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We investigate the low-lying eigenmodes of the Dirac matrix with the aim to gain more insight into the
temperature dependence of the anomalous UAð1Þ symmetry in QCD. We use the overlap operator to probe
dynamical QCD configurations generated with (2þ 1)-flavors of highly improved staggered quarks. We
find no evidence of a gap opening up in the infrared region of the eigenvalue spectrum even at 1.5Tc, Tc

being the chiral crossover temperature. Instead, we observe an accumulation of near-zero eigenmodes. We
argue that these near-zero eigenmodes are primarily responsible for the anomalous breaking of the axial
symmetry still being effective. At 1.5Tc, these near-zero eigenmodes remain localized and their distribution
is consistent with the dilute instanton gas picture. At this temperature, the average size of the instantons is
0.223ð8Þ fm and their density is 0.147ð7Þ fm−4.
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I. INTRODUCTION

Owing to the near-degeneracy and smallness of the up
and down quark masses, the quantum chromodynamics
(QCD) Lagrangian possesses an approximate ULð2Þ ×
URð2Þ≡ SULð2Þ × SURð2Þ × UVð1Þ ×UAð1Þ symmetry.
The fact that we do not see parity doublet hadrons in
our world implies that the SULð2Þ × SURð2Þ chiral sym-
metry is spontaneously broken down to the SUVð2Þ isospin
symmetry of the vacuum. It is well known from first
principle lattice QCD studies that above the chiral cross-
over [1–4] temperature of Tc ¼ 154ð9Þ MeV [5] the chiral
symmetry of QCD gets restored.
On the other hand, the axial UAð1Þ symmetry of the

QCD Lagrangian is always broken due to the presence of
quantum fluctuations. This gives rise to the well-known
anomalous nonconservation of the axial current [6,7]. The
explicit violation of the global UAð1Þ symmetry is due to
the presence of topologically nontrivial gauge field con-
figurations [8]. Although UAð1Þ is not an exact symmetry
of QCD, the magnitude of its breaking near Tc is expected
to influence the nature of the chiral phase transition in the
limit of two vanishingly small light quark masses.
Perturbative renormalization group studies of model quan-
tum field theories with the same global symmetries as QCD
suggest that if UAð1Þ is not effectively restored at Tc, the
chiral phase transition is of second order, belonging to the
3-dimensional Oð4Þ universality class [9–14]. If the axial
symmetry gets effectively restored at T ∼ Tc, the chiral
phase transition can be either of first order [9,10] or of
second order with the symmetry breaking pattern ULð2Þ ×
URð2Þ → UVð2Þ [11,12]. In order to resolve the nature of

the phase transition of QCD with two light quark flavors it
is thus important to understand the significance of the
anomalous UAð1Þ in the high temperature phase.
At low temperatures, UAð1Þ is also broken explicitly by

the presence of a nonvanishing vacuum chiral condensate.
In the chirally symmetric phase, the vacuum condensate
vanishes and the mechanism of global UAð1Þ breaking can
be studied directly. The microscopic mechanism for UAð1Þ
breaking in the chirally symmetric phase of QCD presents
an intriguing puzzle. The chiral condensate, which is the
order parameter related to the restoration of chiral sym-
metry in QCD with massless quarks, can be expressed in
terms of the eigenvalues λ of the Dirac operator as

hψ̄ψi →
V→∞

Z
∞

0

dλ
2mρðλ; mÞ
λ2 þm2

; ð1Þ

where ρðλ; mÞ is the eigenvalue density. On the other hand,
UAð1Þ is not a global symmetry, so one cannot define a
corresponding order parameter. For two light quark flavors,
an approximate restoration of UAð1Þ would result in the
degeneracy of the correlation functions of the pion and the
scalar iso-triplet delta meson [15]. Specifically, the differ-
ence of the integrated correlation functions of these mesons
in terms of the eigenvalues of the Dirac operator is

χπ − χδ ¼
Z

d4x½hiπþðxÞiπ−ð0Þi − hδþðxÞδ−ð0Þi�

→
V→∞

Z
∞

0

dλ
4m2ρðλ; mÞ
ðλ2 þm2Þ2 : ð2Þ

In the limit of vanishingly small quark mass m and infinite
volume V, the chiral condensate is proportional to the
density of near-zero eigenvalues in accordance with the
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Banks-Casher relation [16], hψ̄ψi ¼ πρð0; 0Þ. For T ≳ Tc,
chiral symmetry gets restored and the chiral order param-
eter hψ̄ψi vanishes implying that ρð0; 0Þ must also vanish.
Motivated by the free theory limit at finite temperature,
where the spectral density ρðλ; 0Þ has a gap up to the lowest
fermion Matsubara frequency, 0 ≤ λ < πT, one possibility
by which chiral symmetry restoration may occur in the
chiral limit is through the generation of a gap in the infrared
part of the eigenvalue spectrum. Such a scenario, however,
would also lead to the vanishing of χπ − χδ, i.e. to the
effective restoration of both chiral and UAð1Þ symmetry.
In fact, more rigorous calculations based on chiral Ward

identities for up to 4-point correlation functions show [17]
that if the eigenvalue density for QCD with two light quark
flavors is an analytic function in m2, it must have the form
limm→0ρðλ; mÞ ∼ λ3 þOðλ4Þ in the chirally symmetric
phase, similar to that for the free theory at T ¼ 0. It was
further shown [17] that, in this case all correlation functions
up to 6-point which are related through UAð1Þ symmetry
will be degenerate, making the anomalous breaking of
UAð1Þ invisible in these correlation functions. Thus, if
UAð1Þ breaking is finite through the nondegeneracy of the
2-point correlation functions such as χπ − χδ, the eigen-
value density must be nonanalytic inm2. Two such possible
forms of the infrared eigenvalue spectrum, compatible with
hψ̄ψi ¼ 0 but χπ − χδ ≠ 0 form → 0, have been speculated
in [18], namely ρðλ; mÞ ∼m2δðλÞ and ρðλ; mÞ ∼ jmj. The
functional form of the infrared eigenvalue density in the
chirally symmetric phase of QCD remains an open and
interesting theoretical question.
The global UAð1Þ breaking at T ¼ 0 is intimately

connected to the presence of topologically nontrivial
configurations of the QCD gauge fields [8]. It is well
known that localized topological structures like instantons
give rise to zero modes of the Dirac operator and the
corresponding wave functions remain localized [19]. The
occurrence of near-zero modes can possibly also be traced
back to the underlying topology of the gauge field
configurations. For example, the particular form of the
eigenvalue density of the Dirac operator ρðλ; mÞ ∼m2δðλÞ
in the infrared can be motivated from the fact that a small
shift from zero of the near-zero modes resulting from the
weak interactions among widely separated instantons and
anti-instantons can be neglected, leading to a δðλÞ behavior.
The m2 factor naturally arises from the two light fermion
determinants. At high enough temperatures, it has been
shown that the dilute gas of instantons is a reasonable
description of pure gauge theory [20,21]. Within this
approximation the instanton density is suppressed with
decreasing value of the gauge coupling and eventually
vanishes when T → ∞ [20]. This dilute gas model is
expected to be a good description of the high temperature
phase of QCD as well [20]. The UAð1Þ breaking can be
explained within such a model only for small enough
values of the gauge coupling, i.e. at sufficiently high

temperature and for small sizes of the instantons. It is
however unclear whether such a mechanism can explain the
UAð1Þ breaking for the more relevant temperature range
from Tc to a few times Tc. Near Tc the instantons and
antiinstantons may not be widely separated and weakly
interacting, as described by the instanton liquid model
(ILM) [22]. In this model, chiral symmetry breaking arises
due to the fermion modes associated with strongly inter-
acting and overlapping instantons. As the temperature is
increased, it was proposed that there is a transition from a
liquid phase of disordered instantons and anti-instantons to
a phase of instanton–anti-instanton molecules [23,24]. The
chiral symmetry restoration at finite temperature may not
necessarily be due to the suppression of the instantons [25]
but rather due to the temperature dependence of the fermion
determinant, which favors polarized instanton–anti-instan-
ton molecules. Thus, it is entirely possible that for T ≲
Tc ≲ 2Tc other nonperturbative mechanisms responsible
for UAð1Þ breaking may generate an accumulation of near-
zero modes leading to a more complex form of the infrared
eigenvalue spectrum [26].
Since topological structures in QCD are inherently

nonperturbative, lattice QCD techniques are ideally suited
to address issues related to the UAð1Þ. Anomalous UAð1Þ
breaking at high temperature was studied on the lattice by
looking at the nondegeneracy of the 2 point correlation
functions χπ − χδ using staggered fermion formulation,
which preserves a remnant of the continuum chiral sym-
metry on the lattice, in [27]; more recently with an
improved staggered fermion formulation in [28] and with
OðaÞ improved Wilson fermions in [29]. In all the cases, it
was observed that UAð1Þ was not effectively restored at
T ≳ Tc. Recently, this issue was revisited in a study of the
infrared eigenvalue spectrum of highly improved staggered
quarks (HISQ) [30] and a similar conclusion was reached
[31]. However, for staggered fermions the connection
between topology and fermion zero modes and hence
the reproduction of the index theorem is a very subtle
issue [32]. Attempts to study this problem with fermions
with exact chiral symmetry on the lattice have produced
juxtaposing results. Studies with domain wall fermions
[18,33] but with a heavier than physical pion mass of
200 MeV support the scenario that UAð1Þ remains broken
for T ≳ Tc. The eigenvalue density of the Dirac operator for
T ≲ 1.2Tc has a small peak structure in the infrared
favoring the form of ρðλ; mÞ ∼m2δðλÞ, which can largely
account for the origin of the axial anomaly. However, even
in these studies a clear separation of the zero and near-zero
modes was not possible due to moderate residual chiral
symmetry breaking effects induced by the mixing of the left
and right handed fermions along the finite fifth dimension.
On the other hand, another independent preliminary study
with so-called optimal domain wall fermions and physical
pion mass reported effective restoration of UAð1Þ above Tc
[34]. A study using overlap fermions restricted to the trivial
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topological sector of QCD on relatively small volumes also
suggests that UAð1Þ is effectively restored at T ∼ Tc [35].
However, it is well known that simulations with fixed
topology are more sensitive to finite volume effects and, at
present, it is difficult to perform calculations with larger
lattice volumes or for fluctuating topology in the case of
overlap fermions due to prohibitively large computational
costs. Recently reweighting domain wall fermion eigens-
pectrum to obtain effectively the eigenspectrum of the
overlap fermions have been performed for small lattice
volumes [36], which suggest effective restoration of UAð1Þ
above Tc.
Measuring the underlying topology of the gauge fields on

the lattice requires careful analysis. The gauge fields are
defined as links connecting the adjacent lattice sites, which
can be continuously deformed to unity. To study localized
topological structures one has to remove the ultraviolet
fluctuations of the fields or approach successively to the
minimum of the classical action. The latter is done by
cooling the gauge configurations [37]. The ultraviolet
fluctuations can be reduced using smearing [38], which
involves replacing each gauge link by an average over the
neighboring links. It is then possible to measure the
topological charge on the lattice using the discretized version
of the integrated F ~F operator. The most popularly used
smearing technique, known as the hypercubic (HYP) smear-
ing [39], has been shown to provide a good estimate of the
topological susceptibility. However, successive smearing
may lead to small instantons being undetected and a change
in the large scale structure of the gauge fields. Alternatively,
one can make use of the index theorem [40], which relates
the difference between the number of right and left-handed
fermion zero modes to the topological charge of the gauge
fields. The advantage of this method is that it naturally
connects topological structures and the eigenmodes of the
Dirac operator, which are global quantities and depend on
the gauge links of the entire lattice.
In the present work we address the temperature depend-

ence of UAð1Þ and probable microscopic mechanisms
responsible for its breaking in the high temperature phase
of QCD by studying the infrared eigenmodes of overlap
fermions [41] on the background of dynamical (2þ 1)
flavors of HISQ gauge field configurations with nearly
physical fermion masses and large volumes. This HISQ
discretization scheme has been used for extensive studies
on QCD thermodynamics [5,42] and has small discretiza-
tion errors, resulting in the least taste symmetry breaking
among all commonly used staggered fermion discretiza-
tions. Preliminary studies with HISQ fermions [43] also
provide hints that in the continuum limit for two vanish-
ingly small light quark masses, the QCD chiral transition
may belong to the 3-dimensional Oð4Þ universality class.
The issues about the lack of an index theorem of the HISQ
is overcome by using the Overlap Dirac fermions to probe
the topology of the HISQ gauge configurations. Overlap

Dirac fermions circumvent the Nielsen-Ninomiya No-go
theorem [44] by sacrificing the ultra-locality criterion,
preserve an exact chiral symmetry [41] and an exact index
theorem [45] and reproduce the correct anomaly [46] even
at nonzero lattice spacing. Employing the index theorem
for the overlap fermions, the topological structures in SU(2)
[21] as well as SU(3) pure gauge theories [21,47] have been
studied earlier. However, the relationship between chiral
and UAð1Þ symmetry also cannot be addressed within the
framework of pure gauge theory and the presence of light
dynamical fermions is necessary to address this question.
Furthermore, it is a priori not evident whether the same
dilute instanton gas picture also applies for QCD with near-
physical, light dynamical fermions as the presence of light
fermions would lead to interactions between instantons and
induce anomaly effects.
This work is structured as follows: In Sec. II we provide

all necessary computational details pertaining to this work.
In Sec. III A we check the distribution of the topological
chargemeasured by using the exact index theorem of overlap
fermions. In Sec. III B we present and discuss our results on
the eigenvalue distribution of overlap fermions on the
dynamical HISQ configurations. The contribution of the
low-lying eigenmodes towards UAð1Þ breaking is discussed
in Sec. III C, while Sec. III D contains our results about the
functional form of the eigenvalue density and its implications
for UAð1Þ breaking. In Sec. III E we verify the robustness of
the occurrence of near-zero modes. From Sec. III F to
Sec. III G we discuss various different properties of the
zero and near-zero eigenmodes. Finally, in Sec. IV we sum-
marize and discuss the implications of this work. Preliminary
results of this work were previously presented in [48].

II. COMPUTATIONAL DETAILS

The set of (2þ 1)-flavor HISQ configurations used in
this work was generated by the HotQCD collaboration [5].
Two lattice sizes were used in this study, 243 × 6 and
323 × 8. The strange quark mass ms is set to its physical
value and the light quark mass in all these sets of
configurations are chosen to be ml ¼ ms=20, which cor-
responds to a Goldstone pion mass of mπ ¼ 160 MeV in
the continuum. We studied 5 sets of configurations, two at
T ∼ Tc, two at T ∼ 1.2Tc and one at T ∼ 1.5Tc. Here, Tc ¼
154ð9Þ MeV [5] is the chiral crossover temperature in the
continuum limit. Near Tc, in addition, we studied configu-
rations generated by the Bielefeld-BNL collaboration [43]
with lattice size 323 × 6 and a light quark mass of
ml ¼ ms=40, which corresponds to mπ ¼ 110 MeV.
This was to study whether the UAð1Þ breaking survives
as the chiral limit is approached. We considered 90–160
configurations of each set, typically separated by 100
trajectories, and computed the eigenvalues of the overlap
Dirac operator on them. The lattice sizes, strange to light
quark mass ratio, temperatures and relevant statistics are
shown in Table I.

MICROSCOPIC ORIGIN OF UAð1Þ SYMMETRY … PHYSICAL REVIEW D 91, 094504 (2015)

094504-3



We probe the low-lying eigenmodes of these HISQ
gauge ensembles through the use of the massless overlap
Dirac fermion operator

Dov ¼ M½1þ γ5sgn½γ5DWð−MÞ��; ð3Þ
where DW is the standard Wilson Dirac operator with the
parameter 0 < M < 2.
For the implementation of the sign function in the

overlap operator, we computed the lowest 20 eigenvectors
ofD†

WDW using the Kalkreuter-Simma (KS) Ritz algorithm
[49]. The sign function was computed for these low modes
explicitly, while for the higher modes it was approximated
by a Zolotarev rational function. The number of terms in
the Zolotarev function was kept to be 15. The overlap
operator satisfies the Ginsparg-Wilson (GW) relation with a
deviation of no more than 10−7 at low temperatures and
10−10 at high temperatures. The square of the sign function
deviated from identity by about 10−7-10−9.
For each temperature, 50 lowest eigenvalues of D†

ovDov
were computed using the KS algorithm. The zero modes of
D†

ovDov come with chiralities �1. The nonzero eigenvalues
come in degenerate pairs with chiralities having opposite
signs but equal magnitudes, which is usually different from
unity. These features of the spectrum allow us to distinguish
between the near and exact zero modes within a few
iterations of the KS algorithm. The KS algorithm was run
until the relative error on the nonzero eigenvalues of
D†

ovDov were estimated to be lower than 10−4 on average
and the separation between zero and nonzero modes was
clearly seen. In most cases, the number of eigenvalues was
later increased by computing the eigenvalues of PDovP,
where P is the projection to right-handed or left-handed
modes. This projected operator has the advantage that it
only takes half the time to be applied and each nonzero
eigenvector can be related to a pair of eigenvectors of
D†

ovDov, further reducing computation time and memory
requirement. However, the algorithm becomes quite unsta-
ble if the subspace that P projects onto contains zero modes
and can only be used on the opposite chiralities after
identifying the zero modes.
For some applications, the eigenvectors of Dov were

required and not only those of D†
ovDov. Each degenerate

pair of nonzero eigenvectors of the squared operator spans a
two-dimensional space that also contains two eigenvectors
of Dov, which are related to each other by an application of
γ5 and have eigenvalues that are complex conjugates of
each other. These eigenvectors could be obtained by
applying an appropriate unitary transformation to each
of the original pairs.
We also checked the optimal value of the parameter M

used in the construction of the overlap operator. From
partially quenched studies it is known that for certain
choices of M, the corresponding D†

WDW can have very
small eigenvalues, leading to the presence of spurious zero
modes in the overlap operator [50]. We verified that for
configurations without zero modes the choice of M did not
affect the eigenvalues significantly within our precision.
Moreover, for configurations with zero modes we chose M
such that the sign function and the GW relation were
determined with highest accuracy, ensuring the best imple-
mentation of the overlap operator. Except for a few cases,
especially near Tc, we chose M ¼ 1.8.
For the 323 × 6 lattice with a light quark mass of

ml ¼ ms=40, the gauge configurations were rough and
the convergence of the KS for D†

WDW was slow, leading to
imprecise estimates of the GW relation and the sign
function. In this case, we did two levels of HYP smearing
to smoothen out the ultraviolet fluctuations. This enabled
us to achieve a more precise estimation of the overlap sign
function, similar to the precision achieved for the other
ensembles. The effects of the smearing are further
discussed in Sec. III E.

III. RESULTS

A. Topological charge distributions

The topological charge Q was measured by counting
the number of zero-modes of the overlap operator and
determining their chiralities,

Q ¼ nþ − n−; ð4Þ
where nþ (n−) is the number of zero modes with chirality
þ1 (−1). Since the underlying HISQ gauge configurations
were generated at zero strong CP violating angle θ, at any
temperature all the topological sectors should be spanned.
However, the configurations may have been trapped in one
topological sector and the autocorrelation times in such
cases may be large. To avoid autocorrelation effects we
usually chose the configurations to be separated by 100
Rational Hybrid Monte-Carlo trajectories. The time histor-
ies of the topological charge are shown in Fig. 1. It is
evident that the autocorrelation effects are under control.
The distribution is ergodic enough and on average hQi≃ 0,
for all temperatures. This gives us confidence that the
statistics is sufficient in our present study. Moreover, we
also observe many configurations with jQj ≥ 1 in all
studied ensembles. In fact, even at 1.5Tc more than a third

TABLE I. Lattice size (N3
σ × Nτ), mass ratio (ml=ms), temper-

ature (T), number of configurations (N) and number of eigen-
values that were computed per configuration (Nλ) for each
ensemble.

N3
σ × Nτ ml=ms T [MeV] N Nλ

243 × 6 1=20 162.3 120 200
323 × 6 1=40 162.3 90 400
323 × 8 1=20 165.6 120 200
243 × 6 1=20 199.0 100 100
323 × 8 1=20 196.0 100 100
323 × 8 1=20 237.1 160 50
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of the total number of configurations have jQj ¼ 1, con-
firming the importance of the Q ≠ 0 configurations.

B. Eigenvalue spectra

In this section we show the eigenvalue density of the
overlap operator at three temperatures—near Tc, at 1.2Tc
and at a yet higher temperature of 1.5Tc. The overlap
fermion matrix in Eq. (3) is a normal matrix. In the complex
plane, its dimensionless eigenvalues, ~λ, lie on a circle
centered at M and with a radius M, obeying
j~λ −Mj2 ¼ M2. The eigenvalues measured in our study
lie on the circle very close to the origin with a very small
real part. Hence, we always plot the eigenvalue density as a
function of λ, where aλ ¼ Im~λ. On the lattice, the eigen-
value density is defined as

a3ρðλÞ ¼ 1

N3
σNτ

X
i

δðaλ − aλiÞ; ð5Þ

where the sum only includes values on the left part of the
semicircle with Re~λ < M, and excludes values near ~λ ¼
2M even though their imaginary part would also be small.
The eigenvalue distribution at three different temper-

atures is shown in Figs. 2,3 and 4. The spectrum is
truncated at some large eigenvalue since we measure only
a finite number of them. We indicate the point beyond
which the spectrum is not trustworthy anymore by a vertical
line in red in each of the plots. It is estimated by first taking
the highest computed eigenvalue of each configuration and
then taking the minimum of these values over all the
analyzed configurations.

FIG. 1 (color online). Time histories of the topological charge,
calculated from the zero modes of the overlap Dirac operator, for
the HISQ configurations at T ∼ Tc, T ∼ 1.2Tc and T ∼ 1.5Tc.
Configurations belonging to the same production stream are
connected with lines.

FIG. 2 (color online). The eigenvalue density of the overlap
operator on 323 × 8, 243 × 6 and 323 × 6 HISQ configurations
near Tc. Only nonzero modes are included. The vertical line
denotes the range of validity due to the finite number of computed
eigenvalues.
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As we emphasized earlier, the KS algorithm allowed us
to distinguish the zero modes from the near-zero modes
using the chirality properties of the corresponding eigen-
vectors. In general, the eigenvalue distribution has three
distinct features—the zero mode peak, a near-zero mode
accumulation and the bulk eigenvalue region. The low-
mode structure seen in the overlap eigenvalue spectrum is
more pronounced than what has been found in the HISQ
eigenvalue spectrum calculated on similar lattice volumes
[31]. This may be due to the fact that for the staggered
fermion operator the index theorem is very subtle. The
differences are expected to disappear in the continuum limit
which needs to be checked in future work. Near Tc, the first
bin contains a large contribution from zero modes which
are omitted in Fig. 2 to focus on the infrared physics of only
the near-zero eigenvalues. At this temperature, we do not
observe any gap in the infrared part of the eigenvalue
spectrum. The near-zero modes and the bulk modes appear
to overlap significantly and the near-zero modes tend to
develop a peak towards the infrared region. This peak
becomes sharper as the light sea quark mass is lowered
from ml ¼ ms=20 to ml ¼ ms=40 at fixed lattice spacing
1=6T. The lattice volume has been increased as one goes
fromml ¼ ms=20 toms=40 such that Lmπ is kept fixed. At
ml ¼ ms=20, the aspect ratio is Ns=Nτ ¼ 4, which is

sufficient for calculating many thermodynamic quantities
close to the thermodynamic limit. However at present, no
systematic analysis of the volume effects on eigenvalue
spectrum has been performed. We cannot explicitly dis-
tinguish the finite volume effect from the chiral effect in
shaping the near-zero peak. The near-zero peak also
becomes sharper when we go to a finer lattice, from Nτ ¼
6 to Nτ ¼ 8 at a fixed pion mass of 160 MeV. This trend
suggests that the near-zero mode accumulations will remain
as the chiral and the continuum limits are approached.
At temperatures 1.2Tc and 1.5Tc, both the zero modes

denoted by the red bar and the near-zero and bulk modes
are shown in Fig. 3 and Fig. 4. The separation between the
near-zero mode accumulation and the bulk eigenvalue
region becomes even more evident with increasing temper-
ature. At 1.2Tc, we study the eigenvalue spectrum at two
different lattice spacings to estimate whether the infrared
part of the spectrum is strongly affected by the lattice cutoff
effects at higher temperatures. Keeping the physical bin
size the same in units of λ=T for comparison, we observe
that the infrared region of the eigenvalue density remains
practically unchanged when the lattice spacing goes from
1=6T to 1=8T at a fixed temperature T. This gives us
confidence that the near-zero modes are not due to

FIG. 3 (color online). The eigenvalue density for HISQ con-
figurations using the overlap operator at 1.2Tc. The lattice sizes
are 323 × 8 and 243 × 6, respectively. The red line marks the
range of validity.

FIG. 4 (color online). The eigenvalue density for 323 × 8 HISQ
configurations using the overlap operator for 1.5 Tc for all values
of Q and also separately for the Q ¼ 0 sector. The red line marks
the range of validity.
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dislocations of the gauge fields. A more detailed study
about the lattice artifacts is given in Sec. III D.
The number of zero and near-zero modes both decrease

as the temperature is increased to 1.5Tc as shown in Fig. 4.
There is a small peak of near-zero modes, while the number
of bulk eigenvalues starts to rise very slowly and only gives
a significant contribution beyond λ0 ≃ 0.4T. This is rem-
iniscent of some kind of band edge separating the two
different regimes of eigenvalues, which is studied in detail
in Sec. III G. Even at this temperature we do not observe a
gap in the infrared sector of the eigenvalue spectrum. The
presence of these near-zero modes is not due to the fact that
we are also sampling configurations belonging to nonzero
topological sectors in our study. This is evident from the
lower panel of Fig. 4, where we show the eigenvalue
distribution of only those configurations with topological
charge Q ¼ 0 at 1.5Tc. The presence of near-zero modes is
also observed for this particular subset of configurations.

C. Near-zero eigenmodes and axial symmetry breaking

As introduced in Sec. I, ω≡ χπ − χδ as defined in Eq. (2)
is a measure that quantifies UAð1Þ breaking. Through a
chiral Ward identity it can also be obtained

ω ¼ hψ̄ψi
m

− χconn ð6Þ

from the chiral condensate hψ̄ψi ¼ T
V htrðD−1

m ∂mDmÞi
and the connected chiral susceptibility χconn ¼
T
V h∂mtrðD−1

m ∂mDmÞi, where Dm ¼Dovð1−am=2MÞþam
is the Dirac operator for overlap quarks with a (valence)
quark mass m.
Thus, in terms of the eigenvalues of the overlap operator

a2ω¼ 1

N3
σNτ

� hjQji
ðamÞ2

þ
�X

~λ≠0

2ðamÞ2ð4M2 − j~λj2Þ2
½j~λj2ð4M2 − ðamÞ2Þþ 4ðamÞ2M2�2

��
: ð7Þ

The first term is the contribution from the zero modes
which vanishes in the thermodynamic limit.
Thus, having determined the low-lying eigenvalues of

the overlap operator, ω can be computed from them.
However, to explore the physics of the underlying HISQ
configurations the overlap valence quark mass that enters
Eq. (7) has to be tuned against some physical quantity
measured on the same gauge configurations. In the present
work we adopt a very simple strategy: we roughly tune the
strange valence quark mass, ms, and then study ω as a
function of the light valence quark mass within a range of
ml ¼ ms=20 to ml ¼ ms=2. To tune the strange valence
quark mass we use the renormalized difference of the
pseudo-scalar (ηss̄) and the (connected) scalar susceptibil-
ities in the strange quark sector, m2

sωs=T4. We calculated

this renormalized quantity using strange valence overlap
fermions and matched it with the same quantity calculated
independently for the strange HISQ sea quarks. For the
overlap fermions this quantity was estimated in two parts.
We first calculated this quantity from the predetermined
low-lying eigenvalues using Eq. (7), and then added the
contribution of higher eigenvalues by performing inver-
sions on the eigenspace orthogonal to the low-lying
eigenmodes using random source vectors. The result of
the strange valence quark mass tuning near Tc is shown in
Fig. 5. In order to monitor finite volume effects, we
considered the exact zero modes separately and do not
observe a significant contribution from them to this
quantity. The tuned masses obtained with and without
the zero modes differ by about 5%.
In Fig. 6, we show a renormalized measure of UAð1Þ

breaking, namely mlmsω=T4, for a range of the light
valence quark mass between ms=20 and ms=2.
Assuming a Breit-Wigner distribution for the near-zero
mode peak to model the δðλÞ like distribution discussed in
the introduction, i.e. ρðλÞ=T3 ¼ ρ0A=ðA2 þ λ2Þ, the con-
tributions of the near-zero modes in this renormalized
measure of UAð1Þ breaking can be characterized as

mlms

T4
ω ∝ ρ0ms

Aþ 2ml

ðAþmlÞ2
: ð8Þ

In our partially quenched setup, where only the valence
light quark massml is varied, this quantity has a finite value
in the chiral limit ml → 0. In a full dynamical setup, its
behavior will be governed by the dependence of A and ρ0
on the light sea quark mass. The simplest case of both A and
ρ0 being proportional to the light sea quark mass, which is
compatible with the trends discussed in Sec. III D, will also
give a finite value and should be approximated in a partially
quenched study. For light valence quark masses near to or

FIG. 5 (color online). The tuning of the strange valence quark
mass for overlap fermions on Nτ ¼ 6 (blue) and Nτ ¼ 8 (red)
lattices near Tc. The horizontal lines mark the results for
m2

sωs=T4 [cf. Eq. (6)] independently obtained for the HISQ
sea fermions. Filled (empty) points denote the overlap result with
(without) the zero mode contribution.
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smaller than the smallest near-zero eigenvalues, the com-
puted quantity will approach zero, which is visible for the
lowest masses near Tc. This is a finite volume effect in the
sense that a larger volume will sample more eigenvalues in
the near-zero mode region, which reduces the magnitude of
the smallest eigenvalue and pushes this effect toward zero.
Beyond that, we observe a smooth dependence on ml=ms
that is compatible with the Breit-Wigner ansatz and which
is independent of the lattice spacing. It is also evident from
Fig. 6 that the contribution of the near-zero modes to ω is
substantially larger than that from the bulk modes. When
going from T ∼ Tc to T ∼ 1.2Tc, this quantity does not
decrease significantly, supporting our conclusion that
UAð1Þ is not effectively restored simultaneously with the
chiral symmetry.

D. The functional form of the eigenspectra

In order to understand the general functional form of the
eigenvalue density and in particular the near-zero region,
we make a fit ansatz consisting of a Breit-Wigner peak for

the near-zero modes and a polynomial behavior for the bulk
part of the spectrum of the form,

ρðλÞ
T3

¼ ρ0A
A2 þ λ2

þ cλα: ð9Þ

We address three issues in this section. First, a general idea
about the dependence of the near-zero mode peak on the
sea quark mass is necessary to understand what happens in
the chiral limit. Second, it is important to check the
dependence of the near-zero modes on the lattice cutoff
to establish that these are physical and not mere lattice
artifacts. Finally, the leading exponent that characterizes the
rise of the bulk also provides information regarding the
restoration of UAð1Þ, hence its dependence on the temper-
ature and lattice cutoff needs to be studied.
The fit to the eigenvalue spectrum near Tc for different

sea quark masses is shown in Fig. 7. The error bars for each
bin have been determined by a jackknife procedure over the
set of gauge configurations. The parameter A, characteriz-
ing the width of the near-zero mode peak, falls from
0.35ð4ÞT to 0.151ð7ÞT when going from ml ¼ ms=20 to
ms=40 and the prefactor ρ0, indirectly controlling the height
of the peak, also goes down from 0.28ð3ÞT to 0.191ð7ÞT.
This generally supports the picture of a delta function like
peak forming in the chiral limit, with a decreasing peak
height. However, as far as one can tell from two data points,
the dependence of ρ0 does not seem to be quadratic in the
light sea quark mass near Tc, arguing against the dilute
instanton gas picture as a good description of QCD at this
temperature.
To examine cutoff effects one needs to compare a

renormalized version of the eigenvalue density at different
lattice spacings. One way to renormalize the eigenvalues is
to scale them by the previously tuned strange quark mass.
The corresponding renormalized eigenvalue density is then
msρðλÞ since it leaves the quantity mshψ̄ψi unchanged
under renormalization. We therefore take the same ansatz

FIG. 6 (color online). A renormalized measure of UAð1Þ
breaking for a range of valence light quark masses, ms=20 ≤
ml ≤ ms=2 for ensembles with different Nτ at T ∼ Tc and
T ∼ 1.2Tc. The filled points denote the contribution from near-
zero modes (λ < λ0), while the empty points were calculated only
from the bulk modes (λ > λ0).
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FIG. 7 (color online). Eigenvalue distribution at T ∼ Tc for
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as in Eq. (9) with λ → λ=ms and the density replaced by its
renormalized definition msρðλÞ=T4. Fits to the renormal-
ized spectrum in dimensionless units at two different
temperatures, Tc and 1.2Tc, are shown in Fig. 8. Taking
a closer look at the near-zero mode peak, it is evident that
the accumulation of near-zero modes is almost independent
of the lattice spacing and is unlikely to be just a lattice
artifact.
Finally, we discuss the exponent α of the characteristic λα

rise of the bulk eigenvalues. As mentioned in Sec. I, under
the assumption of analyticity of the eigenvalue density in
m2, detailed analytical calculations based on up to 4-point
chiral Ward identities show [17] that in the chiral symmetric
phase of QCD the leading λ dependence should be similar
to that for the free theory, i.e. limm→0 ρðλ; mÞ ∼ λ3. In such a
case, the effect of UAð1Þ breaking should be invisible in at
least up to 6-point correlation functions. In light of this, it is
interesting to characterize the rise of the bulk eigenvalues.
As shown in Fig. 7, near Tc the rise of the bulk eigenvalues
for our two Nτ ¼ 6 lattices with quark masses ml ¼ ms=20
and ml ¼ ms=40 is described by the exponents α ¼
0.92ð5Þ and α ¼ 0.98ð4Þ, respectively. A fit to the renor-
malized eigenvalue spectrum near Tc further yields 0.86(2)

for Nτ ¼ 8, see Fig. 8. Thus, near Tc a linear rise of bulk
eigenvalues is favored for both lattice spacings and quark
masses. Interestingly, chiral perturbation theory [51] and
the ILM [52] show that a contribution to ρðλÞ linear in λ,
which results in a nonvanishing connected susceptibility
χconn, is absent for two light flavors and only present for
Nf > 2. On the other hand, for staggered fermions away
from the continuum limit, taste violations lead to χconn ≠ 0
also for Nf ¼ 2 [53].
At 1.2Tc the rise of the bulk eigenvalues has a different

exponent. From Fig. 8 it is evident that α≃ 2, independent
of the lattice spacing. Note that a bulk eigenvalue density
rising quadratically with λ does not contribute to ω. A
similar linear behavior for T ∼ Tc and a quadratic rise for
T ∼ 1.2Tc of the bulk eigenvalues was also observed in the
previous study with domain wall fermions [33] with a
heavier pion mass, corroborating that the bulk rise is
independent of the sea quark mass. On the other hand,
the characteristic free theory like cubic rise of the bulk
eigenvalue density was only observed at 1.5Tc as shown
in Fig. 9. At 1.5Tc, the near-zero mode peak reduces
significantly and the separation between the bulk and the
near-zero modes is distinctly visible. Our fit ansatz for the
bulk is modified accordingly as ðλ − λ0Þα to represent this
feature, which gives a smaller χ2 per degrees of freedom
than the original ansatz in Eq. (9). The parameter α and the
goodness of fit at different temperatures are compiled in
Table II.

E. Robustness of the zero and near-zero modes

Detecting topological objects with fermion zero modes
has the advantage that by construction the zero modes
depend on all the gauge links distributed on a lattice. Still, if
the underlying gauge fields are not smooth enough, the
method might be hampered by the presence of unphysical
fermion modes localized on structures called dislocations,
which typically have a smaller classical action than
instantons. These are lattice artifacts, i.e. effects of finite
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lattice spacing, and should disappear as the continuum limit
is approached. It is therefore important to make sure that the
observed infrared fermion modes are physical and do not
solely arise as lattice artifacts. If the zero and near-zero
eigenvalues are entirely due to the presence of dislocations,
they are expected to disappear as the gauge fields are
smoothed using smearing techniques. To check this we
performed HYP smearing on the 323 × 8 configurations
with ml=ms ¼ 1=20 at 1.5Tc.
Such smoothing methods are mandatory if one wants to

compute the topological charge by means of a discretized
version of its field theoretic definition

Q ¼ 1

32π2

Z
d4xFa

μν
~Fa
μν: ð10Þ

The optimal number of smearing levels is usually chosen
such that the topological charge measured this way on the
smeared configurations has a value close to an integer. On
our present lattices it turned out that 10 levels of HYP
smearing were sufficient to give an integer value of the F ~F
operator summed over the whole lattice at 1.5Tc. On all of
these smoothed configurations we could verify that the
value of Q obtained from F ~F matched exactly with the
topological charge obtained by counting the zero modes of
the overlap operator after smearing.
In Fig. 10, we compare the histogram for the topological

charge measured by counting the fermion zero modes of
unsmeared configurations with that measured using the
purely gluonic observable F ~F on the same configurations
after smearing. Apparently, some zero modes disappear in
the course of the smearing process; yet, the comparison
indicates that the fermionic zero modes for these configu-
rations do not arise only due to gauge field dislocations and
are reflecting continuum physics.
A similar behavior is observed for the near-zero modes.

In Fig. 11, the comparison of the eigenvalue spectrum of
the overlap operator on the original unsmeared configura-
tions with the smeared ones reveals that the number of near-
zero modes is somewhat reduced by smearing but that the
near-zero mode accumulation is still present even after a

substantial amount of smearing, indicating that these are
not mere lattice artifacts like dislocations. We also found
that the typical eigenvectors associated with the near-zero
modes on a smeared configuration appear to be slightly less
localized compared to the unsmeared case, suggesting that
the reduction of the near-zero modes may be caused by the
loss of small instantons due to smearing.
Finally, as already shown in Fig. 8, near Tc as well as at

1.2Tc the comparison of the renormalized eigenvalue
spectra at two different lattice spacings, 1=6T and 1=8T,
indicates that the near-zero mode accumulation remains
nearly unchanged as the lattice spacing is reduced. One
finally needs to perform continuum extrapolation of our
results for the eigenvalue spectrum to understand whether
the near-zero modes we observe are physical or are artifacts
arising from our using the overlap operator to probe the
configurations generated with HISQ action. It is assuring
that we observe very little sensitivity of the near-zero

TABLE II. Lattice size (N3
σ × Nτ), mass ratio (ml=ms), temper-

ature (T), the exponent α characterizing the λα rise of the bulk
eigenvalues λ and the goodness of the fits performed on the
eigenvalue distribution.

N3
σ × Nτ ml=ms T [MeV] α χ2=dof

243 × 6 1=20 162.3 0.92(5) 1.32
323 × 6 1=40 162.3 0.98(4) 1.84
323 × 8 1=20 165.6 0.86(2) 0.92
243 × 6 1=20 199.0 1.9(2) 1.16
323 × 8 1=20 196.0 1.9(1) 1.21
323 × 8 1=20 237.1 3.0(4) 1.30
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FIG. 10 (color online). The distribution of the topological
charge, Q, at 1.5Tc for 323 × 8 HISQ configurations measured
from the zero modes of the overlap operator and also from the
gluonic operator F ~F on the same gauge configurations after 10
levels of HYP smearing.

FIG. 11 (color online). The eigenvalue density at 1.5Tc and
Nτ ¼ 8 before and after 10 steps of HYP smearing. The empty
boxes are obtained when including zero modes and the dashed
lines mark the ranges of validity.
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modes to the change in lattice spacing at two different
temperatures.

F. Profiles of the zero and near-zero modes
at high temperature

The fermion zero mode associated with an instanton is,
at T ¼ 0, localized in the region occupied by the instanton.
At nonzero temperature however, the compactification of
Euclidean time leads to periodic copies of instantons. Such
classical finite action solutions of the gauge fields on the
manifold R3 × S1 are known as calorons. When the
instanton size is much smaller than 1=T, the copies do
not feel the effect of the neighbors and behave like zero
temperature instantons. However, the overlap between the
instanton copies may be larger and their sizes become
comparable to 1=T. Explicit solutions are known for trivial
[54] as well as nontrivial [55,56] holonomy. In the case of
trivial holonomy it has been observed that the caloron turns
into a magnetic monopole [57] in pure gauge theory.
Calorons with nontrivial holonomy have more interesting
features with monopole substructures [58]. However, in our
studies we have not attempted to take a detailed look at the
monopoles.
In order to gain more insight into the structure of the

infrared modes in QCD, we looked at the profiles of the
zero and the near-zero modes at 1.5Tc. Examples repre-
senting the majority of configurations with topological
charge jQj ¼ 1 are shown in Figs. 12 and 13. In these
figures the density of the wave functions, ψ†ðxÞψðxÞ, is
measured along two spacetime directions, summing over
the other two directions and the internal degrees of freedom

(color and spin). We observe that the zero modes are
localized along the spatial as well as the temporal direc-
tions. In a few cases, the width of the zero modes in the
compact temporal direction is somewhat larger and the
density profile represents the overlap between the nearest
copies.
The near-zero modes typically exhibit a two-peak

structure, in the density as well as in the chirality
(ψ†ðxÞγ5ψðxÞ) profile, cf. Fig. 14. In the latter case, the
chirality contained in the two peaks is of opposite sign.
These profiles provide a strong hint toward a picture where
two zero modes with equal and opposite chiralities interact
weakly, becoming a pair of near-zero modes when properly
superposed.
The fermion zero mode ψ0ðxÞ associated with an

instanton is known analytically [19], giving a density of
the form

ψ†
0ðxÞψ0ðxÞ ¼

2ρ2

π2ðx2 þ ρ2Þ3 ; ð11Þ

where ρ is the radius of the instanton. When three of the
spacetime coordinates are integrated over, the density along
the remaining fourth coordinate, say y, becomes

fyðyÞ ¼
ρ2

2ðy2 þ ρ2Þ3=2 : ð12Þ

An estimate of the instanton size ρ can be obtained by either
finding the distance where this integrated density falls
below 1=

ffiffiffi
8

p
of its maximal value or by fitting Eq. (12) to

the measured density. When estimating the size in the
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FIG. 12 (color online). Space-time profile of a zero mode at
1.5Tc for a typical gauge configuration with Q ¼ 1.
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temporal direction, the second approach has the advantage
that it can also accommodate cases where the size of the
instanton ∼1=T and the periodic copies in the temporal
direction have noticeable overlap. This is achieved by
replacing the fit function by

P
n
k¼−n fτðτ þ k=TÞ.

At 1.5Tc, we measured the wave function density of the
zero modes along each coordinate direction for all con-
figurations with jQj ¼ 1 by summing over the other three
directions. The radii of the profiles along the x, y and z
directions, ρx, ρy and ρz, were averaged over to give a
spatial radius of ρσ ¼ 0.223ð8Þ fm, essentially independent
of which method was used. Along the temporal direction,
using the adjusted fit ansatz we obtained a radius that was
only slightly larger, namely ρτ ¼ 0.24ð1Þ fm.
In order to study the distribution of the distance between

the instanton and anti-instanton forming a pair, the lattice
points with the lowest and highest chiral density of the
corresponding near-zero modes were identified and the
distance between them was measured. The result is shown
in Fig. 15. We compare this with the expected distribution
of the separation if an instanton and an anti-instanton were
to be distributed on the lattice randomly, independent of
each other. It can be seen that the measured distribution
compares quite well with the random distribution with a
slight excess at small separations, further supporting the
picture that instantons and anti-instantons are weakly
interacting.
In a weakly interacting random ensemble of such

topological objects, the assumption of their independent
occurrence results in a Poisson distribution for the total
number n of instantons and anti-instantons,

PκðnÞ ¼ e−κκn=n!; ð13Þ

where κ is a parameter that is equal to the ensemble average
hni as well as the variance σ2 and n is obtained by counting
the number of near-zero eigenvalues below a cutoff λ0. To
fix the cutoff, we fitted Eq. (13) to the distribution of n for
different cutoffs and compared the χ2 per degree of free-
dom. The value that was closest to 1, namely 1.03, was
obtained for λ0 ¼ 0.44T. The resulting distribution is
shown in Fig. 16 together with the Poisson fit which gives
κ ¼ 4.5ð2Þ. At this cutoff, we obtained hni ¼ 4.50ð14Þ and
σ2 ¼ 4.2ð4Þ from averaging over the configurations, con-
firming that instantons and anti-instantons indeed occur
almost independently.
Taking 4.5(2) as the average total number of instantons

and anti-instantons per configuration, we obtain a density
of 0.147ð7Þ fm−4, which is much lower than the value
predicted from the strongly interacting dense ILM, 1 fm−4

[22]. However, since we are at a temperature much higher
than the chiral crossover temperature Tc, it is not surprising
that we get values consistent rather with a dilute and weakly
interacting ensemble of instantons.
Altogether, the findings described in this section are

giving support to a picture in which for sufficiently high
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FIG. 14 (color online). Space-time profile of chirality of the
same near-zero mode depicted in Fig. 13 at 1.5Tc.

FIG. 15 (color online). Distribution of distances between the
instanton and anti-instanton that couple to give rise to a near-zero
mode. The blue points show the expected distribution if the
instanton and anti-instanton were to be distributed randomly and
independently of each other on a 323 × 8 lattice.

FIG. 16 (color online). The distribution of the total number n of
zero and near-zero modes at 1.5Tc averaged over the configu-
rations and Poisson fit to the data.
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temperatures of T ≳ 1.5Tc, the infrared behavior of QCD
can be described as that of a dilute gas of instantons
and anti-instantons which are interacting weakly with
each other.

G. The localization properties of the eigenmodes

The profiles of the near-zero modes have suggested that
these are localized structures. To further quantify their
localization properties and those of the bulk modes, we
study the so-called participation ratio (PR), defined for a
normalized eigenvector ψðxÞ of the Dirac operator as

PR ¼ 1

N3
σNτ

�X
x
ðψ†ðxÞψðxÞÞ2

�
−1
: ð14Þ

It is the fraction of the total lattice volume occupied by the
eigenmode. If the eigenvector is distributed equally on the
entire four-volume, this quantity is unity.
First we use the PR to corroborate our observation made

in Sec. III F. If indeed the near-zero modes represent
weakly interacting instanton-anti-instanton pairs, the PR
of a typical near-zero mode should be about twice as large
as that of a zero mode. The comparison of the PR of the
near-zero modes and of the zero modes of jQj ¼ 1
configurations is shown in Fig. 17. The ratio of the average
PR of a near-zero and that of a zero mode indeed is 1.85.
The PR values of near-zero modes fluctuate about the mean
value, so not all of them support this picture, but there is a
significant fraction that does.
At 1.2Tc, the PR histograms are measured for two values

of the lattice spacing and compiled in Fig. 18. The low-
lying eigenvalues are more localized than the bulk modes;
however, the PR gradually increases as one goes towards
the bulk. At 1.5Tc, the low-lying modes below λ ≤ 0.4T
average to a PR value of about 0.01. As one enters the bulk
eigenvalue region for λ > 0.4T, see for example Fig. 9,
there appears to be a rise of the PR. The value of λ ≈ 0.4T
may thus be considered as a mobility edge separating the
localized near-zero eigenstates from the delocalized bulk

states. However it would further require careful finite
volume analysis to check whether this will survive in
the thermodynamic limit. The presence of localized as well
as delocalized states is observed in disordered semicon-
ductors whose dynamics is described by the Anderson
Hamiltonian. In the Anderson model, the electron states at
the band edge are localized whereas the states at the band
center remain delocalized within the lattice. The corre-
sponding eigenvalues of the Anderson Hamiltonian change
from Poisson statistics at the band edge to random matrix
theory statistics at the band center.
A comparison with randommatrix model predictions can

be achieved by looking at the distribution of the distance s
between two consecutive eigenvalues, i.e. the level spacing
distribution. In order to understand its universal properties,
it is necessary to map the eigenvalues onto new values
using an unfolding procedure [59], thereby removing the
nonuniversal global scale of the system. By construction,
the unfolded eigenvalues that are obtained by this method
have a mean level spacing of unity.
While the unfolded level spacings of the localized near-

zero modes should follow a Poisson distribution because of
their mostly independent occurrence, the bulk modes
should be strongly mixed. If the bulk is highly disordered,
the corresponding level spacing distribution should follow
the same distribution as the eigenvalues of a random matrix
of an appropriate symmetry group. The Dirac operator for

FIG. 17 (color online). Participation ratio for the zero (with
chiralities �1) and the near-zero (λ=T < 0.4) modes of jQj ¼ 1
configurations as well as their average values, represented by the
horizontal lines, at 1.5Tc.
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QCD with matter fields in the fundamental representation
falls into the same symmetry group as Gaussian Unitary
ensembles (GUE) whereas for the case of two colors it is in
the same universality class as Gaussian Orthogonal ensem-
bles (GOE). The level spacing distribution for the unfolded
bulk eigenvalues of the overlap operator on HISQ con-
figurations at 1.5Tc is shown in Fig. 19. It shows an
agreement with a random matrix theory with Gaussian
unitary matrices. This is in general agreement with similar
studies of the localization of low-lying modes done before
for the quenched theory [21,60–62] and also with dynami-
cal staggered fermions [63–65] on smaller lattice sizes.

IV. CONCLUSIONS

In this work we have investigated the temperature
dependence of the anomalous UAð1Þ symmetry breaking
in the high temperature phase of QCD with two light quark
flavors. To this end we have employed the overlap Dirac
operator exploiting its property of preserving the index
theorem even at nonvanishing lattice spacing. We have
applied the overlap operator on large volume HISQ gauge
field configurations and computed its low-lying eigenm-
odes. We observe the presence of zero as well as near-zero
modes in the investigated temperature range of
Tc ≲ T ≲ 1.5Tc. By comparing the low-lying eigenmodes
at two different lattice spacings and studying the effects of
smearing we have shown that these infrared modes are not
mere lattice cutoff effects.

We mainly analyzed configurations which have been
obtained at a light sea quark mass corresponding to a pion
mass of 160 MeV. However, within the set of configura-
tions at our disposal, at a temperature near Tc we could
confirm the accumulation of the near zero eigenvalues also
at a quark mass considerably below its physical value.
By quantifying the contribution of the near-zero eigenm-

odes to a specific combination of two point correlation
functions, χπ − χδ, we conclude that these modes are
primarily responsible for the anomalous breaking of the
axial symmetry in QCD still being visible for Tc≲
T ≲ 1.5Tc. Through detailed studies of their spacetime
profiles, localization properties and distributions for a large
set of gauge configurations we have shown that for T ∼
1.5Tc the near-zero modes follow the behavior as expected
of a gas of widely separated, weakly interacting instantons
and anti-instantons. At 1.5Tc we find the density of (anti)
instantons to be 0.147ð7Þ fm−4, with a typical radius of
0.223(8) fm. At this temperature, the spatial volume of our
lattice was ∼ð3.3 fmÞ3 with 1=T ∼ 0.83 fm, suggesting that
the instanton gas is indeed dilute, the instanton size is
smaller than 1=T and our chosen volume being large
enough to accommodate more that one instanton–anti-
instanton pair on average. In conclusion, our study suggests
that at T ∼ 1.5Tc the origin of global UAð1Þ breaking in
QCD is due to the dilute gas of weakly interacting
instantons and anti-instantons.
For an independent confirmation of our results, it would

clearly be desirable to carry out a similar analysis with
dynamical chiral fermions. While the lattice spacing effects
in this work appear to be small, it will further be necessary
to control the subtle extrapolations to the continuum as well
as the chiral limit in such a future investigation.
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