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We consider nonperturbative aspects of a composite Higgs model that serves as a prototype for physics
beyond the Standard Model, in which a new strongly interacting sector undergoes chiral symmetry
breaking, and generates the Higgs particle as a pseudo-Nambu-Goldstone boson. In addition, the top quark
couples linearly to baryons of the new strong sector, thereby becoming partially composite. We study the
dynamics leading to the top quark Yukawa coupling as well as the top quark contribution to the effective
potential for the Higgs, obtaining expressions for these couplings in terms of baryonic correlation functions
in the underlying strongly interacting theory. We then show that a large-N limit exists in which the top
quark contribution to the Higgs effective potential overcomes that of the weak gauge bosons, inducing
electroweak symmetry breaking. The same large-N limit also suggests that the baryons that couple to the
top quark may be relatively light. This composite Higgs model, and similar ones, can be studied on the
lattice with the methods developed for lattice QCD.
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I. INTRODUCTION

Since the discovery of a light Higgs boson at the LHC,
interest in beyond-the-Standard-Model scenarios has
focused on models in which the Higgs is naturally light
compared to the typical scale of new physics. One approach
postulates the existence of a new strongly interacting sector,
which we will refer to as hypercolor in this paper. The
Higgs doublet of the Standard Model (SM) emerges among
the Nambu-Goldstone bosons (NGBs) originating from
dynamical symmetry breaking of the flavor symmetry
group G of the hypercolor theory. The electroweak gauge
bosons as well as the SM fermions then couple to these
NGBs, breaking the symmetry group G explicitly to a
smaller group, thereby generating an effective potential for
the NGBs. Under suitable conditions, this radiatively
induced effective potential leads to electroweak symmetry
breaking, with the Higgs field acquiring an expectation
value as in the SM. This framework still allows for many
different possibilities. For reviews that span the evolution
of this field, as well as for generic features of these models,
we refer to Refs. [1–5].
We will be interested in composite Higgs models in

which the sector external to the hypercolor gauge theory,
which includes the SM gauge bosons and fermions, is as
simple as possible. For instance, we do not wish to
introduce any weakly coupled gauge bosons besides the
electroweak gauge bosons, as in little Higgs models [1].
The electroweak gauge bosons have to stay massless at the
dynamical symmetry breaking scale of the hypercolor
theory, and therefore they have to couple to generators
in the unbroken flavor subgroup H⊂G. As a result, the

effective potential generated for the hypercolor NGBs by
the electroweak gauge bosons will not lead to electroweak
symmetry breaking, a phenomenon often referred to as
vacuum alignment [6].
Electroweak symmetry breaking must therefore originate

in the effective potential generated by the top quark, being
the SM fermion with the strongest coupling to the Higgs,
and, hence, to the hypercolor theory. We will postulate that
the top quark couples linearly to hyperbaryons (the baryons
of the hypercolor theory), as first proposed in Ref. [7]. This
idea is attractive from the point of view of CP violation and
flavor-changing neutral currents (FCNCs) [4]. Here, we
will limit ourselves to a discussion of the top quark sector,
where the main concerns are to generate the experimentally
measured value of the top quark’s mass naturally,1 together
with a Higgs potential that triggers electroweak symmetry
breaking. It is generally acknowledged that the mass of the
top quark sets it apart from the other SM fermions as it is
the only SM fermion with a mass of the order of the
electroweak symmetry breaking scale, v∼ 250 GeV. This
suggests that the top quark may play an essential role in
generating electroweak symmetry breaking, whereas the
origin of the other SM fermion masses, and the strength of
other symmetry breakings such as CP violation and
FCNCs, might be very different.
The concrete hypercolor theory we will study in this

article was proposed in Ref. [8]. It was preceded by a
general study that highlighted what makes that theory
particularly attractive [10].2 The hypercolor theory is a

1Without causing problems for Z → bb̄ decays [8,9].
2See also Ref. [11].
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vectorlike SUð4Þ gauge theory with fermions in two
different irreps (irreducible representations). One of these
irreps, the six-dimensional two-index antisymmetric irrep,
is real. With five Majorana (or Weyl) fermions in this irrep,
dynamical symmetry breaking in that sector of the theory
gives rise to an SUð5Þ=SOð5Þ nonlinear sigma model as its
low-energy effective theory. As we will see in detail below,
the Higgs field lives in this nonlinear sigma model.
Generally speaking, composite Higgs models often rely

on an SUðNwÞ=SOðNwÞ nonlinear sigma model, which can
arise from chiral symmetry breaking in a theory containing
Nw Weyl (or Majorana) fermions in a real irrep. An
alternative coset structure is SUðNwÞ=SpðNwÞ, for which
the Nw Weyl fermions should be in a pseudoreal irrep [6].
For recent lattice work involving the pseudoreal fundamen-
tal irrep of SUð2Þ gauge theorywe refer to Refs. [12,13]. For
a review on beyond-the-SM lattice work, see Ref. [14].
The most familiar example of a real irrep is the adjoint

representation, which occurs for example in supersymmet-
ric theories [15]. However, five Majorana fermions in the
adjoint irrep would most likely push the theory from being
confining to being conformal, even before the introduction
of any fermions in another irrep.3 Avoiding the adjoint
irrep, the smallest instance of a real irrep is the sextet
of SUð4Þ.
Our goals are as follows. First, a gauge theory such as

this SUð4Þ hypercolor theory is amenable to investigations
using the methods of lattice gauge theory. The effective
theory below the hypercolor scale, relevant for SM phe-
nomenology, can be parametrized in terms of low-energy
couplings (LECs). These LECs can be expressed in terms
of correlation functions in the hypercolor theory, which, in
turn, allows for their computation on the lattice.While this is
well understood for the electroweak gauge sector, a similar
careful derivation of the LECs controlling the top sector has
to our knowledge not been given to date. We derive the
necessary correspondence using spurion techniques.
Second, once the connection between the effective

theory and the hypercolor theory has been established,
we find that it is possible to obtain semiquantitative
estimates of the size of these LECs, using large-N methods
and factorization. In particular, we show that the contri-
bution of the top quark to the Higgs effective potential
indeed drives electroweak symmetry breaking in a particu-
lar large-N limit.
We expect that the techniques developed in this article

can be easily extended to similar hypercolor models. In this
sense, our choice of the model of Ref. [8] should be
considered as a useful example.
This article is organized as follows. Section II introduces

and reviews the hypercolor theory [8], including its field
content, symmetries, and the effective nonlinear fields that
will be needed for the low-energy effective theory. In

Sec. III we briefly discuss the contribution of the electro-
weak gauge bosons to the Higgs effective potential. The
main part of this article is Sec. IV, where we discuss the top
quark sector in detail. We introduce the top quark spurions
and the hyperbaryons in Sec. IVA. We discuss the top
Yukawa coupling in Sec. IV B, and the top quark con-
tribution to the Higgs effective potential in Sec. IV C. In
Sec. IV D we define a large-N limit of the model, and show
that for large enough N the top-induced Higgs potential
will lead to electroweak symmetry breaking. For simplicity,
we assume a minimal explicit breaking of the flavor group
of the hypercolor theory by the couplings to the SM. In
Sec. IV E we briefly comment on the more general situation
that arises if we relax this assumption. In Sec. V we discuss
the similarities between the hypercolor theory and QCD,
thus arguing that techniques developed to study QCD on
the lattice should be sufficient for hypercolor theories as
well. Section VI contains our conclusions. A short appen-
dix collects some of our conventions.

II. FERRETTI’S MODEL

In Ref. [10], several requirements were put forward for a
class of composite Higgs models based on a hypercolor
gauge theory as an UV completion. We begin by listing
these requirements. The gauge group is assumed to be
simple, and the dynamical symmetry breaking pattern,
G → H, to be such that

H ⊃ SUð3Þcolor × SUð2ÞL × SUð2ÞR ×Uð1ÞX
⊃ SUð3Þcolor × SUð2ÞL×Uð1ÞY; ð2:1Þ

with the SM gauge group in the last line. The group SUð2ÞR
is the familiar custodial symmetry of the SM, and the
hypercharge is Y ¼ T3

R þ X. The SM Higgs doublet, with
quantum numbers ð1; 2; 2Þ0 under SUð3Þcolor×SUð2ÞL×
SUð2ÞR×Uð1ÞX, should be contained in the NGB multiplet
associated with the symmetry breaking G → H. In order to
accommodate a partially composite top quark [7], i.e., for
the top quark to acquire its mass through linear couplings to
hyperbaryons, there must exist hyperbaryons with quantum
numbers that match those of the SM quarks. This includes a
set of right-handed, spin-1=2 hyperbaryons with quantum
numbers ð3; 2Þ1=6 of the SM gauge group SUð3Þcolor×
SUð2ÞL×Uð1ÞY , which serve as partners of the SM quark
doublet qL, and left-handed, spin-1=2 hyperbaryons with
the quantum numbers ð3; 1Þ2=3, to serve as partners of the
SM quark singlet tR. Finally, the hypercolor theory should
be asymptotically free, and both the hypercolor gauge
group and the SM gauge group should be free of anomalies.
The hypercolor model with the smallest gauge group

that satisfies all these requirements is an SUð4Þ gauge
theory [10]. The hyperfermion content consists of five
Majorana fermions χi, i ¼ 1;…; 5, transforming in the six-
dimensional two-index antisymmetric irrep of hypercolor,3See Ref. [14] and references therein.
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which is a real representation, and three Dirac fermions ψa,
a ¼ 1; 2; 3, in the fundamental representation. The
Majorana field χ can be written in terms of a Weyl fermion
ϒ as

χABi ¼
 

ϒABi

1
2
ϵABCDϵðϒ̄CD

i ÞT
!
; ð2:2aÞ

χ̄ABi ¼ 1

2
ϵABCDχTCDiC ¼

�
− 1

2
ϵABCDðϒCDiÞTϵ ϒ̄AB

i

�
:

ð2:2bÞ

We use capital letters for the SUð4Þ hypercolor indices,
with lower indices for the fundamental irrep, and upper
indices for the antifundamental irrep. Several lower or
upper indices will always be fully antisymmetrized. A
Dirac fermion ψ in the fundamental irrep can be written in
terms of two right-handed Weyl fermions, Ψ in the
fundamental irrep and ~Ψ in the antifundamental, as

ψAa ¼
� ΨAa

ϵ ~̄Ψ
T
Aa

�
; ψ̄A

a ¼ ð−ð ~ΨA
aÞTϵ Ψ̄A

a Þ: ð2:3Þ

We suppress spinor indices. C is the charge-conjugation
matrix, ϵ ¼ iσ2 is the two-dimensional ϵ tensor acting on
the Weyl spinor index, and the superscript T denotes the
transpose in spinor space. With the lattice in mind, we work
in Euclidean space, choosing our Dirac matrices to be
Hermitian and using the chiral representation; see the
Appendix.
The hypercolor theory possesses a flavor symmetry

group

G ¼ SUð5Þ×SUð3Þ×SUð3Þ0×Uð1ÞX×Uð1Þ0; ð2:4Þ
with quantum numbers ð5; 1; 1Þð0;−1Þ for ϒ, ð1; 3̄; 1Þð1=3;5=3Þ
for Ψ, and ð1; 1; 3Þð−1=3;5=3Þ for ~Ψ.4

We assume that dynamical symmetry breaking takes
place, generating a condensate hχ̄iχji∝δij that breaks
SUð5Þ → SOð5Þ. Consistent with the general considera-
tions of Ref. [6], the Majorana bilinear χ̄iχj is antisym-
metric on its spinor indices and symmetric on its hypercolor
indices, and so it is symmetric on its flavor indices. In
addition, there is a condensate hψ̄aψbi∝δab that breaks
SUð3Þ×SUð3Þ0 to its diagonal subgroup, which we identify
with SUð3Þcolor. Both condensates also break Uð1Þ0. The
unbroken group is

H ¼ SOð5Þ×SUð3Þcolor×Uð1ÞX: ð2:5Þ
For heuristic arguments supporting this pattern of sym-
metry breaking, see Refs. [6,8]. Of course, whether this is

the actual symmetry breaking pattern is something that can
be investigated on the lattice. Indeed the symmetry break-
ing pattern of the Dirac fermions, with SUð3Þ×SUð3Þ0
breaking to the diagonal SUð3Þ subgroup, is consistent
with all known lattice results. A first study of the real- irrep
symmetry breaking pattern, in a similar theory except with
four, instead of five, Majorana fermions, has recently
appeared in Ref. [16].
The effective theory at energy scales much below the

hypercolor scale ΛHC thus contains NGBs parametrizing
the Uð1Þ0 group manifold, and the cosets SUð3Þ×
SUð3Þ0=SUð3Þcolor and SUð5Þ=SOð5Þ, amounting to 1, 8,
and 14 NGBs for each of these factors, respectively. These
NGBs are massless when all couplings of the hypercolor
theory to the SM are turned off. A nontrivial effective
potential is induced both by the SM gauge bosons, as we
briefly review in Sec. III, and by the coupling to the third-
generation quarks. The latter, which is the main subject of
this paper, will be studied in Sec. IV.
The Higgs doublet is a subset of the NGB multiplet

parametrizing the coset SUð5Þ=SOð5Þ. In more detail, the
14 NGBs corresponding to the generators in this coset are
described by a nonlinear fieldΣ∈SUð5Þ=SOð5Þ obtained by
considering fluctuations around the vacuum hΣi ¼ Σ0 ¼ 1,

Σ ¼ uΣ0uT ¼ expðiΠ=fÞΣ0 expðiΠ=fÞT ¼ expð2iΠ=fÞ;
ð2:6Þ

with5

Σ ¼ ΣT ⇒ Π ¼ ΠT: ð2:7Þ

Under g ∈ SUð5Þ, Σ transforms as Σ → gΣgT .
At the level of the algebra, SUð2ÞL×SUð2ÞR in Eq. (2.1)

is equivalent to the SOð4Þ ⊂ SOð5Þ associated with the first
four rows and columns. The explicit form of the generators
is given in the Appendix. With this choice, the field Π can
be written as

Π ¼ Θþ Θ† þ Φ0 þ Φþ þ Φ†
þ þ η; ð2:8Þ

with Θ containing the Higgs doublet H ¼ ðHþ; H0ÞT ,

Θ¼

0
BBBBBBBB@

0 0 0 0 −iHþ=
ffiffiffi
2

p

0 0 0 0 Hþ=
ffiffiffi
2

p

0 0 0 0 iH0=
ffiffiffi
2

p

0 0 0 0 H0=
ffiffiffi
2

p

−iHþ=
ffiffiffi
2

p
Hþ=

ffiffiffi
2

p
iH0=

ffiffiffi
2

p
H0=

ffiffiffi
2

p
0

1
CCCCCCCCA
:

ð2:9Þ

4Compare Table I of Ref. [8].

5Note that in Ref. [8], the notation Σ is used for the field u of
Eq. (2.6).
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For the explicit parametrization of the rest of Π, we refer to
Ref. [8], as we will not need it here. The Higgs doublet
comprises four of the NGBs, and the SUð2ÞL triplets ϕ0,
ϕþ, and ϕ− ¼ ðϕþÞ† comprise nine more NGBs.6 Finally,
Π has a component η proportional to the generator
diagð1; 1; 1; 1;−4Þ, which is neutral with respect to the
entire SM model gauge group, and which completes the
multiplet of 14 NGBs.
While they play only a small role, we will need also the

nonlinear fields associated with the other broken sym-
metries. We account for the SUð3Þ×SUð3Þ0=SUð3Þcolor
coset by a nonlinear field Ω∈SUð3Þ transforming as Ω →
gΩh† for g∈SUð3Þ and h∈SUð3Þ0. A similar nonlinear field
arises in the familiar chiral Lagrangian of three-flavor
QCD, but the reader should keep in mind the different
physical roles of the various SUð3Þ groups in the case at
hand. Throughout most of this paper, we will assume that
the only source of explicit breaking of SUð3Þ×SUð3Þ0 to
SUð3Þcolor arises from the coupling of the SUð3Þcolor
currents to the SM gluons. A wider range of possibilities
than what is the main focus of this article is allowed if we
relax this assumption. This is briefly discussed in Sec. IV E.
The eight NGBs associated with the nonlinear Ω field
transform in the adjoint irrep of SUð3Þcolor. They are
singlets under both SUð2ÞL and Uð1ÞY .
Finally, to account for the spontaneous breaking ofUð1Þ0

we introduce a nonlinear field Φ∈Uð1Þ with unit charge
under Uð1Þ0. The associated NGB η0 is neutral under the
SM gauge interactions. Using an ∼ sign to indicate iden-
tical transformation properties under the entire flavor group
G, we thus have

Φ−2Σij ∼ χ̄iPRχj ∼ ϵABCDðϒCDiÞTϵϒABj; ð2:10aÞ

Φ−10=3Ωab ∼ ψ̄aPLψb ∼ Ψ̄A
aϵð ~̄ΨAbÞT: ð2:10bÞ

III. HIGGS EFFECTIVE POTENTIAL FROM
ELECTROWEAK GAUGE BOSONS

In this section, we briefly review the contribution from
the SM gauge bosons to the effective potential for the
NGBs, starting with the effective potential for the
SUð5Þ=SOð5Þ nonlinear field Σ generated by the electro-
weak gauge bosons. This part of the effective potential
takes the form

VEW
eff ðΣÞ ¼ CLR

X
Q

trðQΣQ�Σ�Þ; ð3:1Þ

if we work to leading (i.e., quadratic) order in the SM gauge
couplings. The sum over Q runs over the SUð2ÞL

generators gTa
L with Ta

L given in Eq. (A5), and the
hypercharge generator g0Y ¼ g0ðT3

R þ XÞ, with X ¼ 0 for
the Π field. Here

CLR ¼ 3

ð4πÞ2
Z

∞

0

dq2q2ΠLRðq2Þ; ð3:2Þ

and

ðq2δμν − qμqνÞΠLRðq2Þ

¼
Z

d4xeiqxtrhγμPR½χðxÞχ̄ð0Þ�γνPL½χð0Þχ̄ðxÞ�i; ð3:3Þ

where ½χðxÞχ̄ðyÞ� is the Majorana-fermion propagator for
the field χ of Eq. (2.2), and h…i indicates the expectation
value with respect to the hypercolor gauge fields. This type
of effective potential goes back to the well-known formula
for the mass difference between the charged and neutral
pions in QCD. For further explanations and a derivation of
this result in the present context we refer to the review
article Ref. [4] and to the Appendix of Ref. [17].7

The proof of Ref. [19] that CLR > 0 applies also in this
case. Using the explicit form (A5), the minimum of
VEW
eff ðΣÞ is equal to −CLRð3g2 þ g02Þ, which is attained

at Σ ¼ 1. This part of the effective potential does not rotate
the vacuum of the hypercolor theory, exhibiting the
phenomenon of vacuum alignment [6].
Expanding Σ to quadratic order in Π inside VEW

eff , we find
the mass terms

VEWð2Þ
eff ¼ CLR

f2

�
ð3g2 þ g02Þ

�
2H†H þ 16

3
ϕ†
þϕþ

�

þ 8g2ϕ†
0ϕ0

�
: ð3:4Þ

The explicit symmetry breaking by the electroweak gauge
bosons produces a positive mass squared for all compo-
nents of the NGB multiplet Π except η.
To summarize, when we couple the hypercolor theory to

the SM gauge bosons, an effective potential for the non-
linear field Σ is generated. At lowest order, it is proportional
to the squares of the electroweak couplings gEW ¼ g for
SUð2ÞL, or gEW ¼ g0 for Uð1ÞY, where it is understood that
all SM couplings are evaluated at the hypercolor scale ΛHC.
Because of vacuum alignment, the expectation value Σ0

will remain equal to 1, but the Higgs doublet and the three
SUð2ÞL triplets will acquire a mass proportional to gEWf,
while the singlet η will remain massless. To avoid

6In the notation of Ref. [8], ϕ0 ¼ ðϕ−
0 ;ϕ

0
0;ϕ

þ
0 Þwith ϕ0

0 real and
ϕþ
0 ¼ ðϕ−

0 Þ�, while ϕþ ¼ ðϕ−þ;ϕ0þ;ϕ
þ
þÞ, with all components

complex.

7The factor of 3 in Eq. (3.2) comes from tracing over the
transversal projector. This factor is erroneously missing in the
published versions of Eqs. (A11a) and (A11b) of Ref. [17], and
Eq. (A5) of [18]. Also, in the published versions, the term
gWμ Qa JμA in Eq. (A2) of Ref. [17] should be multiplied by i,
and similarly for the term gWμðQL

a JLμa þQR
a JRμaÞ in Eq. (A2) of

Ref. [18].
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confusion, the contribution to the effective potential from
the top quark has not yet been included, and will be
discussed in the next section.
Similarly, when we turn on the QCD interactions, an

effective potential for the Ω nonlinear field is generated,

VQCD
eff ðΩÞ ¼ −CQCD

LR

X
Q

trðQΩQΩ†Þ; ð3:5Þ

where now Q runs over the eight generators gsλa of
SUð3Þcolor, and gs is the QCD coupling (at the hypercolor
scale). In the underlying hypercolor theory, CQCD

LR has a
representation analogous to Eq. (3.2), except that the
Majorana-fermion propagator in Eq. (3.3) is replaced by
the Dirac-fermion propagator ½ψðxÞψ̄ðyÞ�. Once again
there is vacuum alignment nailing down the vacuum at
hΩabi ¼ δab, and giving the octet of NGBs a mass of order
gsf. Thus, as long as f is much larger than the electroweak
scale, both the SUð2ÞL triplet NGBs and the color-octet
NGBs are much heavier than the electroweak gauge bosons
or the top quark.
As already noted, the NGB η0 of the spontaneously

broken Uð1Þ0 is inert under all the SM gauge interactions.
Moreover, the coupling of the hypercolor sector to the SM
considered in the next section does not break Uð1Þ0
explicitly. Therefore, no effective potential will be gen-
erated for the associated nonlinear field Φ, and η0 will
remain exactly massless.

IV. THE TOP QUARK SECTOR

We now proceed to the main part of this article, which is
the study of the dynamics arising from the coupling of the
top quark to the hypercolor theory. There are two aspects of
interest: the contribution of the top quark to the effective
potential for the nonlinear field Σ containing the Higgs
field, analogous to the contribution from the weak gauge
bosons in Eq. (3.1), and the mass of the top quark itself.
We will begin with the coupling of the top quark to

the hypercolor theory at the “microscopic” level, which
involves only the elementary fields: the hypercolor gauge
fields, and the hyperfermions of Eqs. (2.2) and (2.3). We
introduce fermionic spurions which transform in complete
representations of the flavor groupG of Eq. (2.4), andwhich
contain the SUð2ÞL doublet qL of the left-handed top and
bottom quarks tL and bL, as well as the right-handed top
quark tR. Following themechanism proposed in Ref. [7], the
spurions will be coupled linearly to suitable hyperbaryon
fields, which are three-fermion operators in the hypercolor
theory. We demand that the spurion-hyperbaryon inter-
actions are invariant under G, because the microscopic
theory does not know about the dynamical breakingG → H.
The spurion-hyperbaryon interaction terms are four-

fermion operators, and are assumed to arise from some
extended hypercolor (EHC) sector with a dynamical scale
ΛEHC ≫ ΛHC, the origin of which we will not specify. We
will return to this point in the conclusion section. The

hyperbaryon operators and the four-fermion couplings are
constructed in Sec. IVA.
We then turn to the effective low-energy theory. We

demand that also the effective theory is invariant under
G, but it can now depend on the effective fields: the
SUð5Þ=SOð5Þ coset field Σ, which plays a central role
since it contains the Higgs field, as well as the
SUð3Þ×SUð3Þ0=SUð3Þcolor field Ω and the Uð1Þ-valued
field Φ. Note that we do not allow the effective theory to
contain any effective fields for hyperbaryons. This strategy
generalizes the standard construction of the chiral
Lagrangian for QCD.8

We proceed in two steps. First, in Sec. IV B, we consider
the coupling of the SM quarks qL and tR to the effective
nonlinear fields, integrating out all other states in the
hypercolor theory. This will lead to an expression for
the top Yukawa coupling in terms of a hyperbaryon
two-point function in the hypercolor theory.
Next, in Sec. IV C, we consider the contribution to the

effective potential obtained by integrating also over the
third-generation quarks to leading order in the top Yukawa
coupling. This involves restricting the spurions to their SM
values, in which all components except those corresponding
toqL ¼ ðtL; bLÞ and to tR are set equal to zero, and integrating
over qL and tR. Like the coupling to the SM gauge bosons
(Sec. III), this breaks explicitly the flavor groupG. However,
in the approximation inwhichwework, onlySUð5Þ is broken
explicitly, whereas all other factors in Eq. (2.4) are not. As a
result, no effective potential is generated for Ω or Φ.
The explicit breaking of SUð5Þ generates an effective

potential for Σ. This new contribution is parametrized by
one new LEC Ctop analogous to CLR in Eq. (3.1). We will
show that Ctop can be expressed as an integral over a
hyperbaryon four-point function convoluted with two free,
massless fermion propagators.
Up to this point, our analysis is from first principles. In

Sec. IV D we turn to physical but nonrigorous consider-
ations. We show that a large-N limit exists [where N ¼ 4
for the hypercolor group SUð4Þ we consider here] in which
the hyperbaryon four-point function factorizes, leading to a
simple result for Ctop, and ultimately to a nontrivial
expectation value for the Higgs field.
Finally, in Sec. IV E we comment on the phenomeno-

logical consequences of our analysis. This includes a brief
discussion of the more general situation where the explicit
breaking of SUð3Þ×SUð3Þ0 to its diagonal subgroup
SUð3Þcolor is allowed to come from sources other than
the QCD gluons.

A. Top quark spurions and hyperbaryons

We begin with introducing the top quark spurions, a left-
handed spurion TL, which we choose in the 5 irrep of

8See for instance Ref. [20].
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SUð5Þ, and a right-handed spurion TR, which we choose in
the 5̄ irrep. Both irreps reduce to the 5 of SOð5Þ. This
choice ensures that terms like T̄LTR in the effective
potential are disallowed by SUð5Þ, but allowed by
SOð5Þ.9 Both TL and TR will have Uð1ÞX charge 2=3,
as this will yield the correct hypercharges for qL and tR.
The SM values for these spurions are

TL ¼ T̂L≡ 1ffiffiffi
2

p

0
BBBBBB@

ibL
bL
itL
−tL
0

1
CCCCCCA
; TR ¼ T̂R ≡

0
BBBBBB@

0

0

0

0

itR

1
CCCCCCA
: ð4:1Þ

Using Eq. (A5), it is straightforward to verify that the pair
ðtL; bLÞ transforms as an SUð2ÞL doublet, and has hyper-
charge Y ¼ 1=6. The SUð2ÞL singlet tR has hypercharge
Y ¼ 2=3. The quantum numbers of the spurions under the
remaining flavor symmetries will be discussed shortly.
The spurions couple to the hypercolor theory through the

G-invariant Lagrangian

LEHC¼λ1T̄LBRþλ�1B̄RTLþλ2T̄RBLþλ�2B̄LTR; ð4:2Þ

where BL;R are hyperbaryon fields with appropriate
quantum numbers. Setting the spurions TL;R equal to their
SM values (4.1) then tells us how the SM quarks tL, bL,
and tR couple to the hypercolor theory. Since we will use
three-hyperfermion local interpolating fields for the hyper-
baryons, the four-fermion interactions in LEHC have engi-
neering dimension six. LEHC originates from some other
sector with scale ΛEHC ≫ ΛHC, with effective couplings
λ1;2 ∼OðΛ−2

EHCÞ just below that scale.

Limiting ourselves to local hyperbaryon fields, all
operators that can be used in the construction of a
G-invariant LEHC are listed in Table I. The schematic
structure in terms of Weyl fields is indicated in the first
column of the table, followed by the quantum numbers
under the flavor group G. The column labeled as SUð3Þc
gives the SUð3Þcolor irrep. The spinor index of the hyper-
baryon field is always carried by the Majorana fermion χ.
Using Eqs. (2.2) and (2.3), explicit expressions for the
unprimed operators in Table I are

BRia ¼ −
1

2
ϵABCDϵabcPRχABiðψT

CbCPRψDcÞ ð4:3aÞ

¼ 1

2
ϵABCDϵabcϒABiðΨT

CbϵΨDcÞ;

B̄Ria ¼
1

2
ϵABCDϵabcχ̄

AB
i PLðψ̄C

bCPLðψ̄D
c ÞTÞ ð4:3bÞ

¼ 1

2
ϵABCDϵabcϒ̄

AB
i ðΨ̄C

b ϵðΨ̄D
c ÞTÞ;

BLia ¼ −
1

2
ϵABCDϵabcPLχABiðψT

CbCPRψDcÞ ð4:3cÞ

¼ ϵabcϵðϒ̄AB
i ÞTðΨT

AbϵΨBcÞ;

B̄Lia ¼
1

2
ϵABCDϵabcχ̄

AB
i PRðψ̄C

bCPLðψ̄D
c ÞTÞ ð4:3dÞ

¼ ϵabcϒT
ABiϵðΨ̄A

bϵðΨ̄B
c ÞTÞ: ð4:3eÞ

The primed operators in Table I are obtained from Eq. (4.3)
by interchanging PR ↔ PL inside the ψψ and ψψ bilinears.
When the spurions TL;R are restricted to their SM values,

the phases of λ1;2 in Eq. (4.2) can be removed by (non-
anomalous) SUð2ÞL and SUð2ÞR transformations on the
spurion fields, implying that, from now on, we may take
λ1;2 to be real and positive. This allows us to require that the
Lagrangian (4.2) be CP invariant. The CP transformation
acts as

ψ → γ2ψ̄
T; ψ̄ → ψTγ2; ð4:4Þ

for both Dirac and Majorana fermions (see the Appendix
for our Dirac matrices conventions). The sign choices we
have made in Eq. (4.3) imply that a CP transformation
applied to the elementary fields χ, ψ , and ψ̄ induces a CP
transformation of the same form on the hyperbaryon fields
as well, thereby ensuring the CP invariance of LEHC.
The unprimed fields in Table I transform nontrivially

under SUð3Þ and are singlets under SUð3Þ0, whereas for the
primed fields the opposite is true. Choosing either the
primed or the unprimed version for each hyperbaryon field
gives rise to a total of four different possibilities for LEHC.
The quantum numbers of the spurions TL and TR are
chosen accordingly, so as to ensure the G invariance of

TABLE I. Local hyperbaryon operators. The leftmost column
gives the Weyl-fermion content, and the rightmost column is the
notation used for the operator. The remaining columns list the
quantum numbers.

SUð5Þ SUð3Þ×SUð3Þ0 SUð3Þc Uð1ÞX Uð1Þ0
ϒðΨΨÞ 5 ð3̄; 1Þ×ð3̄; 1Þ → ð3; 1Þ 3 2=3 7=3 BR

ϒð ~̄Ψ ~̄ΨÞ 5 ð1; 3̄Þ×ð1; 3̄Þ → ð1; 3Þ 3 2=3 −13=3 B0
R

ϒ̄ðΨ̄ Ψ̄Þ 5̄ ð3; 1Þ×ð3; 1Þ → ð3̄; 1Þ 3̄ −2=3 −7=3 B̄R

ϒ̄ð ~Ψ ~ΨÞ 5̄ ð1; 3Þ×ð1; 3Þ → ð1; 3̄Þ 3̄ −2=3 13=3 B̄0
R

ϒ̄ðΨΨÞ 5̄ ð3̄; 1Þ×ð3̄; 1Þ → ð3; 1Þ 3 2=3 13=3 BL

ϒ̄ð ~̄Ψ ~̄ΨÞ 5̄ ð1; 3̄Þ×ð1; 3̄Þ → ð1; 3Þ 3 2=3 −7=3 B0
L

ϒðΨ̄ Ψ̄Þ 5 ð3; 1Þ×ð3; 1Þ → ð3̄; 1Þ 3̄ −2=3 −13=3 B̄L

ϒð ~Ψ ~ΨÞ 5 ð1; 3Þ×ð1; 3Þ → ð1; 3̄Þ 3̄ −2=3 7=3 B̄0
L

9We may switch 5 with 5̄, but the key point is that the two
spurions are chosen to be in different SUð5Þ irreps.
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LEHC. The SM quark fields qL and tR are endowed with the
same SUð3Þ×SUð3Þ0×Uð1ÞX×Uð1Þ0 quantum numbers as
their parent spurion. This construction is consistent with the
SM, since the resulting quantum numbers under SUð3Þcolor
will always be the same. In addition, it follows that the
entire theory, including the hypercolor sector, the SM
Lagrangian, and their coupling via LEHC, is invariant under
both SUð3Þ and SUð3Þ0, provided that the QCD interactions
can be neglected. This is indeed the case in this section,
because we calculate the Higgs effective potential to second
order in all SM couplings, and since the result will be
quadratic in the top Yukawa coupling, any corrections that
involve an additional dependence on the QCD coupling gs
are neglected.
Note that we cannot generalize Eq. (4.2) to include,

simultaneously, terms that couple a given spurion to both of
the unprimed and primed hyperbaryons, as this will not
allow for any consistent assignment of SUð3Þ×SUð3Þ0
quantum numbers. For example, T̄L can couple to either BR
or B0

R, but not to both. It is because of this fact that LEHC
depends on only two coupling constants λ1;2. This will lead
to considerable simplification in our analysis. In Sec. IV E
we briefly comment on the more general case, where LEHC
is restricted only by SUð3Þcolor.

B. The top quark Yukawa coupling

Our next task is to construct the electroweak effective
field theory. As a first step, we integrate only over the gauge
fields and fermions of the hypercolor theory, and obtain an
effective theory that depends on the spurions TL and TR,
and on the nonlinear fields, including in particular the
SUð5Þ=SOð5Þ field Σ. We assume that the electroweak
scale mW ∼mt is much smaller than the hypercolor scale
f ∼M ∼ΛHC, where M is of order the mass of the hyper-
baryons which are assumed to couple to the top quark in
Eq. (4.2). This provides us with a power counting, and, in
particular, the effective theory can be organized according
to a derivative expansion. We will be concerned with the
lowest nontrivial order in this expansion.
Demanding full G invariance, the leading-order spurion

potential is

V top ¼ μLΦ2T̄RΣ�TL þ μRΦ−2T̄LΣTR: ð4:5Þ

Terms like T̄LTL vanish because of chiral projectors, while
terms like T̄LT̄T

R are not allowed by Uð1ÞX symmetry.
Bilinear terms independent of Σ are possible, but thanks to
SUð5Þ invariance, they have an LL or RR structure, and
need an insertion of γμ. Therefore, they contain at least one
derivative, and their role is to renormalize the kinetic terms
for the top and bottom quarks, which are present when
these SM fields are made dynamical. It can be checked that
the correction is of order y, where y is the top quark
Yukawa coupling introduced in Eq. (4.12) below.

V top depends on two effective fields, Σ andΦ. The role of
Φ is to reinstate Uð1Þ0 invariance [cf. Eq. (2.10)]. When we
choose both hyperbaryons in Eq. (4.2) to be unprimed ones,
the hyperbaryons and the spurions transform nontrivially
only under SUð3Þ, and are singlets of SUð3Þ0. Therefore,
V top is invariant under SUð3Þ×SUð3Þ0 as it stands, without
having to introduce any dependence on the effective
field Ω.
If we set Σ ¼ Φ ¼ 1, and substitute the SM values T̂L

and T̂R defined in Eq. (4.1) for TL and TR, we find that V top

vanishes. Σ will need to develop a nontrivial expectation
value for the SM top quark to acquire a nonzero mass. This
will be discussed in Sec. IV C below.
In order to find the LECs μL;R in Eq. (4.5), we consider

the second derivatives

∂2

∂TLðyÞ∂T̄RðxÞ
logZ;

∂2

∂TRðyÞ∂T̄LðxÞ
logZ; ð4:6Þ

where Z is the partition function of either the effective or
the microscopic theory. Requiring the effective theory to
match the microscopic theory (and noting that the fer-
mionic spurions are Grassmann) yields the relations

−μLPLhΦ2Σ�iδðx − yÞ þ � � � ¼ λ1λ2PLhBLðxÞB̄RðyÞiPL;

−μRPRhΦ−2Σiδðx − yÞ þ � � � ¼ λ1λ2PRhBRðxÞB̄LðyÞiPR:

ð4:7Þ

The ellipses on the left-hand side indicate that the leading-
order low-energy theory given by V top reproduces the
correlation functions on the right-hand side only to leading
order in a derivative expansion.
By assumption, symmetry breaking in the hypercolor

theory yields hχ̄iχji∝ hΣiji ¼ δij, up to a symmetry trans-
formation. (When the SM fields become dynamical we may
in general have hΣiji≠ δij, but these corrections are of
higher order in the SM gauge and Yukawa couplings.)
Setting hΣiji ¼ δij and hΦi ¼ 1 in Eq. (4.7) provides us
with expressions for the parameters μL;R. Assembling the
chiral baryon fields together as

B ¼ BR þ BL; B̄ ¼ B̄R þ B̄L; ð4:8Þ

where B is a Dirac field with quantum numbers ð5; 3Þ under
the unbroken SOð5Þ×SUð3Þcolor, and writing

δðx − yÞ ¼
Z

d4p
ð2πÞ4 e

ipðx−yÞ;

hBðxÞB̄ðyÞi ¼
Z

d4p
ð2πÞ4 e

ipðx−yÞSBðpÞ; ð4:9Þ

we find, to leading order in the momentum expansion of the
effective theory,
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μLPL ¼ −λ1λ2PLSBð0ÞPL;

μRPR ¼ −λ1λ2PRSBð0ÞPR: ð4:10Þ

Apart from the chiral projectors, these two expressions
must be equal, because any hyperbaryon fields occurring in
Eq. (4.2) can only have a Dirac mass; Majorana masses
(such as BT

RϵBR or BT
LϵBL) are forbidden by Uð1ÞX

symmetry. Therefore,

μ ¼ μL ¼ μR ¼ −λ1λ2SBð0Þ; ð4:11Þ

where we have used that at zero momentum SBð0Þ is
proportional to the unit matrix in spinor space.
We may now introduce the top quark Yukawa coupling y

by writing

μ ¼ yf=2; ð4:12Þ

with f the decay constant of the hypercolor theory. If the
Higgs field will now develop a nonzero expectation value,

hH0i ¼ hH†
0i ¼ h=

ffiffiffi
2

p
; ð4:13Þ

this will induce a top quark mass

mt ¼
1

2
ffiffiffi
2

p yf sin ð2h=fÞ≈ 1ffiffiffi
2

p yh; ð4:14Þ

where we have used Eqs. (2.6), (2.9), (4.1), and (4.5), and
the approximate equality holds for h=f ≪ 1.
We may introduce an effective hyperbaryon field ~B

which is canonically normalized by writing

B ¼ f3
ffiffiffiffiffiffi
ZB

p
~B: ð4:15Þ

We define M as the zero-momentum mass of the canoni-

cally normalized B̄ field corresponding to a term M ~̄B ~B. In
other words, SBð0Þ ¼ f6ZB=M. This gives

y ¼ −2λ1λ2ZBf5=M: ð4:16Þ

We comment that the field B does not necessarily corre-
spond to any baryon mass eigenstate of the hypercolor
theory. Still, generically we might expect it to couple to the
lightest hyperbaryon with quantum numbers that match
those of the SM quarks, in which caseM will be a quantity
of the order of this smallest hyperbaryon mass.
We conclude this subsection with a technical comment.

If in Eq. (4.2) we choose one unprimed and one primed
hyperbaryon field, this implies that one of the spurions
transforms nontrivially under SUð3Þ while the other under
SUð3Þ0. In this case, V top will depend on Ω. For definite-
ness, replacing BL in Eq. (4.2) by B0

L implies that now TR
transforms nontrivially under SUð3Þ0, and Eq. (4.5) gets
replaced by

V top ¼ μLΦ−14=3T̄RΣ�Ω†TL þ μRΦ14=3T̄LΣΩTR: ð4:17Þ

This hardly changes our analysis, because, in order to
obtain expressions for the parameters μL;R in Eq. (4.5) we
are setting all nonlinear fields equal to the identity anyway.
In the next subsection, we will work out the effective

potential after integrating over the third-generation quarks.
In this calculation, any dependence on both Ω and Φ will
drop out regardless of our choice of hyperbaryon fields in
Eq. (4.2), as it must be because both SUð3Þ×SUð3Þ0 and
Uð1Þ0 are not explicitly broken in the top sector to the order
we work, and therefore no effective potential can be
generated for those nonlinear fields. In particular, when
V top depends on Ω as in Eq. (4.17), then expression (4.19c)
below, which is the only term that will contribute to the
effective potential, gets multiplied by trðΩΩ†Þ ¼ tr1, show-
ing that indeed the Ω dependence cancels out.

C. Higgs effective potential induced by the top quark

We now integrate over the SM top quark in order to
obtain the associated contribution V top

eff ðΣÞ to the effective
potential. Adding this to Eq. (3.1) gives the complete
effective potential for Σ to second order in the SM gauge
and Yukawa couplings. We will disregard all the other SM
fermions, including the bottom quark, on the grounds that
their Yukawa couplings are much smaller, and so their
contribution to the effective potential will be much smaller
as well.
We begin by splitting the spurions TL;R as follows10:

TLðxÞ ¼ tLðxÞvL; TRðxÞ ¼ tRðxÞvR: ð4:18Þ
The new global spurions vL;R carry the SUð5Þ quantum
numbers, which contain the SM symmetry SUð2ÞL. We
also assign Uð1ÞX to these spurions, because the hyper-
charge Y is the sum of the charge X and the third
component of SUð2ÞR, with the latter being a subgroup
of SUð5Þ as well. The (Grassmann) fields tL;R carry the spin
index. They also inherit the SUð3Þ and SUð3Þ0 quantum
numbers from TL;R. We promote tL;R to dynamical fields by
adding tree-level kinetic terms t̄L∂tL þ t̄R∂tR.
The effective potential V top

eff at order y is obtained by
substituting Eq. (4.18) into V top of Eq. (4.5), and integrat-
ing over the top quark, leading to a contribution with the
form of Φ−2v̄LΣvR þ H:c: This contribution vanishes,
however, because the only nonzero tree-level top propa-
gators are htLt̄Li and htRt̄Ri.
The leading contribution to V top

eff is of order y
2. It involves

four global spurions. Momentarily suppressing any
dependence on the Ω and Φ fields, the possible terms that
depend on Σ are

10Whether or not tL in Eq. (4.18) coincides with the component
with the same name of T̂L in Eq. (4.1) depends on the value we
choose for vL, as we will see below.
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ðv̄LΣvRÞ2 þ H:c:; ð4:19aÞ

ðv̄RΣ�vLÞ2 þ H:c:; ð4:19bÞ

ðv̄LΣvRÞðv̄RΣ�vLÞ: ð4:19cÞ

The tree-level top propagators allow for the generation of
the last term only. If the effective potential (4.19c) arises as
the product of the two interactions in Eq. (4.5), the Φ
dependence evidently cancels out. Moreover, as we have
explained in the previous section, regardless of the choice
of hyperbaryon fields we make in Eq. (4.2), V top

eff will be
independent of Ω and Φ, because, to the order we are
working, SUð3Þ, SUð3Þ0, and Uð1Þ0 are not broken
explicitly.
Promoting the fields tL and tR in Eq. (4.1) to be

dynamical amounts to setting

vL ¼ v̂L≡ 1ffiffiffi
2

p

0
BBBBBB@

0

0

i

−1
0

1
CCCCCCA
; vR ¼ v̂R ≡

0
BBBBBB@

0

0

0

0

i

1
CCCCCCA
; ð4:20Þ

with ˆ̄vL;R ¼ v̂†L;R. The resulting contribution to the effective
potential is

y2Ctopð ˆ̄vLΣv̂RÞð ˆ̄vRΣ�v̄LÞ

¼ y2

2
CtopðΣ35 − iΣ45ÞðΣ�

35 þ iΣ�
45Þ: ð4:21Þ

Ctop is a new LEC. We have factored out the square of the
Yukawa coupling y to make explicit the order at which
we work.
However, we are not done yet. In order to arrive at this

result we have used Eq. (4.20) for the global spurions,
which projects onto a particular component of the SUð2ÞL
doublet qL, the one denoted tL in Eq. (4.1). In order to add
the contribution of the other component denoted bL, we
replace v̂L of Eq. (4.20) by ði; 1; 0; 0; 0ÞT= ffiffiffi

2
p

(the right-
handed singlet spurion v̂R is unchanged). Adding the two
contributions together we arrive at the SUð2ÞL invariant
effective potential

V top
eff ¼

y2

2
CtopðjΣ35 − iΣ45j2 þ jΣ15 þ iΣ25j2Þ: ð4:22Þ

This is the leading contribution of dynamical third-
generation quarks to the effective potential. Expanding
the nonlinear Σ field to quadratic order in the NGB fields
gives

V topð2Þ
eff ¼ 4y2

Ctop

f2
H†H: ð4:23Þ

When the Higgs field H ¼ ðHþ; H0ÞT acquires an expect-
ation value, conventionally it is assigned to the lower
componentH0, as in Eq. (4.13). This selects tL (rather than
any other linear combination of the doublet fields tL and
bL) as the left-handed field that, together with the right-
handed field tR, forms the physical top quark.
Let us pause to consider these results. The full effective

potential VeffðΣÞ is the sum of Eqs. (3.1) and (4.22). If Ctop
is positive, the global minimum is attained for Σ ¼ Σ0 ¼ 1
(with Σi5 ¼ 0 for i ¼ 1;…; 4). For electroweak symmetry
breaking to take place, Ctop must therefore be negative. To
second order in the NBG fields, the effective potential is the
sum of Eqs. (3.4) and (4.23). As already observed in
Ref. [8], the curvature at the origin can become negative
only in the direction of the H field. This happens when

Ctop

CLR
< −

3g2 þ g02

2y2
¼ −

2m2
W þm2

Z

m2
t

≈ − 0.7; ð4:24Þ

triggering a nonzero expectation value for the Higgs field.
If we use Eq. (4.13) and, moreover, assume that all other

NGB fields in Eq. (2.8) remain zero, the total effective
potential is

VeffðhÞ ¼ −CLRð3g2 þ g02Þcos2ðh=fÞ

þ y2

2
Ctopsin2ð2h=fÞ: ð4:25Þ

While the global minimum of VeffðΣÞ must occur at
nonzero h if Eq. (4.24) is satisfied, due to the complexity
of VeffðΣÞ we have not been able to prove that, given
arbitrary values of the SM couplings or the LECs, the
global minimum will never involve nonzero expectation
values for any other NGBs.
We next turn to the calculation of the low-energy

constant Ctop. As in the previous subsection, this is done
by matching the effective potential (4.22) to the underlying
theory with top-hyperbaryon couplings as given in
Eq. (4.2). The difference is that now we also integrate
over the SM top quark field. After splitting the TL;R

spurions as in Eq. (4.18), the matching will involve taking
four derivatives, one with respect to each of the global
spurions vL;R and v̄L;R.

11 Once again we will set Σ ¼ 1.
This implies that we must take into account terms inde-
pendent of Σ that have a similar dependence on the global
spurions as Eq. (4.19c). There are two such terms,

y2C1ðv̄LvLÞðv̄RvRÞ þ y2C2ðv̄Lv̄TRÞðvTRvLÞ; ð4:26Þ
where we introduced new LECs C1 and C2, and, for
convenience, separated out a factor of y2, as we did in

11We will discuss later on what values to choose for the global
spurions in Eq. (4.18), or equivalently, with respect to which
component of each global spurion one would choose to
differentiate.
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Eq. (4.21). Taking the four derivatives in the effective
theory we find, after setting Σ ¼ 1,

∂4

∂v̄Li∂vRj∂v̄Rk∂vLl logZeff ¼ −y2VðCtopδijδkl þ C1δilδjk

þ C2δikδjlÞ; ð4:27Þ

where V is the volume. In the microscopic theory we find

∂4

∂v̄Li∂vRj∂v̄Rk∂vLl logZ

¼ ðλ1λ2Þ2
Z

d4x1d4x2d4x3d4x4

× hðB̄RltLÞðx4Þðt̄LBRiÞðx1ÞðB̄LjtRÞðx2Þðt̄RBLkÞðx3Þi

¼ −ðλ1λ2Þ2
Z

d4x1d4x2d4x3d4x4

×
Z

d4p
ð2πÞ4

d4q
ð2πÞ4

pμ

p2

qν
q2

eipðx4−x1Þþiqðx2−x3Þ

× hðB̄Rlðx4ÞγμPRBRiðx1ÞÞðB̄Ljðx2ÞγνPLBLkðx3ÞÞi:
ð4:28Þ

In the last equality we have integrated over the top quark,
substituting free massless fermion propagators for its two-
point functions. The remaining expectation value on the last
line is to be computed in the pure hypercolor theory. We
may now project onto the Ctop term in Eq. (4.27) by
choosing i ¼ j≠ k ¼ l, obtaining

Ctop ¼
ðλ1λ2Þ2
y2

1

V

Z
d4x1d4x2d4x3d4x4

×
Z

d4p
ð2πÞ4

d4q
ð2πÞ4

pμ

p2

qν
q2

eipðx4−x1Þþiqðx2−x3Þ

× hðB̄Rkðx4ÞγμPRBRiðx1ÞÞðB̄Liðx2ÞγνPLBLkðx3ÞÞii≠k:
ð4:29Þ

In terms of the Fourier transform

hðB̄Rlðk4ÞγμPRBRiðk1ÞÞðB̄Ljðk2ÞγνPLBLkðk3ÞÞi

¼
Z

d4x1d4x2d4x3d4x4e−ik1x1þik2x2−ik3x3þik4x4

× hðB̄Rlðx4ÞγμPRBRiðx1ÞÞðB̄Ljðx2ÞγνPLBLkðx3ÞÞi;
ð4:30Þ

we may write this in momentum space as12

Ctop ¼
ðλ1λ2Þ2
y2

1

V

Z
d4p
ð2πÞ4

d4q
ð2πÞ4

pμ

p2

qν
q2

× hðB̄RkðpÞγμPRBRiðpÞÞðB̄LiðqÞγνPLBLkðqÞÞii≠k:
ð4:31Þ

This is our main result.
The top sector effective potential Eq. (4.22) depends on

the experimentally known top Yukawa coupling, and on
Ctop. Using Eq. (4.16), we may reexpress the ratio λ1λ2=y in
Eq. (4.31) in terms of quantities that are calculable in the
pure hypercolor theory. This determines V top

eff completely.
The dependence on the extended hypercolor sector coming
from the couplings λ1;2 has dropped out.
Diagrammatically, each term on the right-hand side of

Eq. (4.27) originates from diagrams of the microscopic
theory with a distinct topology. This is shown in Fig. 1,
where we have kept only the propagators of the top quark
(solid lines) and of the Majorana fermions χ (dashed-dot
lines). All other fields including the Dirac fermions in the
fundamental irrep of hypercolor have been suppressed.
With these conventions, Ctop arises from the class of
diagrams represented by Fig. 1(a), while C1 and C2 arise
from Figs. 1(b) and 1(c) respectively.

D. Large-N estimate of y2Ctop

Determining Ctop using Eq. (4.31) requires knowledge of
the ratio λ1λ2=y, and a strong-coupling calculation that can
be done using lattice gauge theory. Such a lattice calcu-
lation, however, would be a major undertaking (see Sec. V).
In this subsection, we resort to analytic techniques hoping
to shed some light on the most interesting question, which
is whether Ctop could indeed be negative, and large enough
in size to cause electroweak symmetry breaking.
We will first consider what can be said if we assume that

the hyperbaryon four-point function in Eq. (4.31) factorizes
into the product of two hyperbaryon two-point functions.
We will show that Ctop is negative in this case. We will then
argue that a large-N limit exists in which the factorized
contribution dominates, and thus the Higgs field acquires a
nonzero expectation value.
Assuming factorization, and using13

PRhBRiðpÞB̄LjðqÞiPR ¼ ð2πÞ4δðp − qÞδijPRSBðpÞPR;

PLhBLiðqÞB̄RjðpÞiPL ¼ ð2πÞ4δðp − qÞδijPLSBðpÞPL;

ð4:32Þ

where SBðpÞwas defined in Eqs. (4.8) and (4.9), Eq. (4.31)
leads to

12In finite volume, the momentum integral
R
d4p=ð2πÞ4 is to be

understood as a momentum average, V−1P
pμ
. Alternatively, in

infinite volume, V is to be interpreted as ð2πÞ4δð0Þ in momentum
space. 13On the right-hand side, δij follows from SOð5Þ invariance.

MAARTEN GOLTERMAN AND YIGAL SHAMIR PHYSICAL REVIEW D 91, 094506 (2015)

094506-10



Cfact
top ¼ −

ðλ1λ2Þ2
y2

Z
d4p
ð2πÞ4

pμpν

ðp2Þ2 trðγμPRSBðpÞγνPLSBðpÞÞ:

ð4:33Þ

Using a dispersive representation for the hyperbaryon
propagator,

SBðpÞ ¼
Z

∞

0

ds
2π

ρðsÞ−ipþ ffiffiffi
s

p
p2 þ s

; ð4:34Þ

with ρðsÞ ≥ 0 for all s≥ 0, this becomes

Cfact
top ¼ −

1

8π2
ðλ1λ2Þ2
y2

Z
∞

0

ds
2π

Z
∞

0

dt
2π

ρðsÞρðtÞ
ffiffiffiffi
ts

p
t − s

log
t
s
:

ð4:35Þ
This result is negative, because the integrand is manifestly
positive.14 As a simple example, if we take ρðsÞ ¼
2πf6ZBδðs −M2Þ, Eq. (4.35) reduces to

Cfact
top ¼ −

1

8π2
ðλ1λ2Þ2
y2

f12Z2
B ¼ −

1

32π2
f2M2; ð4:36Þ

where we used Eq. (4.16).
We next consider a large-N limit in which factorization

can be shown to hold. Of course, in the model of Ref. [8],
the number of (hyper)colors is N ¼ 4. What makes this
generalization nontrivial is that, unlike the SUð4Þ case
where the two-index antisymmetric irrep is real, for any
N > 4 this irrep is complex. This means that the Majorana
condition (2.2b) cannot be imposed without violating
gauge invariance. In order to cope with this, in addition
to Weyl fields ϒABi in the antisymmetric representation of
SUðNÞ, we introduceWeyl fields ~ϒAB

i belonging to the irrep
made out of the antisymmetrized product of two

antifundamentals.15 Instead of Majorana fermions, we
now construct Dirac fermions out of these Weyl fields
according to

~ωABi ¼
� ϒABi

ϵ ~̄ϒ
T
ABi

�
;

~̄ωAB
i ¼

�
−ð ~ϒAB

i ÞTϵ ϒ̄AB
i

�
; ð4:37Þ

as well as their charge conjugates

ωAB
i ¼ Cð ~̄ωAB

i ÞTi ¼
�

~ϒAB
i

ϵðϒ̄AB
i ÞT

�
;

ω̄ABi ¼ ~ωT
ABiC ¼

�
−ðϒABiÞTϵ ~̄ϒABi

�
: ð4:38Þ

The index i ¼ 1;…; Nf now counts the number of Dirac
fermions. Going back to the SUð4Þ theory, we have been
forced to consider an even number, 2Nf, of Majorana
fermions. There is no large-N generalization that would
involve the desired odd number of five Majorana fermions
for the SUð4Þ theory. Even more, for any N > 4 the
symmetry breaking pattern becomes that of complex- irrep
Dirac fermions, namely, SUðNfÞ×SUðNfÞ → SUðNfÞ [6].
We have shown in Fig. 1 the contractions of the

antisymmetric- irrep fermions that contribute to Ctop.
According to Eq. (4.31), we should choose fixed values
i≠ k. The minimal number of Dirac fermions we need in
order to distinguish Fig. 1(a) from Figs. 1(b) and 1(c) is
two, and so we will take Nf ¼ 2 Dirac fermions in the
antisymmetric irrep. For N ¼ 4, this is equivalent to a
theory with four Majorana fermions (instead of five). This
is the best we can do in terms of a large-N generalization.
According to Eq. (4.31), for the left side of Fig. 1(a) we
need the contraction PRhωiω̄iiPR, whereas for the right
side we need PLhωkω̄kiPL. Once these contractions have
been fixed we can drop the indices i and k, and forget about
the flavor index. This suggests that the number of flavors is
not crucial if our goal is to obtain a large-N estimate of the
class of diagrams depicted in Fig. 1(a), and thus that the
necessary transition from Majorana fermions to Dirac
fermions for N > 4 is inconsequential.
We are now ready to give the generalization of the

hyperbaryon operators. In the N > 4 theory with Nf ¼ 2
Dirac flavors they are defined by

BRia ¼ ϵabcPRω
AB
i ðΨT

AbϵΨBcÞ;
B̄Ria ¼ ϵabcω̄iABPLðΨ̄AbϵðΨ̄BcÞTÞ;
BLia ¼ ϵabcPLω

AB
i ðΨT

AbϵΨBcÞ;
B̄Lia ¼ ϵabcω̄iABPRðΨ̄AbϵðΨ̄BcÞTÞ: ð4:39Þ

(a) (b) (c)

FIG. 1. The three possible Majorana-fermion contractions
contributing to Eq. (4.28), corresponding to (a) Ctop, (b) C1,
and (c) C2. Only the top quark (solid lines) and Majorana
fermions (dashed lines) are shown. The vertices x1;…; x4 of
Eq. (4.28) correspond to a clockwise motion starting at the lower
left corner.

14Only the factorizable contribution appears to have been
considered in Refs. [4,8].

15This is the same as the antisymmetric product of N − 2

fundamentals, since ~ϒAB ∼ ϵA1A2…AN−2ABϒ0
A1A2…AN−2

.
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We have used index conventions similar to the previous
sections. For N ¼ 4 we may impose the Majorana
condition ω ¼ ~ω, and then these definitions repro-
duce Eq. (4.3).
Before we work out the more complicated case of

Fig. 1(a), let us consider the behavior of a single hyper-
baryon in large N. The hyperbaryons are bound by
interchanging hypergluons between their elementary con-
stituents. The situation here is different from the conven-
tional large-N limit of baryons made only of fundamental-
irrep fermions, where the number of constituents grows
linearly with N [21]. For our hyperbaryons, the number of
elementary constituents (as well as the number of hyper-
color indices of each field) is fixed. This resembles the
behavior of mesons within the usual large-N treatment.
In Fig. 2 we show a few examples. The bottom end of

each diagram represents a hyperbaryon, say BR [first line of
Eq. (4.39)], and the top end the corresponding antibaryon,
say B̄L [last line of Eq. (4.39)]. Starting with Fig. 2(a) the
two vertical lines in the middle represent the propagation of
the double-indexed fermion of the antisymmetric irrep, and
the lines on the sides the propagation of the two funda-
mental- irrep fermions, one on each side. The lines are
oriented: the arrows point from a superscript index to a
subscript index. Figure 2(b) shows an alternative index
contraction, still without hypergluon fields. Note that
Fig. 2(a) dominates over Fig. 2(b) in large N, since the
former is of order N2 and the latter of order N. In Fig. 2(c)
we have added hypergluon interactions. Introducing the
‘t Hooft coupling λ ¼ g2N it follows that the planar
diagram is again of order N2. The factors of g ¼ ffiffiffiffiffiffiffiffiffi

λ=N
p

from each hypergluon vertex are compensated by a
matching increase in the number of index loops. While
the diagram appears disconnected to the eye, this is really
not the case, because the two central vertical lines corre-
spond to the two-point function of a single two-index
fermion, hωABω̄CDi. Figure 2(d) shows a different

arrangement of hypergluon interactions. The hypergluon
that is exchanged at the center of the diagram represents a
self-energy correction for hωABω̄CDi, which, to be consis-
tent with the directionality of the index lines, gives rise to a
nonplanar diagram. This diagram is subleading in the large-
N counting.
The upshot is that, in large N, the dominant diagrams

that bind the hyperbaryon are planar diagrams of order N2,
such as for example those in Figs. 2(a) and 2(c). The
hyperbaryon two-point function in Eq. (4.9) will exhibit
this large-N behavior, much like the two-point function of
NGBs made out of antisymmetric- irrep fermions [16],
which, in turn, leads to f ∼N for large N.16 Using
Eqs. (4.15) and (4.16), it follows that M is independent
of N, while ZB ∼ 1=N4, and the top Yukawa coupling
behaves like y∼N. In contrast to QCD, where mnucleon=
fπ grows like

ffiffiffiffi
N

p
, we find thatM=f decreases like 1=N. If

M is indeed related to the mass of the lightest hyperbaryon
in the theory, this suggests that the lightest hyperbaryon
could be relatively light compared to ΛHC.
With the contractions of the double-index hyperfermions

fixed to be those in Fig. 1(a), let us now study the large-N
behavior of the various possible contractions of the single-
index, fundamental- irrep fields. Since Uð1ÞX is not broken
spontaneously, the Wick contractions have to comply with
this symmetry. Let us start, for example, with the two Ψ
fields of the BR hyperbaryon at the bottom left of Fig. 1(a).
They can be contracted with the corresponding fields in the
top left or the bottom right, but notwith those in the top right.
There are three possibilities: (1) bothΨ fields are contracted
with those at the top left, (2) both are contractedwith those at
the bottom right, or (3) one is contracted with a field at the
top left and the other with a field at the bottom right.
Let us consider these three cases in turn. First we

contract both Ψ fields at the lower left corner with the
Ψ̄ fields of the B̄L hyperbaryon at the upper left corner, i.e.,
case (1) above. Remembering that also the two-index field
at the lower left corner of Fig. 1(a) is contracted with the
two-index field at the upper left corner, this gives a
contribution proportional to

ðδACδBD − δADδ
B
CÞðδCAδDB − δDA δ

C
BÞ ¼ 2NðN − 1Þ; ð4:40Þ

where we label the SUðNÞ indices as ωABΨAΨB at the
lower left corner and as ω̄CDΨ̄CΨ̄D at the upper left corner.
We get a similar factor from the right side of the diagram, so
that the total diagram is of order ðNðN − 1ÞÞ2 ∼N4. In
Fig. 3(a) we show as an example the order-N4 contribution
coming from using twice the diagram of Fig. 2(a).
For case (2), the Ψ fields at the lower left corner are both

contracted with the corresponding fields at the lower right
corner. Using SUðNÞ indices AB at the lower left,CD at the

(a) (b) (c) (d)

FIG. 2. A hyperbaryon in large N: diagrams without hyper-
gluons (a, b) and with them (c, d). Diagrams (a) and (c) are
leading, while (b) and (d) are subleading.

16Note the difference with QCD, where the decay constant fπ
of the fundamental- irrep NGBs scales like

ffiffiffiffi
N

p
.
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upper left, EF at the lower right, and GH at the upper right
corners, this contraction leads to a contribution of order

δ½AC δ
B�
D δ

½G
E δH�

F δ½EA δ
F�
B δ½CG δD�

H ∼ N2: ð4:41Þ

The notation ½…� denotes antisymmetrization in the pair of
indices inside the brackets. An example is shown in
Fig. 3(b).
Finally we consider the mixed case (3), where one of the

Ψ fields is contracted with the lower right corner, and the
other with the upper left one. It is straightforward to see that
this gives a contribution

δ½AC δ
B�
D δ

½G
E δH�

F δ½CA δD�
G δ½EB δ

F�
H ∼ N3: ð4:42Þ

An example is shown in Fig. 3(c).
We should also consider diagrams “dressed” with hyper-

gluons. The interesting case is that of Fig. 3(a), where
hypergluons exchanged between the two hyperbaryons on
the left and on the right make these hyperbaryons interact.
Such interactions would spoil the factorization of the four-
point function in Eq. (4.29). However, these interactions are
suppressed in large N for the same reason that meson-
meson interactions are suppressed in large-N QCD. Any
hypergluon connecting the left and right sides of Fig. 3(a)
will reduce the number of hypercolor loops by one, in
addition to adding a factor of g2=N. The key point here is
that the number of hyperfermion constituents of the hyper-
baryons is fixed to three, in contrast to the case of baryons
in QCD, where the number of constituent quarks grows
linearly with N.
We conclude that the factorizable part of Fig 1(a), which

grows like N4, is the dominant large-N contribution of the
top quark sector. Ctop itself grows like N2, since V top

eff is
proportional to y2Ctop and y scales like N [this is consistent
with the large-N behavior of the right-hand side of
Eq. (4.36)]. According to the discussion in the beginning
of this subsection, this produces a negative value for Ctop,
which, in turn, generates a negative curvature for the Higgs
field in Eq. (4.25).
We recall that the other contribution to the effective

potential (4.25) for the Higgs field is coming from a single

electroweak gauge-boson exchange. This contribution,
which is parametrized by CLR, always produces a pos-
itive-curvature term in the effective potential. It is easily
seen that CLR is subleading in the large-N counting. The
electroweak gauge group SUð2ÞL is a subgroup of SUð5Þ,
whereas hypercharge is a subgroup of SUð5Þ×Uð1ÞX.
Therefore all the electroweak gauge bosons interact with
the antisymmetric- irrep hyperfermions, from which the
SUð5Þ=SOð5Þ coset fields are formed. CLR involves a
single closed fermion loop, and so for the antisymmetric-
irrep fields it is of orderN2. (For the fundamental irrep,CLR
would be of order N. Observe that the electroweak gauge
bosons do not carry hypercolor, and therefore their
exchange has no effect on the large-N counting.) This is
subleading to the factorizable contribution of the top sector,
which is of orderN4. It follows that, in largeN, Eq. (4.25) is
dominated by the contribution of the top quark sector,
developing a negative curvature at the origin that triggers
electroweak symmetry breaking.

E. Phenomenological consequences

Our analysis in this section was based on the Lagrangian
(4.2). While LEHC depends on two coupling constants λ1
and λ2, only their product enters the determination of the
top Yukawa coupling in Sec. IV B, and of the induced
effective potential for the Higgs studied in Sec. IV C. An
additional free parameter of the model is the scale of the
hypercolor theory itself, ΛHC. Using the results of
Secs. IV B and IV C, we may in principle perform a lattice
calculation that will fix the values of λ1λ2 and of ΛHC in
terms of the experimentally known values of the top
Yukawa coupling y, and of the Higgs field’s expectation
value, provided that Ctop turns out to be large enough
compared to CLR to trigger condensation [see Eq. (4.24)].17

The only remaining uncertainty then arises from the four
different choices for the hyperbaryon fields (that each can
be a primed or an unprimed one, cf. Table I) in Eq. (4.2).
This gives rise to a discrete fourfold ambiguity in the
predicted values of λ1λ2 and of ΛHC. For each of these four
possibilities, one can proceed to compare other predictions
of the hypercolor theory with experimental constraints,
which can in principle rule out, or rule in, that particular
version of the hypercolor theory.
A less-constrained hypercolor model can be obtained by

relaxing the assumption that SUð3Þ×SUð3Þ0 is broken
explicitly to SUð3Þcolor only by the QCD interactions.
There are at least two alternative ways to introduce such
an explicit breaking.
First, one can introduce a Dirac mass term mψ̄ψ for

the fundamental- irrep hyperfermions, with m≳ ΛHC. We
may think of m as arising from the expectation value of a
three by three global spurion Mab ¼ mδab, where Mab has

(c)(b)(a)

FIG. 3. Different large-N contributions to Fig. 1(a). The curved
lines at the top and the bottom represent the two top quark
propagators. The diagrams scale like (a) N4, (b) N2, and (c) N3.

17We are assuming that none of the SUð2ÞL triplet NGBs
acquire an expectation value.
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the same transformation properties as the SUð3Þ×
SUð3Þ0=SUð3Þcolor coset field Ωab. Using the global spu-
rion Mab allows for the coupling of each SM spurion field
TL;R to both of the unprimed and primed hyperbaryon
fields from Table I. In fact, if the hyperbaryon field is
assumed to have well-defined transformation properties
under SUð3Þcolor only, some additional operators besides
those shown in Table I may occur. For their structure, see
Table II of Ref. [8]. The bottom line is that LEHC can now
depend on four (or more) coupling constants, instead of
just two.
An alternative mechanism involves the introduction of

two more spurions T 0
L;R, and assuming that the unprimed

hyperbaryon fields and spurions transform under SUð3Þ,
while the primed ones transform under SUð3Þ0. Twice as
many terms are then allowed by SUð3Þ×SUð3Þ0 invariance
of LEHC, with each term involving either unprimed or
primed fields. The explicit breaking to SUð3Þcolor then
occurs by assigning to all spurions, both primed and
unprimed, the same SM values as in Eq. (4.1).
In any one of these more general schemes, the matching

of the top Yukawa coupling and of Ctop to the underlying
theory can be done using the same techniques as before.
However, the predictive power will be reduced, since this
analysis would still provide just two constraints on the
larger set of parameters, which includes ΛHC and all the
coupling constants that may now occur in LEHC.
Finally, note that if we expand both Σ and Φ in Eq. (4.5)

to first order in the NGB fields, and use the SM values T̂L;R,
we obtain the dimension-five operator ðy=f0Þη0t̄RHiϵijqLj
and its Hermitian conjugate, where f0 is the decay constant
of η0. This couples η0 to the SM fields. If we set the Higgs
field to its vacuum expectation value, the above operator
reduces to ðmt=f0Þη0 t̄RtL. The phenomenological implica-
tions of these interactions have to be looked into. If they
turn out to be incompatible with experiment, this would
necessitate the introduction of an explicit breaking ofUð1Þ0
that makes the η0 sufficiently heavy. One possible source for
this explicit breaking is the Dirac mass term mψ̄ψ dis-
cussed above.

V. LATTICE ASPECTS

In this short section, we explain why a lattice compu-
tation of Ctop would be a “QCD-like” computation. The
question to address is why the lattice formulation of
hypercolor theories such as considered here resembles
the lattice formulation of QCD, in view of the well-known
complications with fermion doubling and chirality on the
lattice. The fermion doubling problem has its roots in the
observation that a single Weyl fermion cannot live on the
lattice [22,23]. Since the hypercolor theory contains an odd
number of Weyl fermions in the two-index antisymmetric
irrep, this might seem to imply that the model we consider
here cannot be easily discretized.

The first observation is that the integration over the SM
quark fields qL and tR is done analytically, as we did in this
article. The results for the top Yukawa coupling y
[Eqs. (4.11) and (4.12)] and for Ctop [Eq. (4.31)] are
obtained in terms of pure hypercolor correlation functions.
Hence only the hypercolor theory needs to be considered
on the lattice, and the lattice action does not contain the
four-fermion Lagrangian LEHC of Eq. (4.2).
Let us start from the sector that resembles QCD most

closely, namely, the Dirac fermions ψa in the fundamental
irrep of SUð4Þ hypercolor. These can be treated in exactly
the same way as the quark fields of Nf-flavor QCD. In the
Wilson formulation of the theory, the gauge invariant
Wilson mass term removes the fermion doublers at the
price of breaking the symmetry group SUðNfÞL×SUðNfÞR
of the continuum theory explicitly to its diagonal SUðNfÞ
subgroup. Tuning the bare mass appropriately, one then
recovers the massless theory with the full chiral symmetry
group in the continuum limit [22]. In the hypercolor theory
we have Nf ¼ 3 Dirac fermions. The chiral flavor group
SUð3ÞL×SUð3ÞR has been renamed SUð3Þ×SUð3Þ0,
and the unbroken diagonal subgroup was identified
with SUð3Þcolor.
We next turn to the novel feature of the hypercolor

theory, which is the five real- irrep Weyl fermions ϒABi.
The key point is that each of these Weyl fermions can be
assembled together with its antifermion into a Majorana-
fermion field χABi. A Majorana mass term of the form
χ̄ABi χABi is allowed by the SUð4Þ gauge symmetry, just like
a Dirac mass term is allowed in the familiar case of
fundamental- irrep fermions. Therefore, a Wilson formu-
lation of the Majorana fermions is possible, with a Wilson
mass term that once again removes fermion doublers
without breaking gauge invariance. The hypercolor theory
is chiral with respect to the SUð5Þ flavor symmetry of the
Majorana or Weyl fields, and consequently, the Majorana-
Wilson mass term breaks SUð5Þ explicitly down to SOð5Þ.
Again, the full SUð5Þ chiral symmetry should be recovered
in the continuum limit after appropriate tuning of the bare
mass.18

The situation with respect to (complex-irrep) Dirac
fermions and to (real-irrep) Majorana fermions is thus
completely parallel. In both cases, what we anticipate as the
spontaneous symmetry breaking pattern of the continuum
theory turns into an explicit breaking in the Wilson
formulation. The explicit breaking disappears, and the full
chiral symmetry group can be recovered, in the continuum
limit by tuning the bare mass terms. In particular, the
flavor group SOð5Þ of the Majorana-Wilson fermion action
in the hypercolor theory enlarges to SUð5Þ in the con-
tinuum limit, much like the diagonal SUðNfÞ symmetry of

18The lattice formulation of an adjoint Majorana fermion was
studied extensively in the context of supersymmetric theories;
see, e.g., Ref. [15].
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the Dirac-Wilson action of QCD enlarges to the full
SUðNfÞL×SUðNfÞR symmetry in the continuum limit.
In short, it is precisely the unbroken flavor symmetry

group H of Eq. (2.5) that is preserved in a lattice
formulation with Wilson fermions. It is actually possible
to gauge the SM group SUð3Þcolor×SUð2ÞL×Uð1ÞY in this
lattice formulation, because this group is contained in H.
The difficulties caused on the lattice with chiral gauge
symmetries19 would only appear were one to couple also
the SM fermions to this model.
The lattice formulation of the hypercolor theory is not

without technical challenges. First, two fermion irreps need
to be introduced simultaneously. While clearly a coding
task, this is something that to our knowledge has not been
done to date. Also, the computation of a four-point function
as in Eq. (4.29) would be very demanding. Because there
are two independent momentum variables, the cost is
expected to grow like the square of the 4-volume of the
lattice. The computation of SBð0Þ in Eq. (4.11), and of the
factorizable contribution to Ctop, would already be inter-
esting. Here only the hyperbaryon two-point function is
required, and the cost grows linearly with the 4-volume.

VI. CONCLUSION

In this article, we discussed a recently proposed
composite Higgs model [8], concentrating on the top quark
sector. This “hypercolor” model is an SUð4Þ gauge theory,
with a quintuplet of two-index antisymmetric Majorana
fermions and a color triplet of SUð4Þ-fundamental Dirac
fermions. We considered the top Yukawa coupling and the
top contribution to the effective potential for the Higgs,
showing how to match the relevant low-energy constants
μ ¼ yf=2 and Ctop to correlation functions of the hyper-
color theory.
This matching is the starting point for any nonperturba-

tive evaluation of the low-energy constants. The needed
computations can in principle be done on the lattice, using
methods that are much the same as those employed in
lattice QCD. The main differences are that now the gauge
group is SUð4Þ instead of SUð3Þ, and that there are
fermions in more than one irrep of the gauge group. For
the Higgs effective potential, a four-point hyperbaryon
correlation function needs to be considered; this appears to
have been overlooked in at least some of the literature on
models of this type. A lattice calculation of this four-point
function would be very demanding, and how to do it
efficiently is a question that goes beyond the scope of this
paper. As mentioned in Sec. V, only a two-point function is
needed for the low-energy constant μ, as well as for the
factorizable contribution to Ctop. This computation would
be comparable in scope with a lattice computation of CLR,

the LEC controlling the contribution to the Higgs effective
potential from the SM gauge bosons (cf. Sec. III).
We found that a large-N limit exists in which the

factorizable contribution to the hyperbaryon four-point
function dominates Ctop. We also showed that the factor-
izable contribution generates a negative curvature at the
origin. This is a necessary condition for electroweak
symmetry breaking, because the effective potential induced
by the SM gauge bosons does not break the SM sym-
metries, a manifestation of vacuum alignment.
For very large N, the top sector dominates the whole

Higgs effective potential. This maximizes the symmetry
breaking, with the minimum of VeffðhÞ presumably occur-
ring for sinð2h=fÞ ¼ 1 in Eq. (4.25). Phenomenologically,
this is not allowed [4,8]. The hope is that for N ¼ 4,
electroweak symmetry breaking with a phenomenologi-
cally acceptable value of h=f takes place. Only the lattice
can address this question quantitatively.
In order to couple the SM fermions to the hypercolor

theory, an extended hypercolor sector is necessary. While
the detailed structure of the EHC theory is very important
for phenomenology, the lattice setup is largely blind to
these details. At energy scales much below ΛEHC, the
coupling of SM and hypercolor fermions is summarized by
the four-fermion Lagrangian LEHC of Eq. (4.2). Much like
the familiar treatment of hadronic matrix elements of the
electroweak interactions, LEHC is not taken as part of the
lattice action. Instead, one evaluates the hypercolor-theory
correlation functions that arise from working to leading
order in the four-fermion Lagrangian LEHC.
In the most constrained case, which is the one we have

worked out in detail in this paper, LEHC depends on only
two couplings λ1;2. A lattice computation can then in
principle determine their product λ1λ2, together with the
hypercolor scale λHC, in terms of the experimental values of
the top Yukawa coupling and the Higgs expectation value,
up to a fourfold ambiguity. In a less-constrained setup, a
similar lattice computation would supply two constraints
among the parameters of the hypercolor theory.
The parameters λ1;2 havemass dimension two. According

to naive dimensional analysis, their values would be of order
ðΛHC=ΛEHCÞ2, making the top Yukawa coupling of order
y∼ ðΛHC=ΛEHCÞ4. For comparison, we recall that in classic
(walking) technicolor, the topYukawa coupling is naively of
order ðΛTC=ΛETCÞ2, where ΛTC and ΛETC are the scales of
the technicolor and of the extended technicolor theories.
Naively, the case for a partially composite top seems even
worse than for technicolor. On the other hand, it might be
that the experimental constraints allow ΛEHC to be much
closer to ΛHC than ΛETC to ΛTC. We also found that the
hyperbaryons that couple to the top quark in LEHC might
be relatively light, as suggested by large-N counting, and
this helps boost the value of the top Yukawa y as well. The
key reason for the possible lightness of these hyper-
baryons is that they are composed of hyperfermions in19For a review, see [24].
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two different irreps of the gauge group. As far as large-N
counting goes, these hyperbaryons behave more like
mesons than like baryons in the usual large-N limit
of QCD.
Yet another feature that may be needed for a phenom-

enologically viable partial-compositeness model is large
anomalous dimensions for the hyperbaryon fields [4]. It
should be possible to study on the lattice whether or not this
is the case.
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APPENDIX: CONVENTIONS

We choose our γ matrices to be Hermitian, and we use
the chiral representation

γk ¼
�

0 iσk
−iσk 0

�
; γ4 ¼

�
0 1

1 0

�
; ðA1Þ

with σk, k ¼ 1; 2; 3, the Pauli matrices. The chiral projec-
tors are PR ¼ ð1þ γ5Þ=2, PL ¼ ð1 − γ5Þ=2, where

γ5 ¼ −γ1γ2γ3γ4 ¼
�
1 0

0 −1

�
: ðA2Þ

The charge-conjugation matrix occurring in Eq. (2.2) is
C ¼ −γ2γ4. It satisfies

Cγμ ¼ −γTμC; ðA3Þ

and C−1 ¼ C† ¼ CT ¼ −C.
For the invariant SUð2Þ subgroups of SOð4Þ we may

choose the generators as the following tensor products of
Pauli matrices and the 2× 2 identity matrix I,

2T1
L ¼ σ2×σ1;

2T2
L ¼ −σ2×σ3;

2T3
L ¼ I×σ2;

2T1
R ¼ σ1×σ2;

2T2
R ¼ σ2×I;

2T3
R ¼ σ3×σ2: ðA4Þ

Identifying SOð4Þ with the upper-left 4×4 block, the
SUð2ÞL generators and the third SUð2ÞR generator
(which is used to construct the hypercharge Y) are given
explicitly by

T1
L ¼ i

2

0
BBBBBB@

0 0 0 −1 0

0 0 −1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

1
CCCCCCA
; T2

L ¼ i
2

0
BBBBBB@

0 0 1 0 0

0 0 0 −1 0

−1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

1
CCCCCCA
;

T3
L ¼ i

2

0
BBBBBB@

0 −1 0 0 0

1 0 0 0 0

0 0 0 −1 0

0 0 1 0 0

0 0 0 0 0

1
CCCCCCA
; T3

R ¼ i
2

0
BBBBBB@

0 −1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 0

1
CCCCCCA
: ðA5Þ
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