
Lee-Yang zero distribution of high temperature QCD
and the Roberge-Weiss phase transition

Keitaro Nagata,1,* Kouji Kashiwa,2,† Atsushi Nakamura,3,‡ and Shinsuke M. Nishigaki4,§
1KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan

2Yukawa Institute for Theoretical Physics, Kyoto University,
Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

3Research Institute for Information Science and Education, Hiroshima University,
Higashi-Hiroshima 739-8527, Japan

4 Graduate School of Science and Engineering, Shimane University, Matsue 690-8504, Japan
(Received 5 October 2014; published 18 May 2015)

Canonical partition functions and Lee-Yang zeros of QCD at finite density and high temperature are
studied. Recent lattice simulations confirm that the free energy of QCD is a quartic function of quark
chemical potential at temperature slightly above pseudocritical temperature Tc, as in the case with a gas of
free massless fermions. We present analytic derivation of the canonical partition functions and Lee-Yang
zeros for this type of free energy using the saddle point approximation. We also perform lattice QCD
simulation in a canonical approach using the fugacity expansion of the fermion determinant and carefully
examine its reliability. By comparing the analytic and numerical results, we conclude that the canonical
partition functions follow the Gaussian distribution of the baryon number, and the accumulation of Lee-
Yang zeros of these canonical partition functions exhibit the first-order Roberge-Weiss phase transition. We
discuss the validity and applicable range of the result and its implications both for theoretical and
experimental studies.
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I. INTRODUCTION

Quantum chromodynamics (QCD) undergoes a phase
transition from the hadronic phase to the quark gluon
plasma (QGP) phase at high temperature. Recently, a beam
energy scan (BES) program at the Relativistic Heavy Ion
Collider has reported valuable data for the long-standing
issue of identifying the phase boundary in the QCD phase
diagram by using heavy ion collisions with different
collision energies, centralities, etc. [1–3]. There, the prob-
ability distribution of conserved charges has been con-
structed by measuring them for each collision. Extensive
efforts have been invested to understand event-by-event
fluctuations of those charges, as they are expected to be
useful observables for locating the critical end point [4–8].
The setup in BES experiments, where a part of the

fireballs is accessible for measurements, resembles a grand
canonical ensemble in statistical mechanics [9–11], and this
parallelism enables us to study the probability distribution
of the net baryon number nB theoretically: Consider a grand
canonical ensemble for a single particle species. The grand
canonical partition function ZðμÞ is expanded in terms of
the number of particles n as ZðμÞ ¼ P

nZnenμ=T . Here, Zn
is a canonical partition function, which depends on temper-
ature T but not on the chemical potential μ. For given μ
and T, Znenμ=T is proportional to the probability of
observing an n-particle state in the grand canonical
system. The BES experiments have so far measured the
net proton multiplicity and reported [2] that it closely

follows the Skellam distribution for several collision
energies and centralities. This observation is consistent
with the hadron resonance gas (HRG) model, in which the
net baryon multiplicity is approximately given by a
Skellam distribution [9].
On the other hand, in lattice QCD simulations the

canonical approach has been proposed as a tool to circum-
vent the sign problem associated with a finite chemical
potential [12–22]. In previous studies [21,22], two of the
authors (K. N. and A. N.) found that the canonical partition
functions follow the Gaussian distribution of the baryon
number at high temperatures and that the Lee-Yang zeros
obtained from the canonical partition functions of the
Gaussian type exhibit a behavior consistent with a
Roberge-Weiss (RW) phase transition [23]. This result
has several implications: The connection between the
Gaussian behavior of the net baryon number distribution
and the RW phase transition can be used as an experimental
probe indicating the QGP phase, since the RW phase
transition is a phenomenon specific to the QGP phase. The
result is also interesting in the context of the Lee-Yang zero
analysis [24,25], since the distribution of Lee-Yang zeros is
known for some limited cases, e.g., [25,26].
Despite the aforementioned importance, the determina-

tion of Lee-Yang zeros in Monte Carlo simulations is a
difficult task. Canonical partition functions suffer from a
phase fluctuation configuration by configuration due to the
sign problem. This problem may be reduced by using
sophisticated approaches proposed in, e.g., [15,19].
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However, the phase fluctuation becomes more severe as the
baryon number increases, and the truncation of the fugacity
polynomial at a certain order is inevitable. Such methodo-
logical artifacts might sensitively affect the thermodynamic
behavior of the Lee-Yang zeros that are the roots of the
truncated polynomial.
The purpose of the present work is to determine the

canonical partition functions and Lee-Yang zeros in QCD
at high temperatures and to reexamine their relationships.
To this end, we present an alternative analytical calculation
and assess the reliability of the lattice results in light of the
former. Specifically, we first derive the canonical partition
functions and Lee-Yang zeros at high temperature by
utilizing the fact that the free energy is then given as a
simple quartic function of the quark chemical potential.
The canonical partition function is defined as a Fourier
integral of the grand canonical partition function with pure
imaginary chemical potential. At high temperature, this
integral can be evaluated in a saddle point approximation
yielding the Gaussian function. Accordingly, the grand
canonical partition function is expressed as a Jacobi theta
function. Using the property of the zeros of the theta
function, we show that the Lee-Yang zeros are located on
the negative real axis on the complex plane of the baryon
fugacity. Because of the RW periodicity, these zeros are
aligned on three radial lines on the complex plane of the
quark fugacity. This elucidates the close connection
between the Gaussian behavior of the canonical partition
functions and the RW phase transition.
In reexamining the results from the lattice QCD simu-

lations, some of which have been already presented in [22],
we newly address the issue of the convergence of the
fugacity polynomial and Lee-Yang zeros and perform a
bootstrap analysis for their distribution. We find that the
Lee-Yang zeros related to the RW phase transition are not
sensitive to the truncated part of the fugacity polynomial.
We also find an agreement between the lattice data and
analytic calculation.
This paper is organized as follows. In the next section, we

explain the canonical approach and Lee-Yang zero theorem.
In Sec. III, we explain some features of QCD. Using those
features, we derive the canonical partition functions and
Lee-Yang zeros. In Sec. IV, we compute the canonical
partition functions and Lee-Yang zeros in lattice QCD
simulation. We also discuss the implications and reliability
of the results. The final section is devoted to a summary.

II. CANONICAL APPROACH AND LEE-YANG
ZEROS

In this section, we explain the canonical approach and
the Lee-Yang zero theorem. The grand canonical partition
function is defined by

ZðμÞ ¼ tre−ðĤ−μN̂Þ=T; ð1Þ

where Ĥ and N̂ denote the Hamiltonian and the quark
number operator in QCD, and T and μ the temperature and
the quark chemical potential. We refer to V as the spatial
volume of the system. Using the eigenstates of the number
operator, ZðμÞ can be expanded in powers of fugacity
ξ ¼ eμ=T ,

ZðμÞ ¼ lim
N→∞

XN
n¼−N

Znξ
n: ð2Þ

Here, Zn ¼ trðe−Ĥ=TδN̂;nÞ is the canonical partition func-
tion at a fixed quark number n, which is the eigenvalue of
N̂. Zn is real and positive for any n, and satisfies Zn ¼ Z−n.
N is the maximum number of quarks that can be supported
on the system. The maximum number N is finite on the
lattice and diverges in the thermodynamic limit. Zn is
related to the Helmholtz free energy density fHðnÞ as
Zn ¼ expð−VfHðnÞ=TÞ [16,18,27] and converges in the
thermodynamic limit. By extending μ to pure imaginary
values, μ ¼ iμI; μI ∈ R, Eq. (2) is regarded as a Fourier
expansion of ZðμÞ with the Fourier coefficients Zn. The
latter can be expressed as the Fourier transformation

Zn ¼
Z

dθZðθÞeinθ ¼
Z

dθe−VfðθÞ=Teinθ; ð3Þ

where θ ¼ μI=T, and we have used fðμÞ ¼
−ðT=VÞ lnZðμÞ to obtain the right-hand side [28]. Here,
fðμÞ denotes the Gibbs free energy density. The domain of
the Fourier integral is usually 0 to 2π. In QCD, we need to
take into account the Roberge-Weiss periodicity to deter-
mine the domain of the integral, as we elaborate in the next
section.
For real μ (i.e., real and positive ξ), ZðμÞ can never have

zeros since its coefficient Zn is real and positive for any n.
However, ZðμÞ can have zeros for complex μ. Using the
roots ξi of ZðμÞ in the complex ξ plane, it is expressed in a
factorized form [24,25]

ZðμÞ ¼ lim
N→∞

Z−Nξ−N
Y2N
i¼1

�
1 − ξ

ξi

�
: ð4Þ

The roots fξig are referred to as Lee-Yang zeros. Because
of the symmetry Zn ¼ Z−n, any root ξi inside the unit circle
is accompanied by another root 1=ξi outside.
In spite of its general importance, it is practically difficult

to obtain Lee-Yang zeros for different models. Lee and
Yang [25] showed that Lee-Yang zeros in Ising models are
distributed only on the unit circle on the complex plane of
eh; see Fig. 7. To relate Lee-Yang zeros to thermodynamic
singularities, it is useful to recall an electrostatic analogue
proposed by the very founders [25] and later used in the
context of QCD in, e.g., [29–31]. Considering the free
energy as an analytic function on the complex ξ plane, we
denote its real part by ϕ≡ Ref, which is written as
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ϕðξÞ ¼ − T
V

X2N
i¼1

ln jξ − ξij − T
V
lnZN þ NT

V
ln jξj: ð5Þ

Here, the third term comes from a multiplicative factor of
the grand canonical partition function and is irrelevant to
Lee-Yang zeros. This also provides a constant contribution
to the number density because ln ξ ¼ μ=T and is irrelevant
to phase transitions. Therefore, we can safely ignore this
term [29,30]. Taking the derivatives of ϕ with respect to ξ,
we obtain

∇2
ξϕðξÞ ¼ −2π T

V

X2N
i¼1

δð2Þðξ − ξiÞ; ð6Þ

where ∇ξ ≡ ð∂=ð∂ReξÞ; ∂=ð∂ImξÞÞ. We have used

∇2 ln jzj ¼
� ∂2

∂x2 þ
∂2

∂y2
�
ln jxþ iyj ¼ 2πδðxÞδðyÞ: ð7Þ

Equation (6) is just the Poisson equation for a two-
dimensional electrostatic potential problem; the real part
of the free energy ϕ is interpreted as the electrostatic
potential, its derivative ∇ξϕ as the electric field, and Lee-
Yang zeros as the location of charges. In an electrostatic
problem of charges that accumulate, e.g., on a circle, the
electric field is discontinuous across the circle, while the
potential is continuous. Analogous to this problem, if Lee-
Yang zeros accumulate on a curve in the thermodynamic
limit, then the electric field ∇ξϕ is discontinuous across the
curve. As∇ξϕ is proportional to the (complexified) number
density, the discontinuity in it signals the first-order phase
transition taking place across the curve.

III. LEE-YANG ZEROS IN QCD AT HIGH
TEMPERATURE

In this section, we derive the Lee-Yang zeros of QCD.
We start by recapitulating some features of QCD at pure
imaginary chemical potential and of its free energy at high
temperature. Then we calculate canonical partition func-
tions by using the saddle point approximation, leading to
the analytical determination of Lee-Yang zeros.

A. QCD at pure imaginary chemical potential

Pure SUðNcÞ Yang-Mills theory, such as quenched
QCD, has a center symmetry ZNc

, where Nc is the number
of colors, and Nc ¼ 3 in QCD. A transition from the
hadronic phase to the QGP phase occurs at high temper-
ature. The Polyakov loop defined by

Lð~xÞ ¼ 1

3
trP

�
exp

�
ig
I

1=T

0

A4ð~x; τÞdτ
��

ð8Þ

is related to the free energy of static quarks and can be used
as an order parameter of the deconfinement transition.

Here, P denotes the path ordering [32], ~x the spatial
coordinate, τ the imaginary time, g the gauge coupling
constant of QCD, and A4 the μ ¼ 4 component of the gauge
field Aμ in QCD. Aμ is an SU(3) matrix, and the trace is
taken over color indices. Since the Polyakov loop is Z3

variant, nonzero values of the Polyakov loop hLi mean that
the center symmetry is spontaneously broken, where the
bracket h� � �i denotes the average over gauge fields. In the
deconfinement phase, QCD has three degenerate vacua
according to the center symmetry, and one of them is
favored to break the Z3 symmetry spontaneously.
In the presence of quarks, the center symmetry is

explicitly broken. The deconfinement phase transition turns
into a smooth crossover without discontinuity in thermo-
dynamic quantities. Nevertheless, the Polyakov loop is still
used to distinguish the confinement and deconfinement
phases.
Roberge and Weiss [23] found that even in the presence

of the quarks, the grand canonical partition function of
SUðNcÞ gauge theory is invariant under the shift of μI ¼
Imμ as

Z

�
μI
T

�
¼ Z

�
μI
T
þ 2π

Nc

�
: ð9Þ

This states that the grand canonical partition function is
periodic with respect to μI=T with the period of 2π=Nc.
This is referred to as the RW periodicity.
Roberge and Weiss [23] also found a first-order phase

transition at μI=T ¼ ð2kþ 1Þπ=Nc; ðk ¼ 1; 2;…; NcÞ
under the increase of μI at high temperature. The argument
of the Polyakov loop ω ¼ arghLi is often used as an order
parameter of the phase transition. In the deconfinement
phase and in the presence of quarks with μ ¼ 0, ω takes
zero in the ground state, while the other two Z3 vacua are
local minima. As μI is increased at high temperature, the
Polyakov loop jumps from one of theZ3 vacua to another at
μI=T ¼ π=3; π; 5π=3, and the argument of the Polyakov
loop changes discontinuously,

ω ¼

8>>>>><
>>>>>:

0
�
0 ≤ μI

T ≤ π
3
; 5π
3
≤ μI

T ≤ 2π
�
;

4π
3

�
π
3
≤ μI

T ≤ π
�
;

2π
3

�
π ≤ μI

T ≤ 5π
3

�
:

ð10Þ

This transition is referred to as the RW phase transition.
Roberge and Weiss found the presence of the RW phase
transition by using a perturbative analysis and its absence at
low temperature using a strong coupling analysis. This was
later confirmed nonperturbatively in lattice QCD simula-
tions for several different setups [33–42]. It was also
studied in effective models; see, e.g., [43–45].
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A nonzero value of ω means that the gauge field A4

acquires an expectation value ωT=g. As we will show in the
next subsection, this effect plays a crucial role in realizing
the RW periodicity of the free energy at high temperature.
In this work, we assume that the system is homogeneous
and in equilibrium. We also assume a priori that the
thermal fluctuation of ω and A4 is negligibly small.
Under this assumption, we fix A4 at its classical value in
a background field method [32].
Using the RW periodicity, canonical partition functions

Zn are classified in terms of the value of n mod Nc, which
is referred to as the triality for QCD. We also refer to
fnjn≡ 0 mod 3g as the triality sector and the other two
sectors fnjn≢0 mod 3g as the nonzero triality sector.
Using Eqs. (2) and (9), we can show [46] that

Zn ¼ 0; n≢0 mod 3: ð11Þ

This means that only the triality sector contributes to ZðμÞ
due to the RW periodicity, while the nonzero triality sector
does not. Using Eq. (11), the fugacity polynomial Eq. (2) is
expressed in terms of the baryon number instead of the
quark number as

ZðμÞ ¼
X

n≡0 mod 3

Znξ
n ¼

X
nB

ZnBξ
n
B; ð12Þ

where ξB ¼ expð3μ=TÞ ¼ ξ3 and nB ¼ n=3. We rewrite the
canonical partition functions Zn for quark number n ¼ 3nB
as those for baryon number ZnB to obtain the right-
hand side.

B. Free energy at temperatures above Tc

At high temperature, the free energy density of QCD
eventually approaches a quartic polynomial with even
powers of μ=T [47,48]:

− fðμÞ
T4

¼ c0 þ c2

�
μ

T

�
2

þ c4

�
μ

T

�
4

: ð13Þ

The minus sign is conventionally introduced.
The question arises as to whether higher-order coeffi-

cients survive in cases other than the Stefan-Boltzmann
(SB) limit, such as in the presence of interaction or at
moderate temperature, etc. Lattice QCD simulations sug-
gested that the free energy, indeed, approaches Eq. (13) at a
temperature slightly above the pseudocritical temperature
Tc. The sixth-order term c6 has been calculated in lattice
QCD with different setups: the p4-improved staggered
fermions with the bare quark massm=T ¼ 0.4 on a 163 × 4
lattice [49], at two different pion masses mπ ¼ 220 and
770 MeV [50], and the clover-improved Wilson fermions
on 83 × 4 with the pion mass about 800–1000 MeV [51]. A
common feature is that c6 rapidly decreases with temper-
ature for T > Tc and vanishes at a certain temperature. The

vanishing temperature of c6 was estimated to be T ¼
ð1.1–1.2ÞTc in [49–51]. Usually, Taylor coefficients are
calculated using the so-called noise method [52], which
associates with a randomly generated vector. This method
becomes less useful for higher-order terms due to the
numerical uncertainty caused by the random noise vector.
On the other hand, in [51], we used a reduction formula
[53]. The reduction formula provides a method to evaluate
the Taylor coefficients without the random noise vector,
although its applicability has been limited to small lattice
volumes. Using the formula, the Taylor coefficients were
calculated up to tenth order, and the values of c8 and c10
were indeed consistent with zero at T > 1.1Tc within error
bars. Thus, the lattice QCD simulations are unanimous in
supporting [49–51] that the free energy takes the quartic
form at temperatures ð1.1–1.2ÞTc or above.
Lattice QCD simulations also showed that c2 is larger

compared to c4 at high temperature. Below, we will use a
saddle point approximation, which requires c2 to be suffi-
ciently large compared to c4. Here, we estimate the validity
range of this approximation. c2 and c4 have been well
studied in lattice QCD simulations, e.g., [49–52]. They are
comparable in magnitude at T ∼ Tc, and c2 (c4) increases
(decreases) monotonically and rapidly as the temperature is
raised above Tc so that c2 surpasses c4 at a temperature, to
some extent, higher than Tc. The lattice QCD simulations
reported [49–52] that c2 is about 10 times larger than c4 at
temperatures T ¼ ð1.1–1.2ÞTc. As we will see below, this
justifies the use of the saddle point approximation. Note that
c2 and c4 deviate from those at the SB limit in lattice QCD
simulations due to lattice artifacts. The discussion below is
valid if the free energy satisfies the above two conditions,
c6 ¼ c8 ¼ � � � ¼ 0 and c2 ≫ c4, regardless of whether the
SB limit is reached or not.

1. Canonical partition functions and Lee-Yang zeros

Having explained two features of the free energy of QCD
at high temperature, we limit our discussion to the case
where these conditions hold and study the canonical
partition functions and Lee-Yang zeros. First, we extract
Zn by substituting Eq. (13) into Eq. (3). However, the free
energy (13) is obtained for Imμ ¼ 0. As we have remarked,
the argument of the Polyakov loop ω, i.e., the field A4,
acquires a nonzero expectation value via the RW phase
transition as μI is increased.We assume A4 to be constant
and absorb this condensate into the shift of the imaginary
part of the chemical potential: μþ igA4 ¼ μþ iωT. By
taking into account the contributions from the three
domains, Zn is given as

Zn ¼
Z

π=3

−π=3
e−VfðθÞ=Teinθ dθ

2π
þ
Z

π

π=3
e−Vfðθ−2π=3Þ=Teinθ dθ

2π

þ
Z

5π=3

π
e−Vfðθ−4π=3Þ=Teinθ dθ

2π
; ð14Þ
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where θ ¼ μI=T. Using the RW periodicity [23], this reads

Zn¼
Z

π=3

−π=3
e−VfðθÞ=Teinθð1þe−i2πn=3þe−i4πn=3Þdθ

2π
: ð15Þ

This ensures Zn ¼ 0 for n≢0 mod 3, so that Eq. (15) is
expressed as

Zn ¼
3

2π

Z
π=3

−π=3
dθeT

3VgðθÞþinθ ðn≡ 0 mod 3Þ; ð16Þ

where gðθÞ ¼ c0 − c2θ2 þ c4θ4. The function gðθÞ has one
maximum at θ ¼ 0 and two minima at θ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2=ð2c4Þ
p

.
At high temperature, those two minima are outside of the
integration domain. As we have mentioned above, c2 and
c4 are comparable at T ¼ Tc, and c2 rapidly increases and
c4 rapidly decreases above Tc. For instance,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=ð2c4Þ

p ¼ffiffiffi
2

p
π in the SB limit [47,48,52] and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=ð2c4Þ

p
∼

ffiffiffi
5

p
for

T ¼ ð1.1–1.2ÞTc [49–52]. gðθÞ is a concave function for
θ ∈ ½−π=3; π=3� with the maximum at θ ¼ 0. It has a
sharper peak for larger volume, and the integral in Eq. (16)
is dominated by θ ¼ 0 for large V. This allows for the use
of the saddle point approximation to Eq. (16) so that Zn is
reduced to

Zn ¼ Ce−n2=ð4T3Vc2Þ ðn≡ 0 mod 3Þ; ð17Þ

where C ¼ 3
2π

ffiffiffiffiffiffiffiffiffi
π

T3Vc2

q
eT

3Vc0 . The quartic term in gðθÞ
vanishes according to the saddle point approximation. In
transition from Eq. (16) to (17), we approximated an
incomplete gamma function by a complete counterpart
(see the Appendix). The validity of our approximation is
estimated by the condition c2ðμ=TÞ2 ≫ c4ðμ=TÞ4 so that
the free energy is dominated by the second-order term. To
evaluate the applicable range of Eq. (18), we have plotted
ðfðμÞ − fð0ÞÞ=T4 for the saddle point approximation and
the original one (13) in Fig. 1. It indicates that the saddle
point approximation is valid for small μ=T ≲0.5.
Assuming the validity of Eq. (17), ZðμÞ is reconstructed

as

ZðμÞ ¼ C
X∞

nB¼−∞
e−9nB2=ð4T3Vc2Þþ3nBμ=T: ð18Þ

The zeros of the grand canonical partition function are
readily obtained by recognizing that Eq. (18) is equal to the
Jacobi theta function ϑðz; τÞ ¼ P∞

n¼−∞ eπin
2τþ2πinz,

ZðμÞ ∝ ϑðz; τÞ; ð19Þ

where z and τ are given by

2πiz ¼ 3
μ

T
; πiτ ¼ − 9

4T3Vc2
: ð20Þ

Thus, the Lee-Yang zeros of Eq. (18) are given by the zeros
of ϑðz; τÞ located at

μ

T
¼ ð2kþ 1Þπi

3
− 3ð2lþ 1Þ

4T3Vc2
; ð21Þ

where k and l take all integer values as a consequence of
the pseudodouble periodicity of the theta function.
On the complex plane of the baryon fugacity ξB ¼ ξ3,

all zeros in Eq. (21) are located on the negative real axis.
On the complex ξ plane, Eq. (21) lies on three radial
lines at arguments arg ξ ¼ Imðμ=TÞ ¼ π=3; π, and 5π=3.
The RW phase transition occurs at the points
ðReðμ=TÞ; Imðμ=TÞÞ ¼ ð0; ð2kþ 1Þπ=3Þ [23]. The Lee-
Yang zeros closest to these points are given by

μ

T
¼ ð2kþ 1Þπi

3
� 3

4T3Vc2
: ð22Þ

Each of them approaches the corresponding RW phase
transition point in the thermodynamic limit as 1=V. This
explains the first-order nature of the RW phase transition
according to the Lee-Yang zero theorem. In addition,
Eq. (21) also indicates that the RW phase transition occurs
at μI=T ¼ π=3 even for Reðμ=TÞ ≠ 0, as long as the saddle
point approximation is valid. We note that it is possible to
obtain the Lee-Yang zeros of Eq. (22) directly from the free
energy by using a method presented in [26].

IV. LATTICE QCD SIMULATIONS

A. Method and setup

In this section, we reexamine the data of our previous
lattice QCD simulations in which three quantities, the RW
phase transition [40], Taylor coefficients of the free energy
[51], canonical partition functions and Lee-Yang zeros

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1

- 
(f

 (
μ/

T
) 

- 
f(

0)
)/

T
4

μ/T

Exact
SPA

FIG. 1 (color online). Comparison of the saddle point approxi-
mation (SPA) and exact result for the free energy density. We use
values of c2, c4, and VT3 used in our simulations in the next
section (c2 ¼ 2.20, c4 ¼ 0.27).
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[21,22] were calculated in the same lattice setup. Below we
recapitulate the calculation of Zn and Lee-Yang zeros on
the lattice and summarize the setup of the simulations to
make the paper self-contained.
The grand canonical partition function of lattice QCD is

given by

ZðμÞ ¼
Z

DUðdetΔðμÞÞNfe−Sg ; ð23Þ

where U, ΔðμÞ, and Sg denote link variables, fermion
matrix, and gauge action, respectively. We employ a
clover-improved Wilson fermion action with Nf ¼ 2 and
renormalization-group improved gauge action [54].
We calculate Zn using a Glasgow method [13,14]. We

expand the fermion determinant in powers of ξ using a
reduction formula of the Wilson fermion determinant
[14,27,53,55–57],

ðdetΔðμÞÞNf ¼
X2NfN3

s

n¼−2NfN3
s

dnξn; ð24Þ

which provides the fugacity expansion of ZðμÞ. Since dn is
complex, it is not possible to use dn as a measure for
Monte Carlo simulations. Instead, we use Ferrenberg-
Swendsen reweighting for the fermion determinant:
detΔðμÞ ¼ ðdetΔðμÞ= detΔð0ÞÞ detΔð0Þ and express
ZðμÞ as an expectation value of the operator
detΔðμÞ= detΔð0Þ averaged over gauge configurations
generated at μ ¼ 0. Then, Zn is given by

Zn ¼
Z

DU
dn

ðdetΔð0ÞÞNf
ðdetΔð0ÞÞNfe−Sg ;

¼ Z0

	
dn

ðdetΔð0ÞÞNf



0

; ð25Þ

where Z0 ¼
R
DUðdetΔð0ÞÞNfe−Sg , and h� � �i0 denotes the

expectation value obtained from gauge configurations
generated at μ ¼ 0 with reweighting.
The simulation was performed in the following setup:

The lattice volumes were N3
s × Nt ¼ 83 × 4 and 103 × 4

with spatial and temporal lattice sizes Ns and Nt. The
simulation was performed along the line of constant
physics with mπ=mρ ¼ 0.8 [52]. We considered two
temperatures T=Tc ¼ 0.99 (β ¼ 1.85) and 1.20(1.95),
where β ¼ 6=g2 is the bare lattice coupling constant, and
Tc is the pseudocritical temperature at μ ¼ 0. The RW
phase transition point was estimated to be at β ¼ 1.92 [40]
and 11,000 hybrid Monte Carlo trajectories were simulated
for each parameter set. The observables were calculated
using 400 configurations with 20-trajectory intervals after
removing the initial 3000 trajectories for thermalization.

Lee-Yang zeros are obtained by using a method based on
the Cauchy integral theorem with a divide-and-conquer
algorithm and multiprecision arithmetic [22,58].
We apply the RW periodicity to ZðμÞ and express it in

terms of the baryon number, as shown in Eq. (12). We solve
ZðμÞ ¼ 0 for Eq. (12) and obtain Lee-Yang zeros for ξB.
They are transformed into the zeros for ξ by using ξ ¼ ξ1=3B .
Thus, the obtained Lee-Yang zeros automatically satisfy the
Z3 symmetry on the complex ξ plane. For further detail, see
[21,22,51].

B. Canonical partition functions

The T and V dependences of Taylor coefficients c2 and
c4 are plotted in Fig. 2. At T=Tc ¼ 0.99, c2 and c4 are
comparable in magnitude, while c2 is several times larger
than c4 at T=Tc ¼ 1.20. We observed in [51] that higher-
order coefficients c6; c8, and c10 are consistent with zero at
T=Tc ¼ 1.20 so that fðμÞ approaches the quartic function
of μ as expected in (13). We also observe that the
coefficients c2 and c4 are insensitive to the lattice volume.
Thus, the conditions used in the saddle point approximation
are satisfied at T=Tc ¼ 1.20 or higher temperatures.
We plot the canonical partition functions ZnB (n ¼ 3nB)

in Fig. 3. The squares and circles indicate the values
obtained from the canonical approach, Eq. (25). Since the
average of Zn can be negative for large n due to the overlap
problem, we plot the values of ZnB up to �nB below which
the partition functions are all positive. The solid curves
represent the Gaussian functions (17) with c2 obtained from
the lattice simulation. We observe that ZnB with relatively
small nB follows the Gaussian function at T=Tc ¼ 1.20 as
expected, while they fail to match at T=Tc ¼ 0.99.
In order to quantify the consistency, we plot the relative

difference between the lattice data and Gaussian fit in
Fig. 4. The data and Gaussian functions show better
agreement for higher temperature and larger volume.
However, the Gaussian function systematically deviates
from the data for large n even at high T. This deviation is

-0.5
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 1

 1.5

 2

 2.5

 3

 1  1.5  2  2.5  3
T/Tc

c2(Ns=8)
c2(Ns=16)
c4(Ns=8)
c4(Ns=16)

FIG. 2 (color online). Second- and fourth-order coefficients of
Taylor expansion of the free energy, c2 and c4, for Ns ¼ 8 and
Ns ¼ 16. The data for Ns ¼ 8 and Ns ¼ 16 are taken from
[51,52], respectively.
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partly caused by the smallness of the lattice volume, as a
better agreement is observed for larger volume. It is likely
that the deviation may originate from the breakdown of the
saddle point approximation, as its validity is limited to
small μ=T. Below, we shall examine how the deviation
affects the distribution of Lee-Yang zeros. Kratochvila and
de Forcrand [16] showed the agreement of the free energy

obtained from the canonical approach and Taylor expan-
sion using a staggered fermion action.

C. Lee-Yang zeros

In this work, we calculate Lee-Yang zeros for
T=Tc ¼ 1.20. Before proceeding to numerical results,
we remark on the numerical instability of the canonical
partition functions at large n. The fugacity coefficients dn
take complex values for each configuration. The phase of
dn fluctuates more rapidly for larger n, because its modulus
is exponentially suppressed as n is increased. Beyond a
certain value of n, Zn becomes negative, and the inclusion
of such Zn would yield unphysical zeros of ZðμÞ and cause
unphysical nonanalyticity for the free energy, even in a
finite volume. Accordingly, we are obliged to truncate the
fugacity polynomial at jnBj ¼ n0 so that all ZnB ’s are
positive for jnBj ≤ n0. In the following, we will consider
three different cases of truncation: (a) n0 ¼ 37 and
Ns ¼ 10, (b) Ns ¼ 8 and n0 ¼ 32, and (c) Ns ¼ 8 and
n0 ¼ 19. For a larger spatial lattice of size Ns ¼ 10, it is
natural to take (a) the maximal permissible value n0 ¼ 37

as seen from Fig. 3. For a smaller spatial lattice Ns ¼ 8, we
try the following two alternatives: (b) maximal permissible
value n0 ¼ 32 as seen from Fig. 3 and (c) n0 ¼ 19≃ 37 ×
ð8=10Þ3 so that the truncation order is proportional to the
lattice volume as compared to the case with Ns ¼ 10.
Below, we examine the convergence of the fugacity

polynomial by comparing these two choices. Figure 5
shows the distributions of the Lee-Yang zeros on the
complex plane of the quark fugacity ξ corresponding to
the cases (a) red, (b) green, and (c) blue, respectively. The
distributions on the baryon fugacity plane are readily
obtained by using the relation ξB ¼ ξ3. Near the unit circle,
the Lee-Yang zeros are located on three radial lines with
arguments arg ξ ¼ π=3; π, and 5π=3. This behavior is
qualitatively consistent with the prediction in Eq. (21)
and indicative of the RW phase transition. As the origin is
approached, each line branches to two curves. Barbour and
Bell [13] obtained this behavior of the Lee-Yang zeros in
their pioneering study of finite density lattice QCD sim-
ulations. Specifically, they found the zeros on the 12 radial
lines on the eμ plane. In this work, we take a further step to
confirm this interpretation by examining the volume scal-
ing and the asymptotic convergence and by comparing
them with the analytic calculation. The zeros near the unit
circle ð0.6 < jξj < 1Þ are stable as n0 is increased from 19
to 32 for Ns ¼ 8, which indicates the convergence of the
fugacity polynomial. On the other hand, the increment of n0
affects the location of the zeros for large chemical potential
(small ξ). We also observe that under a shift of n0 as
proportional to the volume (n0 ¼ 19 for Ns ¼ 8 and n0 ¼
37 for Ns ¼ 10), the Lee-Yang zeros are located on the
common trajectories, and the density of the zeros are
doubled.
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FIG. 3 (color online). Canonical partition function as a function
of the baryon number for T=Tc ¼ 0.99 (top) and 1.20 (bottom).
The data are obtained from the canonical formalism, while the
solid curves are obtained from the saddle point approximation.
Note that only positive Zn’s are shown.
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In order to make a quantitative comparison between
lattice and analytic results, in Fig. 6 we plot jReξj (top) and
jReξjVT3

(bottom) for several Lee-Yang zeros near the unit
circle on the negative real axis. Statistical errors of the Lee-
Yang zeros in the plot are estimated with a bootstrap
method as follows: For each bootstrap sample, we calculate
Zn up to n0 and locate the Lee-Yang zeros. Since we are
interested in the zeros relevant to the RW phase transition,
we pick up some zeros near the unit circle and label them as
l ¼ 1; 2;… in the order of modulus. For each label l,
statistical errors are estimated as the variance over 1000
bootstrap samples. Note that the zeros at jξj ≲ 1 shown in
Fig. 6 indicate no fluctuation in the imaginary part, while
the zeros with smaller jξj < 0.6 fluctuate both in their real
and imaginary parts. We observe that each Lee-Yang zero
calculated in the simulation is systematically smaller in
magnitude than the zero of the corresponding order
predicted in the saddle point approximation. In principle,
there could be two possible origins for this deviation: slow
convergence of the fugacity expansion (24) and/or
deviation of the canonical partition functions from the

Gaussian function. As there is no systematic difference
between the two choices of the truncation order n0 ¼ 19
and 32, we can exclude the former origin and safely
conclude that the deviation is caused by the deviation of
Zn in the large-n sector from the Gaussian function. Despite
this systematic deviation, the saddle point approximation
well explains the features of the lattice data, such as
trajectory of zeros, spacing between zeros, and volume
dependence.
The result is indicative in the viewpoint of the Lee-Yang

zero theorem. As we have discussed, if the canonical
partition function is Gaussian, then zeros are located on
the negative real axis (for the baryon fugacity). Thus,
theories with the Gaussian type of canonical partition
functions, such as a gas of free fermions at small chemical
potential, are exceptional cases of the Lee-Yang zero circle
theorem (Fig. 7). QCD is expected to be an exceptional case
of the Lee-Yang zero circle theorem if it undergoes a phase
transition at Reμ ≠ 0. This can be trivially proven for the
case with even number of flavors: Then, the Boltzmann
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FIG. 5 (color online). Lee-Yang zeros on the complex fugacity
plane for β ¼ 1.95; T=Tc ¼ 1.20. Top panel: Zeros inside unit
circle. Bottom panel: Zeros on or in the vicinity of the negative
real axis. Red, green, and blue symbols denote Lee-Yang zeros
for (a) n0 ¼ 37 and Ns ¼ 10, (b) Ns ¼ 8 and n0 ¼ 32, and
(c) Ns ¼ 8 and n0 ¼ 19, respectively. Note that zeros also exist
outside the unit circle with symmetry ξ↔1=ξ.
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weight is real and positive on the unit circle on the complex
fugacity plane, and zeros cannot exist on the unit circle. A
concrete example of the Lee-Yang zeros provided in the
present work would help to deepen our understanding of
the Lee-Yang zero theorem.
We obtained the Lee-Yang zeros as the roots of the

fugacity polynomial. An alternative method would be to
calculate zeros of the grand partition function with a
reweighting method. However, the validity of the latter
is controversial because Lee-Yang zeros appear when the
average of a reweighting factor vanishes. This seems to
imply the breakdown of the reweighting method.
Moreover, this problem tends to become severer for larger
volume, which makes it difficult to distinguish physical
zeros from contamination of the sign problem [59]. The
same problem does indeed occur even in the canonical
approach; the sign problem sometimes makes Zn negative,
which allows ZðμÞ to vanish for real quark chemical
potentials even in a finite volume. Such zeros are unphys-
ical ones originated from the sign problem. In this work, we
have circumvented this problem by the truncation of the
fugacity polynomial so that all Zn’s are positive. Although
the truncated large-n part of the canonical partition func-
tions suffers from a severe sign problem, we confirmed that
the zeros relevant to the RW phase transitions are insensi-
tive to the truncated terms.
A further question still arises as to how the infinite sum

of the truncated terms affects the location of Lee-Yang
zeros or whether the fugacity polynomial really converges.
We claim that Lee-Yang zeros near the unit circle are not
affected even in the limit n0 → ∞ in which the cutoff is
removed. To support this claim, we estimate the magnitude
of the truncated terms for a simple case where Zn is well

approximated by a Gaussian function ZðGaussÞ
n up to N;

namely, δn ¼ Zn − ZðGaussÞ
n ≪ 1 for jnj < N, and δn is not

negligible for jnj ≥ N. Denoting Z ¼ P
nZnξ

n and

G ¼ P
nZ

ðGaussÞ
n ξn, the deviation is given by

Z −G≃P
jnj≥NðZn − ZðGaussÞ

n Þξn. For ξ real and negative,
ξn is positive for even n and negative for odd n. Our lattice

data exhibited in Fig. 4 suggest that δn is dominated by Zn,
which decreases monotonically as long as there is no phase
transition at high temperature. Then the individual
deviation δn monotonously decreases as n increases, so
that the overall deviation is bounded as jZ −Gj ≤ δN jξjN
due to the cancellation between even and odd terms. The
point is that the sum of the truncated terms is bounded by
the deviation at n ¼ N and does not increase as N is
increased.

D. Discussion

Our results have several implications for theoretical and
experimental studies. The connection between the
Gaussianity of the canonical partition functions and the
RW phase transition is worth emphasizing; the former can
be extracted from an experimentally measurable quantity,
and the latter is a phenomenon specific to the QGP phase.
Here, we emphasize that the Gaussianity of the canonical
partition function is a sufficient condition but not a
necessary one for the existence of the RW phase transition;
if the canonical partition function is the Gaussian with
regard to the baryon number, then it implies the existence of
the RW phase transition. However, the converse is not
always true; the Gaussian distribution is merely one type of
realization of the RW phase transition. Although there have
been many studies on QCD at the imaginary chemical
potential and the RW phase transition [33–45,60], we are
not aware of any literature presenting a way to relate the
RW phase transition to the canonical partition functions,
which can be constructed by measuring the number of
baryons in the system. We predict that the canonical
partition functions obtained from the probability distribu-
tion of the net baryon number inferred from the multiplicity
of baryons (or three-quark states) created at high temper-
ature be well approximated by the Gaussian function and
associate the RW phase transition. Such measurements,
however, may be difficult at present because observed
hadrons in heavy ion collisions are generated at the freeze-
out temperature. This observation, together with HRG,
might serve as a basis to interpret experimental data

(a)Ising (b) high T QCD (c) high T QCD

FIG. 7 (color online). Schematic figures for the distribution of Lee-Yang zeros in several cases. (a) Ising models on the complex plane
for eh, where h is the external magnetic field in Ising models, (b) QCD on the complex plane for baryon fugacity, and (c) QCD on the
complex quark fugacity plane. Dotted circles denote the unit circle. Case (b) can be generalized to free fermion theories.
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obtained in BES experiments and help to distinguish
deviations driven by the critical end point.
The distribution of the Lee-Yang zeros indicates that

the RW phase transition persists at μI=T ¼ π=3 even in the
presence of the real part of the quark chemical potential. An
analytic form of the canonical partition of the Lee-Yang
zero distribution obtained in this work can be used as a
reference for future finite density QCD studies.
Recently, the STAR Collaboration [2] reported that the

net proton multiplicity closely follows the Skellam distri-
bution for several collision energies and centralities. The
multiplicity of the net baryon number is also approximately
given by a Skellam distribution in the HRG model [9]. In
[22], we applied the Lee-Yang zero theorem to the net
proton multiplicity data in BES experiments, and found that
they did not imply the RW phase transition. This is
consistent with the common understanding that the
freeze-out temperature is lower than the temperature at
which the RW phase transition takes place. However, there
may be several controversies in deriving the above con-
clusion, namely, the assumption of the equilibrium or the
use of the net proton multiplicity as a substitute for net
baryon multiplicity [5,61]. In addition, the probability
distribution has so far been measured for a limited range
of the net proton number.
One of the interesting topics is an end point of the RW

phase transition [39,42,62]. The RW-like behavior appears
when the free energy approaches the quartic function at
high temperature, while it does not at T ≈ Tc. In this sense,
the RW phase transition is likely an indication of the
completion of the deconfinement transition. It may be
interesting to examine the relation between the RW end
point and canonical partition functions, which may provide
us with a possibility to study the latter experimentally. We
leave this problem for future study.
Admittedly, we need to clarify the subtleties involved in

numerical evaluation of canonical partition functions and
Lee-Yang zeros. The present QCD simulation inevitably
contains several lattice artifacts originated from coarse
lattices, large quark masses, and small lattice volumes.
However, we consider that the present results are robust and
are likely to hold for another lattice setup in general, since
the RW-like behavior is based only on a few assumptions,
namely, on the quartic form of the free energy.
Our numerical results suggest the deviation of the Lee-

Yang zeros from the RW-like behavior at large μ, where the
analytic calculation also breaks down. We do not under-
stand if this deviation is physical or not as it lies beyond the
applicable range of the present work. Since one ordinarily
expects that there is no phase transition for the quark
chemical potential in the QGP phase, we conjecture that the
behavior smoothly changes from the RW-like one to a
region in which the c4 term in Eq. (13) dominates. It may be
interesting to investigate whether there is a nontrivial Lee-
Yang zero structure at large μ.

V. SUMMARY

In summary, we studied the canonical partition functions
and Lee-Yang zeros in QCD at high temperature. We
analytically derived them from the free energy in the
Stefan-Boltzmann limit using the saddle point approxima-
tion. The canonical partition functions in QCD follow the
Gaussian function at high temperature and at small chemi-
cal potential. We pointed out that the grand canonical
partition function is approximately expressed as a Jacobi
theta function, which enables us to determine all Lee-Yang
zeros analytically. These Lee-Yang zeros are located on the
negative real axis on the complex plane of the baryon
fugacity. They are translated into three radial lines on the
complex plane of the quark fugacity owing to the RW
periodicity. The zeros exhibit the first-order RW phase
transition. We also performed lattice QCD simulations. To
remove numerical subtleties, we examined the convergence
of the fugacity polynomial and performed the bootstrap
analysis of the distribution of Lee-Yang zeros. The analytic
calculations well explain the results obtained from the
lattice QCD simulations.
The novelties of the present study are the analytic

solution of the canonical partition functions and Lee-
Yang zeros, examination of the convergence of the fugacity
polynomial, and bootstrap analysis for the distribution of
Lee-Yang zeros. Additionally, we pointed out that the gas
of free fermions provides an exceptional case of the Lee-
Yang zero circle theorem.
We leave some problems for future studies: Namely, the

confirmation of nontrivial behavior of Lee-Yang zeros
observed at large quark chemical potentials and the
determination of the RW end point in the canonical
approach are worth pursuing.
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APPENDIX: FOURIER INTEGRAL

A simple way to verify Eq. (17) is to expand the Fourier
integral for Zn as
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Zn ∝
Z

π=3

−π=3
dθe−aθ2 cos nθ ¼

X∞
k¼0

ð−1Þkn2k
ð2kÞ! Ik: ðA1Þ

Here, a ¼ VT3c2, and Ik is defined by

Ik ¼
Z

π=3

−π=3
dθe−aθ2θ2k; ðA2Þ

which is expressed in terms of complete and incomplete
gamma functions as

Ik ¼
1

akþ1=2 ðΓðkþ 1=2Þ − Γðkþ 1=2; aπ2=9ÞÞ: ðA3Þ

Since the incomplete gamma function Γðz; pÞ ¼R∞
p e−ttz−1dt exponentially approaches zero as p ∝ V →
∞, Ik is expressed solely as a complete gamma function.
By using an identity

Γðkþ 1=2Þ
ð2kÞ! ¼

ffiffiffi
π

p
4kk!

; ðA4Þ

Eq. (A1) sums up to the exponential in Eq. (17).
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