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We present the ground and excited state spectra of doubly charmed baryons from lattice QCD with
dynamical quark fields. Calculations are performed on anisotropic lattices of size 163 × 128, with inverse
spacing in temporal direction a−1t ¼ 5.67ð4Þ GeV and with a pion mass of about 390 MeV. A large set of
baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum
analogues are used. These operators transform as irreducible representations of SUð3ÞF symmetry for flavor,
SU(4) symmetry forDirac spins of quarks andO(3) for spatial symmetry. The distillationmethod is utilized to
generate baryon correlation functions which are analyzed using the variational fitting method to extract
excited states. The lattice spectra obtained have baryonic stateswithwell-defined total spins up to 7=2 and the
pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary
the calculated spectra are remarkably similar to the expectations from models with an SUð6Þ × Oð3Þ
symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.
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I. INTRODUCTION

The study of hadrons containing charm quarks has
recently undergone a renaissance. This resurgence of
interest started with the discovery of new resonances in
the charmonium system as well as a few charmed baryons.
So far, emphasis has been given to the study of the meson
sectors both theoretically and experimentally, while heavy
baryon physics has received substantially less attention.
Similar to charm mesons, a comprehensive study of charm
baryons can provide similar insight into the strong inter-
action. However, in comparison to the many light and
strange baryon states, only a handful of charm baryons
have been discovered and a reliable determination of the
quantum numbers of most of these observed charmed
baryons has yet to be made [1]. Only very recently a
few excited singly charmed baryons were discovered.
Similarly, there is no observation for triply charmed
baryons although QCD clearly predicts such states. For
doubly charmed baryons, only SELEX reported the dis-
covery of five resonances and interpreted those as
Ξþ
ccdð3443Þ, Ξþ

ccdð3520Þ, Ξþþ
ccuð3460Þ, Ξþþ

ccuð3541Þ and
Ξþþ
ccuð3780Þ [2,3]. Later they confirmed the Ξþ

ccdð3520Þ
state in two different decay modes (Ξþ

cc → ΛcK−πþ;

Ξþ
cc → pDþK−) at a mass of 3518.7� 1.7 MeV with an

average lifetime less than 33 fs [4]. However, these states
have not been observed either by BABAR [5], Belle [6,7] in
eþe− annihilation experiments or by LHCb at baryon-
baryon collider experiments at CERN [8]. In SELEX,
production of doubly charmed baryons with a large cross
section occurred through baryon-baryon interactions,
which is totally inconsistent with fragmentation produc-
tion. Further, the helicity angular distribution analysis also
suggests that the pair of states fΞþ

ccð3443Þ;Ξþþ
cc ð3460Þg

and fΞþ
ccð3520Þ;Ξþþ

cc ð3541Þg form isospin doublets with
isospin splittings 17 and 21 MeV respectively. There is no
precise understanding of these unusually large isospin
splittings observed in the doubly charmed baryons, unlike
the small isospin splittings in the case of light and singly
charmed baryons. An explanation may be possible if the
Coulombic electromagnetic effect is much larger than
strong interaction effect, leading to these baryons having
a very compact size [9]. In summary, the experimental
status of doubly charmed baryons has not been settled;
however it is expected that consolidated analysis of large
data collected from the ongoing experiments at LHCb and
future experiments like PANDA @FAIR and Super Belle
will shed further light.
Doubly charmed baryons are interesting systems as they

provide a unique insight into the nature of the strong force
in the combined presence of both slowly moving heavy
quarks along with the relativistic motion of a light quark.
The excited spectra of these states and the splittings
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between them can help us understand how the collective
degrees of freedom give rise to excitations in these systems.
A comparison of these excitations with the corresponding
spectra of singly and triply charmed baryons, where the
number of charm quarks is one less and one more
respectively, will be helpful to get information about
quark-quark interactions. Doubly charmed baryons are
characterized by two widely separated scales: the low
momentum scale, of order ΛQCD, of the light quark and
the relatively heavy charm quark mass. A doubly heavy
baryon can be treated as a bound state of a heavy antiquark
and a light quark in the limit when the typical momentum
transfer between the two heavy quarks is larger than ΛQCD
[10,11]. In this limit of quark-diquark symmetry,
QQq ↔ Q̄q, one can get definite prediction of spin-
dependent energy splittings [12,13]. It was argued [14,15]
that because of heavy-quark symmetry, the doubly heavy
baryons can be viewed as ultraheavy mesons, ½QQ�q∼
Q0q, and the hyperfine mass splittings in these systems are
suppressed. Moreover, the doubly heavy baryon ground
state of the form ½QQ�J¼1q will consist of chiral multiplets
containing spin (1=2þ; 3=2þ) heavy spin fields [14]. It is
thus interesting to study these spin splittings to determine if
the charm quark is sufficiently heavy to respect this quark-
diquark symmetry. Doubly charmed baryons have been
studied over the years using various theoretical methods
such as the nonrelativistic (NR) [16–18] aswell as relativistic
[19,20] quark models, heavy-quark effective theory [21],
QCD sum rules [22–26], the Feynman-Hellmann theorem
[27], mass formula [28] and the Skyrmion model [29].
In light of existing and future experimental efforts to

observe doubly charmed baryons, it is desirable to have
first principle predictions from lattice QCD. A quantitative
description of the spectra of doubly charmed baryons from
the nonperturbative method of lattice QCD is valuable as it
will enable a comparison between the lattice-computed
spectra of doubly charmed baryons to those obtained from
potential models which have been successful for charmo-
nia. Moreover, all results from such a first principles
calculation will be predictions and thus naturally can
provide crucial inputs to current and future experimental
discovery. Given this significance of doubly charmed
baryons, it is desirable to study these states comprehen-
sively using lattice QCD. Lattice QCD groups have studied
the ground states of the doubly charmed baryons using
quenched Non-relativistic QCD [30], quenched QCD with
relativistic quarks [31–33], and full QCD [34–41] calcu-
lations. However, all previous lattice calculations involve
only the spin-1=2 and spin-3=2 ground state spectrum of
Ξcc and Ωcc. It is expected that much more information
about the interactions between two charm quarks and
between charm and light quarks can be obtained by
computing the excited state spectra of these baryons,
including in particular the spin-dependent energy splittings,
as well as by studying similar spectra for other spin-parity

channels. Towards this goal, we report here the first attempt
to compute the excited state spectra of doubly charmed
baryons using dynamical lattice QCD. The ground states
for each spin-parity channel as well as their excited states
up to spin-7=2 are computed and a few spin-dependent
energy splittings are also studied. Similar studies of triply
charmed baryons have already been reported in Ref. [42],
and in a subsequent publication we will report results on
singly charmed baryons.
To extract the excited states of doubly charmed baryons

we follow the same procedure used in previous calculations
for mesons [43–48] and baryons [42,49–51]. The gauge
configurations we use are generated with 2þ 1 flavor
clover fermions on anisotropic lattices [52,53]. For the
charm quarks we also use clover fermions which are OðaÞ
improved at tree level in tadpole-improved perturbation
theory. A large set of baryon operators which are first
constructed in the continuum and then subduced into
various lattice irreducible representations (irreps) [49] are
used for this calculation. These operators transform as
irreducible representations of SUð3ÞF symmetry for flavor,
SU(4) symmetry for Dirac spins of quarks and O(3)
symmetry for orbital angular momenta. Baryon correlation
functions are generated by using the “distillation method”
[54] and then variational fitting method is utilized to extract
excited energies as well as to reliably determine the spins of
these states.
The layout of the paper is as follows. In the next

section, we briefly describe lattice details, operator con-
struction, the construction and analysis of correlation
functions and our procedure for identifying the continuum
spins of extracted states, which are already detailed earlier
in Refs. [42–51,54]. In Sec. III we present our results,
giving details of energy splittings in subsection IIIA.
Finally, a summary of the work is presented in Sec. IV.

II. COMPUTATIONAL METHODS

Over the last several years the Hadron Spectrum
Collaboration (HSC) has adopted a dynamical anisotropic
lattice formulation to extract highly excited hadron spectra.
In this approach one uses a much finer temporal lattice
spacing than in the spatial directions and exploits this
higher resolution to extract highly excited states which
decay rapidly at large Euclidean time separations with
increasing noise-to-signal ratio. On the other hand, this
avoids the computational cost that would come if one
reduces the spacing in all directions.

A. The lattice action

We used the tree-level Symanzik-improved gauge action
and the anisotropic Sheikholeslami-Wohlert fermion action
with tree-level tadpole improvement and three-dimensional
stout-link smearing of gauge fields for this work. The
details of the formulation of actions as well as the method
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used to tune the anisotropic parameters can be found in
Refs. [52,53]. In Table I we show the lattice action
parameters of the gauge-field ensembles used in this work.
We used theΩ-baryon mass to determine the lattice spacing
and obtained a−1t ¼ 5.67ð4Þ GeV. With an anisotropy of
close to 3.5, this leads to as ¼ 0.12 fm, and total volume
V ∼ ð1.9 fmÞ3. We assume this volume is enough for a first
study of doubly charmed baryons.
The charm quark action used here is similar to the light

quark sector and the details are given in Ref. [47]. The ηc
meson ground state was used to determine the bare charm
quark mass. By studying the dispersion relation at low
momenta, the action is made relativistic. As mentioned in
[47], it is expected that the effects due to the absence of
dynamical charmquark fields in this calculationwill be small.

B. Baryon operators

Following Ref. [49] we construct a large set of baryon
operators for doubly charmed baryons. In summary, the
construction has two steps: a set of continuum operators with
well-defined continuum spin is found and then these oper-
ators are subduced to the irreps of the octahedral group on the
lattice. A set of continuum baryon interpolating operators
with well-defined continuum spin are constructed as

O½JP� ∼ ½FΣF
⊗ SΣS

⊗ DΣD
�JP ; ð1Þ

where F , S and D represent flavor, Dirac spin and spatial
structure respectively while the subscripts Σi specify the
permutation symmetry in the respective subspaces. The
details of these permutation symmetries and their combina-
tions are given in Refs. [49,50].
By permutation symmetry, one can argue that the flavor

structure of QQq and QQs will be the same as qqs
combinations, which are the flavor structures of light Σ
baryons. Hence the possible flavor-symmetry structures for
doubly charm baryons are totally symmetric (S) in all three
flavor labels belonging to the decuplet flavor constructions
(10F) as well as symmetric (MS) and antisymmetric (MA)
in the first two flavor labels belonging to the octet flavor
constructions (8F). For the decuplet structure, the flavor
labels being symmetric, the remaining spin and spatial part
should be combined symmetrically to form an overall
symmetric interpolating operator. For the octet structure,
the flavor structure being MS and MA, the symmetry in the
remaining part of the baryon operator, excluding the color
labels, should be MS and MA to form a symmetric
interpolating operator.
The spatial- as well as spin-symmetry combinations used

are also presented in Ref. [49]. Up to two covariant

derivatives are considered and combined so as to transform
as orbital angular momentum L, with maximum accessible
values of 0, 1 and 2. The subset of operators formed by
considering only the upper two-component of the four-
component Dirac-spinor in the Dirac-Pauli representation
are labeled nonrelativistic, while all other operators are
called relativistic. Another subset of operators with D ¼ 2
and L ¼ 1 in the mixed symmetric and mixed antisym-
metric combinations are identified as hybrid operators
because of their essential gluonic content; these operators
vanish in the absence of a gluon field. In Table II, we show

TABLE I. Details of the gauge-field ensembles used. Ncfgs is the number of gauge-field configurations.

Lattice size atml atms Ncfgs mπ=MeV mK=mπ atmΩ

163 × 128 −0.0840 −0.0743 96 391 1.39 0.2951(22)

TABLE II. Allowed spin-parity patterns based on nonrelativ-
istic quark spinors. For each covariant derivative (D ¼ 0, 1 and
2), the SU(3) flavor, the quark spin S and orbital angular
momentum L are listed followed by the allowed JP values.
The total number of operators is listed as Ni for derivative i. The
lower part of the table gives the two-derivative hybrid operators
based on nonrelativistic quark spinors, as discussed in [51].

D SUð3ÞF S L JP

0 8F 1=2 0 1=2þ

10F 3=2 0 3=2þ

N0 1 1 0 0

8F 1=2 1 1=2− 3=2−
1 3=2 1 1=2− 3=2− 5=2−

10F 1=2 1 1=2− 3=2−

N1 3 3 1 0

8F 1=2 0 1=2þ

1=2 0 1=2þ

1=2 1 1=2þ 3=2þ

1=2 2 3=2þ 5=2þ

1=2 2 3=2þ 5=2þ

2 3=2 0 3=2þ

3=2 2 1=2þ 3=2þ 5=2þ 7=2þ

10F 1=2 0 1=2þ

1=2 2 3=2þ 5=2þ

3=2 0 3=2þ

3=2 2 1=2þ 3=2þ 5=2þ 7=2þ

N2 6 8 5 2

8F 1=2 1 1=2þ 3=2þ

2 3=2 1 1=2þ 3=2þ 5=2þ

10F 1=2 1 1=2þ 3=2þ

N2ðhyÞ 3 3 1 0
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the allowed spin-parity patterns based on nonrelativistic
quark spinors for up to two covariant derivatives. Note that
with the nonrelativistic operators, it is not possible to
construct a negative-parity state beyond spin-5=2−, even
with nonlocal operators using two derivatives. Use of
relativistic operators along with nonrelativistic ones enable
us to extract higher negative-parity states as well as higher
excited states. These continuum operators are then sub-
duced to the irreps of the cubic group. The three irreps of
the double-valued representations of the octahedral group
for half-integer spins are G1, G2 and H. The details of this
subduction procedure to obtain the lattice operators was
discussed in Ref. [49]. In Table III we show the number of
operators that we obtained after subduction and which are
used for this study. Both the number of positive (g) and

negative (u) parity operators as well as the number of
operators with nonrelativistic quark spinors and with hybrid
content are shown in this table.

C. Analysis of baryon correlators: distillation and
variational methods

After constructing a large set of operators for each irrep
Λ, we calculate the matrix of correlation functions

Cijðt≡ tf − tiÞ ¼ h0jOiðtfÞO†
jðtiÞj0i ð2Þ

between a baryon source at time ti and sink at time tf. The
distillation method [54] provides an efficient means of
constructing the large correlation matrices needed for this
analysis. For this work, the method was realized by
constructing the distillation operator with 64 eigenvectors
of the gauge-covariant Laplacian; then, correlation func-
tions are computed from four time sources. The matrix of
correlation functions was then analyzed using the varia-
tional method, which proceeds by solving a generalized
eigenvalue problem of the form

CijðtÞvnj ¼ λnðt; t0ÞCijðt0Þvnj ; ð3Þ
where CðtÞ is the matrix of correlators at time slice t,
i.e. CijðtÞ ¼ hOiðtÞOjð0Þi, λnðt; t0Þ are the principal cor-
relators and vnj ’s are the eigenvectors which determine the

TABLE III. The total number of operators, with covariant
derivatives up to 2, obtained after subduction to various irreps.
The number of nonrelativistic and hybrid operators for each irrep
and for both parities are also mentioned.

G1 H G2

g u g u g u

Total 55 55 90 90 35 35
Hybrid 12 12 16 16 4 4
NR 11 3 19 4 8 1

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

Hg (State 0)

χ2/Ndof = 15/9

m= 0.6624(15)

 0.9

 1.05

 1.2

 1.35

 1.5

 1.65

Hg (State 1)

χ2/Ndof = 15/15

m= 0.7603(32)

 0.9

 1.05

 1.2

 1.35

 1.5

 1.65

Hg (State 2)

χ2/Ndof = 24/15

m= 0.7698(28)

 0.9

 1.05

 1.2
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 1.8
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Hg (State 6)

χ2/Ndof = 31/15

m= 0.7829(48)
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 1.05
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 0  5  10  15  20  25

Hg (State 3)

χ2/Ndof = 19/15

m= 0.7935(38)

 0.9

 1.05
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Hg (State 9)

χ2/Ndof = 21/16

m= 0.8027(30)

FIG. 1 (color online). Principal correlator fits for six states of Ωcc baryons in irrep Hg that are identified as J ¼ 3=2þ. Data points are
obtained from emnðt−t0ÞλnðtÞ. Fits are carried out using a fitting form λnðtÞ ¼ ð1 − AnÞe−mnðt−t0Þ þ Ane−m

0
nðt−t0Þ with three fit parameters:

mn, the state that we are looking for; m0
n, where all other excited states are grouped together; and An, which is related to the overlap

factor. The lines show the fits and one sigma deviation according with t0 ¼ 12; the grey points are not included in the fits.
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overlap of an operator to a particular state. The details of our
fitting procedure is given in Ref. [43] and was utilized to
extract the excited state spectra of mesons [44–48] as well as
of baryons [42,49–51]. In Figure 1 and Figure 2, we plot
some examples of fits to the principal correlators for Ωcc
baryons in theHg irrep and for Ξcc baryons in theG2g irrep.

D. Rotational symmetry

We constructed operators in the continuum which were
then subduced onto the lattice irreps to form lattice
operators. This allows us to determine the properties of
these states in the continuum with some confidence.
Following Refs. [42,49–51], Figure 3 shows the normalized
correlation functions, Cij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
, for Ξcc baryons trans-

forming under Hg and determined at time slice 5. The
normalization ensure diagonal entries are unity and off-
diagonal entries are less than 1. Various operators are
represented by the following abbreviations in the figure:
nonrelativistic (n), relativistic (r), nonhybrid (1) and hybrid
(2). There are 90 operators used in this irrep, including
operators up to two derivatives. The solid lines divide
these operators into spins 3=2; 5=2 and 7=2, and the dashed
lines separate operators defined above. As is evident from
the figure, the matrix is close to block diagonal implying
that there are small correlations between operators sub-
duced from different continuum spins. This suggests that
there remains a remarkable degree of rotational symmetry
in the matrices of correlation functions obtained for these

lattice operators, similar to the light, strange and triply
charmed baryons [42,50]. Similar block-diagonal matrices
of correlation functions are observed in other irreps and for
Ωcc baryons as well.
From the correlators one can also identify the flavor

mixing between different operators. For example, it is
evident from Figure 3 that there is strong mixing between
relativistic operators belonging to octet and decuplet.
However, this flavor mixing is less evident for nonrelativ-
istic operators. As observed in our previous study on triply
charmed baryons [42], we found that there is additional
suppression in mixing for nonrelativistic operators with a
given J but with different L and S, compared to those with
the same J as well as the same L and S. However, this
suppression is not present for relativistic operators. On the
contrary, in most of the cases involving relativistic oper-
ators, we found that mixings are comparable for operators
with given J but with different L and S, to those of
operators with the same J as well as the same L and S.

1. Continuum spin identification

One main difficulty of lattice calculations of spectra is
the identification of the spin of an extracted state at finite
lattice spacing, particularly for the state onto which various
operators from different irreps contribute. In Ref. [43] a
well-defined procedure is adopted for spin identification by
using the overlap factor. The overlap factors of an operator
Oi to a state n are Zn

i ≡ hnjO†
i j0i, which can be shown [43]

 0.8

 0.95

 1.1

 1.25

 1.4

 1.55

 1.7

 1.85

 2

G2g (State 0)
χ2/Ndof = 14/15

m= 0.7484(34)

G2g (State 1)
χ2/Ndof = 17/15

m= 0.7641(30)

 0.8

 0.95

 1.1

 1.25

 1.4

 1.55

 1.7

 1.85

 2

G2g (State 2)
χ2/Ndof = 9.3/8

m= 0.7855(39)

 0.8

 0.95

 1.1

 1.25

 1.4

 1.55

 1.7

 1.85

 2

 0  5  10  15  20  25

G2g (State 4)
χ2/Ndof = 15/16

m= 0.7911(40)

 0  5  10  15  20  25

G2g (State 5)
χ2/Ndof = 21/17

m= 0.7990(28)

 0.7

 1

 1.3

 1.6

 1.9

 2.2

 2.5

 0  5  10  15  20  25

G2g (State 7)

χ2/Ndof = 28/12

m= 0.8695(108)

FIG. 2 (color online). Same as for Fig. 1, but for Ξcc baryons in irrep G2g.
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to occur in the spectral decomposition of the matrices of the
correlation functions as

CijðtÞ ¼
X

n

Zn�
i Zn

j

2mn
e−mnt: ð4Þ

One can use the orthogonality for the eigenvectors
vn†Cðt0Þvm ¼ δn;m to show that the overlap factors can
be obtained from the eigenvectors using the relation

Zn
i ¼

ffiffiffiffiffiffiffiffiffi
2mn

p
emnt0=2vnjCjiðt0Þ: ð5Þ

In Figure 4, we show an array of histograms of the

normalized overlap factors, ~Z ¼ Zn
i

maxn½Zn
i �, of a few operators

onto some of the spin identified lower-lying states in each

of the lattice irreps. The normalization ~Z ¼ Zn
i

maxn½Zn
i � is such

that the largest overlap factor of that operator across all
states is unity.

As in Ref. [50], a “matrix” plot of the overlap factors can
be used to depict the dominant contribution to the low-lying
states from each operator. As examples, Figure 5 and
Figure 6 show such plots of the normalized overlap factors,
Zn
i , of an operator i to a given state n, as defined by Eq. (5),

for Ξcc and Ωcc respectively. All values of Zn
i are

normalized as above. Figure 5 shows that state 0, the
ground state, and excited states 1, 2, 3, 4, 9, 12 and 15 are
naturally identified as JP ¼ 3=2þ states while states 5, 7, 8,
10 and 13 are identified as JP ¼ 5=2þ states; similarly,
states 11 and 14 can be identified as JP ¼ 7=2þ states.
However, in order to confirm the reliability of the identi-
fication of a state with a given spin greater than 3=2 we
compare the magnitudes of overlap factors of a particular
operator from different irreps. This will be discussed later.
These plots help us to identify the structure of a state from
the types of operators which construct it. For example, in
Figure 5, the spin-3=2þ ground state has predominant

n1 n2 r1 r2 n1 r1 r2 n1 r1n1 n2 r1 r2 n1 n2 r1 r2 n1 r1

n1
n2

r1

r2

n1

r1

r2

n1
r1

n1

n2

r1

r2

n1
n2

r1

r2

n1
r1

3/2(10F ) 5/2(10F ) 7/
2(

10
F
)

3/2(10F )

5/2(10F )

7/2(10F )

3/2(8F ) 5/2(8F ) 7/
2(

8 F
)

3/2(8F )

5/2(8F )

7/2(8F )
0.17

0.34

0.50

0.67

0.83

1.00

FIG. 3 (color online). The normalized correlation matrix, Cij=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
, at t=at ¼ 5 are shown for Ξcc baryons in the Hg irrep,

according to the darkness scale at the side. The operators are ordered such that those subduced from spin-3=2 appear first followed by
spin-5=2 and then spin-7=2. The correlation matrix is observed to be mostly block diagonal in terms of spins, which signifies the
rotational symmetry on our lattice. There is significant mixing between octet (8F) and decuplet (10F) operators which is not present in
the corresponding plot for light quark ΣðuusÞ having the same operator structures (see Fig. 2 of Ref. [50]). This signifies that the SU(3)
flavor symmetry is badly broken for doubly charmed Ξcc baryons. Nonrelativistic (n), relativistic (r), nonhybrid (1) and hybrid (2)
operators are also identified for each of those spins. The strength of flavor mixing is maximum between relativistic operators, while for
nonrelativistic operators this mixing is relatively mild.
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G1 g

Hg

G2 g

FIG. 4 (color online). Histogram plot showing normalized overlap factor, ~Z, of a few operators onto some of the lower-lying states in

each of the lattice irreps. ~Z’s are normalized according to Zn
i

maxn½Zn
i �, so that the largest value for that operator across all states is equal to

unity. Top row is for irrep G1g, the middle row is for Hg, and the bottom row is for the G2g irrep. Black bars correspond to spin-1=2
operators, red for spin-3=2, green for spin-5=2 and blue for spin-7=2. Lighter and darker shades on the top of every bar represent the one-
sigma statistical uncertainty.
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FIG. 5 (color online). “Matrix” plot of the normalized overlap factor, ~Zn
i , of an operator i to a given state n, as defined by Eq. (5). ~Zn

i

are normalized according to Zn
i

maxn½Zn
i �, so that for a given operator the largest overlap across all states is unity. This plot corresponds to the

extracted states of Ξcc, in the Hg irrep. Darker pixels indicate larger values of the operator overlaps as in Figure 3. Various type of
operators, for example, nonrelativistic (n) and relativistic (r) operators, as well as nonhybrid (1) and hybrid (2) operators are indicated by
column labels. In addition, the continuum spins of the operators are shown by 3=2, 5=2 and 7=2. State 0, the ground state, and excited
states 1, 2, 3, 4, 9, 12 and 15 could be identified as JP ¼ 3=2þ states by the overlap to various types operators according to pixel
strengths. States 5, 7, 8, 10 and 13 could be identified as JP ¼ 5=2þ states; similarly, states 11 and 14 could also be identified as
JP ¼ 7=2þ states.
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overlaps from the nonrelativistic nonhybrid as well as
relativistic nonhybrid-type operators. Similarly, states 11
and 14, which are identified as 7=2þ states, have predomi-
nant overlaps to nonrelativistic nonhybrid operators. Strong
hybrid content was observed for a number of states by
identifying their strong overlaps with hybrid interpolating
operators.
To identify the spin parity of a state we followed the same

method detailed in [43] and used for calculations of light
mesons [44–46], baryons [49,50], charm mesons [47] as
well as heavy-light mesons [48]. Identifying a spin that
subduces into a single irrep is relatively straightforward,
and, studying the overlap factors used in histogram and
matrix plots, we can identify spin-1=2 and spin-3=2 states.
For spin-5=2 and spin-7=2 states, which are subduced into
multiple irreps, overlap factors from different irreps must be
compared. As the continuum limit is approached, the factors
of a given continuum operator to a particular state obtained
from various subduced irreps should be the same. For a fine
lattice spacing these overlap factors should thus be close to
each other. For example, the spin-7=2 continuum operator,

ð3=2þÞ1;S ⊗ D½2�
L¼2S, can be subduced to irrep G1g, Hg as

well as to G2g. This near degeneracy of overlap factors can
be used to identify this state as a spin-7=2þ state. In Figure 7
we compare a selection of Z values for states conjectured to
be J ¼ 5=2þ (top two plots), 7=2þ (middle two plots), 5=2−
(bottom left) and 7=2− (bottom right) which appear over
multiple lattice irreps. The continuum operators considered
are noted along the lower edge of each plot. Z values
obtained for a given operator but from different irreps are
found to be consistent with each other, which helps us to
identify the spin of these given states.

After identifying the spin of a state with matching
overlap factors we check whether the energy of this state
determined over different irreps also matches. To achieve
this check, the corresponding principal correlators across
the irreps are simultaneously fit to a single energy. In
Figure 8, these joint fits are shown for the principal
correlators obtained from three different irreps for a
spin-7=2þ state (top plot) and from two different irreps
for a spin-5=2þ state (bottom plot).

III. RESULTS

In this section, our results for the doubly charmed
baryons spectra with spins up to 7=2 and with both parities
are presented in terms of energy splittings. In general, this
tends to reduce systematic uncertainties in lattice calcu-
lations, including those from the scale setting procedure
used. For this work, the charm quark mass parameter in the
lattice action was determined by ensuring that the physical
value and lattice estimate of the ηc meson mass [47] agreed,
once the lattice spacing is determined using the Ω-baryon.
The ηc meson has the same number of charm quarks as the
doubly charmed baryons. Hence, we show the spectra of
Ξcc and Ωcc baryons with the mass of the ηc meson
subtracted. These energy splittings expose the binding
energies of the extra light and strange quarks inside these
baryons. A few energy splittings such as the hyperfine
splittings between the extracted states are also computed.
As mentioned earlier, the experimental status of doubly

heavy baryon discovery is uncertain. It is thus important to
compare the ground state spectra of the two doubly heavy
baryons obtained from different calculations. In Figure 9,
we show the ground state results of JP ¼ 1=2þ; 3=2þ; 1=2−
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FIG. 6 (color online). Same as for Figure 5, but for Ωcc baryons in the irrep Hg.
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and 3=2− of Ξcc baryons obtained in this work, along with
the only experimental result (SELEX) and other lattice as
well as various model results. In Figure 10, we show similar
results for Ωcc baryons. Our results are at pion mass

391 MeV, the results for ETMC [38], PACS-CS [41],
Bali et al. [40] and Briceno et al. [37] are extrapolated to
the physical pion mass, and ILGTI [39] results are at pion
mass 390 MeV. While the lattice spacing in the temporal
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FIG. 7 (color online). A selection of Z values for states conjectured to be J ¼ 5=2þ (top two plots), 7=2þ (middle two plots), 5=2−
(bottom left) and 7=2− (bottom right). The operators used are mentioned at the bottom of each plot. Z values obtained for a given
operator, but from different irreps, are found to be consistent.
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direction (at) for this work is 0.0351 fm, for ETMC
at ¼ 0.056 fm, for PACS-CS at ¼ 0.0899 fm, for Bali et al.
at ¼ 0.0795 fm and for ILGTI at ¼ 0.0582 fm. Results for
Briceno et al. are extrapolated to the continuum limit.
In Figure 11 and Figure 12 we show the spin identified

full spectra, up to J ¼ 7=2, extracted from our lattices of
Ξcc and Ωcc baryons, respectively. The states inside the
magenta boxes are those with relatively large overlap onto
nonrelativistic operators and the states with unfilled thick
borders correspond to the states with strong hybrid content
as defined in Ref. [51].
Note that in the lowest two positive parity bands and the

lowest negative parity band, the number of states for each
spin agrees with the expectation shown in Table II. That
table gives the number of allowed quantum numbers by
SUð6Þ × Oð3Þ symmetry for operators with up to two
derivatives (D). For JP ¼ 1=2þ and JP ¼ 3=2þ, the num-
ber of allowed quantum numbers is 7 (1 from D ¼ 0 and 6
from D ¼ 2) and 9 (1 from D ¼ 0 and 8 from D ¼ 2)
respectively. For other positive parity quantum numbers
with JP ¼ 5=2þ and 7=2þ, these numbers are 5 and 2
respectively. The left sides of Figure 11 and Figure 12 show
positive parity states. The numbers of states in the lowest
two bands (the first two and inside the box) match exactly
with the allowed quantum numbers mentioned above. Note
that while we use the full set including both nonrelativistic
and relativistic operators not in Table II, we still obtain the
same number of states allowed with only nonrelativistic
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FIG. 8 (color online). Joint fit of the three principal correlators:
top plots, for a representative spin-7=2þ state from three different
irreps; and bottom plots, for a spin-5=2þ state from two different
irreps. Joint fits with χ2=d:o:f ∼ 1.9 (for both cases) provide the
masses of these states.
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operators. Similarly, for negative parity with
JP ¼ 1=2−; 3=2−; 5=2−; 7=2−, the allowed number of
quantum numbers are 3, 3, 1 and 0, respectively. On the
right sides of Figure 11 and Figure 12, the lowest band

(inside the box) also has exactly the same number of states.
This agreement of the number of low-lying states between
the lattice spectra obtained in this work and the expect-
ations based on nonrelativistic quark spins implies a clear
signature of SUð6Þ × Oð3Þ symmetry in the spectra. Such a
SUð6Þ × Oð3Þ–symmetric nature of spectra was also
observed in Refs. [42,50]. Note that there are no negative
parity spin-7=2 states in that table and the negative parity
spin-7=2 state is obtained from the inclusion of relativistic
operators. We are also able to identify one state with strong

 500

 550

 600

 650

 700

 750

 800

 850

 900

Δm
as

s 
(M

eV
)

HSC
[41] [39]

[40]
[37]

[30]

[20]

[19]

Ωccs (1/2+) − ηc

 600

 650

 700

 750

 800

 850

 900

 950

 1000

Δ m
as

s 
(M

eV
)

HSC [41]
[39]

[40]

[37] [30]

[20]

[19]

Ωccs (3/2+) − ηc

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

Δm
as

s 
(M

eV
) HSC

[39]

[40]

[19]

Ωccs (1/2-) − ηc

 900

 950

 1000

 1050

 1100

 1150

 1200

Δ m
as

s 
(M

eV
)

HSC

[39]

[40] [19]

Ωccs (3/2-) − ηc

FIG. 10 (color online). Ground state masses of spin-1=2 and spin-3=2 doubly charmed Ωcc baryons as a splitting from the ηc meson
mass. Our results are shown by the red filled circle (HSC). Other lattice as well as model results are also shown.
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same as in Figure 11.
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overlap onto a hybrid operator. Though there are more
quantum numbers accessible with the operators in Table II
with hybrid structures, we could not clearly identify those.
This is because, as noted in Ref. [50], it is not meaningful to
interpret the higher excited states in terms of SUð6Þ × Oð3Þ
symmetry.
Figure 13 shows the extracted spectra with a different

subtraction. The doubly charmed Ξcc baryons have two
charm quarks and one light quark. On the other hand, theD
meson has one charm quark and one light quark. The
computed energy splittings between Ξcc and the ground
state of the D meson are shown in Figure 13. In the same
figure the energy splittings between Ωcc and the ground
state of Ds are shown. For each spin, the left column
indicates splittings of Ξcc −D while the right column
shows Ωcc −Ds splittings. The inset at the top figures
shows the positive parity ground states of spin-1=2 and
spin-3=2 baryons. Results for D and Ds mesons are taken
from Ref. [48]. By subtracting the D and Ds meson masses

from Ξcc and Ωcc baryons we effectively leave only the
energy of the excitation of a single charm quark in both
cases. One would thus naively expect that both spectra will
be equivalent. This is almost true for the lowest state in each
spin parity channel, except for the negative parity spin-7=2
state, as shown in Figure 13. That state is obtained from
relativistic operators and it is expected that such naive
expectation may not hold there. This is also seen for the
excited states where the contribution from relativistic
operators is much larger.
As in our previous studies in charmonia [47], charmed-

strange mesons [48] and triply charmed baryons [42], the
systematic uncertainty due to OðaÞ discretization artefacts
was investigated in another calculation in which the spatial
clover coefficient was boosted from the tree-level cs ¼
1.35 to cs ¼ 2. At this value our extracted hyperfine
splitting was found to be physical [47]. The mass splittings
were found to differ by around 40–45 MeV between the
two calculations. In this study also we found a similar mass
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difference between two calculations, indicating an equiv-
alent scale for the uncertainties in this calculation.

A. Energy splittings

The energy splittings between various excitations in a
spectrum provide important information about the nature of
interactions needed to excite those states. The energy
splittings also provide inputs for building models to
describe these states successfully. In Figure 14 we show
energy splittings of the ground states of each spin parity
channel from the lowest state in that parity channel. For the
positive parity, the lowest state is JP ¼ 1=2þ and for
negative parity the lowest state is JP ¼ 1=2−. It is interest-
ing to note that for both Ξcc and Ωcc these splittings are
almost the same. This indicates that the interquark inter-
actions, which are responsible for these splittings, are
similar in these two different type of baryons. It is to be
noted that our results are obtained for pion mass at

390 MeV. However, since these are energy splittings it
is expected that these patterns will not change significantly
unless the quark mass dependence of the lightest state, for a
given quantum number, is completely different than those
of the excited states.
The most notable spin-dependent baryon energy splitting

to consider is the hyperfine splitting between the 3=2þ and
1=2þ states, for example the splitting between Δ and the
nucleon. We also compute this splitting for doubly charmed
baryons, which we show in Figure 15 for Ξcc (left plot) and
Ωcc (right plot) baryons. Our results (red circles) are
compared with other lattice results (blue squares) as well
as with various model results. Note that our results for Ξcc
are for pion mass 391 MeV. Results for ETMC [38], PACS-
CS [41], Bali et al. [40] and Briceno et al. [37] are
extrapolated to the physical pion mass, while ILGTI [39]
results are at pion mass 390 MeV.
In Figure 16 we compare these hyperfine splittings for

Ξcc and Ωcc baryons as a function of quark mass. In the x
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axis of that figure we use the square of the pseudoscalar
meson mass (mps) while the y axis shows hyperfine
splittings at those pseudoscalar meson masses. Along with
Ξcc and Ωcc we also show splittings between spin-3=2 and
spin-1=2 states of the Ωccc baryon. The later spin-depen-
dent splitting is not hyperfine in nature as both of Ωccc
states are of decuplet type. As in Ref. [42], for the positive
parityΩccc baryons we take the spin-orbit splitting between
the E3ð3=2þÞ and E0ð1=2þÞ states which have the same L
and S values. For the negative parity Ωccc baryons we take
spin-orbit splitting between the E0ð3=2−Þ and E0ð1=2−Þ
states, which also have the same L and S values.
In Ref. [42] we evaluated energy splittings between

triply flavored baryons1 and studied their quark mass
dependence. It was observed that various splittings
decrease significantly with quark masses. Following heavy
quark effective theory one can expand the mass of a heavy
hadron, with n heavy quarks, as MHnq

¼ nMQ þ Aþ
B=mQ þOð1=mQ2Þ [55]. With that expectation, we fitted
various energy splittings of triply flavored baryons with a
form aþ b=mps, with mps the pseudoscalar meson mass,
and obtained good fits. Motivated by that, here we also fit
similar energy splittings for doubly charmed baryons.
There is however a difference for doubly charmed baryons,
because to show quark mass dependence one needs to use
triply charmed baryons data also. For the triply flavored
baryons in Ref. [42], states at different quark masses are
obtained from the same operators and so are simple to
compare. However, in this work, doubly and triply charmed
baryons are not obtained from the same operators except
for positive parity spin-3=2 and spin-7=2 states. We thus
consider energy splittings only for these states. More

specifically, we calculate the following energy splittings:
Ξ�
ccðccuÞ −Duðc̄uÞ;Ω�

ccðccsÞ −Dsðc̄sÞ and Ω�
cccðcccÞ−

ηcðc̄cÞ, and Ξ�
ccðccuÞ −D�

uðc̄uÞ;Ω�
ccðccsÞ −D�

sðc̄sÞ and
Ω�

cccðcccÞ − J=ψðc̄cÞ, and we plot them in Fig. 17 (here
the notation “*” signifies the spin-3=2 states). As in
Ref. [42], we fit these splittings to the form aþ b=mps

and obtain reliable agreement. Energy splittings from
vector mesons are also fitted with a constant. We emphasis
that energy splittings at very light quark masses should not
be calculated using the above form, which is valid only for
heavy quarks.
It is interesting to note that one can extrapolate the fitted

results to the bottom mass to obtain the energy splittings of
Ω�

ccbð32þÞ − Bc and Ω�
ccbð3=2þÞ − B�

c at the mass of the Bc

meson. The difference between these two quantities yields
the mass splitting of B�

c − Bc. Using this, we obtain the
mass splitting of B�

c − Bc as 80� 8 MeV (fitting with a
form aþ b=mps) and 76� 7 MeV (fitting with a constant
term). This result agrees very well with those obtained by
potential models [56]. It does not however agree with other
lattice QCD predictions [57–59], which provide much
lower values. It will be interesting to study the effects of
the lattice cutoff on the hyperfine splittings of these hadrons
with the possibility of future discovery of the B�

c meson.
Only one charmed-bottom meson has been discovered so
far [1]. Assuming it as a pseudoscalar meson with mass
6277 MeV and using the extrapolated value of
Ω�

ccbð3=2þÞ − Bc, we empirically predict the mass of
Ω�

ccbð3=2þÞ to be 8050� 10 MeV which is consistent
with the results from various models [20,60,61] and a
recent lattice calculation [62].

IV. CONCLUSIONS

In this work, results from the first nonperturbative
calculation on the excited state spectroscopy of doubly
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FIG. 17 (color online). Energy splittings between positive parity spin-3=2 baryons and pseudoscalar mesons as well as vector mesons
are plotted against the square of the pseudoscalar masses. The left plot is the splittings of Ξ�

ccðccuÞ −Duðc̄uÞ;Ω�
ccðccsÞ −Dsðc̄sÞ and

Ω�
cccðcccÞ − ηcðc̄cÞ, and the right plot includes following splittings: Ξ�

ccðccuÞ −D�
uðc̄uÞ;Ω�

ccðccsÞ −D�
sðc̄sÞ andΩ�

cccðcccÞ − J=ψðc̄cÞ;
they are plotted against the square of the pseudoscalar masses (i.e., at Du;Ds) and ηc mass. We fit the quark mass dependence with a
form aþ b=mps (the right plot is also fitted with a constant term). The fitted results are shown by solid lines with shaded regions as one-
sigma error bars.

1By triply flavored baryons, we mean Δ;Ω;Ωccc and Ωbbb
baryons.
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charmed baryons with spin up to 7=2 are presented. We
performed our calculations using lattice QCD with
dynamical 2þ 1 flavors clover quarks on anisotropic
lattices. There is no clear experimental observation to
date of a doubly charmed baryon. It is important for
theory to determine if various model results, using quark-
diquark symmetry or otherwise, can be tested with a
nonperturbative method for these systems for which the
interaction is governed by two widely separated scales.
Our extensive study of doubly charmed baryons has
made a first attempt to connect possible experimental and
theoretical studies.
We employ a large basis of creation operators and use the

distillation technique to calculate the doubly charmed
baryon correlation functions. A variational fitting method
was employed to extract the spectrum. We observe
approximate rotational symmetry for these operators at
the scale of hadrons. Having realized a good rotational
symmetry we determine the overlap factors, as in previous
studies [42–51]. We are able to extract states reliably with
spin up to 7=2, and we also studied the mixing between
various operators.
The main results are shown in Figure 11 and Figure 12

for Ξcc andΩcc baryons, respectively. The ground states for
spin-1=2 and 3=2, which have more relevance to recent
experiments, are shown in Figure 9 and Figure 10. As in
Ref. [42,50], we also find bands of states with alternating
parities and increasing energies. We also observed the
number of extracted states of each spin in the three lowest-
energy bands and the number of quantum numbers
expected based on weakly broken SUð6Þ × Oð3Þ symmetry
agree perfectly; i.e., the doubly charmed baryon spectra
resemble remarkably the expectations of quantum numbers
from the nonrelativistic quark model [63–65]. This sym-
metry was also observed for light, strange [50] and triply
charmed baryon spectra [42]. For positive parity states this
agreement does not become spoiled even with the inclusion
of nonrelativistic hybrid operators. However, it is expected
that this band structure will persist with the inclusion of
relativistic operators which contribute more to the higher
excited states. The extracted spectra for the higher excited
states also support this observation. Note that our operator
set does not include any multihadron operators. It is
expected that inclusion of those operators, particularly
those involving light quarks, may modify some of these
conclusions. We are also able to decode the structure of
operators leading to a particular state, whether constructed
by relativistic, nonrelativistic, hybrid, or nonhybrid types,
or a mixture of them all. However, this identification is not
possible for negative parity states and highly excited
positive parity states, as argued in Ref. [50].
Our calculated spectra do not support the chiral multiplet

structure of doubly heavy baryons speculated in
Refs. [14,15]. The ground states of doubly charmed
baryons are not degenerate and for both Ξcc and Ωcc

hyperfine splittings are around 80–100 MeV, as shown in
Fig. 15. The calculated spectra do not match the diquark
picture; instead, they are remarkably similar to the expect-
ations from nonrelativistic quark models with an SUð6Þ ×
Oð3Þ symmetry.
The study of the energy splittings between various

excited states is quite helpful in revealing the nature of
interquark interactions; a detailed knowledge of them could
help to build successful models. We calculated hyperfine
mass splittings between spin-3=2þ and spin-1=2þ states of
Ξcc and Ωcc and compared those with various other lattice
and model predictions. It is to be noted that this calculation
is done for pion mass at 390MeV, at one lattice spacing and
in a box about 2 fm. A more quantitative behavior of these
quantities in the physical limits requires a study of
systematic uncertainties including extrapolations to chiral,
continuum and infinite volume limits, which is beyond the
scope of this work.
Energy splittings between the ground states of different

spins were also evaluated, and we observed that the
hierarchy of the first few energy excitations in Ξcc and
Ωcc are quite similar. This indicates the involvement of
similar dynamics to excite these states. To study the quark
mass dependence of the energy splittings we compared
results for ΞccðccuÞ, ΩccðccsÞ and ΩcccðcccÞ baryons for
which there is a common “cc” diquark and a varying quark,
from light to charm. Encouraged by a successful fitting of
the mass splittings in triple-flavored baryons [42] we
studied similar mass splittings of doubly charmed baryons.
Here also we find that a heavy-quark-motivated form aþ
b=mps can fit quite successfully energy splittings like
Ξ�
ccðccuÞ −Duðc̄uÞ;Ω�

ccðccsÞ −Dsðc̄sÞ and Ω�
cccðcccÞ−

ηcðc̄cÞ, and Ξ�
ccðccuÞ −D�

uðc̄uÞ;Ω�
ccðccsÞ −D�

sðc̄sÞ and
Ω�

cccðcccÞ − J=ψðc̄cÞ. From the fitted results we are able
to predict B�

c − Bc ¼ 80� 8 MeV and Ω�
ccbð3=2þÞ ¼

8050� 10 MeV.
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