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Partial restoration of chiral symmetry in the color flux tube
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Using the quark eigenmodes computed on the lattice with the overlap-Dirac operator, we investigate the
spatial distribution of the chiral condensate around static color sources corresponding to quark-antiquark
and three-quark systems. A flux structure of chromo fields appears in the presence of such color charges.
The magnitude of the chiral condensate is reduced inside the color flux, which implies partial restoration of
chiral symmetry inside hadrons. Taking a static baryon source in a periodic box as a toy model of nuclear
matter, we estimate the magnitude of the chiral symmetry restoration as a function of baryon matter density.
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I. INTRODUCTION

The low-energy dynamics of QCD is characterized by
two prominent properties, i.e., chiral symmetry breaking
and confinement. In the QCD vacuum, chiral symmetry of
quark fields is spontaneously broken, as probed by an order
parameter (gq), the vacuum expectation value of the scalar
density operator gg. Through the Banks—Casher relation
[1], this chiral condensate ¥ = —(gq) can be related to the
spectral density of the low-lying Dirac eigenvalues. In the
presence of valence quarks, or color sources, some modi-
fication of the vacuum is expected around them. Strictly
speaking, it is no longer the vacuum, i.e., the lowest energy
state of the system, but we use this terminology having in
mind an application to the study of finite density QCD.
Although the static color sources as considered in this work
are only a crude approximation to the finite density system,
the study of the vacuum modification may shed light on the
states of finite-density QCD, which has been a subject of
active research (see, for instance, Ref. [2]).

The other interesting property of low-energy QCD is
the confinement of quarks, which is characterized by the
linearly rising potential between static color sources.
Putting a pair of a static quark and antiquark in the vacuum,
a color flux tube emerges between them and leads to a
linear increase of the energy as a function of the separation.
This flux-tube structure has been observed in lattice QCD
calculations by monitoring the action density or chromo-
electric (or chromomagnetic) field [3-5]. We expect that
such a flux-tube structure is reflected in the low-lying
fermion eigenmodes because the Dirac eigenmodes carry
the information of their background gauge field configu-
ration. Indeed, the QCD field-strength tensor can be
reconstructed using the fermion eigenmodes [6].

“iritani @yukawa.kyoto-u.ac.jp

1550-7998,/2015,/91(9)/094501(10)

094501-1

PACS numbers: 12.38.Gc, 11.30.Rd, 12.38.Aw

In this paper, we present a lattice study of the spatial
distribution of the chiral condensate in the presence of
static color charges. We consider quark-antiquark and
three-quark systems represented by Wilson loops to mimic
the mesonic and baryonic states, respectively. We use the
lattice data of the Dirac eigenmodes calculated on the gauge
configurations generated with 2 + 1-flavor dynamical over-
lap fermions [7]. With the overlap fermion formulation
[8,9], chiral symmetry is exactly realized on the lattice,
which is important in the study of the low-lying Dirac
eigenmodes, as they are very sensitive to any small
violations of chiral symmetry. The lattice data used in this
work have this nice property and indeed were successfully
applied to the extraction of the chiral condensate in the
vacuum [10-13].

The organization of this paper is as follows. In Sec. II, we
describe the method to construct the local chiral conden-
sate gq(x) by using the overlap-Dirac eigenmodes and
show its distribution in the vacuum. In Secs. III and IV, we
investigate the spatial distribution of the local chiral
condensate around the static color sources. Section V is
devoted to a summary. Preliminary reports of this work are
found in Refs. [14-16].

II. TOPOLOGICAL STRUCTURE OF
THE QCD VACUUM

We investigate the topological structure of the non-
perturbative QCD vacuum in terms of the eigenmodes of
the overlap-Dirac operator. It preserves exact chiral sym-
metry, and the relation to the topological charge of back-
ground gauge field configuration is manifest, i.e., the index
theorem, at least for smooth enough backgrounds [17].

In this paper, we use the 2 + 1-flavor dynamical overlap-
fermion configurations generated by the JLQCD
Collaboration [7]. Their lattice volumes are 16> x 48 and
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24° x 48 at a single inverse lattice spacing a~! =

1.759(10) GeV. The dynamical quark masses are m,; =
0.015a=" and m; = 0.080a"!. The global topological
charge is fixed at Q = 0 to avoid the problem of divergent
molecular dynamics force in the simulations [18]. It
induces finite-volume effects [19], which would not be
significant for the relatively local observables considered in
this study. Most of the results are obtained on the larger
lattice (24° x 48) where the number of independent con-
figurations is 50.

In the following, we describe the profile of the low-lying
eigenmodes on these lattices.

A. Local chiral condensate gq(x)

The massless overlap-Dirac operator is given by [8,9]

Doy (0) = my[1 + yssgn Hy (=my)], (1)

with the Hermitian Wilson—Dirac operator Hy (—mg) =
ysDyw(—my). Here, sgn denotes the matrix sign function.
Introducing the quark mass m,,, the overlap-Dirac operator
is modified as

m

Dot = (1= 3L Do) £y 2

This form cancels O(a) discretization effects, together with

a proper rotation of the fermion fields in the observables.
We define the eigenfunction w;(x) associated with an

eigenvalue A of the massless overlap-Dirac operator

Doy (0)yrz(x) = Ay, (x), (3)

where the eigenfunction w;(x) is normalized as

S vl (x)y,(x) = 1. Using the eigenfunctions, we may
expand the “local chiral condensate” gg(x) in terms of the
eigenmodes, i.e.,

T(x 2 (x

for a valence quark mass m,. This relation represents a
self-contracting fermion loop contribution from and to the
scalar density operator. If the measured observables do not
include other light quark fields to be contracted, then the
substitution (4) is justified. The correlation functions of
gq(x) with the Wilson loop are in this class of observables.

The chiral condensate (gg) is given by an ensemble
average of gg(x) without insertions of other operators. By
averaging over space-time, this quantity is simply written in
terms of only the eigenvalues because of the normalization
condition for y,;(x). Thus, the relation between the chiral
condensate and the spectral density p(4) of the Dirac
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eigenvalues is established. In the chiral limit, it reads
2 = 7p(0), i.e., the Banks—Casher relation [1].

B. Action and topological charge densities in
terms of the Dirac eigenmode

Since the gauge field-strength tensor F,, is defined
through the covariant derivative D, as F,, = [D,,D,], it
can also be related to the Dirac operator [6]. Here, we
briefly reproduce the derivation.

The square of the Dirac operator & =y,D, is decom-
posed as

PP = Dix) + Y i Fu(x). (5)

u<v

By multiplying y,y, and taking a trace with respect to the
Dirac indices, the field-strength tensor is expressed as

Fulx) = = ulrn D7) (©

Therefore, by expanding the Dirac operator in terms of
its eigenvectors y;(x), an expansion of the field strength is
obtained:

Fu2)s = 3wl o)

(7)

Using this decomposition, the action and topological
charge densities are expressed as

Fﬂl/(x) = zj’zf/w(x)/l’
A

p(x) = trc[F;wF;w] = trcz/lzl/zf;w(x)/lfyu(x)/l’v (8)
v

Qtop(x) = r, [FMI/F;!D] = trcz/lz/llzfpu(x)l}ﬂu(x)ﬁ’7 (9)

AN

respectively. Here, tr. denotes the trace with respect to the
color indices, and £,,,(x); = 3 €40 po(X),-

So far, the expressions are exact, but in the numerical
studies, we introduce a truncation of the summation over
the eigenmodes. This truncation acts as a filter to cut
UV fluctuations above A,,. On the ensembles of
16° x 48 and 243 x 48 lattices, we calculated 160 and
240 pairs of eigenvalues and eigenvectors of D, respec-
tively. Then, the eigenvalues after correcting the O(a)
effect, ImA/(1 —Red/2my), cover the region between
4300 MeV, as shown in Fig. 1. In the measurements
of the correlation between gg(x) and the Wilson loops, we
monitor the dependence on the number N of the eigenm-
odes included and confirm that the results saturate at least
above 200 MeV. Some examples will be shown later.

Before presenting the results, we show some snapshots
of the eigenmodes. The index theorem dictates that exact
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FIG. 1 (color online). Eigenvalue (in MeV) of the low-lying
eigenmodes on the 243 x 48 lattice. By including 240 eigenm-
odes, we can cover the range of 4 <300 MeV.

zero modes are associated with topological excitations of
the gauge field. This suggests that the near-zero modes are
superpositions of such local topological objects. Using a
truncation at N = 20, we visualize the low-mode contri-
butions to the local chiral condensate gg(x) (4), the action
density p(x) (8), and the topological charge density g, (x)
(9) in the panels (a), (b), and (c) of Fig. 2, respectively.
They show tomographic images on a certain 7-X slice of
the four-dimensional lattice extracted from a given gauge
configuration of size 243 x 48.

As one can see in Fig. 2(a), the local condensate gg(x)
forms a cluster structure. At the same space-time points of
the cluster, the action density shows peaks [panel (b)]. More
importantly, the topological charge density has positive and
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negative islands stretching over several lattice spacings at
the same space-time points. Such observation is not new;
indeed, there are lattice studies using the overlap-Dirac
operator [20,21] showing the similar profile of the low-lying
eigenmodes.

III. CHIRAL CONDENSATE IN
QUARK-ANTIQUARK SYSTEM

In the presence of color charges, there appears a flux tube
of chromoelectric fields, which has been observed on the
lattice by measuring the spatial distribution of the field
strength tensor [3-5]. In this section, we investigate the
spatial distribution of the local chiral condensate gg(x) (4)
around the static color sources. Previously, a related
analysis has been made, but on a single color source,
i.e., a Polyakov line [22-24], or at finite temperature at
which the flux tube is expected to be suppressed [25].

A. Partial restoration of the chiral symmetry
in the flux tube

We investigate the spatial distribution of the local chiral
condensate gg(x) around the static color sources by
calculating a correlation,

@qHWR.T) .
(

W(R, T)> - <QQ>7 (10)

(@q(x))w =

where W(R,T) denotes a Wilson loop of size R x T.
It represents a pair of a static quark and antiquark separated
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FIG. 2 (color online).

Snapshots of (a) the local chiral condensate, (b) the action density, and (c) the topological charge distributions

observed with the sum of 20 lowest-lying eigenmodes. These pictures show the same T-X slice of a 24° x 48 lattice on a representative
gauge configuration. The chiral condensate local fluctuations are correlated with the local topological charge measurements.
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FIG. 3 (color online). Schematic picture of the flux-tube
measurement. The static quark and antiquark are located at
(R/2,0) and (—R/2,0) on the XY plane.

by a distance R. The origin of the coordinate is chosen at
the center of the loop, which stretches along the X axis, and
the Y and Z axes correspond to the transverse directions.
Figure 3 shows a schematic picture of the measurement.

As mentioned in the previous section, we truncate the
sum over the eigenmodes in (4) at the Nth eigenvalue and
denote the corresponding local condensate as gg™) (x). In
the final analysis, we chose N = 160, after confirming that
the result is unchanged once a sufficient number of low-
lying modes are included.

Reflecting the ultraviolet divergences of the scalar
density operator, the expectation value of gg¢V) (x) contains
quadratic and logarithmic divergences. The strong quad-
ratic divergence is associated with a mixing with the
identity operator and has the form m,/a*. Because of
the exact chiral symmetry of the overlap-Dirac operator, the
strongest divergence of 1/ is absent, and the leading term
is of 1/a* and proportional to m,,. Since the truncation at a
fixed mode number N can be considered as a certain
regularization scheme, the regularized operator gq™)(x)
can be parametrized as

qq™) = gq>" + C(N)mq/a2 + cgN)mg, (11)
with gg*"™™ the operator for which the power divergences

are subtracted. The second and third terms represent a
mixing with the identity operator; the mass dimension is
compensated by m,/ a’ and m3 respectively. These coef-

ficients c(1 ) and cg ! can be obtained by fitting the vacuum

expectation value <qq( >) as a function of the valence quark
mass m, [26]. When the correlation with the Wilson loop is
considered as in (10), the contribution from the identity

m,/a* +
cgN)mz cancels on the right-hand side, and the measure-
ment is free from the power divergences.

Figure 4 shows the spatial distribution of (g™ (X)), on
the XY plane with a separation R = 8. The locations of
color sources are shown by the circles. To improve the

operator with the divergent coefficient ‘1
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FIG. 4 (color online). Spatial profile of the local chiral con-
densate (7g™") (X)), around a Wilson loop W(R, T) with R = 8
and T = 4. The positions of color sources are at (X,Y) = (4,0)
and (—4,0), which are shown in the plot by white circles.

signal of the Wilson loop, we apply the APE smearing for
the spatial link variables [27], and the temporal extent is
fixed at T =4 for which the ground state becomes
dominant. In this plot, ggq(x) is set at r =0, and the
valence quark mass is m, = 0.015a7"

To improve the signal, the lattice data are averaged over
space-time. Namely, assuming the translational invariance
of the expectation value, we shift the whole system
including the Wilson loop and the local chiral condensate
and take an average. This can be done without additional
computational cost to solve quark propagators by using the
low-lying eigenmodes. This is one of the advantages of the
construction (4).

As Fig. 4 demonstrates, there appears a tubelike structure
between the color sources, where the change of the
condensate becomes positive, i.e., (g™ (X)), > 0. It
means that the magnitude of the chiral condensate is
reduced between the color charges, since (gq) is negative
in the vacuum.

Peak structures at the position of the charges are shown
in the flux-tube measurements [3,4] due to the strong
enhancement of the action/energy density around the color
charges. In terms of the low-mode truncated local chiral
condensate shown in Fig. 4, no such characteristic struc-
tures around the color charges can be observed. The
absence of peaks will be discussed later.

The remaining logarithmic divergence in ggq
canceled by taking a ratio

(sub) can be

= (@d™™ @y _ (@g"™EW(R,T))
O ="~ gy w2

where (g¢*"™™) is obtained by fitting the vacuum expect-
ation value (gq) to (11) as a function of the valence quark
mass m,. As there are no remaining ultraviolet divergences,
the ratio (x) has a proper continuum limit. Hereafter, we
mainly use this quantity to quantitatively estimate the
restoration of chiral symmetry.
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FIG. 5 (color online).
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Ratio of the chiral condensate r(x) for a separation R = 8. The color sources are separated along the X axis and

set at (X,Y) = (4,0) and (—4,0). The plots show the cross section (a) along the X axis at ¥ = 0 and (b) along Y axis at X = 0.

Figure 5 shows the ratio r(X) for the separation between
the color sources fixed at R = 8. The plots Fig. 5(a) and
Fig. 5(b) correspond to the cross sections of Fig. 4 along
the X axis and the transverse Y axis. The locations of color
sources are shown by black dots in Fig. 5(a).

These plots provide a quantitative measure of the
reduction of the chiral condensate. The region in which
the chiral condensate is reduced forms a structure that
resembles the color flux tube. In other words, chiral
symmetry is partially restored inside the flux tube. The
restoration becomes stronger around the center of the flux,
which is about 20% when R = 8.

The close relationship between the flux tube is suggested
in Fig. 6. We compare the cross section of both the chiral
condensate (g™ (X)), and the action density defined by
(8) with a cutoff on the mode number (p™) (%)), around
the Wilson loop using 160 low-lying eigenmodes. The
latter is calculated by inserting the action density p(X) in
place of gg(x) in Eq. (10), which is used for the flux-tube
measurement [3—5]. To compare the profile, both quantities

(7™ @) Y/ (2™ ) )y —2—
(P @t (P O )y me
1 a % g
1 L}
1 i
0.5
4 [}
& 3
4 @ a
0 = ] . . = i
-6 -2 0 2 4 6
X

are normalized to unity at the origin. Apart from their
normalization coefficients, the spatial profile of the chiral
condensate shows a good agreement with UV Dirac mode
truncated action density. As mentioned above, the action
density is strongly enhanced around the color charges as
reported in Refs. [3.,4]. However, neither UV filtered
density has such structures. Our conclusion is that such
peak mainly comes from the ultraviolet divergent part and
thus cannot be seen in Fig. 6(a) within our cutoff scale.
Figure 7 shows the same plot as Fig. 5 but with different
values of N, the number of eigenmodes included in the sum
(4). As expected from the construction that cancels the
ultraviolet divergences, there is no significant difference
between N = 120 and 240. Our choice N = 160 is there-
fore sufficiently conservative to estimate the local chiral
condensate inside the tube. Up to the largest eigenmode in
our calculation at N = 240, we have confirmed such a
saturation for other quantities considered in this paper
except for the magnitude of the action density p™) ()

and topological charge density qﬁéfj (X). The value of these

(7™ @)/ (@™ ) )y —=—
(0™ @ o/ (PN ) )y o
| 3

-
-

0.5 " "

FIG. 6 (color online). The spatial profile of both the local chiral condensate (7" (%)), and UV Dirac mode truncated action
density (p<N ) (%)) around the color sources with a separation R = 8 using 160 low-lying eigenmodes. For a comparison of their shape,
both quantities are normalized at the origin. (a) cross section at ¥ = 0. (b) cross section at X = 0.
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FIG. 7 (color online).
at Y = 0. (b) cross section at X = 0.

quantities strongly depends on the cutoff scale A, as
expected from the definition in Egs. (8) and (9). However,
the spatial profiles of both (p™) (X))}, and (gg™***) (X)),
are rather stable, and there are no signatures of peaks within
our truncation as in Fig. 7(a).

The partial restoration of chiral symmetry is in accor-
dance with the chiral bag model picture for the quark-
antiquark system [28]. In the naive bag model, chiral
symmetry is completely restored inside the bag, while
Fig. 5 suggests a smooth boundary with a reduced but
nonzero condensate inside the bag.

B. Chiral symmetry restoration as a function
of the separation

Next, we study the chiral symmetry restoration depend-
ing on the separation of the color sources.

Figure 8 compares the cross section of r(x) along the X
axis with R =4, 8, and 10. By increasing the separation,
we observe that the region of partial restoration stretches
between the color sources, which are located at X = R/2
and —R/2. This supports the picture of the tube structure.

1.05@@@8906 oggegéééél
Al
am mé
0.9 o ©
3 Al ® ma
< 08 2mgmw, ?
2334
R=4 o
0.7 R=8 —&8—
R=10 r—-&--=
10 5 0 5 10
X

FIG. 8 (color online). Chiral condensate ratio r(x) along the
X axis. The results with increasing separation R: R = 4, 8, and
10. Color sources are located at (R/2,0) and (—R/2,0).
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Same as Fig. 5 but with different numbers of eigenmodes included: N = 120, 160, 200, and 240.(a) cross section

The magnitude of the reduction increases with R.
For instance, at the origin, the reduction of about 15%
at R =4 grows up to about 25% at R = 10. Beyond
R =10, the statistical signal becomes much worse, and
the effect of spatial boundary would become important as
R approaches L/2.

In Fig. 9, we plot the value of the ratio at the center (0),
where the magnitude becomes minimum, as a function of
R. As the separation R increases, the ratio of the chiral
condensate decreases monotonically until the maximum
distance we could explore. At larger distances, the effect of
string breaking should manifest itself in dynamical QCD,
and the local chiral condensate would stop decreasing.
As far as we can observe, the reduction of the chiral
condensate inside the color flux tube is of the size of
20%—25% at the distance of 1 fm, assuming that the string
breaking does not occur in this scale [29], since it is
difficult to observe the breaking state using the Wilson loop
as a color source.

By increasing the separation between color sources, the
thickness of the flux is expected to grow logarithmically as
a function of its length [30,31]. Such behavior has indeed
been observed in quenched lattice QCD calculations [32]

" ratio at center of flux —A—
1.0 1
A
09} AL
S
kg A 4
08t A 4 1
4 a
07F
0 2 4 6 8 10
R

FIG. 9 (color online). Ratio at the center of the flux r(0) as a
function of the separation R.
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FIG. 10 (color online). Cross section of the ratio along the
Y axis with different separations R and cut points X.

(see also Ref. [33] for a study at finite temperature), for
which one can increase the statistics more easily. In this
work, we try to observe the thickness through the chiral
condensate ratio r(x).

Figure 10 shows the cross section of r(x) along the Y
axis for some combinations of R and X. It is clear that for a
fixed X the flux is thicker when the separation R is larger.
More interestingly, the curve for R = 8 at X = 0 almost
coincides with that for R = 10 at X = 2. Similarly, the
curve for R = 4 at X = 0 coincides with that for R = 6 at
X = 2. Because of the reflection symmetry, these behaviors
are also observed at X = —2. This indicates that the
thickness of the flux is highly correlated with the magni-
tude of the reduction. We also note that these corresponding
cross sections have the same distance from the color
charge, which is given by R/2 — |X| for |X| < R/2.

In fact, such a coincidence is expected from an effective
string model [34,35]. According to that model, the ratio
r(Y) is written as

2 KoY + )

r(Y)=1- " K@) ,

(13)

TABLEI Fitresults for (Y) to (13) for each R and X, together
with y? per degrees of freedom. Note that ¢ and « are in lattice
units. The condensate ratio at the center r(0) is listed as well.

R X r(0) 7 u a x*/dof
10 0 0757(10) 1.54(7) 0.66(11) 23(0.9) 040
10 1 0762(10) 146(7) 072(14) 28(1.2) 046
10 2 0.77810) 126(6) 071(14) 25(1.1)  0.66
10 3  0.80509) 1.00(6) 0.75(18) 2.5(1.3) 1.00
8 0 0.786(5) 1.11(3) 0.71(7) 2.2(0.5) 0.43
8 1 0.792(5) 1.08(4)  0.72(8) 2.3(0.6) 0.25
8 2 0.813(5) 0.933) 0.75(11)  2.5(0.8) 0.58
8 3 0.855(5) 0.693) 0.83(17) 3.0(1.3) 1.42
6 0 0.815(3) 0.89(2) 0.66(4) 1.7(2) 0.38
6 1 0.827(3) 0.81(2) 0.65(4) 1.6(2) 1.01
6 2 0.865(3) 0.65(2) 0.61(4) 1.4(2) 2.36
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where K(x) and K (x) are modified Bessel functions. The
parameter u has a physical interpretation as the inverse
penetration length of the flux from the perpendicular
direction, and « is the thickness of the core. The parameter
7 represents the strength of the condensate reduction.

The function (13) reproduces the lattice data quite well,
as shown by the curves in Fig. 10. The fit results are
summarized in Table I. The penetration length is in the
range of 1/u=1.0-1.6, which corresponds to 0.11-0.18 fm
in physical units. The core size a is 1.4-3.6 in lattice units
and is in the range 0.15-0.4 fm. We observe an increase of
a as R increases while X is fixed at zero, but with the large
statistical error, we are not able to claim the clear evidence
of the string fattening.

IV. CHIRAL CONDENSATE IN THE
THREE-QUARK SYSTEM

A. Partial restoration of chiral symmetry
in the three-quark system

Next, we consider a system consisting of three color
charges that represents a baryon system, which we call the
3Q system in this paper.

Using the path-ordered product Uy = []r, €94 along a
path I';, the 3Q Wilson loop is given by

1 ! / J/
ggabcga’b’c’ U(fa Ugh Ugc s (14)

W3Q =
which is made color singlet by the totally antisymmetric
tensor &, of color indices a, b, and ¢ [36,37]. Similar to
the QQ system, the spatial distribution of the chiral
condensate for the 3Q system is measured as

(@g(¥)Wsq)
o~ (a9), (15)
(W3q)
with the 3Q Wilson loop Wjq. The ratio of the chiral
condensate in the 3Q system r3o(X), for which the ultra-
violet divergences cancel, is then constructed by

. (@q""™(X)W3q)
r20l8) = ) () 1ol

Figure 11 shows a schematic picture of the construction
of the 3Q Wilson loop W3 from the Wilson lines U,. For
simplicity, we use an isosceles right triangle configuration
of the color charges on the XY plane, and the coordinate is
set as in Fig. 11. In this case, the junction point of the three
flux tubes (the Fermat point) corresponds to the origin
[36,37]. The measurement of the local chiral condensate
gq(x) is done at a fixed time slice. The low-mode
truncation number N, the temporal extension 7', and other
measurement setups are the same as in the QQ system.
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3Q Wilson Loop
W3Q R

Wilson line

FIG. 11 (color online). A schematic picture of the construction
for three-quark system with an isosceles right triangle configu-
ration. Three Wilson lines U, correspond to the static color
sources.

Figure 12 shows the ratio r3o(X) with color sources at
(X,Y) = (6,0), (0, 6), and (0, 0) denoted by circles in the
plot. As shown in Fig. 12, the magnitude of the chiral
condensate is reduced among the color sources, which
indicates the partial restoration of chiral symmetry inside
the 3Q system. Similar to the QQ system in Sec. III, there
appear no peaks at the color charges within our truncation
scale. We note that the characteristic Y-type flux is not
clearly seen in this plot, probably because the thickness of
the flux is comparable to the color source separation.
Because of the statistical noise, we are not able to repeat the
calculations increasing the quark separations.

Like in the QQ system, the magnitude of the restoration
depends on the separation of the sources. Figure 13 shows
the cross section of the ratio r3o(x) along the line of X = ¥
with the color sources at (X, Y) = (R, 0), (0, R), and (0, 0).
In this setup, the measurement goes through one color
charge and the center of mass of the system. By comparing
the data for R = 3 and 6, we find that the reduction is more
substantial for R = 6, which is similar to the QQ system
(see Fig. 8). The reduction of the local chiral condensate
becomes larger with the size of the loop and takes its
minimum value at around the center of gravity. With R = 6,

=}
T
L

6 -4 2 0

S b Lo e o x
T

2 4 6 810
X
FIG. 12 (color online). Condensate ratio r3q(x) with the color

sources at Q; = (6,0), Q> = (0,6), and Q3 = (0,0) on the XY
plane.
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FIG. 13 (color online).  Chiral condensate ratio r3q(x) along the
line of X =Y with the color sources at (R,0),(0,R), and
(0, 0) on the XY plane with R = 3 and 6.

the reduction is about 30%, which is also similar to that of
the QQ system.

B. Partial restoration at finite density

Finally, using the observed modification of the local
chiral condensate around the color sources, we estimate the
size of the partial restoration of chiral symmetry in finite-
density QCD. We consider the system of a fixed number of
baryons in a finite-volume box so that the baryon number
density p is N, /L3, where N, is the number of baryons and
L3 is the spatial volume. As a toy example, we take N, = 1
and replace the baryon by the 3Q Wilson loop. This only
gives a crude approximation of the realistic system, but
given the difficulty of simulating QCD at finite chemical
potential, it may provide a useful clue to the understanding
of the finite-density QCD.

The net change of the condensate under such a system is
estimated by the spatial average of the condensate ratio

”3Q(7C)’

— 1L3 _
e Ee. o

where (gq), is the condensate at the finite baryon number
density p = 1/L3. We use two lattice volumes, L3 = 16
and 243, which correspond to (16a)™ =0.18 fm~> and
(24a)=3 = 0.05 fm~3, respectively. The 16° lattice roughly
corresponds to the normal nuclear density py = 0.18 fm™>,

Figure 14 shows (gq),/(gq), as a function of 1/L°. The
two symbols correspond to the different configurations of
the color sources, i.e., (0, 0), (R,0), and (0, R) with R = 3
and 6 on the XY plane. The solid lines are the results of a
linear fit with fixed value of 1 at 1/L3 = 0. The linear
dependence from unity at p = 0 simply means that there is
a finite region where the chiral condensate is reduced from
its vacuum value. Since the region gets larger with
increasing R, the slope for larger R is steeper.

In our setup, the reduction of the chiral condensate at the
normal nuclear density is only ~5%, which is much smaller
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FIG. 14 (color online). Reduction of the chiral condensate at
finite density measured by (g¢),/(g¢),- The estimates for a given
configuration of color sources, 1.e., at (0, 0), (R, 0), and (0, R) on
the XY plane, with R = 3 and 6 are shown.

than the phenomenological model estimate of the order of
30% [38]. Our estimate, however, assumes a fixed spatial
size of the baryon that is smaller than the realistic nucleon.
For instance, the mean root square radius of our setup in
Fig. 14 is 0.44 fm when R = 6, while the charge radius of
proton is 0.88 fm. As the restoration of the chiral con-
densate is stronger for larger separation, this suggests that
(@q),, in realistic finite-density QCD could be substantially
lower than our estimate.

V. SUMMARY

The Dirac eigenmodes carry the full information of the
background gauge field. Indeed, having the complete set of
the eigenvalue and eigenvectors, one can reconstruct the
field-strength tensor F,,(x) at any point x. They therefore
offer an interesting way of filtering out the ultraviolet modes
and investigating the low-energy dynamics of QCD by only
using the low-lying eigenmodes upon reconstruction. This is
a sound and well-defined regularization method of quantum
field theory.

We use this method to investigate the spatial profile of
the chiral condensate under the presence of external

PHYSICAL REVIEW D 91, 094501 (2015)

sources. On the lattices generated with 2 + 1 flavors of
dynamical overlap fermions, we calculate the low-lying
eigenvalues and associated eigenvectors of the overlap-
Dirac operator and use them to reconstruct the chiral
condensate locally. Then, it is straightforward to measure
its correlation with the external color sources set up to
model the QQ and 3Q systems.

We find that the local chiral condensate shows a structure
interpreted as a color flux tube between the QQ color
sources, in which the condensate decreases significantly. It
indicates a partial restoration of chiral symmetry inside the
flux tube and suggests that it happens also inside hadrons.
The spatial profile is consistent with a string model of
the confinement potential, giving another support for the
presence of the color flux tube.

We perform a similar measurement in the 3Q system,
which is new as far as we have noticed. It again shows the
partial restoration of chiral symmetry among the color
sources. The reduction of the condensate is about 30% for
the separation between the color sources of ~1 fm. It can be
used to estimate the chiral condensate in the finite-density
system.

The method developed in this work may easily be
applied for the study of finite-temperature QCD, in which
Polyakov loops can be used for a static color source. Since
the eigenmodes can be applied to define various charges,
such as the axial charge density, the quark number density,
and the topological charge, it may provide an interesting
alternative to measure their spatial distribution.
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