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We consider multiparticle contributions to nucleon two- and three-point functions from the perspective
of chiral dynamics. Lattice nucleon interpolating operators, which have definite chiral transformation
properties, can be mapped into chiral perturbation theory. Using the most common of such operators, we
determine pion-nucleon and pion-delta couplings to nucleon two- and three-point correlation functions at
leading order in the low-energy expansion. The couplings of pions to nucleons and deltas in two-point
functions are consistent with simple phase-space considerations, in accordance with the Lehmann spectral
representation. An argument based on available phase space on a torus is utilized to derive the scaling of
multiple-pion couplings. While multipion states are indeed suppressed, this suppression scales differently
with particle number compared to that in infinite volume. For nucleon three-point correlation functions,
we investigate the axial-vector current at vanishing momentum transfer. The effect of pion-nucleon and
pion-delta states on the extraction of the nucleon axial charge is assessed. We show that couplings to
finite volume multiparticle states could potentially lead to overestimation of the axial charge. Hence
pion-nucleon excited states cannot explain the trend seen in lattice QCD calculations of the nucleon
axial charge.
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I. INTRODUCTION

Dramatic progress continues to be made in strong
interaction physics by solving QCD numerically utilizing
Euclidean space-time lattices [1]. Successful determina-
tion of the spectrum of low-lying hadrons from lattice
QCD has been a major triumph [2], and many recent
calculations are performed at or near the physical pion
mass. Small corrections due to strong and electromag-
netic isospin breaking are becoming relevant for precision
determination of some quantities, and the recent ab initio
determination of the proton-neutron mass splitting [3],
for example, shows that lattice QCD techniques are
maturing to the point required for precision low-energy
QCD. Further benchmarks are needed for the nucleon,
however, before one can reliably use the nucleon as a
QCD laboratory for new physics. In this respect, deter-
mination of nucleon structure from the lattice remains a
prime goal. For a recent overview of baryon structure
from lattice QCD, see [4].
The axial charge of the nucleon is one such benchmark

quantity, and one for which lattice methods have
expended considerable effort to determine. This isovector
quantity does not suffer the complication of quark-
disconnected contributions, and so arguably represents
the simplest aspect of nucleon structure to compute. For

pion masses at the physical point, however, nucleon
correlation functions suffer from a well-known signal-
to-noise problem [5], which is only exacerbated in the
calculation of nucleon three-point functions. For many
years, lattice computations of the axial charge have
been subject to underestimation, with a variety of sys-
tematic sources investigated for this effect, such as: finite
volume [6–10], excited-state contamination [11–13] and
even thermal effects [14]. Not all collaborations, how-
ever, have obtained consistent results, for example, finite
volume effects could not be substantiated [15], excited-
state effects were not seen in the studies [16,17], and
thermal effects could not be reproduced [18]. The current
status of such lattice QCD computations is thoroughly
reviewed in [19].
We investigate the contamination of nucleon two- and

three-point functions due to excited states. Pion-nucleon
and pion-delta excited states are considered within the
framework of chiral perturbation theory. Some time ago
[20], we determined chiral corrections to the time depend-
ence of nucleon correlation functions in infinite volume by
treating the heavy-nucleon operator of chiral perturbation
theory as a model for a well-optimized lattice interpolating
field. In fact, the correspondence can be made precise
provided the smearing radius of the lattice operator is
smaller than the pion Compton wavelength, see [21,22] for
discussion of this and related points. This separation of
scales was utilized in [22] to determine model independent*btiburzi@ccny.cuny.edu
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pion-nucleon contributions to nucleon two-point functions.
Chiral perturbation theory has also been used to obtain the
multipion excited-state contributions to the axial-axial and
vector-vector current correlation functions [23]. In this
paper, we determine the contamination in the nucleon two-
point function, and three-point function of the axial-vector
current by treating chiral dynamics in finite volume. At
leading order in the low-energy expansion, the coupling of
pion-nucleon and pion-delta states to these correlation
functions is predicted on account of chiral symmetry.
Such couplings to the two-point function are found to be
small,1 and those for the axial current three-point function
are shown to favor overestimation of the nucleon axial
charge. As a result, we conclude that pion-nucleon con-
tamination cannot be the source of underestimation of the
axial charge.
The organization of our presentation is as follows. First

in Sec. II, we detail the computation of the nucleon two-
point function in chiral perturbation theory. One must
understand how to map lattice QCD interpolating oper-
ators for the nucleon into the effective theory, and this is
done to leading order for the standard ð1

2
; 0Þ ⊕ ð0; 1

2
Þ

nucleon operator using heavy-nucleon chiral perturbation
theory, Sec. II A. Results for pion-nucleon and pion-delta
spectral weights are obtained on a torus in Sec. II B. From
the effective mass of the two-point function calculated
using chiral perturbation theory, we observe that the
dominant pion-nucleon contamination is quite small,
leading to at most a few percent overestimation of the
nucleon mass. An analysis of the finite-volume couplings
to multipion states is carried out using simple N-body
phase-space considerations in Sec. II C. On a torus, we
find the vanishing of spectral weights at threshold,
however, not as sharply as in infinite volume. There is
one exception, the case of a two-body pion-nucleon state
in an s-wave, for which the corresponding spectral weight
does not vanish at threshold. Away from threshold, one
can still argue for suppression of all multipion nucleon
states provided mπL ≫ 1. Next we investigate the
nucleon three-point function of the axial-vector current
in Sec. III. The general form of the axial-current matrix
element is written out in Sec. III A, and expanded treating
the excited-state couplings as small, which is the case in
chiral perturbation theory. That calculation is carried out
in Sec. III B, where contributions from all possible
intermediate states arising at one-loop order are enumer-
ated. Chiral contamination in the axial-vector three-point
function is shown in Sec. III C, and drives the correlation
function upward, thus potentially leading one to

overestimate the nucleon axial charge, gA. A summary
of findings in Sec. IV concludes our paper.

II. NUCLEON OPERATOR AND
TWO-POINT FUNCTION

We begin by obtaining the spectral representation of
the nucleon two-point correlation function on a torus
using chiral dynamics. To accomplish this, we map the
standard lattice interpolating field into the corresponding
nucleon operator of heavy-baryon chiral perturbation
theory. Couplings of pion-nucleon and pion-delta states
on a torus are accounted for at leading order in the low-
energy expansion. We argue for the suppression of
multiple-pion states using finite volume phase-space
considerations.

A. Nucleon operator

To study the nucleon in lattice QCD, one uses a quark-
level interpolating field with nucleon quantum numbers,
which we label ONð~x; τÞ. To determine the nucleon mass,
for example, one computes the two-point correlation
function

GðτÞ ¼
X
~x

h0jONð~x; τÞO†
Nð~0; 0Þj0i: ð1Þ

Here, for simplicity, we have chosen the nucleon source
location at the origin, and projected the correlator onto
vanishing spatial momentum by summing over all lattice
sites, ~x. In the limit of long Euclidean time separation, τ,
which we have assumed is positive, the two-point corre-
lation function has the expected behavior

GðτÞ ¼ jZOj2e−MNτ þ � � � ; ð2Þ

where MN is the nucleon mass, and the � � � represents
exponentially suppressed terms. The coefficient of the
leading exponential, jZOj2, is physically the probability
that the interpolating operator ON creates the nucleon
amidst the tower of excited states, which all possess
nucleon quantum numbers. In this paper, we address
contributions from excited states with pion-nucleon
and pion-delta content. Although we have written the
operator ONð~x; τÞ with a notation that suggests locality,
the nucleon interpolating operator need not be local.
Generally one employs some form of gauge-invariant
smearing of local operators in order to maximize overlap
with the ground-state nucleon. As explicated in [22], the
coupling of pion-nucleon states to the smeared operator
ON is fixed by chiral dynamics provided the smearing
radius remains much smaller than the pion Compton
wavelength.

1This conclusion is also drawn in [22]. In that paper, pion-
nucleon contributions to nucleon two-point functions are deter-
mined using relativistic baryon chiral perturbation theory. As we
utilize a nonrelativistic expansion throughout, mπ=MN ≪ 1, our
results can only be compared in the nonrelativistic limit, and in
this limit all expressions indeed agree.
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Written in terms of the quark isodoublet field, q ¼ ð u
d
Þ,

the standard local nucleon interpolating operator has the
form2

ONi
¼ qiðqTCτ2γ5qÞ; ð3Þ

where τa are the isospin matrices. Under a chiral trans-
formation of the form, ðL;RÞ ∈ SUð2ÞL ⊗ SUð2ÞR, the
quark doublet transforms as the direct sum of two irre-
ducible representations, namely ð1

2
; 0Þ ⊕ ð0; 1

2
Þ. Given the

structure of ON in Eq. (3), the nucleon interpolating
operator has precisely the same chiral transformation as
the quark isodoublet field. Our goal is to find an effective
field theory operator for the nucleon that shares this
transformation. In the context of the effective theory, such
an operator will be local, and we necessarily assume the
smearing radius for the lattice interpolator is much smaller
than 1=mπ.
In chiral perturbation theory, pion fields are the

Goldstone modes emerging from spontaneous chiral
symmetry breaking, SUð2ÞL ⊗ SUð2ÞR → SUð2ÞV .
These modes are embedded in the coset field

Σ ¼ expð2i~ϕ · ~τ=fÞ, which transforms as Σ → LΣR† under
chiral transformations. In our conventions, f ¼ 130 MeV,

and the pion fields appear explicitly in the matrix ϕ≡ ~ϕ · ~τ
as

ϕ ¼
� 1ffiffi

2
p π0 πþ

π− − 1ffiffi
2

p π0

�
: ð4Þ

The universal low-energy dynamics of pions is obtained by
constructing the most general chirally invariant Lagrangian
density. This nonrenormalizable theory is made tractable by
utilizing a power counting that treats pion momenta k as
small compared to the chiral symmetry breaking scale,
Λχ ≡ 2

ffiffiffi
2

p
πf. Explicit chiral symmetry breaking intro-

duced by the quark mass, mq, can also be included in this
power counting. Expanding the coset field according to this
power counting, Σ ¼ 1þ 2iϕ=f þ � � �, we can see in the
effective theory that pions are Gaussian fluctuations about
the chirally asymmetric vacuum.
The nucleon can be included in chiral perturbation

theory as an external source of isospin which remains
massive in the chiral limit. To maintain a low-energy
expansion, one must take care of the fact that nucleon
momenta p can be on the order of the chiral symmetry
breaking scale, becauseMN ∼ Λχ , whereMN is the nucleon

mass. The solution to this problem [26,27] is to obtain
a nonrelativistic formulation by decomposing nucleon
momentum modes as

pμ ¼ MNvμ þ kμ; ð5Þ

and integrating out antinucleon components of the spinor,
which are ∼2MN away in energy from the nucleon
components. The resulting heavy nucleon field, Nv, has
residual momentum k, which satisfies the power-counting
requirement k ≪ Λχ .
The form of interactions of nucleons with pions, for

example, can be deduced from the fact that the nucleon
transforms as a doublet under the unbroken SUð2ÞV
symmetry. The chiral transformation properties of the
nucleon field in the chiral limit are unknown, see [28]
for a nice discussion and conjecture. The inability to
resolve soft pions and nucleons in the chiral limit, however,
gives one freedom to define infinitely many operators
which share the same SUð2ÞV transformation, see [29]
for a pedagogic overview. The conventional choice is to
utilize the field

ξ ¼
ffiffiffi
Σ

p
; ð6Þ

which has the chiral transformation ξ → LξU† ¼ UξR†,
where the unitary matrix U is a function of L, R, and ξðxÞ.
The advantage of this choice is that a nucleon operator
living in any chiral multiplet can be dressed with pions
using the field ξ so that it transforms as Nv → UNv under
SUð2ÞL ⊗ SUð2ÞR. In this way, one can construct pion-
nucleon interactions consistent with the pattern of explicit
and spontaneous chiral symmetry breaking without knowl-
edge of which chiral multiplet the nucleon belongs.
In the case of lattice QCD, nucleon interpolating

operators, such as that in Eq. (3), belong to certain chiral
multiplets. Given the effective field theory operator Nv, we
must accordingly dress it with pions, so that it transforms as
ð1
2
; 0Þ ⊕ ð0; 1

2
Þ under chiral transformations. That is we

seek an operator N, which can be written in the form
NR þ NL, where NR → RNR and NL → LNL under chiral
transformations. In the low-energy expansion, we have

NR ¼ 1

2
ξ†Nv þ � � �

NL ¼ 1

2
ξNv þ � � � ; ð7Þ

where the � � � consist of operators having higher mass
dimension. These operators appear with unfixed coeffi-
cients in the perspective of the effective theory, and give
rise to effects beyond the order to which we are working.
The normalization factors of 1

2
account for the fact that the

heavy nucleon field satisfies PL;RΨN ¼ 1
2
Nv þOð1=MNÞ,

where ΨN is the fully covariant nucleon spinor, and the

2The chiral structure of nucleon interpolating fields has been
fully classified in [24]. This classification has been used in the
framework of covariant baryon chiral perturbation theory to
compute chiral corrections to moments of the nucleon distribu-
tion amplitude [25].
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chiral projectors are defined to be PL;R ¼ 1
2
ð1∓γ5Þ.3

Combining these right- and left-handed doublets into an
even parity nucleon operator, we see

ON⟶N ≡ ZOðNR þ NLÞ ¼
1

2
ZOðξ† þ ξÞNv þ � � � :

ð8Þ

The mapping ofON intoN, of course, involves an operator-
dependent coefficient ZO that is undetermined in the
effective theory, and depends, for example, on the
quark-level smearing. Our results for pion-nucleon and
pion-delta couplings will always be ratios to the nucleon
coupling, for which jZOj2 cancels out. That this is true can
already be seen from expanding the nucleon operator N in
powers of the pion field

N ¼ ZO

�
1 −

ϕ2

2f2

�
Nv þ � � � : ð9Þ

While the overall coefficient of the operator is not fixed, the
relative coupling to two pions is fixed on account of parity
and chiral symmetry.

B. Nucleon two-point function

For the nucleon, we have the following Lehmann
representation for the infinite volume two-point function:

GðτÞ ¼ jZOj2e−MNτ

�
1þ

Z
∞

0

dEρ̄ðEÞe−Eτ
�
; ð10Þ

with τ > 0 assumed for the sink location. This is the
large mass limit of the ordinary Lehmann representation,
with the exception that we work in Euclidean space. The
full spectral function, ρðEÞ ¼ δðEÞ þ ρ̄ðEÞ, includes the
nucleon pole contribution to the two-point function. The
residual spectral function, ρ̄ðEÞ, hence encodes the excited-
state contamination. The long-time limit produces just the
ground-state nucleon, with corrections being exponentially
suppressed by the gap.4

Using one-loop heavy nucleon chiral perturbation
theory, the spectral function for the nucleon operator Nv
has been obtained previously [20] by evaluating the sunset
diagrams shown in Fig. 1 of that paper. This result can be

written in terms of separate pion-nucleon and pion-delta
contributions to the residual spectral function ρ̄ðEÞ, namely,

GðτÞ ¼ jZOj2e−MNτ

�
1þ

Z
∞

mπ

dEρ̄πNðEÞe−Eτ

þ
Z

∞

mπþΔ
dEρ̄πΔðEÞe−Eτ

�
; ð11Þ

where the pion-nucleon and pion-delta spectral weights are
given by

ρ̄πNðEÞ ¼
6g2A

ð4πfÞ2
½E2 −m2

π�3=2
E2

;

ρ̄πΔðEÞ ¼
16g2ΔN
3ð4πfÞ2

½ðE − ΔÞ2 −m2
π�3=2

E2
; ð12Þ

respectively. The characteristic cusp at threshold is univer-
sal for a two-body state in a p-wave. The gap is mπ for the
pion-nucleon continuum, and mπ þ Δ for the pion-delta
continuum, with Δ ¼ MΔ −MN as the nucleon-delta mass
splitting.
To derive the spectral representation for the ð1

2
; 0Þ ⊕

ð0; 1
2
Þ nucleon operator N in Eq. (8), we must include the

contribution from pion tadpole diagrams necessitated by
the low-energy expansion of the effective field theory
operator in Eq. (9). Evaluating the diagrams shown in
Fig. 1 in position space, however, we find there is no
contribution to the spectral weight because the tadpole
topology produces only a renormalization of the nucleon
wave function. When properly renormalized, this contri-
bution will lead to a correction to the multiparticle
couplings beyond the order we are working. That the
tadpole topology does not contribute to the spectral weight
can additionally be seen in momentum space. Indeed in
Minkowski space, there is no imaginary part generated, and
hence no multiparticle cut.
On a periodic spatial torus, the available multiparticle

states are discrete. Consequently the expected form of the
finite volume Lehmann representation is

GðτÞ ¼ jZOj2e−MNτ

�
1þ

X
n

jZnj2e−Enτ

�
; ð13Þ

where n is a collective label for the higher-lying states, and
the energies, En, are measured relative to the nucleon mass.

FIG. 1. Additional diagrams contributing to the nucleon two-
point function beyond the sunset diagrams computed in [20]. The
squares denote the nucleon source and sink locations. The dashed
lines represent pions, while the solid lines represent nucleons.

3In terms of the fully covariant spinor ΨN, we have the right-
and left-handed fieldsNR ¼ ξ†ΨN;R and NL ¼ ξΨN;L. These lead
to a covariant nucleon interpolating operator in the effective field
theory NR þ NL ¼ 1

2
ðξ† þ ξÞΨN þ 1

2
ðξ† − ξÞγ5ΨN, which is that

found in [22]. The γ5-term leads to Oð1=MNÞ effects in the
nonrelativistic limit, and these have been dropped in our paper.

4An important distinction is that in Minkowski space, excited-
state contributions are only power-law suppressed. The leading
corrections arise from the accumulation of continuum states near
threshold, where the spectral function has a cusp.
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To determine the weights jZnj2, we must revisit the
computation on a torus, which we take to have length L
in each of the three spatial directions. We keep the length of
the time direction infinite throughout.
For the pion-nucleon contribution, we can return to an

intermediate step of the computation by noting that the

energy, E, is given by E2 ¼ ~k2 þm2
π. Hence, we can revert

the energy integration to the form of a three-momentum
integral

Z
∞

mπ

dE ¼
Z

∞

0

dj~kj j~kjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

π

q

¼ 2π2
Z

d~k
ð2πÞ3

1

j~kj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

π

q ; ð14Þ

and hence have the replacement

Z
∞

mπ

dE⟶
2π2

L3

X
~n

1

j~kj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

π

q ; ð15Þ

where the sum is over periodic momentum modes,
~k ¼ 2π

L ~n, indexed by the mode number ~n. The energy
factor in the denominator is obviously a manifestation of

the Lorentz invariant measure. Because of the factor j~kj
appearing in the denominator, the two-body phase space
near threshold will thus be removed from the spectral
functions above when converting from a continuum to a
discrete set of states. We will investigate the case of an N-
body final state in finite volume below. For the pion-delta
contributions, the energy is given in terms of the pion three-

momentum by the relation ðE − ΔÞ2 ¼ ~k2 þm2
π . These

facts can be used in conjunction with Eq. (12) to determine
the finite volume couplings to pion-nucleon, and pion-delta
states. Using the mode numbers as labels, we have5

jZ~nj2 ¼
3g2A

4f2L3

~k2

½~k2 þm2
π�3=2

;

jZΔ
~n j2 ¼

2g2ΔN
3f2L3

~k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

π

q
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

π

q
þ Δ�

2
: ð16Þ

As we anticipated, these spectral weights vanish with ~k2

unlike their continuum counterparts, which vanish as j~kj3.
Moreover the dependence is now analytic near threshold.
We can now write the resulting nucleon two-point

function in finite volume as

GðτÞ¼ jZOj2e−MNτ

�
1þ

X
~n

ðjZ~nj2e−E~nτþjZΔ
~n j2e−ðE~nþΔÞτÞ

�
:

ð17Þ

In the above expression, E~n is the pion energy. As a
result, the energy appearing in the second exponential,
E~n þMN þ Δ ¼ E~n þMΔ, is the total energy of the pion-
delta intermediate state in the nonrelativistic limit. Due to
the additional exponential suppression, e−Δτ, contributions
from delta intermediate states are quite small. The pion-
delta spectral weights, however, are needed below to
calculate the three-point function, for which delta contri-
butions are non-negligible. To assess the size of pion-
nucleon contamination in the two-point function, we
form the effective mass of the chiral perturbation theory
correlator

MeffðτÞ ¼ − log
Gðτ þ aÞ
GðτÞ ; ð18Þ

where a is the lattice spacing. The effective mass is shown
in Fig. 2, where we have employed the lattice parameters:
a ¼ 0.1 fm, and L ¼ 48a. We have chosen to plot results at
the physical value of the pion mass, using the couplings
gA ¼ 1.25 and gΔN ¼ 1.5, along with the nucleon-delta
mass splitting Δ ¼ 0.29 GeV. The pion-delta contribu-
tions, however, cannot be discerned in the plot. Pion-
nucleon contamination is seen to be at the level of a few
percent. The smallness of such contributions owes to
three facts.
(1) Pion-nucleon interactions are relatively weak, which

is exhibited by the factor ðfLÞ−2 in the spectral
weights.

FIG. 2 (color online). Effective mass of the nucleon two-point
function computed with chiral perturbation theory, Eq. (17).
Pion-nucleon excited-state contamination is shown at the few-
percent level for typical values of lattice parameters. For times
such that τ > 5, the correlator is saturated by pion-nucleon states
with momentum mode numbers satisfying

ffiffiffiffiffi
~n2

p
< 4.

5Our result for jZ~nj2, which is nonrelativistic, agrees with the
first term in the mπ=MN expansion of the relativistic result
derived in [22].
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(2) Lowering the pion mass at fixed lattice size reduces
the energy gap, however, it also brings one closer to
threshold, for which the spectral weights vanish.

(3) Raising the lattice volume at fixed pion mass also
reduces the energy gap, but similarly brings one
closer to threshold.

Despite the fact that spectral weights vanish less rapidly
near threshold compared to the case of a continuum of
states, the suppression at threshold in finite volume is
enough to ensure pion-nucleon contamination is likely
under control for compact lattice interpolating operators.

C. Multiparticle contributions

For a continuum of states, one can derive the behavior of
the spectral function near an N-particle threshold [30]. Let
the energy of the N-particle state be ETh ¼

P
N
i Mi, where

the Mi are masses of the individual particles. The spectral
function then has the behavior6

ρNðEÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − ETh

p
3N−5; ð19Þ

for E≳ ETh. From our discussion above, we know this
characteristic factor arises from the integrals over momen-
tum space, and so must be reconsidered on a torus.
In the derivation of the continuum result, the starting

point is the multiparticle phase space integration

ρNðEÞ¼
YN
i¼1

Z
d~ki

2E~ki
ð2πÞ3 ð2πÞ

4δð4Þ
�XN

j¼1

ðkjÞμ−Pμ

�
jZN j2;

ð20Þ

where the energy of the ith particle is E~ki
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2i þM2

i

q
,

and ZN is an overlap factor which can depend on the
particle momenta. While the general result is Lorentz
invariant, for simplicity we work in the rest frame, where
~P ¼ ~0. For energy just above threshold, E≳ ETh, all of the
individual particles are nonrelativistic. This fact can be used
to treat the overlap factors as constants, which is fine
provided there is no orbital angular momentum. The Nth
particle’s momentum, say, is entirely fixed by three-
momentum conservation. The energy conserving delta-
function puts a constraint on the magnitude of the ðN − 1Þst
particle’s momentum in the form

Z
dkN−1k2N−1δ

�XN
i¼1

E~ki
− E

�

∼
Z

dkN−1kN−1δ
�
kN−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MN−1ðE − EThÞ

p �
: ð21Þ

To bound the N − 2 momentum integrals, we note that
the maximum of any remaining particles’ energy is set by
E − ETh. Hence we have

ρNðEÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − ETh

p YN−2

i¼1

Z
E−ETh

0

dðkiÞ2
ffiffiffiffiffi
k2i

q

∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − ETh

p
3N−5; ð22Þ

which is the known scaling.
For a torus, the starting point instead of Eq. (20) is

jZNðEÞj2 ¼
YN
i¼1

1

L3

X∞
~ni¼−∞

1

2E~ki

L3δð3Þ~0;
P

N
j¼1

~nj
δE;

P
N
j¼1

E~kj

jZN j2;

ð23Þ

where E is a noninteger index characterizing the energy of
theN-particle state. Notice in writing the energy-conserving
Kronecker delta in Eq. (23), we have the total energy as the
sum of the single particle energies. This is an approximation
valid for weak interactions among the particles, because
interactions modify the finite volume spectrum of multi-
particle states. The weight factor jZNðEÞj2 is dimensionless
because it is to be summed over the possible values for E,
while ρNðEÞ has inverse mass dimension because it is to be
integrated as a function of E. The case N ¼ 2 appears to be
somewhat special, because it can be evaluated more gen-
erally than at threshold. For N ¼ 2, we have

jZ2ðEÞj2 ≈
1

2ML3

X∞
~n¼−∞

1

2E~n
δE;MþE~n

jZ2j2; ð24Þ

where we treat one particle of massm as light, and the other
particle of mass M as heavy. We have not appealed to the
threshold condition here. Because the overlap factor can
only depend on ~n2, the sum collapses to a fixed value of ~n2

determined by the size of E, and we find

jZ2ðEÞj2 ∝
jZ2j2

4ML3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

q ; ð25Þ

where the total energy is E ≈M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

q
. Unless there

are momentum factors due to orbital angular momentum, no
suppression is found near threshold. This occurs, for
example, in the case of pion-nucleon coupled to an s-wave.
For relative p-waves, our chiral perturbation theory result

6There can be additional suppression by integer powers of the
available energy due to angular momentum considerations. For a
state of orbital angular momentum l, we have an additional factor
of ðE − EThÞl.

BRIAN C. TIBURZI PHYSICAL REVIEW D 91, 094510 (2015)

094510-6



nicely lines up with this general two-body analysis. In the

low-energy expansion, jZ2j2 ∝ ~k2

~k2þm2
π

, due to the orbital

angular momentum.
Having handled the special two-body case, we now

proceed to analyze the finite volume phase space with
generic particle number N ≥ 2. Considering specifically
near threshold, all particles are nonrelativistic, and we
choose the Nth particle’s three momentum in Eq. (23) to
vanish. Each sum over triplets of integers, ~n, can be
changed to a sum over a radial integer n, with a multiplicity
weight fðnÞ that counts the number of triplets ~n that can
sum to a given n ¼

ffiffiffiffiffi
~n2

p
. For large n, we approach a

continuum of states, and fðnÞ ∝ n. For small n, we take
fðnÞ ∼ 1 because corrections to this will give additional
suppression at threshold. The remaining constraint due to
the energy conserving Kronecker delta fixes the value of
the ðN − 1Þst particle’s energy. There is no change of
variables factor here, however, we still have the multiplicity
weight fðnN−1Þ, with nN−1 fixed by energy conservation.
Thus we are led to

jZNðEÞj2 ∼ f

�
L=2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MN−1ðE − ETh

p
Þ
�YN−2

i¼1

XffiffiffiffiffiffiffiffiffiffiE−ETh
p

ni¼0

fðniÞ

∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − ETh

p
N−2; ð26Þ

where we treat MN−1L of generic size, but consider
LðE − EThÞ ≪ 1. From the intermediate expression, we
can take the limit of large mode numbers and recover the
correct scaling for continuum states. To achieve this, notice
the behavior Δn=n → dn, fðnÞ → n, and we must accord-
ingly take LðE − EThÞ ≫ 1 in the infinite volume limit. For
multiparticle states greater than two-body, we find the finite
volume result, Eq. (26), maintains the vanishing of spectral
weights near threshold, but not as sharply as for continuum
states.
For the case of a nucleon with pion interactions con-

strained by chiral dynamics, we expect the spectral weights
to behave as

jZNðEÞj2 ∼
�

g2A
E~kf

2L3

�
N−1�j~kj

E~k

�2ðNþl−2Þ
; ð27Þ

with E − ETh ≈
~k2

2mπ
. Away from threshold, the dimension-

less ratio j~kj=E~k is replaced by some complicated function

of this ratio, Fðj~kj=E~kÞ. The prefactors can still be used to
argue suppression of multiparticle states in the general case,
provided that fL≳ 1, and mπL ≫ 1. Contamination from
multiple pions in the nucleon two-point function should
thus be largely irrelevant provided the smearing radius of
the interpolating operator is small compared to the pion
Compton wavelength.

III. AXIAL CURRENT THREE-POINT FUNCTION

Having derived the pion-nucleon and pion-delta contri-
butions to the nucleon two-point function, we now turn our
attention to the determination of the nucleon three-point
function of the axial-vector current. The case of three-point
functions is complicated by the lack of a spectral repre-
sentation. As a result, couplings to various multiparticle
states have signs determined by the underlying dynamics.
Cancellations can exist between these contributions, and
we investigate whether chiral dynamics in finite volume
drives the axial three-point function above or below the
single-nucleon contribution. In infinite volume, multipar-
ticle couplings drive the axial three-point function above
the nucleon contribution [20], which, however, would lead
to an overestimation of the axial charge, gA. The same is
true for discrete multiparticle states in finite volume.

A. Axial current correlator

Our interest lies in the three-point function formed from
the isovector axial-vector current inserted between two
single-nucleon states. To determine the axial charge of
the nucleon, we project the initial and final states onto
vanishing three-momentum. Writing the current as
Jþ5μð~y; tÞ, we have the unamputated three-point function

G5μðτ; tÞ ¼
X
~x;~y

h0jONð~x; τÞJþ5μð~y; tÞO†
Nð~0; 0Þj0i: ð28Þ

This correlation function depends on the source-sink
separation, τ, as well as the current insertion time, t, which
we have assumed satisfy the hierarchy τ > t > 0. Ideally
one works in the limit in which τ ≫ t ≫ 0, so that single-
nucleon states can be cleanly isolated from both the source
and sink.
Inserting complete sets of hadronic states into the three-

point function, we have the general expression

G5μðτ; tÞ ¼ jZOj2e−MNτ
X
m;n

e−Enðτ−tÞ−EmtZnZ�
mhnjJþ5μjmi:

ð29Þ

Notice for ease below, we have factored out an overall
exponential involving the nucleon mass and an overall
operator overlap factor jZOj2. Thus all of the energies are
differences relative to MN , and all of the amplitudes Zn are
ratios relative to jZOj. The ground-state contribution from
the nucleon is isolated at long Euclidean time separations

G5μðτ; tÞ ¼τ≫t≫0jZOj2e−MNτhNð~0ÞjJþ5μjNð~0Þi þ � � � ; ð30Þ

where exponentially suppressed contributions from excited
states have been dropped. In a nonrelativistic notation, the
axial-current matrix element in the nucleon has the form
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hNð~0ÞjJþ5μjNð~0Þi ¼ 2gAu†Sμu; ð31Þ

where u is a rest-frame spinor, and Sμ is the covariant spin
operator. The constant gA is the axial charge of the nucleon
in the standard normalization.
Considering now the general transition matrix elements

of the axial current, we can write them in the form

hnjJþ5μjmi ¼ gnmeiφnm2u†Sμu; ð32Þ

with gnm as real-valued couplings, and φnm as phases. The
spinors appearing above characterize the multiparticle
states. These are, in turn, constrained by the nucleon
interpolating operator. The only overlap factors, Zn, that
are nonvanishing correspond to states jni which have
vanishing total three momentum, and total angular momen-
tum of 1

2
. Such a state can be described by a nonrelativistic

Pauli spinor u that merely characterizes whether the total
angular momentum is aligned or antialigned with respect to
some axis. Hence we define the transition matrix elements
using the common spinor product 2u†Sμu, keeping in mind
that any differing normalization factors for multiparticle
states are thereby absorbed in the gnm couplings.
On account of Hermiticiy of the axial-vector current and

time-reversal invariance, we have symmetric couplings,
gnm ¼ gmn, and antisymmetric phases φnm ¼ −φmn. The
latter condition implies that the imaginary part of the
correlator vanishes. Taking this into account, we have
the general form of the axial-three point function

G5μðτ; tÞ ¼ 2u†SμujZOj2e−MNτ

×
X
n;m

gnm cosφnmjZnjjZmje−Enðτ−tÞe−Emt: ð33Þ

To analyze excited-state contributions to this correlator, we
amputate the external legs by forming the standard ratio of
three-point to two-point functions

R5μðτ; tÞ ¼
G5μðτ; tÞ
GðτÞ : ð34Þ

Isolating the single-nucleon contribution, this ratio has the
general form

R5μðτ; tÞ ¼ 2u†Sμu½gA þ GAðτ; tÞ�: ð35Þ

Notice the ground-state to ground-state coupling g00 is
merely the nucleon axial charge g00 ¼ gA. While the single
nucleon probability jZOj2 is not unity, it cancels out of
the ground-state contribution in the ratio of correlators. The
time-dependent function, GAðτ; tÞ, thus characterizes the
excited-state contamination; and, on account of the general
form for the correlator given in Eq. (33), it appears as

GAðτ; tÞ ¼
X
n>0

ðgnn − g00ÞjZnj2e−Enτ

þ
X
n≠m

gnm cosφnmjZnjjZmje−Enðτ−tÞe−Emt:

ð36Þ

To arrive at this form, we made the approximation of
neglecting any terms with four or more powers of overlap
factors jZnj. Such terms will be higher order in the chiral
expansion, and arise from expanding out excited-state
contributions to the two-point function in the denominator.
The leading excited-state contribution from the denomi-
nator, however, gives rise to the ð−g00Þ-piece present in the
diagonal sum. This subtracted term is analogous to wave-
function renormalization.
In order to determine the multiparticle couplings, we find

it efficacious to rearrange Eq. (36) slightly. With redefined
couplings, we have the compact expression

GAðτ; tÞ ¼
X

n;m−f0;0g
gnmjZnjjZmje−Enðτ−tÞe−Emt; ð37Þ

for which the relation between couplings is

gnm ¼ δnmðgnn − gAÞ þ ð1 − δnmÞgnm cosφnm: ð38Þ

B. Chiral computation

One can determine the excited-state contamination in
finite volume using chiral dynamics. Previously the
leading-order expression for the contamination function
GAðτ; tÞ was obtained for the nucleon operator Nv in
infinite volume [20]. See Fig. 3 of that paper for the
corresponding Feynman diagrams. After some rewriting,
the terms appearing in that result can be grouped according
to the time dependence of the general expression given
above in Eq. (37). To match onto this expression, we must
additionally convert from the continuum of states used
previously to the discrete states permitted on a spatial torus.
Finally we must compute pion tadpole diagrams that result
from the effective theory representation of the ð1

2
; 0Þ ⊕

ð0; 1
2
Þ lattice interpolating field in Eq. (9). These diagrams

account for the fact that the effective theory nucleon
operator N is perturbatively close to Nv. The required
diagrams differ from those appearing in Fig. 1 merely by
the insertion of an axial-current interaction along the
nucleon line. It is a straightforward exercise to see that
such axial-current operator tadpoles cancel against the
tadpoles in Fig. 1 when computing the ratio of three-point
to two-point functions. This is not surprising, as the latter
tadpoles contribute only to the wave-function renormaliza-
tion. It thus remains to dissect the one-loop computation to
obtain the multiparticle couplings.
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1. Nucleon to excited state matrix elements

The axial-current correlation function receives contribu-
tions from intermediate nucleon-to-excited state transitions.
Because the overall nucleon mass dependence has been
factored out of the three-point to two-point function ratio,
these nucleon transition matrix elements are easily iden-
tified, because they lack dependence on either the source to
current insertion separation, t, or current insertion to sink
separation, τ − t. First, we handle the matrix elements
where the excited state is a pion-nucleon state. In infinite
volume, the contribution from nucleon to pion-nucleon
matrix elements can be written simply in terms of the
residual spectral functions. We have

GN;πN
A ðτ; tÞ ¼

Z
∞

mπ

dE

�
8

9
gAρ̄πNðEÞ

−
16gΔN
27

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄πNðEÞρ̄πΔðEþ ΔÞ

p �

× ½e−Eðτ−tÞ þ e−Et�: ð39Þ

This expression can be reverted to an integral over the
pion’s three momentum and this integral replaced by a
momentum mode sum, as in Eq. (15). Carrying out these
steps results in

GN;πN
A ðτ; tÞ ¼

X
~n

�
8

9
gAjZ~nj2 −

16gΔN
27

ffiffiffi
2

p jZ~njjZΔ
~n j
�

× ½e−E~nðτ−tÞ þ e−E~nt�; ð40Þ

in finite volume. The weight factors jZ~nj, and jZΔ
~n j have

been determined from the nucleon two-point function
calculation, and appear in Eq. (16). Comparing with
Eq. (37), we see the first exponential above corresponds
to contributions from N-to-πN transition matrix elements,
whereas the second are symmetrical πN-to-N matrix
elements. Given our definition of multiparticle couplings,
we find that

gN;πð~nÞN ¼ 8

9
gAjZ~nj −

16gΔN
27

ffiffiffi
2

p jZΔ
~n j; ð41Þ

where we necessarily label the pion-nucleon state by the
pion momentum mode numbers.
In infinite volume, intermediate state nucleon to pion-

delta matrix elements can also be readily identified by their
time dependence. We have the contributions

GN;πΔ
A ðτ; tÞ ¼

�
gA þ 25

81
gΔΔ

�

×
Z

∞

mπþΔ
dEρ̄πΔðEÞ½e−Eðτ−tÞ þ e−Et�

−
16gΔN
27

ffiffiffi
2

p
Z

∞

mπ

dE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄πNðEÞρ̄πΔðEþ ΔÞ

p

× ½e−ðEþΔÞðτ−tÞ þ e−ðEþΔÞt�; ð42Þ

which, on account of Eq. (15), can be cast in the form

GN;πΔ
A ðτ; tÞ¼

X
~n

��
gAþ

25

81
gΔΔ

�
jZΔ

~n j2

−
16gΔN
27

ffiffiffi
2

p jZ~njjZΔ
~n j
�
½e−ðE~nþΔÞðτ−tÞ þe−ðE~nþΔÞt�;

ð43Þ

in finite volume. Comparing with Eq. (37), we see the
first exponential above corresponds to contributions from
N-to-πΔ transition matrix elements, whereas the second
contributions are symmetrical πΔ-to-N matrix elements.
Given our definition of multiparticle couplings, we find that

gN;πð~nÞΔ ¼
�
gA þ 25

81
gΔΔ

�
jZΔ

~n j −
16gΔN
27

ffiffiffi
2

p jZ~nj; ð44Þ

where pion-delta states have been labeled by the pion
momentum mode numbers. This exhausts all nucleon to
excited state matrix elements appearing in the axial-current
correlation function. Before continuing, we remark that all
multiparticle contributions to the three-point function
above survive when either t ≫ 0 or τ ≫ t, but not both.

2. Excited state to excited state matrix elements

The remaining contributions to the three-point correla-
tion function arise from intermediate excited state to
excited state matrix elements of the axial current. There
are contributions from both πN-to-πN matrix elements, as
well as πΔ-to-πΔmatrix elements. In infinite volume, these
such contributions appear in the expression

GπB;πB
A ðτ; tÞ ¼ −

8

9
gA

Z
∞

mπ

dEρ̄πNðEÞe−Eτ

−
�
gA þ 25

81
gΔΔ

�Z
∞

mπþΔ
dEρ̄πΔðEÞe−Eτ:

ð45Þ

Using Eq. (15), the corresponding expression on a spatial
torus appears in the form
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GπB;πB
A ðτ; tÞ ¼ −

X
~n

�
8

9
gAjZ~nj2e−E~nτ þ

�
gA þ 25

81
gΔΔ

�

× jZΔ
~n j2e−ðE~nþΔÞτ

�
; ð46Þ

from which we can deduce the two couplings

gπN;πN ¼ −
8

9
gA; and gπΔ;πΔ ¼ −

�
gA þ 25

81
gΔΔ

�
:

ð47Þ
These couplings are momentum independent.
Finally, the one-loop infinite volume result contains

πN-to-πΔ couplings. These appear in the expression

GπN;πΔ
A ðτ; tÞ ¼ 16gΔN

27
ffiffiffi
2

p
Z

∞

mπ

dE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄πNðEÞρ̄πΔðEþ ΔÞ

p

× ½e−Eðτ−tÞe−ðEþΔÞt þ e−ðEþΔÞðτ−tÞe−Et�:
ð48Þ

The corresponding result on a spatial torus is immediate
utilizing Eq. (15),

GπN;πΔ
A ðτ; tÞ ¼ 16gΔN

27
ffiffiffi
2

p
X
~n

jZ~njjZΔ
~n j½e−E~nðτ−tÞe−ðE~nþΔÞt

þ e−ðE~nþΔÞðτ−tÞe−E~nt�; ð49Þ
and allows us to identify the final coupling, which is also
momentum independent,

gπN;πΔ ¼ 16

27
ffiffiffi
2

p gΔN: ð50Þ

C. Axial correlator results

We have determined the excited-state contributions to
the three-point function of the axial-vector current in the
nucleon, and thereby found the corresponding multiparticle
couplings. Using the expressions presented above, we can
write the excited-state contamination in the form

GAðτ; tÞ ¼ GN;πN
A þ GN;πΔ

A þ GπN;πN
A þ GπN;πΔ

A þGπΔ;πΔ
A ;

ð51Þ
where the ordering of terms is based on their expected
size, and we have suppressed the dependence on source-
sink separation, τ, and current insertion time, t, on the right-
hand side of the equation. In Fig. 3, we investigate the
excited-contamination determined from chiral dynamics.
Parameter values are taken to be the same as we used
above for the two-point function: lattice parameters
are a ¼ 0.1 fm, and L ¼ 48a; the pion mass is the
physical value, and the nucleon-delta mass splitting is

Δ ¼ 0.29 GeV, axial couplings are given values gA ¼ 1.25,
gΔN ¼ 1.5, and gΔΔ ¼ −2.25. While the final coupling has
large uncertainties, our results are insensitive to the value
due to exponential suppression. Results shown in the figure
are quite similar to those obtained previously in infinite
volume [20]. Contributions from intermediate states with
pions tend to drive the axial correlator upwards, which
would lead to an overestimation of the nucleon axial charge
if such contributions are not accounted for. This finding
makes the consistent lattice underestimation of the axial
charge more mysterious.

IV. SUMMARY

We consider the effect of pion-nucleon and pion-delta
states on two- and three-point lattice QCD correlation
functions. From the perspective of chiral dynamics, lattice
QCD interpolating operators for the nucleon have definite
transformation properties under chiral rotations, see [24].
As a result, these operators can be systematically mapped
into effective field theory counterparts [25]. At leading
order in the low-energy expansion, chiral corrections to the
correlators appear with coefficients that are fixed due to the
pattern of symmetry breaking [22]. For lattice nucleon
interpolating operators transforming as ð1

2
; 0Þ ⊕ ð0; 1

2
Þ, the

interpolating field in the effective theory is not only
perturbatively close to the heavy-nucleon field Nv of chiral
perturbation theory, the difference generates only tadpole
corrections that do not affect multiparticle couplings. This
justifies the considerations of an earlier study in infinite
volume [20], provided the quark-level smearing of lattice
interpolating operators for the nucleon is small on the scale
of the pion Compton wavelength.
For the nucleon two-point function in finite volume, the

derived couplings to intermediate-state pions above are
shown to be in accordance with phase space available on a

FIG. 3 (color online). Excited-state contamination in the axial-
vector three-point function of the nucleon, Eq. (51). The
contamination function GAðτ; tÞ is plotted as a function of the
current insertion time t (measured relative to the midpoint
between source and sink), for three values of the source-sink
separation, τ=a ¼ 10, 12, and 14. Excited states with pions tend
to drive the axial correlator upwards, which could potentially lead
to an overestimation of gA of a few percent at most.
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torus. While pion-nucleon and pion-delta spectral weights
in finite volume vanish less rapidly at threshold compared
to infinite volume, pion-nucleon contamination in the
two-point function is estimated at the few percent level
(a similar estimate is obtained in [22]), while pion-delta
contamination cannot be discerned. For the nucleon three-
point function of the axial-vector current, we similarly
investigate the effect of pion-nucleon and pion-delta
contamination at zero momentum transfer. This three-point
correlation function enables the lattice QCD determination
of the nucleon axial charge, gA. As in infinite volume, chiral
corrections to the time dependence of the axial correlator
drive it upwards, with the dominant corrections arising
from nucleon to pion-nucleon transitions. Thus for insuffi-
cient time between the source and current insertion, as well
as between the source and sink, chiral corrections could
potentially lead to a few-percent overestimation of the axial

charge. This trend is opposite that encountered in lattice
QCD calculations, and our study shows that the behavior is
not likely due to pion-nucleon contamination. It would be
interesting to study chiral contamination in other quantities
determined from three-point functions, such as the quark
momentum fraction in the nucleon, as results could
help lattice practitioners better isolate the single-nucleon
contribution.
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