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In 2þ 1 flavor lattice QCD, the spectrum of the nucleon is presented for both parities using local
meson-baryon-type interpolating fields in addition to the standard three-quark nucleon interpolators. The
role of local five-quark operators in extracting the nucleon excited-state spectrum via correlation matrix
techniques is explored on dynamical gauge fields withmπ ¼ 293 MeV, leading to the observation of a state
in the region of the noninteracting S-wave Nπ scattering threshold in the negative-parity sector.
Furthermore, the robustness of the variational technique is examined by studying the spectrum on a
variety of operator bases. Fitting a single-state ansatz to the eigenstate-projected correlators provides robust
energies for the low-lying spectrum that are essentially invariant despite being extracted from qualitatively
different bases.
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I. INTRODUCTION

Lattice QCD is currently the only known ab initio
nonperturbative approach to study the fundamental quan-
tum field theory governing hadron properties, QCD. While
the ability to obtain ground-state masses is well understood,
an accurate extraction of excited states and multiparticle
thresholds remains a challenge.
The use of variational techniques [1,2] to study the

nucleon excited-state spectrum has seen remarkable success
in recent years. The key feature of these techniques is to begin
with a basis of different operators that couple to the quantum
numbers of a given state and then construct different linear
combinations of these operators in order to isolate the ground
and higher excited states in that channel.
The positive-parity nucleon channel has been of signifi-

cant interest to the lattice community [3–8]. In particular the
first positive-parity JP ¼ 1

2
þ excitation of the nucleon,

known as the Roper resonance N�ð1440Þ, remains a puzzle.
In constituent quark models, the Roper resonance lies above
the lowest-lying negative-parity state [9–11], the N�ð1535Þ,
whereas in nature it lies 95 MeV below the resonant state.
This has led to speculation about the true nature of this state,
with suggestions it is a baryon with explicitly excited gluon
fields, or that it can be understood with meson-baryon
dynamics via a meson-exchange model [12].
In simple quark models, the Roper is identified with an

N ¼ 2 radial excitation of the nucleon. Within the varia-
tional technique, the choice of an appropriate operator basis
is critical to obtaining the complete spectrum of low-lying
excited states. Recall that we can expand any radial
function using a basis of Gaussians of different widths
fðj~rjÞ ¼ P

icie
−εir2 . This leads to the use of Gaussian-

smeared fermion sources with a variety of widths [13],
providing an operator basis that is highly suited to access-
ing radial excitations. The CSSM lattice collaboration has
used this technique to study the nucleon excited-state

spectrum [14,15]. In particular, the CSSM studies were
the first to demonstrate that the inclusion of very wide
quark fields (formed with large amounts of Gaussian
smearing) is critical to isolating the first positive-parity
nucleon excited state [8,16]. This state was shown to have a
quark probability distribution consistent with an N ¼ 2
radial excitation in Ref. [17]. This work also examined the
quark probability distributions for higher positive-parity
nucleon excited states, revealing that the combination of
Gaussian sources of different widths allows for the for-
mation of the nodal structures that characterize the different
radial excitations.
The negative-parity nucleon channel with its two low-

lying resonances, the N�ð1535Þ and N�ð1650Þ, has also
been of significant interest [6,15,18–20]. These S11 states
are in agreement with SUð6Þ based quark model predic-
tions, making an ab initio study of the low-lying negative-
parity spectrum a potentially rewarding endeavor.
Importantly, at near physical quark masses, the noninter-
acting πN scattering threshold lies below the lowest-lying
negative-parity state, making it a natural place to look for
the presence of multiparticle energy levels in the extracted
spectrum.
Until recently, the majority of the work in these channels

has been performed with three-quark interpolating fields,
and in the full quantum field theory, these interpolators
couple to more exotic meson-baryon components such as
the aforementioned πN via sea-quark loop interactions.
However, baryon studies have found that the couplings of
single-hadron-type operators to hadron-hadron-type com-
ponents, suppressed by the lattice volume as 1=

ffiffiffiffi
V

p
, are

sufficiently low so as to make it difficult to observe states
associated with scattering thresholds [6,20]. Moreover,
there is a question as to what extent the presence of
multiparticle states might interfere with the extraction of
nearby resonances.
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One solution is to explicitly include hadron-hadron-type
interpolators [19,21] by combining single-hadron operators
with the relevant momentum. This creates an operator that
necessarily has a high overlap with the scattering state of
interest, thereby enabling its extraction. Instead, in this
work we aim to construct meson-baryon-type interpolators
without explicitly projecting single-hadron momenta and
investigate the role that the resulting operator plays in the
calculation of the nucleon spectrum. Using these operators
we construct a basis containing both three- and five-quark
operators and perform spectroscopic calculations utilizing a
variety of different sub-bases. Examining the resulting
spectra then provides an excellent opportunity to both
study the role of our multiparticle operators and test the
robustness of the variational techniques employed.
Following the outline of standard variational analyses in

Sec. II, we construct these hadron-hadron-type interpola-
tors in the form of five-quark operators in Sec. III. We then
develop a method for smearing elements of the stochasti-
cally estimated loop propagators at x, Sðx; xÞ in Sec. IV.
These necessarily arise with the introduction of our five-
quark interpolating fields, due to the presence of creation
quark fields in our annihilation operator and vice versa.
Having covered the technology required for a spectroscopic
calculation, we then outline our simulation details in Sec. V
and present nucleon spectra for both parities in Sec. VI.

II. CORRELATION MATRIX TECHNIQUES

Correlation matrix techniques [1,2] are now well estab-
lished as a method for studying the excited-state hadron
spectrum. The underlying principle is to begin with a
sufficiently large basis of N operators (so as to span the
space of the states of interest within the spectrum) and
construct an N × N matrix of cross-correlation functions,

Gijð~p; tÞ ¼
X
~x

e−i~p·~xhΩjχið~x; tÞχ̄jð~0; tsrcÞjΩi: ð1Þ

After selecting ~p ¼ ~0 and projecting to a specific parity
with the operator

Γ� ¼ 1

2
ðγ0 � IÞ; ð2Þ

we can write the correlator as a sum of exponentials,

GijðtÞ ¼
X
α

λαi λ̄
α
j e

−mαt; ð3Þ

where α enumerates the energy eigenstates of mass mα and
λ̄αj and λ

α
i are the couplings of our creation and annihilation

operators χ̄j and χi at the source and sink, respectively. We
then search for a linear combination of operators

ϕ̄α ¼ χ̄juαj and ϕα ¼ χivαi ð4Þ

such that ϕ and ϕ̄ couple to a single energy eigenstate. That
is, we require

hΩjϕαjβi ∝ δαβ: ð5Þ

One can then see from Eq. (3) that

Gijðt0 þ dtÞuαj ¼ e−mαdtGijðt0Þuαj ; ð6Þ

and hence the required values for uαj and vαi for a given
choice of variational parameters ðt0; dtÞ can be obtained by
solving the eigenvalue equations

½G−1ðt0ÞGðt0 þ dtÞ�ijuαj ¼ cαuαi ð7Þ

vαi ½Gðt0 þ dtÞG−1ðt0Þ�ij ¼ cαvαj ; ð8Þ

where the eigenvalue is cα ¼ e−mαdt. In the ensemble
average, Gij is a symmetric matrix. We work with the
improved estimator 1

2
ðGij þ GjiÞ ensuring the eigenvalues

of Eqs. (7) and (8) are equal. As our correlation matrix is
diagonalized at t0 and t0 þ dt by the eigenvectors uαj and
vαi , we can obtain the eigenstate-projected correlator as a
function of Euclidean time,

GαðtÞ ¼ vαi GijðtÞuαj ; ð9Þ

which can then be used to extract masses. Moreover, the
analysis can be performed on a symmetric matrix with
orthogonal eigenvectors. More details can be found
in Ref. [15].
At this point we note that if the operator basis does not

appropriately span the low-lying spectrum, GαðtÞ may
contain a mixture of two or more energy eigenstates.
There are a number of scenarios in which this might occur:

(i) At early Euclidean times, the number of states
strongly contributing to the correlation matrix
may be (much) larger than the number of operators
in the basis.

(ii) There may be energy eigenstates present that do not
couple or only couple weakly to the operators used.
In particular, it is well known that local three-quark
interpolating fields couple poorly to multihadron
scattering states.

(iii) The nature of the operators selected may be such that
it is not possible to construct a linear combination
with the appropriate structure to isolate a particu-
lar state.

It is important to have a strategy to ensure that one can
accurately obtain eigenstate energies from the correlation
matrix. The method we use is to analyze the effective
energies of different states from the eigenstate-projected
correlators,
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EαðtÞ ¼ 1

n
log

GαðtÞ
Gαðtþ nÞ ; ð10Þ

which is constant in regions where the correlator is
dominated by a single state. Neighboring time slices in
the correlation functions are highly correlated in Euclidean
time and require a covariance-matrix-based χ2 analysis.
The best unbiased estimate corresponds to a χ2=dof ≈ 1.

We therefore endeavor to obtain a plateau fit of the effective
mass with the χ2=dof close to 1. In considering an upper
limit for the fit, points with errors bars larger than the
central value are discarded. Fits with χ2=dof > 1.20 are
rejected, as these fits have significant contamination from
nearby states not yet isolated in the correlation matrix
analysis [20]. We do not enforce a lower bound on
acceptable χ2=dof as small values typically reflect large
uncertainties rather than an incorrect result associated with
a systematic error. Typically, plateaus commence three or
four time slices after the source, near the regime where the
generalized eigenvector analysis of the correlation matrix is
done. Figure 1 illustrates typical effective mass fits for
positive- and negative-parity states. Further details of this
method can found in Ref. [22].
As we will demonstrate, a careful covariance-matrix

based χ2 analysis to fit the single-state ansatz ensures a
robust extraction of the eigenstate energies. The physics
underpinning this robustness is elucidated in detail
in Sec. VI.
The CSSM lattice collaboration has used this technique

in the calculation of the nucleon spectra in both the
positive- [8] and negative-parity channels [15] with stan-
dard three-quark interpolators. While largely successful at
identifying towers of excited states that would be associ-
ated with resonances in nature, it has been shown that with
three-quark operators alone it is difficult to detect states
near multiparticle scattering energy levels [20]. The con-
cern is that the operator basis does not have sufficient
overlap with meson-baryon-type components, highlighting
the need for studies with multihadron operators.

III. MULTIPARTICLE STATE CONTRIBUTIONS

To further elucidate the situation, we consider a simple
two-component toy model which consists of two QCD
energy eigenstates, jai and jbi. We then suppose that jai
and jbi are given by

jai ¼ cos θj1i þ sin θj2i; ð11Þ

jbi ¼ − sin θj1i þ cos θj2i; ð12Þ

where j1i and j2i denote a single-hadron- and meson-
baryon-type component, respectively, while θ is some
arbitrary mixing angle. Now imagine performing a spectro-
scopic calculation with an interpolating field χ3 that only
has substantial overlap with j1i. That is,

hΩjχ3j1i ∝ C and hΩjχ3j2i ≪ C; ð13Þ

for some constant C. When χ̄3 acts on the vacuum, we
therefore create a state that is a superposition of the true
energy eigenstates given by

FIG. 1 (color online). Typical effective mass fits for positive-
parity (top) and negative-parity (bottom) nucleon excitations. The
top plot shows a fit to the first positive-parity excitation of the
4 × 4 correlation matrix obtained from basis 1 described in
Table I of Sec. V. The fitted mass of 2.11(4) GeV is shown as
a green circle for basis 1 in Fig. 4 and provides χ2=dof ¼ 0.17.
The bottom plot shows a fit to the lowest-lying state in the
negative-parity sector. It is sourced from the 6 × 6 correlation
matrix obtained from basis 3 described in Table I of Sec. V. The
fitted mass of 1.58(3) GeV is shown as a blue square for basis 3 in
Fig. 8 and corresponds to χ2=dof ¼ 0.87. Note an earlier fit
including t ¼ 20 provides χ2=dof ¼ 1.22, reflecting the system-
atic drift in the effective mass at early times.
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j1i ¼ cos θjai − sin θjbi: ð14Þ

In the absence of an operator that has substantial overlap
with j2i, it becomes impossible to separate out the true
QCD eigenstates of interest. This naturally leads to two
points of concern. First, one cannot extract states with a
significant j2i component, and second there is possibly
contamination of the states that are extracted. When
performing baryon spectroscopy, it therefore becomes
desirable to include interpolating fields that we expect to
have substantial overlap with multiparticle meson-baryon-
type states [19]. While projecting single-hadron momenta
in a multihadron operator allows for a clean extraction of
states associated with scattering thresholds, the influence of
local five-quark operators (without explicit momenta
assigned to each hadron) on the spectrum is less intuitive.
It is the purpose of this study to examine the role local five-
quark operators play in the spectrum and to thereby test the
robustness of our variational method.
Starting with standard N and π interpolators, we use the

Clebsch–Gordan coefficients to project isospin I ¼
1=2; I3 ¼ þ1=2 and write down the general form of our
meson-baryon interpolating fields [23,24],

χNπðxÞ¼
1ffiffiffi
6

p ϵabcγ5

×f2½uTaðxÞΓ1dbðxÞ�Γ2dcðxÞ½d̄eðxÞγ5ueðxÞ�
− ½uTaðxÞΓ1dbðxÞ�Γ2ucðxÞ½d̄eðxÞγ5deðxÞ�
þ ½uTaðxÞΓ1dbðxÞ�Γ2ucðxÞ½ūðxÞeγ5ueðxÞ�g; ð15Þ

providing us with two five-quark operators, denoted χ5 and
χ05 which correspond to ðΓ1;Γ2Þ ¼ ðCγ5; IÞ and ðΓ1;Γ2Þ ¼
ðC; γ5Þ, respectively. The square brackets around the
diquark contraction denote a Dirac scalar. Under a parity
transformation,

x → ~x ¼ ðx0;−~xÞ; ð16Þ

and the quark fields ψðxÞ and ψ̄ðxÞ transform as

ψðxÞ → PψðxÞP† ¼ γ0ψð~xÞ;
ψ̄ðxÞ → Pψ̄ðxÞP† ¼ ψ̄ð~xÞγ0: ð17Þ

Applying a parity transformation to the standard pion
interpolator χπðxÞ ¼ ψ̄ðxÞγ5ψðxÞ, and the nucleon interpo-
lators of type χNðxÞ ¼ ½ψTðxÞðCγ5ÞψðxÞ�ψðxÞ of Eq. (27),
we find

χπðxÞ → −ψ̄ð~xÞγ5ψð~xÞ ¼ −χπð~xÞ;
χNðxÞ → ½ψTð~xÞðCγ5Þψð~xÞ�γ0ψð~xÞ ¼ γ0χNð~xÞ: ð18Þ

Thus, the pion interpolator transforms negatively under
parity. To ensure our five-quark baryon interpolator formed

from the product of pion and nucleon interpolators trans-
forms in the appropriate manner, the prefactor of γ5 is
included in Eq. (15). That is, both our three-quark and
five-quark nucleon operators have the same parity trans-
formation properties and hence can be combined in a
correlation matrix. This also ensures the standard parity
projector of Eq. (2) applies to our five-quark interpolators.
The presence of creation quark fields in our annihilation

interpolating field and vice versa then leads to the require-
ment of calculating the more computationally intense loop
propagators, in order to compute the diagrams in Fig. 2.
The literature contains different ways of dealing with such
diagrams such as distillation [25] and various schemes such
as the Laplacian Heaviside smearing method [26]. Here we
will stochastically estimate inverse matrix elements fully
diluting in spin, color, and time as outlined below.

IV. LOOP PROPAGATOR TECHNIQUES

As observed in the preceding section, spectroscopic
calculations that involve the five-quark operators χ5 and
χ05 necessarily involve the determination of loop propaga-
tors at x, denoted Sðx; xÞ. As Sðx; xÞ requires a source at
each lattice point, a different recipe to that of conventional
point-to-all propagators is utilized. For this purpose we use
stochastic estimation of the matrix inverse [27,28].
Given a set of random noise vectors fηg with elements

drawn from Z4 such that the average over noise vectors
gives

hηaαðxÞη†bβðyÞi ¼ δxyδabδαβ; ð19Þ

with color indices a; b, spin indices α; β, and space-time
indices x; y. We define for each noise vector a correspond-
ing solution vector

χ ¼ M−1η; ð20Þ

where in this case M is the fermion matrix. Then the
stochastic estimate of a propagator matrix element is
calculated as

FIG. 2. The Feynman diagrams considered following the
introduction of five-quark interpolating fields to standard
three-quark operators.
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Sab;αβðx; yÞ≃ hχaαðxÞη†bβðyÞi: ð21Þ

We perform full dilution in time, spin, and color indices as a
means of variance reduction [29]. That is, given a set of full
noise vectors fηg, we can define a set of diluted noise
vectors fη½a0α0t0�g by

η½a
0α0t0�

aα ð~x; tÞ ¼ δaa0δαα0δtt0ηaαð~x; tÞ; ð22Þ

where the intrinsic quark field indices are specified by color
a, spin α, space ~x, and time t, respectively, and the color-
spin-time diluted noise vectors are enumerated by the
corresponding ½a0α0t0� labels. We can similarly enumerate
the solution vectors

χ½a0α0t0� ¼ M−1η½a0α0t0�; ð23Þ

which makes it clear that by diluting we increase the
number of inversions required by a factor of
ncolor × nspin × ntime. The stochastic estimate of the matrix
inverse with dilution is given by

Sðx; yÞ≃
�X

a0;α0;t0
χ½a0α0t0�ðxÞη½a0α0t0�†ðyÞ

�
; ð24Þ

where color and spin indices are taken to be implicit for
clarity. At this point we remark that, while it is computa-
tionally infeasible to also fully dilute in the space index ~x,
in this extreme limit, each diluted noise vector would
consist of only a single nonzero element, meaning that we
are exactly calculating the full matrix Sðx; yÞ and the above
relation becomes an equality rather than an estimate. This
makes it clear that using dilution provides an improved
stochastic estimate to the matrix inverse.
As shown in Fig. 2, our construction of nucleon

correlators with five-quark operators combines standard
point-to-all propagators Sðx; 0Þ and stochastic estimates of
the loop propagators Sðx; xÞ. To access the radial excita-
tions of the nucleon, we make use of multiple levels of
Gaussian smearing in our quark fields. Hence, to construct
a correlation matrix, we need to calculate propagators with
differing levels of source and sink smearing.
Let Sðm;nÞðx; yÞ denote a propagator with m iterations of

smearing applied at the sink and n iterations applied at the
source. In the case of point-to-all propagators Sðm;nÞðx; 0Þ,
the source point is fixed, y ¼ 0, and starting with a point
source ψ ð0Þ, we apply n iterations of Gaussian smearing
preinversion to obtain the smeared source ψ ðnÞ ¼ Hnψ ð0Þ,
where

HψðxÞ ¼ ð1 − αÞψðxÞ þ α

6

X3
μ¼1

fUμðxÞψðxþ aμ̂Þ

þU†
μðx − aμ̂Þψðx − aμ̂Þg; ð25Þ

and α specifies the smearing fraction. Sink smearing
is applied to the propagator postinversion to obtain
Sðm;nÞðx; 0Þ.
The application of smearing to construct a stochastic

estimate for the quark propagator Sðm;nÞðx; yÞ is somewhat
different. The set of (diluted) noise and solution vectors
fη; χg is first constructed, whereby it follows from
Eqs. (21) and (25) that an estimate of the smeared
propagator is given by

Sðm;nÞðx; yÞ ¼ hχðmÞðxÞηðnÞ†ðyÞi; ð26Þ

where χðmÞ ¼ Hmχ is the result of m iterations of Gaussian
smearing applied to the (diluted) solution vectors and
ηðnÞ ¼ Hnη is similarly constructed from the (diluted) noise
vectors. Note that the smearing is applied after (any
dilution and) the solution vectors have been calculated.
The construction of a smeared loop propagator Sðm;mÞðx; xÞ
is simply an application of the above formulas in the
case y ¼ x.
To determine how many noise vectors per configuration

are sufficient to provide similar statistical errors for our
point-to-all and stochastic propagators, correlators are
calculated with a stochastic estimate of the point-to-all
propagator and compared to those obtained using point-to-
all propagators calculated in the standard way. As each
independent quark line in a hadron correlator requires an
independent noise source to ensure unbiased estimation
[26], we insert one stochastic propagator into the afore-
mentioned correlators. Furthermore, as a test of our
smearing technique for stochastic propagators, we perform
this comparison using a variety of smearing levels. Note
that, as smearing of both the source and solution vectors is
performed postinversion, the stochastic method effectively
provides different smearing levels for free.
The comparison is performed on 75 203 × 40 lattice

gauge configurations, with the Fat Link Irrelevant Clover
fermion action [30]. The lattice spacing is 0.126 fm in both
the temporal and spatial direction providing a physical
lattice volume of ð2.52 fmÞ3. Four full noise vectors are
used per stochastic propagator, which are then color-spin-
time diluted. As the source time slice is fixed in this case,
each stochastic propagator requires ncolour × nspin inver-
sions per noise vector. Recall standard point-to-all propa-
gators require ncolor × nspin inversions, although source
smearing is applied preinversion unlike the stochastic case.
Three different levels of smearing are used: ns ¼ 35; 100;
200 sweeps with α ¼ 0.7. Figure 3 shows good agreement
across all smearing levels between those correlators con-
taining a stochastically estimated propagator and those that
do not, demonstrating that using four noise vectors per
quark line provides a comparable statistical uncertainty to
that of a standard propagator. We note here that ultimately
we utilize this method to calculate Sðx; xÞ not Sðx; xsourceÞ,
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meaning we get the added benefit of spatial averaging for
our loop propagators.

V. SIMULATION DETAILS

For the baryon spectroscopy results presented herein, we
use the PACS-CS 2þ 1 flavor dynamical-fermion con-
figurations [31] made available through the International
Lattice Data Grid [32]. These configurations use the
nonperturbatively OðaÞ-improved Wilson fermion action
and the Iwasaki gauge action [33]. The lattice size is 323 ×
64 with β ¼ 1.90 and a lattice spacing of 0.0907 fm,
providing a physical volume of ≈ð2.90 fmÞ3. The light
quark mass is set by the hopping parameter κud ¼ 0.13770,
which gives a pion mass of mπ ¼ 293 MeV, while the
strange-quark mass is set by κs ¼ 0.13640. Fixed boundary
conditions are employed in the time direction removing
backward propagating states [34,35], and the source is

inserted at tsrc ¼ nt=4 ¼ 16, well away from the boundary.
Systematic effects associated with this boundary condition
are negligible for t > 16 slices from the boundary. The
main results of our variational analysis is performed at t0 ¼
17 and dt ¼ 3, providing a good balance between system-
atic and statistical uncertainties. Uncertainties are obtained
via a single elimination jackknife while a full covariance
matrix analysis provides the χ2=dof which is utilized to
select fit regions for the eigenstate-projected correlators.
In addition to the five-quark operators χ5 and χ05

presented in Sec. III, we use the conventional three-quark
operators

χ1 ¼ ϵabc½uaTðCγ5Þdb�uc
χ2 ¼ ϵabc½uaTðCÞdb�γ5uc ð27Þ

in order to form the seven bases we study that are outlined
in Table I.
Throughout this work we employ Gauge-invariant

Gaussian smearing [36] at the source and sink to increase
the basis size via altering the overlap of our operators with
the states of interest. We choose ns ¼ 35 and ns ¼ 200
sweeps of smearing providing bases of sizes 4, 6, and 8.
Stochastic quark lines are calculated using four random Z4

noise vectors that are fully diluted in color, spin, and time.

VI. RESULTS

A. Positive-parity spectrum

The results for the nucleon spectrum in the positive-
parity sector are shown in Fig. 4. Solid horizontal lines are
added to guide the eye, with their values set by the states in
basis number 4, since this basis contains all the operators
studied and has the largest span.
Of particular interest is the robustness of the variational

techniques employed. While changing bases may affect
whether or not a particular state is seen, the energy of the
extracted states is consistent across the different bases, even
though they contain qualitatively different operators.
Despite the use of five-quark operators, no state near the

noninteracting P-wave Nπ scattering threshold is observed.
This is understood by noting that none of our operators has
a source of the back-to-back relative momentum between

FIG. 3 (color online). A comparison of correlators calculated
with one stochastically estimated propagator (denoted “stochas-
tic”) to those calculated with no stochastic propagators (denoted
“standard”). Results are presented for the pion (top) and the
ground-state nucleon (bottom).

TABLE I. Table of the various operators used in each basis.

Basis number Operators used

1 χ1, χ2
2 χ1, χ2, χ5
3 χ1, χ2, χ05
4 χ1, χ2, χ5, χ05
5 χ1, χ5, χ05
6 χ2, χ5, χ05
7 χ5, χ05
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the nucleon and pion necessary to observe an energy level
in the region of this scattering state.
The corresponding eigenvector components for the

positive-parity states are shown in Fig. 5 as a function
of basis and variational parameter dt, with t0 ¼ 17 fixed.
The values of dt range from 1 through 4. The upper limit of
dt ¼ 4 was chosen as the largest value for which the
variational analysis converged for each of the seven bases.
The ground-state nucleon is observed in every basis

regardless of the absence or presence of a particular
operator. If χ1 is present, then this provides the dominant
contribution, with χ05 coupling strongly to the ground state
in bases where χ1 is absent. An interesting interplay
between 35 and 200 sweep smeared χ1 is observed with
the smaller source diminishing in importance as dt is
increased. This may be associated with the Euclidean time
evolution of highly excited states which are suppressed
with increasing dt.
Turning our attention to state 2, we see that χ1 plays a

critical role in the extraction of the first excited state, which
is associated with a radial excitation of the ground state
[17]. Here the 35 and 200 sweep χ1 interpolators enter with
similar strength but opposite signs, setting up the node
structure of a radial excitation. χ1 dominates the construc-
tion of the optimized operator for this state for bases 1
through 5, whereas bases 6 and 7 which lack χ1 do not
observe this state.
The eigenvectors for state 3, the second excited state, are

dominated by χ2 components with the same sign when this
operator is present (bases 1–4 and 6). This state is not
observed in basis 5 (where χ2 is absent). Interestingly, in

FIG. 4 (color online). The positive-parity nucleon spectrum
with various operator bases constructed with 35 and 200 sweeps
of smearing. Horizontal solid lines are present to guide the eye
and are drawn from the central value of the states in basis 4, while
the dashed line marks the position of the noninteracting P-wave
Nπ scattering threshold.

FIG. 5 (color online). Eigenvector components corresponding to
the low-lying positive-parity nucleon states. State 1 corresponds to
the ground state, with states 2 and 3 corresponding to the first and
second excited states, respectively. The column numbers denote
basis number, while the minor x axis ticks correspond to the values
of the variational parameter dt which runs from 1 through to 4.
t0 ¼ 17 has been used throughout. The subscripts 35 and 200 in the
legend refer to the number of smearing sweeps applied.
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basis 7 which only contains five-quark operators, it appears
that it is possible to form this state using χ50 components at
two different smearings with opposite sign.
We observe that the overall structure of the eigenvectors

for each of the three states is highly consistent across
different bases and different values of the variational
parameter dt. The structure of the eigenvectors can be
considered to be a signature or fingerprint of the extracted
state, and this consistency across bases confirms that it is
the same state being identified.
It is fascinating to see that for state 1 in bases 6 and 7,

where χ50 takes the role of the absent χ1 operator, the values
of the two dominant eigenvector components (which
indicate the mixture of the two different smearing levels
used) are extremely similar to the χ1 components in bases
1–5. Interestingly, at dt ¼ 2 the error bars for the dominant
components of states 2 and 3 blow up. As we shall explain
below, this is due to an accidental degeneracy in the
eigenmasses for this choice of variational parameters.
To further test the robustness of our variational method,

we conduct a comparison of the masses obtained from
fitting the eigenstate-projected correlators as a function of
the variational parameters for each basis. These results are
presented in Fig. 6. Also shown for comparison are the
eigenmasses, mα, that result from solving the generalized
eigenvalue equation of Eq. (7) or (8) with cα ¼ e−mαdt.
Studying state 1, the nucleon ground state, we observe

that the masses obtained from projected correlator fits are
approximately invariant across different bases and choices
of the variational parameter. In contrast, the eigenmass lies
well above the fitted mass, dropping in value as the
variational parameter dt is varied from 1 to 4. While the
eigenmass is directly related to the principal correlator and
thus should approach the ground-state mass in the large
time limit, it is clear that the values of dt we examine here
are insufficient for this to occur. It is worth noting that, in
bases 6 and 7 where χ1 is absent, we see that the eigenmass
value rises significantly. Nevertheless, the fitted mass
remains remarkably consistent with the values obtained
in bases 1–5. We emphasize how strong the variational
parameter dependence of the eigenmass contrasts the more
consistent structure of the eigenvectors. Insensitivity of the
eigenvectors to the variational parameters is a key compo-
nent of the invariance of the masses obtained from the
projected correlator.
Turning to state 2, we see that the eigenmass shows

similar behavior to state 1, lying above the extracted mass
and dropping with dt. Interestingly, for state 3 in bases 1–4
and 6, the eigenmass shows constant behavior for dt ¼
2 − 4 but systematically lies below the extracted mass. In
basis 7, the state 3 eigenmass is very different to the
previous bases, lying above the extracted mass and showing
a similar downward trend to states 1 and 2 as dt varies.
As for state 1, the fitted masses for states 2 and 3 provide

highly consistent values and uncertainties across the

FIG. 6 (color online). Comparisons of eigenmasses to masses
obtained from a projected correlator fit for low-lying states in the
positive-parity nucleon channel. The column numbers denote
basis number, while the minor x-axis ticks correspond to the
values of the variational parameter dt ¼ 1…4. t0 ¼ 17 has been
used throughout. The line denoting the extracted mass is set using
basis 4 with dt ¼ 3.
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different bases and values of dt, with the notable exception
of dt ¼ 2. As observed previously in Fig. 5, we see in Fig. 6
considerably larger error bars at the variational parameter
set ðt0; dtÞ ¼ ð17; 2Þ in both the eigenvector components
and projected mass fits for the first and second excited
states. To understand this, we turn to Fig. 7, where the
eigenmasses for states 2 and 3 are plotted against the
variational parameter dt in each basis.
Note that at ðt0; dtÞ ¼ ð17; 2Þ there is an approximate

degeneracy in the eigenmass for states 2 and 3. As a
consequence, the corresponding eigenvectors can therefore
be arbitrarily rotated within the state-2/state-3 subspace
while remaining a solution to the eigenvalue problem.
When constructing the jackknife subensembles to calculate
the error in the fitted energy, we need to solve for the
eigenvectors on each subensemble. Due to the approximate
degeneracy, the particular linear combination of state 2 and
state 3 that we obtain for each subensemble can vary.
Indeed, we observe that the dot product between the
ensemble average and subensemble can drop significantly
for dt ¼ 2 in comparison to other values of dt. This
causes a large variation in the subensemble eigenvector
components and a correspondingly large error bar. The
simplest way to avoid the problem of this accidental
degeneracy is to select a different value of the variational
parameter.

B. Negative-parity spectrum

The negative-parity nucleon spectrum is presented in
Fig. 8. Solid horizontal lines have been added to guide the
eye, with their values set by the states in the largest basis
(number 4). Once again, while changing bases affects
whether or not we observe a given state, the extracted
states display an impressive level of consistency across the
different bases.

The dashed line indicating the energy of the noninter-
acting (infinite-volume) scattering-state threshold is also
indicated with the caution that mixing with nearby states in
the finite volume can alter the threshold position [37,38].
We note here that all scattering thresholds discussed in this
section and the next refer to the noninteracting threshold. In
contrast to the positive-parity results, we do observe a state
near the S-wave Nπ scattering threshold in the negative-
parity channel (bases 5, 6, and 7), also noting that the
P-wave Nππ thresholds lie in the region of state 3 seen in
bases 3, 4, and 5. It is important to note that, even after the
introduction of operators that permit access to a state near
the low-lying scattering state, the energies of the higher
states in the spectrum are consistent, demonstrating the
robustness of the variational techniques employed.
Plots of the corresponding eigenvectors for the low-lying

negative-parity states as a function of basis and variational
parameter dt ¼ 1…3 are presented in Figs. 9 and 10. The
upper limit of dt ¼ 3 was chosen as the largest value for
which the variational analysis converged for all seven
bases. The eigenvector components for state 0 (when it
is present) are dominated by the multiparticle operators χ5
and χ05, suggesting that this state should be identified as a
scattering state. The extracted energy for this state is in the
region of the noninteracting S-wave Nπ scattering thresh-
old (which lies below the first negative-parity resonant
state). The uncertainty in bases 6 and 7 are relatively large
compared to basis 5, indicating that the presence of χ1 may
also be required to cleanly isolate this scattering state.
Indeed, we note that in basis 5 there is a significant
contribution to state 0 from the χ1ðns ¼ 200Þ operator.

FIG. 7 (color online). A plot showing the eigenmasses for both
states 2 and 3, illustrating the accidental degeneracy at dt ¼ 2.

FIG. 8 (color online). The negative-parity nucleon spectrum
with various operator bases using 35 and 200 sweeps of smearing.
Solid horizontal lines are present to guide the eye and are drawn
from the central value of the states in basis 4, since this basis is the
largest. The dashed line marks the position of the noninteracting
S-wave Nπ scattering threshold. The variational parameters used
herein are ðt0; dtÞ ¼ ð17; 3Þ.
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It is also important to note that either χ5 or χ05 can be the
dominant interpolator exciting this lowest-lying state.
Given that χ2 is predominantly associated with the third
state in the positive-parity sector at 2.4 GeV, one might
naively expect χ05 would be associated with S-wave
scattering states near 2.7 GeV. Remarkably it creates a
scattering state near 1.35 GeV. Thus, one should use
caution in predicting the spectral overlap of five-quark
operators by examining the spectral overlap of the pion and
nucleon components of the five-quark operators separately.
In light of the quark field operator contractions required in
calculating the full two-point function, this result is not
surprising.
In accord with previous studies [15,39], we find that the

χ1 interpolating field is crucial for extracting state 1,
associated with the lowest-lying negative-parity resonance,
as we do not observe this state when χ1 is absent as in bases
6 and 7. As expected, χ1 provides the dominant contribu-
tion to state 1, which is associated with the S11ð1535Þ in
nature. Similarly, we see that χ2 has a high overlap with
state 2, the next resonant state. Basis 5 does not see state 2
due to the absence of χ2. However, unlike state 1, there is an
important mixing of χ1 and χ2 in isolating the eigenstate. It
is interesting to note that in basis 7 we are able to form this
state by combining χ5 and χ05.
The consistency of the eigenvector structure for the low-

lying states 1 and 2 is strong. Despite the appearance of a
state near the S-wave Nπ threshold, state 0 in basis 5, the
eigenvector components for state 1 are remarkably con-
sistent with those in other bases where this lower-lying state
is absent. If we look at basis 6, where state 0 is present but

FIG. 9 (color online). Eigenvector components corresponding
to state 0 which is in the region of the noninteracting S-wave
N þ π scattering threshold. The column numbers denote basis
number, while the minor x-axis ticks correspond to the values of
the variational parameter dt which runs from 1 through to 3.
t0 ¼ 17 has been used throughout. The subscripts 35 and 200 in
the legend refer to the number of smearing sweeps applied.

FIG. 10 (color online). Eigenvector components corresponding
tolow-lyingnegative-paritynucleonstates.States1and2correspond
to the two lowest-lying resonant states,while state3 interestingly lies
in the region of the P-wave scattering thresholds. The column
numbers denote basis number, while the minor x-axis ticks corre-
spond to thevalues of thevariational parameterdtwhich runs from1
through to 3. t0 ¼ 17 has been used throughout. The subscripts 35
and200in thelegendrefer tothenumberofsmearingsweepsapplied.
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state 1 is absent, the eigenvector components for state 2 are
in good agreement with those from other bases where the
lower-lying state 0 is not observed. This demonstrates that,
with a judiciously chosen variational technique, a reliable
analysis of higher states in the spectrum can be performed
even if states associated with the low-lying scattering states
are not extracted by the correlation matrix analysis.
State 3, which lies in the region of the noninteracting

P-wave Nππ scattering states in the channel, also shows
good agreement across bases and variational parameters.
The dominant eigenvector components show that this state
is formed from a mix of χ05 and χ1. It is worth noting that
very early choices of the variational parameters such as
ðt0; dtÞ ¼ ð17; 1Þ do not allow sufficient Euclidean time
evolution to cleanly isolate this state. The correlation
matrix has more states participating in the analysis than
the dimension of the basis leading to contamination from
unwanted states and hence spurious results. The different
structure for the state-3 eigenvectors at these early varia-
tional parameter sets illustrates the need to allow sufficient
Euclidean time evolution to occur.
The comparison of the fitted masses as a function of

variational parameter dt across the different bases for the
negative-parity sector is shown in Figs. 11 and 12. Again,
the eigenmasses are plotted for comparison. As before, we
observe for all the states the fitted masses are consistent
across the different bases and values of dt. In contrast, the
eigenmasses for the negative-parity states all show some
variation with dt to different extents, with the values
typically lying well above the extracted energies.

FIG. 11 (color online). Comparisons of eigenmasses to masses
obtained from a projected correlator fit for state 0, which is in the
region of the noninteracting S-wave Nπ scattering threshold. The
column numbers denote basis number, while the minor x-axis
ticks correspond to the values of the variational parameter
dt ¼ 1…3. t0 ¼ 17 has been used throughout. The line denoting
the extracted mass used has been set using basis 5 with dt ¼ 3.

FIG. 12 (color online). Comparisons of eigenmasses to masses
obtained from a projected correlator fit for low-lying states in the
negative-parity nucleon channel. The column numbers denote
basis number, while the minor x-axis ticks correspond to the
values of the variational parameter dt ¼ 1…3. t0 ¼ 17 has been
used throughout. The line denoting the extracted mass used has
been set using basis 4 with dt ¼ 3.
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Finally, we observe that whenever χ05 is present, either a
state near the S-wave Nπ scattering threshold or a state
lying in the region of the P-wave Nππ scattering thresholds
is extracted. This indicates the presence of the vector
diquark in the interpolator may play an important role in
scattering-state excitation. It is perhaps surprising that basis
4 fails to see a state near the lowest-lying scattering
threshold in the sector, despite being the largest basis.
We believe this is due to the spectral strength available to
the scattering state being relatively low. The overlap of the
scattering state with the operators is not high enough to
compete with the large spectral strength imparted to the
low-lying resonant states when both χ1 and χ2 are present.
We note that the only time our local (three-quark or five-
quark) operators overlap with a meson-baryon state is when
both hadrons are at the origin. The probability of this
occurring is proportional to 1=V2. After taking into account
the spatial sum in Eq. (1), this results in a 1=V suppression
of multiparticle states in the correlator amplitude GðtÞ [40].
Indeed, it seems to be relatively difficult to extract a state
near the S-wave Nπ state with our local five-quark
operators, suggesting that scattering-state excitation is best
achieved by explicitly projecting the momentum of interest
onto each hadron present in the scattering state.

VII. CONCLUSIONS

We have investigated the role of local multiparticle
interpolators in calculating the nucleon spectrum by exam-
ining a variety of different bases both with and without five-
quark operators.
The variational techniques herein employed demonstrate

that fitting a single-state ansatz to optimized eigenstate-
projected correlators provides a method to reliably extract
energies in both the positive- and negative-parity channels.
While the selection of states that are observed vary between
bases, when a given state is seen, the extracted energy
agrees across qualitatively different bases.
Furthermore, the structure of the eigenvector compo-

nents and the corresponding fitted energies for the states
observed are shown to be highly consistent across different
bases and choices of the variational parameters, despite the

markedly different interpolators used in the various bases.
We found that an approximate accidental degeneracy in the
eigenmass at ðt0; dtÞ ¼ ð17; 2Þ for states 2 and 3 led to a
large increase in the uncertainties for the corresponding
energies and eigenvector components.
While we did not observe any positive-parity scattering

states, in the negative-parity sector, we found that χ05 was
crucial to obtaining an energy in the region of the non-
interacting S-wave Nπ. Even with the use of local five-
quark interpolators, the uncertainties on this threshold state
were relatively large compared to those of higher states.
Future studies will include multiparticle operators with
explicitly projected single-hadron momenta in the varia-
tional basis to facilitate better excitation of scattering states,
including those in the positive-parity sector. An interesting
feature of our negative-parity results is that the energies of
the extracted states are consistent across all bases in which
the state is observed, regardless of the presence (or not) of a
state in the region of the lower-lying noninteracting
scattering threshold. This suggests that, by using the
techniques described herein, one does not need to have
access to the aforementioned low-lying states to reliably
extract energies closely related to the resonances of nature.
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