below). The legend (in the
upper right corner graph) signifies the third quark’s position.

FIG. 9 (color online). The radius profile of the flux tube
displaying a Y-shapelike profile for quark configurations of base
A ¼ 1.0 fm and the third quark position R ¼ 1.3 fm at temper-
ature T=Tc ¼ 0.8. In the background are the corresponding flux
action-density contours.
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nonuniformly UV regulated Wilson loop operators have
optimized the ground state overlap at zero temperature in
the mesonic sector [15]. At the same time, and along the
lines of the above argument, the observation of a Y-shape
current distribution following Abelian gauge fixing [4]
at T=Tc ¼ 0.8 should not be taken as contradictory to
the Δ-shaped action density in QCD observed without
gauge fixing.
Inspection of the bottom row of the graphs in Fig. 8

reveals how thermal effects on the tube’s radius profile take
place as we get closer to the deconfinement point at
T=Tc ¼ 0.9. In general, there is an increase in the radius
of the flux with the increase of the temperature. The tube’s
topology is almost the same, with an expansion of the size
as we get to wider triangular bases. The radii flatten out
through the planes x ≤ 6 for large quark separations. The
change in radius along the x axis increases also with the
increase of the temperature for small quark separations.
Minimum growth in the radius for increasing R is notice-
ably manifesting near the Fermat point of the configura-
tions x ¼ 1.7; 2.3 and 2.9 for the isosceles bases A ¼ 0.6,
0.8, and 1.0 fm, respectively. Another distinguishable
feature for the profile at T=Tc ¼ 0.9 is that the radius
shows no sign of squeezing at any quark configurations.
The increase in energy resulting from the increase of the
temperature is now large enough to accommodate the
corresponding enlargement in the geometrical area of
the triangle set up by the quarks. We focus on detailed
aspects of the flux broadening patterns separately in Sec. D.
In addition to the force measurements in Sec. IV taken as

a guiding analysis to set a trusted distance scale for each
level of smearing, we now report the effects of smearing on
the radius profile of the action density along the tube.
Figure 10 compares the radii of the flux at each plane x
measured on 60 and 80 sweep smeared gauge configura-
tions. The values of the measured radii do not change at
distant planes from the isosceles base. Smearing causes a
subtle shifting rather than lensing effect on the radius at the
planes near the quarks in the base Q1;2. An increment of 20
sweeps of smearing from 60 sweeps to 80 sweeps causes a
maximum increase of the radius by a subtle factor of 1.04.
This effect diminishes as we consider far planes x > 6 from
the Q1;2 quarks on the base.

C. Flux amplitude profile

At zero temperature, the revealed vacuum structure
inside the static baryon constructed via the Wilson loop
operator has a maximum vacuum suppression at the center
of the triangle made up by the 3Q system at small
separations [3]. At large distances, theWilson loop operator
of the minimum spatial string length has been found to
minimize the potential [3], indicating a junction position at
the Fermat point of the configuration. However, a peak in
the action density at zero temperature does not manifest,
but rather the distribution assumes a constant amplitude.

The analysis performed here for the density distributions
using Polyakov lines as hadronic operators, nevertheless,
reveals density amplitude peaks which manifest at short as
well as large source separation distances. In this section, the
amplitude profile is investigated and contrasted for the two
considered temperatures.
Tables III and V summarize the measured amplitudes,

HyðxÞ, in accordance with the Gaussian fits of Eq. (5.3).
The corresponding plots are shown in Fig. 11, for the
isosceles configurations with base A ¼ 0.6 fm,
A ¼ 0.8 fm, and A ¼ 1.0 fm at two temperatures T=Tc ¼
0.8 (top row) and T=Tc ¼ 0.9 (bottom row), respectively.
At all considered planes, the height of the distribution
HyðxÞ decreases with the increase of the temperature,
which reciprocates the changes of the radius of the flux
with the temperature. The decrease of the distribution
height together with the associated increase in the distri-
bution moment indicates the spread of the gluonic energy
with the increase of the temperature.
At T=Tc ¼ 0.8, the amplitude also increases at most

planes when moving the third quark Q3 farther from the
base of the isosceles configuration. Recalling the corre-
sponding decrease in the radii along the x axis, one infers
the gluonic behavior undergoes a localization rather than a
decay of the flux tube. The amplitudes at T=Tc ¼ 0.9 show
similar increase up to small quark separation. However, a
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FIG. 10 (color online). Same as Fig. 8 for isosceles configu-
ration bases of A ¼ 0.6 fm and A ¼ 1.0 fm. The upper and lower
figures compare the measured radius profile for two levels of
smearing, 60 sweeps and 80 sweeps, respectively. The radius is in
lattice units.
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noticeable turnover to decreasing amplitude with the
increase of the third quark Q3 separation manifests for
R ≥ 10a. The behavior of the amplitude and radius at
T=Tc ¼ 0.8 resembles, respectively, the behavior of the

radius and amplitude at T=Tc ¼ 0.9. The analysis of the
flux amplitude shows different qualitative behavior as
we transit from the end of the QCD plateau to just before
the deconfinement point and this behavior is reciprocal to

TABLE V. The amplitude, HyðxiÞ (scaled by a factor of 101) of the flux distribution at each consecutive transverse plane xi from the
quarks forming the base, A, of an isosceles triangle. The measurements or base source separation distance A ¼ 0.6, 0.8, and 1.0 fm for
the temperature T=Tc ¼ 0.9 are indicated as a function of the third quark position, Q3.

Plane x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 4 x ¼ 5 x ¼ 6 x ¼ 7 x ¼ 8 x ¼ 9 x ¼ 10 x ¼ 12 x ¼ 13
Q3 ¼ R=a

A ¼ 0.6 fm
07 2.73(1) 2.83(1) 2.77(1) 2.58(1) 2.27(2) 1.88(2)
08 2.71(1) 2.79(0) 2.75(1) 2.62(1) 2.42(2) 2.14(2) 1.79(2)
09 2.68(0) 2.73(0) 2.67(0) 2.56(0) 2.41(1) 2.24(1) 2.01(2) 1.71(1)
10 2.64(0) 2.64(1) 2.55(1) 2.43(0) 2.30(0) 2.19(1) 2.06(1) 1.89(1) 1.63(1)
11 2.59(0) 2.55(2) 2.42(2) 2.27(1) 2.14(0) 2.05(0) 1.99(1) 1.91(1) 1.77(1) 1.56(1)
12 2.53(1) 2.45(3) 2.29(3) 2.10(2) 1.95(2) 1.86(1) 1.83(1) 1.81(0) 1.77(1) 1.67(1) 1.49(1)
13 2.46(2) 2.35(3) 2.15(3) 1.93(3) 1.76(3) 1.66(3) 1.63(2) 1.64(1) 1.64(0) 1.63(1) 1.56(2) 1.43(1)
A ¼ 0.8 fm
07 2.88(2) 2.93(1) 2.85(0) 2.64(0) 2.33(1) 1.94(1)
08 2.84(2) 2.86(2) 2.79(0) 2.63(0) 2.41(1) 2.14(1) 1.81(1)
09 2.80(3) 2.77(3) 2.68(1) 2.52(0) 2.35(0) 2.18(1) 1.97(1) 1.70(1)
10 2.74(2) 2.66(4) 2.53(3) 2.36(1) 2.20(0) 2.07(0) 1.96(1) 1.82(1) 1.60(1)
11 2.67(2) 2.54(5) 2.38(4) 2.18(3) 2.00(2) 1.89(1) 1.83(0) 1.78(1) 1.69(1) 1.51(2)
12 2.59(1) 2.44(5) 2.23(4) 2.00(4) 1.81(3) 1.69(2) 1.64(1) 1.64(0) 1.63(1) 1.58(2) 1.46(2)
13 2.51(1) 2.35(4) 2.11(4) 1.85(4) 1.64(4) 1.50(3) 1.45(2) 1.46(1) 1.50(1) 1.52(2) 1.50(3) 1.42(3)
A ¼ 1.0 fm
07 2.85(5) 2.84(4) 2.78(2) 2.59(0) 2.31(0) 1.96(0)
08 2.79(6) 2.74(5) 2.68(3) 2.52(1) 2.33(0) 2.10(0) 1.82(1)
09 2.72(6) 2.61(6) 2.52(4) 2.36(2) 2.20(1) 2.06(0) 1.91(0) 1.69(1)
10 2.64(6) 2.46(7) 2.33(5) 2.15(3) 1.99(2) 1.89(0) 1.83(0) 1.74(1) 1.58(1)
11 2.55(6) 2.31(7) 2.14(6) 1.93(5) 1.75(3) 1.66(1) 1.63(0) 1.63(0) 1.60(1) 1.48(1)
12 2.46(5) 2.19(7) 1.98(6) 1.73(5) 1.54(4) 1.43(2) 1.41(1) 1.44(0) 1.49(1) 1.49(1) 1.43(2)
13 2.39(5) 2.12(7) 1.86(6) 1.59(5) 1.38(4) 1.25(3) 1.21(2) 1.25(1) 1.32(1) 1.39(2) 1.43(3) 1.38(4)
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the radius profile indicating a delocalization of the gluonic
distribution with the increase of the temperature and the
subsequent decrease in the string tension.
The maxima are found to localize around the second

and third planes x ¼ 2, x ¼ 3, for third quark Q3

separations R < 10a. However, this localization of the
maxima of the vacuum suppression around the Fermat
points ceases as the third quark is pulled away further.
The density maximum moves in the same direction of
third quark at T=Tc ¼ 0.8 and moves in the opposite
direction (towards the triangle base) for the higher
temperature T=Tc ¼ 0.9.

D. The broadening of the flux width

In this section, we focus on the broadening aspects of the
mean square width of the flux. We restrict our analysis to
the mean square width in the 3Q plane at the two
considered temperature scales. The lattice data for the
mean square width, r2yðxiÞ, at planes xi along the x axis are
summarized in Tables IVand VI. For convenience, we have
considered the tube’s width for an analysis performed on
gauge configurations of 80 sweeps of smearing, where we
obtain the best signal to noise ratio with only a relatively
small elimination of short distance points which are
affected by smearing.
In the last section, we reported the effects of gauge

smoothing on the radius of the gluon flux. Smearing shifts
the width by a subtle constant near the base of the isosceles
triangle, as in Fig. 12. This shift diminishes at distant planes
from the base. To further examine the rate of broadening of
the flux distribution, we fit the mean square width to the
simple linear ansatz

r2yðR; xiÞ ¼ b1ðxiÞRþ b2ðxiÞ: ð5:5Þ

The returned values of the slope of the growth in the flux
width with the increase of the isosceles height, R, display
small systematic errors associated with the selection of
parameters as indicated in Table VII.
The profile of the broadening of the glue at various

planes, for the isosceles base, A ¼ 0.8 fm, is plotted in
Fig. 13 with a similar plot for, A ¼ 1.0 fm, in Fig. 14,
respectively. Each set of data describes how the width of the
gluonic flux varies at a given plane xi for the triangle base
as the third quark Q3 moves to larger values of R.
Evidently, the increase of the temperature dramatically
increases the rate of the broadening of the glue at all planes.
Apart from the pronounced thermal effects near the

deconfinement point, we see the rates of broadening at
T=Tc ¼ 0.8 are decreasing as one proceeds to the more
distant planes from the base of the triangle. Moreover, the
wider the base of the isosceles triangle, the more pro-
nounced is the corresponding decrease in the width,
indicating that the gluonic field tend to become more

localized as the geometrical area enclosed by the quarks
positions becomes larger.
The shrinking of the width of the flux tube is a peculiar

property of certain geometrical configurations of the multi-
quark system. The decrease in the width with the increase
of the interquark separation has never been observed in the
meson either using Polyakov lines at finite temperature [16]
or Wilson’s loop at zero temperature [51]. The analysis of
the Wilson loop based energy distribution at zero temper-
atures does not seem to indicate shrinking of the width of
the flux tube [3].
Near the deconfinement point, the broadening of the

mean square width, r2y, exhibits a clear linear divergence at
distant planes from the base of the isosceles triangle for
large separations, R > 1.0 fm of the third quark Q3. This
result resembles the observed linear growing in the flux
distribution width at the same temperature in the meson
[20]. The slope of the growing width at distant planes from
the base, x > 6, from plane to plane show only subtle
changes. This indicates that the effects of the boundary and
the junction fluctuations decays away by proceeding to
large quark separations. Figure 15 displays the effects of
increasing the distance between the two quarks Q1;2 on the
rate of change of the width versus the motion of the source
Q3. At T=Tc ¼ 0.9 the wider the base the faster the rate of
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growth. This behavior is the reciprocal of the corresponding
one at T=Tc ¼ 0.8.

E. Planes aspect ratio

The gluonic flux in the 3Q system does not exhibit a
symmetry between the width measured in the quark plane
and that in the perpendicular direction. This is related to the
underlying gluonic structure and the associated fluctua-
tions. For example, the string picture indicates an asym-
metry in the mean square width between the two planes
[46]. We report for completeness the general qualitative
features of this ratio of the action density in the two

perpendicular planes. The width of the tube in the
perpendicular direction is measured through Gaussian
fits as

r2zðxiÞ ¼
R
dzz2C0ð~ρðxi; 0; zÞÞR
dzC0ð~ρðxi; 0; zÞÞ

: ð5:6Þ

We measure the ratio between the width in the quark
plane and that in the perpendicular plane to the quarks

αðxiÞ≡ r2yðxiÞ
r2zðxiÞ

: ð5:7Þ

It is interesting to consider this quantity since the
predictions of the string model at zero temperature indicate
an asymmetric width pattern near the junction [46]. In a
similar way to the characteristics of the flux that we have
studied in the previous sections, we plot in Fig. 16 the
aspect ratio at the two temperatures for the same quark
position configurations. Generally, the value of the aspect
ratio indicates that the fluctuations in the quark plane are
always larger than the perpendicular fluctuations for both
temperatures. Further inspection of Fig. 16 shows only
subtle dependence on the temperature for the small isos-
celes bases. The aspect ratio is changing slowly as we move
through the planes up to the third quark position for the
smallest isosceles bases. However, at larger bases, the

TABLE VI. The squared width, r2y, in lattice units, of the flux distribution as in Table IV.

Plane x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 4 x ¼ 5 x ¼ 6 x ¼ 7 x ¼ 8 x ¼ 9 x ¼ 10 x ¼ 12 x ¼ 13
Q3 ¼ R=a

A ¼ 0.6 fm
07 13.2(1) 12.8(1) 12.5(0) 12.0(1) 11.4(2) 10.9(3)
08 13.5(1) 13.0(1) 12.9(0) 12.6(1) 12.1(1) 11.4(2) 10.7(3)
09 13.8(1) 13.2(1) 13.2(0) 13.0(0) 12.7(1) 12.1(2) 11.4(2) 10.6(3)
10 14.2(1) 13.3(2) 13.4(1) 13.4(0) 13.2(0) 12.8(1) 12.2(2) 11.3(2) 10.5(3)
11 14.6(1) 13.3(2) 13.5(2) 13.6(1) 13.6(1) 13.4(1) 13.0(1) 12.2(2) 11.2(2) 10.2(3)
12 15.1(2) 13.3(3) 13.5(2) 13.7(2) 13.9(2) 13.9(1) 13.7(1) 13.1(1) 12.1(2) 10.9(2) 9.8(2)
13 15.6(2) 13.2(3) 13.4(3) 13.7(3) 14.0(3) 14.3(3) 14.3(2) 13.9(1) 13.1(1) 11.9(2) 10.5(2) 9.3(2)
A ¼ 0.8 fm
07 16.6(4) 15.8(3) 15.1(1) 14.3(0) 13.3(2) 12.4(3)
08 16.9(4) 16.1(3) 15.6(1) 14.9(0) 14.0(1) 13.0(2) 12.0(3)
09 17.3(4) 16.3(4) 15.9(2) 15.4(1) 14.7(0) 13.8(1) 12.7(2) 11.7(3)
10 17.9(5) 16.5(5) 16.2(3) 15.8(2) 15.4(1) 14.7(1) 13.7(2) 12.5(2) 11.3(3)
11 18.5(5) 16.7(5) 16.4(4) 16.2(3) 15.9(2) 15.5(1) 14.7(1) 13.5(2) 12.2(3) 10.9(3)
12 19.3(5) 16.8(6) 16.7(5) 16.6(4) 16.5(3) 16.2(2) 15.7(2) 14.7(1) 13.4(2) 11.8(3) 10.5(3)
13 20.0(5) 17.0(6) 17.0(5) 17.0(5) 17.0(4) 16.9(4) 16.6(3) 15.9(2) 14.7(2) 13.1(3) 11.4(3) 9.9(3)
A ¼ 1.0 fm
07 21.4(9) 20.1(7) 18.8(3) 17.4(0) 15.9(1) 14.5(3)
08 21.9(9) 20.4(8) 19.3(5) 18.1(2) 16.7(0) 15.2(2) 13.8(3)
09 22(1) 20.7(9) 19.7(6) 18.7(3) 17.5(1) 16.1(1) 14.5(2) 13.0(3)
10 23(1) 21(1) 20.2(7) 19.3(5) 18.3(2) 17.1(1) 15.6(1) 13.9(2) 12.4(3)
11 24(1) 22(1) 20.7(9) 19.9(6) 19.1(4) 18.1(2) 16.8(1) 15.1(2) 13.4(3) 11.7(3)
12 25(1) 22(1) 21.4(1) 20.8(7) 20.1(5) 19.2(4) 18.1(3) 16.5(2) 14.7(2) 12.8(3) 11.2(4)
13 27(1) 23(1) 22.4(1) 22.0(8) 21.4(7) 20.7(5) 19.7(4) 18.2(3) 16.4(3) 14.3(3) 12.3(4) 10.5(4)

TABLE VII. The slope of the growth in the mean square width,
r2y, measured for isosceles base A ¼ 1.0 fm on two levels of link
smearing. The measurements are obtained from the fits to the
linear form Eq. (5.5).

nsw b1 Fit range Ra−1

x ¼ 2
60 0.76(4) 4–13
80 0.83(3) 4–13
x ¼ 7
60 2.3(1) 8–13
60 2.8(2) 10–13
80 2.2(1) 8–13
80 2.5(1) 10–13
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asymmetry throughout the gluonic cone becomes pro-
nounced. The results of the aspect ratio suggest greater
restoring forces for the gluonic distribution in the
perpendicular direction to the quark plane. This effect
diminishes as we consider planes away from the Fermat
point of the triangle quark configuration.
It is worth noting that the flux strength distribution

revealed with the action density using the Wilson loop does
not appear to produce an asymmetric gluonic pattern. For
instance, in Ref. [3] the radius of the tube is calculated with

cylindrical coordinates assuming a cylindrical symmetry of
the tube. The analysis provided here for the aspect ratio of
the mean square width provides another distinct feature
of the glue, as revealed by Polyakov loops, rather than a
manifestation of temperature effects.
This result is also consistent with the predictions of the

string model for the ratio of the mean square width of the
flux distribution in the quark planes and the perpendicular
direction at position of the junction [46]. However, one
should carefully consider the geometrical aspects of the
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FIG. 13 (color online). The squared flux-tube width at the depicted planes for the isosceles configuration A ¼ 0.8 fm compared at two
temperatures T=Tc ¼ 0.8 (top) and T=Tc ¼ 0.9 (bottom). The plane coordinates are indicated in the legend.
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FIG. 14 (color online). Same as Fig. 13 for a larger isosceles base length of A ¼ 1.0 fm.
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configuration and take into account thermal effects before
comparing with the predictions of the baryonic bosonic
string models. This comparison lies beyond the scope of the
present presentation of the gluonic profile [52,53] as it
manifests in a static baryon at finite temperature.

VI. CONCLUSION

The gluon flux distribution of a three-quark system in pure
SU(3) Yang-Mills vacuum has been revealed at finite

temperature. This analysis is an extension of the calculations
of the action density correlations obtained recently for the
QQ̄ [16] system to three-quark systems. The infinitely heavy
baryonic state has been constructed by three Polyakov loops.
The gluon flux is measured as a correlation between the
action density operator and three traced (gauge-invariant)
Polyakov lines. Measurements have been taken near the end
of a QCD phase diagram, T=Tc ≈ 0.8, and just before the
deconfinement point T=Tc ≈ 0.9.
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Noise reduction has been achieved using a gauge-
independent statistical approach that exploits the space-
time symmetries as well as symmetries of the quark
configuration space. The calculations are performed at
each point of the lattice and averaged over the lattice
four-volume. The average over the configuration space has
been calculated on 500 independent bins. Each bin consists
of an average over measurements that are closely spaced in
configuration space. An overimproved version of the stout-
link smoothing algorithm has been employed with number
of sweeps such that the physics is preserved in a systematic
and controlled manner.
We have revealed the characteristics of the flux action

density measured for three sets of geometrical three-quark
configurations and the corresponding changes on the
behavior due to the temperature. Each set corresponds to
isosceles triangle bases of length A ¼ 0.6 fm, A ¼ 0.8 fm,
and A ¼ 1.0 fm. The characteristics of the isosurface, the
radius, and the amplitude profiles of the action density
correlations, in addition to the broadening (or the shrink-
ing) pattern of the flux distribution, can be summarized in
the following main points:
(A) The iso-surface of the flux action density displays a

family of concave Δ shapes at small as well as large
quark separations. These Δ-shaped gluonic distribu-
tions persist and do not change into a Y shape as the
distances between the quark sources are increased.
The density plots in the quark plane display a
nonuniform distribution at all distance separations.
This contrasts with the Wilson loop results at zero
temperature which exhibit uniform action density
along each arm of the Y-shaped profile. A remarkable
feature of the revealed map of the contour lines of the
flux strength is that the shape of the contour lines do
not show significant sensitivity to the temperature for
the two temperatures considered here.

(B) The radius profiles give indications on the spread of
the energy inside the baryon. At the lowest temper-
ature near the end of the plateau, T=Tc ¼ 0.8, the
measurements of the radius indicate localization of
the action density in narrow regions for quarks
separations greater than 1.0 fm. The radius of the
tube decreases and draws a Y-shapedlike profile
even though the action isosurface and isolines are Δ
shaped. Near the deconfinement point, on the other
hand, the energy tends to spread as we see the radius
increases at all considered distance scales.

(C) The amplitude profile analysis of the flux density
shows a maximum vacuum fluctuation suppression at
the plane nearest to the Fermat point of the planar
three-quark configurations for intermediate separation
distances. The distribution’s peak ceases localizing
around the Fermat point of the 3Q isosceles configu-
rations when the height, R, is greater than 1.0 fm. The
peak shifts to the outside of the triangle made at
T=Tc ≈ 0.9 and shifts in the reverse direction to the

inside of the triangle for T=Tc ≈ 0.8. That is, the
amplitude gets higher when the radius shrinks at
T=Tc ≈ 0.8 and the reverse is manifest at T=Tc ≈ 0.9.

(D) The flux mean square width does not always broaden
with the increase of the quark source separation as is
the case in the meson. For the lowest temperature,
T=Tc ≈ 0.8, the flux distribution shrinks in width for
large quark separations. The change in the width of
the flux tube shows a nonbroadening aspect which is
a property of certain configurations of the multiquark
system. The width, however, grows linearly near the
deconfinement point, T=Tc ≈ 0.9, with the increase
of the height of the triangle. In general, the slope of
the decrease or increase in the width, at both temper-
atures, depends on the length of the triangle base. The
wider the base of the triangle set up by the quarks
positions, the lower or higher is the slop at temper-
atures T=Tc ¼ 0.8 and T=Tc ¼ 0.9, respectively.

(E) The aspect ratio between the mean square width of
the flux distribution in the quark plane and the width
in the perpendicular plan exhibits an asymmetry.
The gluonic fluctuations in the plane of the quarks
are greater than that in the perpendicular directions
around the Fermat point, indicating a greater restor-
ing force for the system in the plane of the quarks.
The ratio between the two components of the mean
square width decreases as we consider planes farther
than the locus of the Fermat point of the quark
configuration. The temperature dependence for the
aspect ratio is more pronounced at large quark
separations while we see almost the same profiles
for small isosceles bases. The deviation of the aspect
ratio from unity is implied by the predictions of the
string models and does not manifest using the
Wilson loop operator in the action correlations.

VII. PROSPECTIVE

As this work presents a first investigation of the flux
distribution of the 3Q system at finite temperature, there are
many promising avenues of investigation remaining. For
example, additional quark configurations, temperature
dependence, and QCD models could be examined in detail.
Methodological improvements based on increasing the
number of measurements and decreasing the number of
gauge smoothing sweeps are always desirable. The method
pursued here may prove effective in a calculation frame-
work that includes the effects of the dynamical quarks.

ACKNOWLEDGMENTS

This research was undertaken on the NCI National
Facility in Canberra, Australia, which is supported by
the Australian Commonwealth Government. We also thank
eResearch SA for generous grants of supercomputing time
which have enabled this project. This research is supported
by the Australian Research Council.

BAKRY, LEINWEBER, AND WILLIAMS PHYSICAL REVIEW D 91, 094512 (2015)

094512-18



[1] H. Ichie, V. Bornyakov, T. Streuer, and G. Schierholz, Nucl.
Phys. A721, C899 (2003).

[2] F. Okiharu and R. M.Woloshyn, Nucl. Phys. B, Proc. Suppl.
129–130, 745 (2004).

[3] F. Bissey, F.-G. Cao, A. R. Kitson, A. I. Signal, D. B.
Leinweber, B. G. Lasscock, and A. G. Williams, Phys. Rev.
D 76, 114512 (2007).

[4] V. G. Bornyakov, H. Ichie, Y. Mori, D. Pleiter, M. I.
Polikarpov, G. Schierholz, T. Streuer, H. Stüben, and T.
Suzuki, Phys. Rev. D 70, 054506 (2004).

[5] T. T. Takahashi, H.Matsufuru, Y. Nemoto, andH. Suganuma,
Phys. Rev. Lett. 86, 18 (2001).

[6] G. S. Bali, Phys. Rep. 343, 1 (2001).
[7] C. Alexandrou, P. De Forcrand, and A. Tsapalis, Phys. Rev.

D 65, 054503 (2002).
[8] T. T. Takahashi, H. Suganuma, Y. Nemoto, and H.

Matsufuru, Phys. Rev. D 65, 114509 (2002).
[9] C. Alexandrou, P. de Forcrand, and O. Jahn, Nucl. Phys. B,

Proc. Suppl. 119, 667 (2003).
[10] D. S. Kuzmenko and Y. A. Simonov, Phys. Lett. B 494, 81

(2000).
[11] D. S. Kuzmenko and Y. A. Simonov, Phys. At. Nucl. 67,

543 (2004).
[12] P. de Forcrand and O. Jahn, Nucl. Phys. A755, 475

(2005).
[13] R. Sommer and J. Wosiek, Phys. Lett. 149B, 497 (1984).
[14] H. Thacker, E. Eichten, and J. Sexton, Nucl. Phys. B, Proc.

Suppl. 4, 234 (1988).
[15] A. S. Bakry, D. B. Leinweber, and A. G. Williams, Ann.

Phys. (Amsterdam) 326, 2165 (2011).
[16] A. S. Bakry, D. B. Leinweber, P. J. Moran, A. Sternbeck,

and A. G. Williams, Phys. Rev. D 82, 094503 (2010).
[17] O. Kaczmarek, F. Karsch, E. Laermann, and M. Lutgemeier,

Phys. Rev. D 62, 034021 (2000).
[18] S. O. Bilson-Thompson, D. B. Leinweber, and A. G.

Williams, Ann. Phys. (Amsterdam) 304, 1 (2003).
[19] C. Morningstar and M. Peardon, Phys. Rev. D 69, 054501

(2004).
[20] A. S. Bakry, D. B. Leinweber, and A. G. Williams, Phys.

Rev. D 85, 034504 (2012).
[21] G. S. Bali and K. Schilling, Phys. Rev. D 47, 661 (1993).
[22] N. Cabibbo and E. Marinari, Phys. Lett. 119B, 387 (1982).
[23] K. Fabricius and O. Haan, Phys. Lett. 143B, 459 (1984).
[24] A. D. Kennedy and B. J. Pendleton, Phys. Lett. 156B, 393

(1985).
[25] S. Thurner, M. Feurstein, H. Markum, andW. Sakuler, Phys.

Rev. D 54, 3457 (1996).
[26] P. J. Moran and D. B. Leinweber, Phys. Rev. D 77, 094501

(2008).

[27] G. Parisi, R. Petronzio, and F. Rapuano, Phys. Lett. 128B,
418 (1983).

[28] P. de Forcrand and C. Roiesnel, Phys. Lett. 151B, 77 (1985).
[29] M. Luscher and P. Weisz, J. High Energy Phys. 09 (2001)

010.
[30] A. S. Bakry, X. Chen, and P. Zhang, Int. J. Mod. Phys. E 23,

1460008 (2014).
[31] W. Detmold and M. J. Savage, Phys. Rev. Lett. 102, 032004

(2009).
[32] R. Sommer, Nucl. Phys. B411, 839 (1994).
[33] M. Luscher and P. Weisz, J. High Energy Phys. 07 (2002)

049.
[34] M. Albanese et al., Phys. Lett. B 192, 163 (1987).
[35] F. D. R. Bonnet, D. B. Leinweber, A. G. Williams, and J. M.

Zanotti, Phys. Rev. D 65, 114510 (2002).
[36] T. Doia, N. Ishiib, M. Okab, and H. Suganumab, Nucl.

Phys. B, Proc. Suppl. 140, 559 (2005).
[37] A. S. Bakry, Thermal Delocalization of the flux-tubes in

Mesons and Baryons, T(R)OPICAL QCD(II), Cairns, 2010.
[38] G. Parisi, Phys. Rev. D 11, 970 (1975).
[39] G. ’t Hooft, in High Energy Physics, edited by A. Zichichi

(EPS International Conference, Palermo, 1975).
[40] S. Mandelstam, Phys. Rep. 23, 245 (1976).
[41] M. S. Cardaci, P. Cea, L. Cosmai, R. Falcone, and A. Papa,

Phys. Rev. D 83, 014502 (2011).
[42] H. Suganuma, S. Sasaki, and H. Toki, Nucl. Phys. B435,

207 (1995).
[43] H. Suganuma, S. Sasaki, H. Toki, and H. Ichie, Prog. Theor.

Phys. Suppl. 120, 57 (1995).
[44] Color Confinement and Hadrons, edited by H. Toki, Y.

Mizuno, H. Suganuma, T. Suzuki, and O. Miyamura (World
Scientific, Singapore, 1995).

[45] Quantum Chromodynamics and Color Confinement, edited
by H. Suganuma, M. Fukushima, and H. Toki (World
Scientific, Singapore, 2001).

[46] M. Pfeuffer, G. S. Bali, and M. Panero, Phys. Rev. D 79,
025022 (2009).

[47] O. Andreev, Phys. Rev. D 78, 065007 (2008).
[48] T. T. Takahashi and H. Suganuma, Phys. Rev. D 70, 074506

(2004).
[49] Oliver Jahn and Philippe De Forcrand, Nucl. Phys. B, Proc.

Suppl. 129–130, 700 (2004).
[50] A. S. Bakry, X. Chen, and P. M. Zhang, arXiv:1412.3568.
[51] G. S. Bali, C. Schlichter, and K. Schilling, Phys. Rev. D 51,

5165 (1995).
[52] A. S. Bakry, D. B. Leinweber, and A. G. Williams, Proc.

Sci., LATTICE2011, 256 (2011).
[53] A. S. Bakry, D. B. Leinweber, and A. G. Williams, AIP

Conf. Proc. 1354, 178 (2011).

GLUONIC PROFILE OF THE STATIC BARYON AT … PHYSICAL REVIEW D 91, 094512 (2015)

094512-19

http://dx.doi.org/10.1016/S0375-9474(03)01238-7
http://dx.doi.org/10.1016/S0375-9474(03)01238-7
http://dx.doi.org/10.1016/S0920-5632(03)02700-2
http://dx.doi.org/10.1016/S0920-5632(03)02700-2
http://dx.doi.org/10.1103/PhysRevD.76.114512
http://dx.doi.org/10.1103/PhysRevD.76.114512
http://dx.doi.org/10.1103/PhysRevD.70.054506
http://dx.doi.org/10.1103/PhysRevLett.86.18
http://dx.doi.org/10.1016/S0370-1573(00)00079-X
http://dx.doi.org/10.1103/PhysRevD.65.054503
http://dx.doi.org/10.1103/PhysRevD.65.054503
http://dx.doi.org/10.1103/PhysRevD.65.114509
http://dx.doi.org/10.1016/S0920-5632(03)01659-1
http://dx.doi.org/10.1016/S0920-5632(03)01659-1
http://dx.doi.org/10.1016/S0370-2693(00)01177-1
http://dx.doi.org/10.1016/S0370-2693(00)01177-1
http://dx.doi.org/10.1134/1.1690062
http://dx.doi.org/10.1134/1.1690062
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.127
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.127
http://dx.doi.org/10.1016/0370-2693(84)90374-5
http://dx.doi.org/10.1016/0920-5632(88)90109-0
http://dx.doi.org/10.1016/0920-5632(88)90109-0
http://dx.doi.org/10.1016/j.aop.2011.04.003
http://dx.doi.org/10.1016/j.aop.2011.04.003
http://dx.doi.org/10.1103/PhysRevD.82.094503
http://dx.doi.org/10.1103/PhysRevD.62.034021
http://dx.doi.org/10.1016/S0003-4916(03)00009-5
http://dx.doi.org/10.1103/PhysRevD.69.054501
http://dx.doi.org/10.1103/PhysRevD.69.054501
http://dx.doi.org/10.1103/PhysRevD.85.034504
http://dx.doi.org/10.1103/PhysRevD.85.034504
http://dx.doi.org/10.1103/PhysRevD.47.661
http://dx.doi.org/10.1016/0370-2693(82)90696-7
http://dx.doi.org/10.1016/0370-2693(84)91502-8
http://dx.doi.org/10.1016/0370-2693(85)91632-6
http://dx.doi.org/10.1016/0370-2693(85)91632-6
http://dx.doi.org/10.1103/PhysRevD.54.3457
http://dx.doi.org/10.1103/PhysRevD.54.3457
http://dx.doi.org/10.1103/PhysRevD.77.094501
http://dx.doi.org/10.1103/PhysRevD.77.094501
http://dx.doi.org/10.1016/0370-2693(83)90930-9
http://dx.doi.org/10.1016/0370-2693(83)90930-9
http://dx.doi.org/10.1016/0370-2693(85)90826-3
http://dx.doi.org/10.1088/1126-6708/2001/09/010
http://dx.doi.org/10.1088/1126-6708/2001/09/010
http://dx.doi.org/10.1142/S0218301314600088
http://dx.doi.org/10.1142/S0218301314600088
http://dx.doi.org/10.1103/PhysRevLett.102.032004
http://dx.doi.org/10.1103/PhysRevLett.102.032004
http://dx.doi.org/10.1016/0550-3213(94)90473-1
http://dx.doi.org/10.1088/1126-6708/2002/07/049
http://dx.doi.org/10.1088/1126-6708/2002/07/049
http://dx.doi.org/10.1016/0370-2693(87)91160-9
http://dx.doi.org/10.1103/PhysRevD.65.114510
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.341
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.341
http://dx.doi.org/10.1103/PhysRevD.11.970
http://dx.doi.org/10.1016/0370-1573(76)90043-0
http://dx.doi.org/10.1103/PhysRevD.83.014502
http://dx.doi.org/10.1016/0550-3213(94)00392-R
http://dx.doi.org/10.1016/0550-3213(94)00392-R
http://dx.doi.org/10.1143/PTPS.120.57
http://dx.doi.org/10.1143/PTPS.120.57
http://dx.doi.org/10.1103/PhysRevD.79.025022
http://dx.doi.org/10.1103/PhysRevD.79.025022
http://dx.doi.org/10.1103/PhysRevD.78.065007
http://dx.doi.org/10.1103/PhysRevD.70.074506
http://dx.doi.org/10.1103/PhysRevD.70.074506
http://dx.doi.org/10.1016/S0920-5632(03)02685-9
http://dx.doi.org/10.1016/S0920-5632(03)02685-9
http://arXiv.org/abs/1412.3568
http://dx.doi.org/10.1103/PhysRevD.51.5165
http://dx.doi.org/10.1103/PhysRevD.51.5165
http://dx.doi.org/10.1063/1.3587603
http://dx.doi.org/10.1063/1.3587603

